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A B S T R A C T   

Vibration displacement of civil structures is crucial information for structural health monitoring (SHM). The 
challenges and costs associated with traditional physical sensors make displacement measurement not always 
straightforward owing to difficulties such as inaccessibility. While recent computer vision based methods for 
displacement measurements offer simplicity, unfortunately they lag in terms of accuracy and robustness. This 
paper introduces a monocular camera system designed to measure out-of-plane vibration displacement. 
Compared to existing monocular-camera based methods, the proposed monocular vision-based measurement 
technique significantly enhances accuracy and robustness. This boost can be attributed to the generation of a vast 
and precise dataset and augmented by employing advanced techniques for object segmentation and background 
elimination. Experimental tests are conducted in the laboratory to investigate the feasibility of the proposed 
system. The results demonstrate that the proposed monocular 3D displacement system can produce highly ac
curate full-field out-of-plane displacement measurement.   

1. Introduction 

In recent decades, the application of computer vision technologies in 
civil structural displacement measurement has attracted substantial in
terest, owing to their notable advantages over traditional methods like 
displacement sensors. Vision-based measurement methods offer a non- 
contact approach that significantly surpasses traditional contact-based 
techniques in efficiency and applicability. These methods eliminate 
the need for physical interaction with the structure, thereby reducing 
the risk of causing any damage during sensor installations and enabling 
the monitoring of otherwise inaccessible or sensitive areas without 
direct contact. Vision-based displacement measurement methods offer 
significantly higher accuracy and resolution compared to Global Navi
gation Satellite System (GNSS) or radar-based techniques. Furthermore, 
they can provide rich visual information that allows for a more 
comprehensive analysis of the object’s surface characteristics and de
formations. The cost-effectiveness and ease of deployment associated 
with camera-based monitoring present a scalable solution that can 
significantly reduce the logistical complexity and overall expense of 
SHM operations. A single camera setup can simultaneously monitor 

multiple points on a structure, offering a multi-point measurement 
capability that would otherwise require an extensive network of indi
vidual sensors. Additionally, the capacity for remote monitoring 
inherent to vision-based methods greatly enhances the flexibility and 
reach of SHM practices, particularly for structures located in hazardous 
or difficult-to-access areas. The integration of vision-based data with 
advanced image processing and machine learning algorithms further 
extends the capabilities of SHM, enabling automated anomaly detection, 
pattern recognition, and predictive maintenance strategies. Various 
methods have been developed in the field of computer vision-based 
displacement measurement. Among these, in-plane displacement mea
surement methods have been explored, developing techniques to accu
rately capture movements within a single plane [1–5]. Others have 
extended this research to achieve out-of-plane displacement measure
ment, addressing the complexities of movements outside the primary 
plane of observation [6–10]. Some studies have focused on target-free 
methods, offering flexibility in applications without the need for spe
cific markers [11–14]. An area of great research interests has been the 
use of monocular cameras for out-of-plane displacement measurement, 
leveraging a single camera to capture three-dimensional information 
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[15–17]. Additionally, some studies employed Unmanned Aerial Ve
hicles (UAVs) for displacement measurement, providing unique per
spectives and access to challenging locations [18,19]. A major benefit 
of these cutting-edge techniques lies in their growing accessibility, cost- 
effectiveness, and features that enhance their practicality across various 
applications. Unlike traditional displacement sensors, computer vision 
provides the opportunity for non-contact, straightforward setting-up 
and cost-effective measurement. This attribute is particularly valuable 
in monitoring structures that are delicate or sensitive to disturbance. 
Moreover, the ability of computer vision for remote sensing permits 
measurements to be taken from a distance without the need of direct 
access to the structure. This capability is ideal for large-scale, remote 
and inaccessible areas, setting it apart as a convenient tool for modern 
civil engineering practices. 

In the context of vision-based displacement measurement, it is 
essential to distinguish between in-plane and out-of-plane displace
ments. In-plane displacement refers to the displacement that predomi
nantly occurs within the plane of the image, primarily along the X and Y 
directions (horizontally and vertically within the image plane) of the 
camera coordinate system. On the other hand, out-of-plane displace
ment pertains to displacement occurring in the depth direction, also 
known as the Z-direction of the camera coordinate system. When the 
structure in the world coordinate system is moving in a one/two- 
dimensional (1D or 2D) plane, it is possible to conduct the measure
ment as an in-plane displacement measurement without losing any in
formation. This is because the problem becomes a 2D to 2D mapping 
problem, allowing for a straightforward representation of the displace
ment within the captured images/frames. In instances of in-plane 
displacement measurement, a crucial step is strategically aligning the 
camera plane to directly face the plane of displacement. This alignment 
minimizes the depth-related complexities and aids in accurately 
capturing the in-plane displacement. Complementing this approach, 
another crucial component involves correcting perspective distortions 
and scaling the captured image displacements to real-world units (e.g., 
mm) [3]. This is achieved through techniques such as homographic 
transformations or precise measurements of the camera’s position and 
orientation. These combined strategies aid in transforming the captured 
displacements into a coherent representation of the real-world 
movements. 

In certain scenarios, displacement in the depth direction (out-of- 
plane displacement) could occur and become unavoidable. This is a 
frequently encountered scenario in real-world, where practical con
straints such as the case when the structure’s movement in the world 
coordinate system is inherently three-dimensional (3D). Furthermore, 
even when the displacement in the world coordinate system is restricted 
to 1D or 2D, practical constraints such as accessibility to the site and 
visibility of the structure can still hinder optimal camera placement. 
Despite careful alignment and the implementation of correction tech
niques (e.g., homographic transformations), the effect of the perspective 
distortion caused by depth direction movement may be impossible to 
eliminate. These situations necessitate the methods that carefully 
consider out-of-plane displacement, emphasizing the importance of 
comprehensive strategies to capture the full spectrum of civil structures’ 
movement. Capturing the out-of-plane displacement poses significant 
challenges, as the imaging process inherently loses depth information. 
Accurately measuring out-of-plane displacement generally needs addi
tional information to recover the lost depth information. Advanced 
techniques are leveraged to recover the depth information and recon
struct the 3D scene from the 2D images. Multiple camera-based 
displacement methods [7,9,10,12,14] involved the use of multiple 
cameras placed at different viewpoints to capture the scene. These 
cameras provide different perspectives and enable the estimation of 3D 
displacement of objects or features. It is based on the principle that when 
the same scene or object is observed from different viewpoints, the 
displacement in the captured images can be used to compute the depth 
information or the third-dimensional (out-of-plane) displacement. 

Typically, at least two cameras are required, placed at known positions 
relative to one another. More cameras can be added to improve accuracy 
or capture more viewpoints, but this adds to the complexity. Before 
measurements can be made, the camera systems must be calibrated. This 
involves determining the relative positions and orientations of the 
cameras, the focal lengths, and any lens distortions. Once calibrated, the 
3D position of a point in space can be determined by finding the inter
section of the rays coming from each camera to that point. This process, 
known as triangulation [20], allows for the calculation of depth infor
mation. Pan and Yang [9] introduced a deep learning based computer 
vision-based framework for measuring out-of-plane displacements of 
steel plate structures. The framework leverages multi-view vision algo
rithms and deep learning to create a comprehensive 3D point cloud 
representation of the structures and their surrounding environment. 
Park et al. [10] proposed a motion capture system (MCS) as a versatile 
tool that can precisely determine marker movements in any direction. 
Unlike traditional 1D or 2D displacement sensors, MCS can overcome 
frequency sampling limitations often encountered with terrestrial laser 
scanning (TLS) and global positioning systems (GPS). Utilizing multiple 
cameras, MCS measures the 2D coordinates of various markers, trans
lating them into 3D coordinates. Shao et al. [14] proposed a method for 
3D vibration displacement measurement of civil engineering structures, 
using a binocular vision system. The proposed vision-based method le
verages deep learning algorithms for key point detection and matching, 
enabling target-free measurement. The work is later refined [14] to 
optimize its capability for micro displacement detections. 

Multi-view camera systems, though adept at providing depth infor
mation for out-of-plane displacement measurements, are not without 
their challenges. Notably, they grapple with issues of occlusions, where 
features discernible in one camera might be obscured in another, 
complicating the measurement process. Rigorous and precise calibration 
is imperative, and even minor deviations can lead to substantial inac
curacies. Maintaining perfect synchronization among all cameras, 
especially in dynamic settings, is another challenge, slight mis
alignments may cause data disparities. The inherent complexity and cost 
of establishing such systems are further compounded by the need for 
enhanced computational capacity to process data from multiple sources 
in real-time. Spatial constraints can further complicate the setup, espe
cially in constricted environments or locations with obstructions. Con
stricted environments inherently limit the available space to position 
cameras, making optimal placement a meticulous endeavor. Over
coming these challenges is often a prerequisite for successful deploy
ment in real-world applications. 

Monocular vision-based out-of-plane displacement measurement 
technologies are seeking to mitigate the challenges associated with 
multi-camera-based systems. Monocular vision based 3D displacement 
measurement method [15–17] is a significant advancement in com
puter vision that enables the inference of depth information from a 
single 2D image. It has emerged as a powerful tool in the fields of civil 
engineering and structural analysis. Monocular out-of-plane displace
ment measurement techniques are primarily rooted in two distinct ap
proaches. Firstly, there are methods centred around hand-crafted depth 
cues, commonly termed as “shape-from-x” techniques. These methods 
attempt to infer 3D structure from 2D images based on certain visual 
cues, such as shading [21] and focus [22]. Examples include “shape- 
from-shading”, where the variations in image brightness hint at the 
object’s depth or “shape-from-focus”, using the degree of sharpness 
across images to determine depth. While these techniques have been 
foundational in computer vision, they come with certain limitations. 
Specifically, “shape-from-x” methods often rely heavily on ideal condi
tions. For instance, accurate depth perception using shading requires 
consistent lighting, and any deviation can lead to errors. On the other 
hand, deep learning-based methods, a more recent innovation, harness 
the power of neural networks. This category can be further broken down 
into techniques like depth estimation [17], which directly predicts 
depth maps from images, and 3D object detection methods [16], 
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focusing on recognizing and spatially locating 3D objects in 2D images. 
The adaptability and learning capability of these methods have made 

them increasingly popular in modern applications. Sun et al. [16] 
proposed a 3D structural displacement measurement method using 
monocular vision and deep learning-based pose estimation, which has 
demonstrated a commendable level of measurement accuracy. The 
method utilizes virtual rendering to synthesize a training set based on 
3D models of target objects, trains a deep learning model to estimate 
target object poses, and measures 3D translations of structures based on 
the original, and destination poses or key point matching. Presently, this 
method predominantly focuses on locating rigid body structures. This 
poses a significant limitation when it comes to civil structures, which 
inherently exhibit flexible characteristics. Unlike idealized rigid bodies, 
civil infrastructures like bridges have elements that respond differently 
under various conditions. While the columns of a bridge, anchored 
firmly to the ground, experience relatively small motion under regular 
circumstances, the beam components however could exhibit relatively 
larger motions under regular loading conditions such as traffic and 
wind. Under extreme event of significant disturbances such as a major 
earthquake, both columns and beams may experience large and complex 
vibrations. It is crucial to note that once a structure incurs extensive 
damage, measuring its vibrations may help to quickly assess the struc
tural conditions. Another prominent approach in this domain is the 

monocular depth estimation method. Shao et al. [17] pioneered a sys
tem that employs a singular camera for 3D vibration displacement 
measurements. Eschewing the conventional multi-view geometry, this 
system harnesses the power of deep neural networks to infer depth from 
monocular images. However, its efficacy, in terms of accuracy, remains 
an area to be improved. A significant challenge with this depth- 
estimation method is the stark relative error, often escalating to 50% 
or even higher. The crux of this issue lies in the absence of training data 
specific to civil structures and the (lack of) precision of the depth maps 
used for training. Conceptually, the method holds promise for non-rigid 
body displacement measurements. In the common datasets used for 
training depth estimation networks, a limitation is observed. Most of 
these datasets are primarily focused on static indoor items, so the ability 
to understand deformations is not effectively imparted. As a result, the 
trained network becomes proficient in identifying distances between 
various objects, but the nuances of how a single object might deform are 
often overlooked. This deficiency poses challenges when the network is 
applied to flexible structures like buildings or bridges. While some 
datasets including outdoor scenes are available, they are frequently 
compromised in quality, often being generated through dual-camera 
systems. Consequently, accurate measurements are hard to achieve 
when networks are trained on these suboptimal datasets. A flowchart 
summarizing the technologies for computer vision-based structural 

Fig. 1. A taxonomy diagram of computer vision technologies for structure displacement.  

Fig. 2. The overall pipeline of the proposed monocular vision based out-of-plane displacement measurement method.  

Y. Shao et al.                                                                                                                                                                                                                                    



Automation in Construction 165 (2024) 105507

4

displacement measurement is presented in Fig. 1 to facilitate a clearer 
understanding of the methodologies discussed. 

The system presented in this paper seeks to improve the precision of 
non-rigid body out-of-plane vibration displacement measurements for 
civil structures. The overview of this measurement system is shown in 
Fig. 2. The proposed system can be classified into depth estimation based 
out-of-plane displacement measurement. To enhance measurement ac
curacy, a detailed dataset tailored to specific structural needs is gener
ated. This dataset is generated using a 3D data generation method 
designed for rapid, large-scale 3D civil structure data production. Given 
minimal prior knowledge about the structure, such as boundary condi
tions and dimensions, the method can predict a plethora of potential 
deformations. Utilizing numerical tools and analytic solutions, this vast 
dataset, representing a multitude of possible structural deformations, 
can be generated in as little as a week (millions of images and depth 
maps). By training a depth estimation neural network on this extensive 
dataset, a “depth estimation expert” primed for future is created, 
including unforeseen displacement scenarios of the interested structure. 
The estimated depth, when combined with the intrinsic parameters from 
the 3D model renderings, paves the way for accurate 3D point re
constructions for each pixel. For every pixel within a video frame, there 
corresponds a reconstructed 3D point in a spatial dimension. To deter
mine its displacement, the pixel’s 3D location must be identified across 
all frames. This is usually achieved using a key point-based displacement 
measurement method [6]. Initially, key points are identified in the 
inaugural frame, and subsequently, these points are tracked across 
subsequent frames. By aligning the location of these key points on the 
frame with their respective positions on the depth map, the 3D trajectory 
of each key point throughout the video sequence can be pinpointed. 
Generating intricate backgrounds for 3D data can be computationally 
taxing. Previous research [23] indicates that crafting a pair of images 
having accurate background depth could take up to 3.5 h using a single 
NVidia GPU. Moreover, as highlighted earlier, some civil structures 
typically exhibit certain flexibility. This means that during vibrations, 
structures can manifest a multitude of mode shapes. The sheer diversity 
of these mode shapes provides ample data to train a network in deducing 
the depth of various points on the structure. Such a varied dataset en
ables networks to adeptly learn and recognize depth features by 
discerning patterns from these myriad shapes. Essentially, the network 
can derive depth directly from the structure of interest, eliminating the 
need to infer depth based on its relationship with background objects. 
Recognizing this bottleneck, the proposed measurement system employs 
advanced large vision models-Segment Anything (SAM) and Track 
Anything (TAM)-to efficiently extract the structure from individual 
frames, discarding the background. This strategic omission enables the 

network to be focus on structures. 
The rest of paper is organized as follows: Section 2 details on the 

methodologies employed in the proposed vision-based displacement 
measurement system. This includes the principles of the pinhole camera 
model, the process of synthetic data generation, and the implementation 
of the depth estimation deep learning model. In Section 3, the effec
tiveness of the proposed system is assessed through two experimental 
vibration tests, which include comprehensive experimental validations, 
performance comparisons, and in-depth discussions. Finally, Section 4 
concludes the paper, summarizing key findings and outlining directions 
for future work. 

2. Methodology 

2.1. Monocular vision system 

A monocular camera system uses a single camera to capture images, 
providing a singular viewpoint similar to the human eye. This results in 
two-dimensional images derived from a three-dimensional scene, as 
shown in Fig. 3. 

Central to understanding this system is the pinhole camera model, a 
mathematical framework detailing the geometric relationship between a 
3D point (U,V,W) in the world coordinate system and its 2D projection 
(u, v) in the image coordinate system. The world coordinate system de
fines points in a global reference frame, while the camera coordinate 
system represents these points relative to the camera’s position and 
orientation. In this idealized model, light traverses through a singular 
point, the “pinhole”, projecting onto an imaging plane. The trans
formation from 3D world coordinates to 2D image coordinates can be 
described through the camera’s projection matrix P, which is a combi
nation of the camera’s intrinsic matrix A and its extrinsic parameters 
(rotation matrix R and translation vector T): 

P = A[R|T] (1)  

where, 

A =

⎡

⎣
α γ u0
0 β v0
0 0 1

⎤

⎦ (2) 

The intrinsic matrix A contains the camera’s focal lengths along the 
x(α) and y(β) axes, the principal point coordinates (u0, v0), and the skew 
factor γ. The extrinsic parameters are denoted by: 

Fig. 3. Monocular pinhole camera model.  
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[R|T] =

⎡

⎣
r11 r21 r31
r12 r22 r32
r13 r23 r33

|

t1
t2
t3

⎤

⎦ (3) 

Thus, the 2D homogeneous image coordinates S[u v 1]T can be ob
tained by: S[ u v 1 ]

T
= A[R|T][U V W 1 ]

T
. The scale factor S 

ensures the homogeneity of the resulting 2D coordinates. 
One intrinsic limitation of this model, and monocular systems in 

general, is the loss of depth information during imaging. As the 3D scene 
gets mapped onto a 2D plane, the depth or the third dimension, which 
signifies the distance of objects from the camera, is not directly 
captured, since all points along a specific line of sight get mapped to a 
singular point on the imaging plane. However, if depth is available up to 
a scale and matches the camera parameters of a reference dataset, it 
becomes possible to reconstruct the 3D scene from 2D monocular im
ages. Given depth information d (even up to a scale), the 3D coordinates 
(X,Y,Z) of a point in the camera coordinate system can be recovered 
from its 2D image coordinates (x, y) using 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X =
x − u0

f
d

Y =
y − v0

f
d

Z = d

, (4) 

Given the inherent limitations of monocular vision, when depth 
values for each pixel are acquired, even up to a scale, they can provide 
invaluable 3D information. To address the depth dimension lost during 
2D image projection, depth maps are employed. In these maps, each 
pixel’s value signifies the distance between the imaging plane and the 
corresponding point in the scene. By utilizing the depth information and 
camera’s intrinsic matrix, each pixel in an image can be back-projected 
into the 3D space, resulting in an undistorted point cloud. 

2.2. Data generation 

Datasets play a foundational role in training neural networks, acting 
as the bedrock upon which models build their understanding and 
competence. For depth estimation networks, in particular, the quality 
and diversity of the depth maps in datasets can significantly influence 
the model’s accuracy and generalization capabilities. Creating an 
exhaustive dataset that encompasses the vast majority of civil structures 
for training a generalized model for civil structure displacement mea
surement is an impractical endeavor. The sheer number of structures 
worldwide, each possessing its distinct features and traits, makes this 
task daunting. Moreover, when these structures undergo vibrations, the 

resulting mode shapes further diversify and compound the complexity. 
Given this immense variability, capturing a comprehensive snapshot of 
every conceivable displacement scenario becomes an insurmountable 
challenge. Crafting a bespoke and accurate image-depth dataset for each 
individual structure is a more pragmatic and effective approach. For 
instance, when designing a displacement measurement system for a 
bridge, instead of attempting to generalize from a vast dataset of various 
structures, a more focused approach would involve dedicating time to 
meticulously construct a 3D model of that specific bridge. Once this 3D 
model is in place, numerical modeling techniques, such as the Finite 
Element Method (FEM), can be employed to simulate potential vibra
tions the structure might encounter. This allows for a predictive analysis 
of how the structure will behave under various conditions. With the 
detailed 3D model and its deformations established, a precise image- 
depth dataset can be rendered, tailored specifically for that bridge. 
Training a neural network on this specialized dataset ensures that the 
resulting model is finely tuned to the nuances of that structure, maxi
mizing accuracy and predictive capability. This approach not only 
streamlines the training process but also boosts the reliability and 
robustness of the measurement system when deployed in real-world 
scenarios. 

The 3D dataset generation method, known as 3DGEN [24], stands as 
a pivotal tool in crafting the essential training data. This dataset en
compasses images and their corresponding depth maps. Firstly, an initial 
3D model of the particular structure can be crafted based on design 
schematics or by directly measuring the dimensions of the structure. The 
higher the accuracy of this initial 3D model, the better the subsequent 
results and analyses. Central to this representation is the 3D mesh, 
capturing the intricate details of the interesting structure. To facilitate 
the generation of such a comprehensive representation, the Trimesh API 
[25] is used. This API is renowned for its capability to manage and 
process intricate 3D models. For modeling potential mode shapes of 
structures under various impacts, numerical techniques, such as analytic 
functions or the Finite Element Method (FEM), can be employed. 
Through these methods, the initial 3D mesh model undergoes defor
mation, resulting in a representation akin to structures subjected to 
external stimulation. The selection of numerical methods varies ac
cording to the specific structural type. For instance, in Section 3, analytic 
functions are utilized to craft a myriad of model shapes for cantilevers. 

Utilizing the diverse 3D meshes of the structures under vibration that 
are created, the Blender rendering engine [26] is employed to generate 
both images and depth maps from synthetic cameras. The camera po
sitions are randomly determined from points on a sphere that encircled 
the structure, as depicted in Fig. 4. This process resulted in the synthesis 
of multiple camera perspectives, showcasing the structures from a va
riety of angles. Correspondingly, for every camera perspective, the 

Roll

Yaw

Pitch

Fig. 4. The generation of camera positions by modifying a look-at matrix. The possible camera locations are represented by the red points. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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intrinsic and extrinsic matrices of the camera are computed and 
retained. For simulated camera movement around the sphere, look-at 
matrices are generated by modifying the camera’s roll, pitch, and yaw 
angles. Manipulating these angles allows the emulation of the camera’s 
trajectory around the sphere, all while ensuring its gaze remains 
centered on the 3D mesh. 

The compiled dataset encompasses a range of 3D meshes, RGB im
ages captured from varied perspectives, and their associated depth 
maps. It is essential to note that the complexity of a structure often 
dictates the volume of data needed. The richer and more intricate the 
structure, the more comprehensive the dataset should be. This dataset is 
pivotal for training a neural network specifically designed for depth 
estimation of a particular structure, where the network takes an RGB 
image as its input and produces a depth map as its output. Subsequent 
sections will provide more details of the depth estimation network. 

2.3. Displacement measurement 

To measure displacement, a vibration video is first captured using a 
camera. This video is then processed through a segmentation model to 
remove the background and fed into a key point detector and tracker. 
Following the segmentation, the individual frames are further processed 
by the monocular depth estimation model to produce depth maps for 
each of them. Using these depth maps, along with the camera’s intrinsic 
properties, a 3D surface point cloud for each frame is reconstructed. 
Then, the key points that have been tracked in each frame are used to 
accurately identify and mark their positions within the corresponding 

3D point clouds. By pinpointing the 3D positions of the key points in 
each point cloud, the associated displacements can be accurately 
determined. The pipeline of the measurement system is shown in Fig. 5. 

2.3.1. Depth estimation 
A neural network [27] is employed to infer the depth map for every 

frame within the video sequence. While this network has previously 
been applied for 3D displacement measurement as detailed in [17], its 
accuracy in displacement determination remains restricted. Designed as 
an encoder-decoder structure, this network aims to predict a depth map 
from a solitary RGB input image. The encoder methodically reduces the 
image to a condensed latent representation. In contrast, the decoder 
works to upsample this representation back to the original input 
dimensions. 

Deep convolutional neural networks (CNNs) effectively extract 
image features, discerning the relationship between input and output. As 
networks go deeper, performance can decrease due to gradient issues. To 
overcome this, ResNet [28] is employed in the model, which empha
sizes residual learning and ensures stability in very deep networks. The 
ResNet50, pre-trained on ImageNet [29], serves as the encoder for our 
model, ensuring robust feature extraction. In the proposed architecture, 
the limitation of employing high-level semantic features, which inher
ently leads to coarse predictions, is addressed through a sophisticated 
decoder design. This decoder strategically combines high-level features, 
rich in semantic information, with low-level, edge-sensitive features to 
refine the feature maps back to their original resolution. This approach 
employs a progressive refinement strategy initiated by upsampling the 

Fig. 5. Overview of the proposed out-of-plane displacement measurement.  

Fig. 6. A visualization of the zoom in/out augmentation. The pixel values of the depth maps are not changed by this operation.  
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last feature group produced by the encoder, enhancing detail recovery in 
the depth maps. Critical to this process is the utilization of residual 
convolution blocks, as highlighted in existing literature [30], which 
facilitate efficient gradient propagation from high-level to low-level 

layers. This is achieved via both short-range and long-range residual 
connections, ensuring a comprehensive integration of features across the 
network. Within this architecture, feature maps from designated 
encoder layers are transferred through a residual convolution block 

Fig. 7. Experimental test set-up: (a) schematic diagram of the experimental setup; and (b) on-site diagram of the experimental setup.  

Fig. 8. Example depth maps sampled from training dataset.  

Y. Shao et al.                                                                                                                                                                                                                                    



Automation in Construction 165 (2024) 105507

8

within each fusion module. Prior to fusion, these maps undergo a tran
sitional convolution layer, which standardizes the channel dimensions, 
facilitating seamless integration. The integration process involves 
merging these adjusted feature maps with those generated by the pre
ceding feature fusion module, accomplished through a summation 
operation. Subsequently, an upsampling operation elevates the resolu
tion of these fused maps to match that of the succeeding input layer. The 
final stage of the decoder incorporates an adaptive output module, 
comprising dual convolution layers and a bilinear interpolation layer, 
dedicated to outputting the final depth map. 

Distinct from the works in Ref. [17], this paper introduces two pri
mary modifications. Firstly, the availability of a high-quality dataset 
eliminates the need for the network to estimate affine-invariant depth. 
Instead of leveraging affine-invariant loss functions, the system now 
employs Chamfer loss and Mean Square Error loss to estimate scale- 
invariant depth. Data augmentation ensures scale-invariance of the 
depth maps in our dataset. Given that the cameras rendering the images 
and depth maps are positioned on a sphere with consistent intrinsic 
parameters, it is essential for the model to remain resilient to varying 
distances. In real-world applications, camera types and placements often 
differ. To prevent the model from overfitting to specific distances, 
random zoom in/out is used as a data augmentation strategy. This 

process modifies the perceived size of the object within the image and 
depth map, but the depth value range remains consistent. This strategy 
ensures that the model focuses on the object’s inherent characteristics 
rather than its apparent size in the frame, steering the model to prioritize 
the object’s shape over its size. Fig. 6 shows the zoom in/out augmen
tation. Secondly, observations during training revealed the auxiliary 
branch [27,31] for training on the generated dataset to be redundant, 
leading to its removal from the model. 

Depth maps have limitations in out-of-plane displacement mea
surements. They solely offer the distance between 3D points and the 
camera. If the camera’s principal axis is not aligned perpendicularly to 
the object, accurate displacement measurements become difficult. One 
possible approach is to estimate the relative positioning of the structure 
(world coordinate system) and the camera (camera coordinate system), 
but this often introduces significant inaccuracies. Real-world con
straints, such as assessing tall structures, make it even more challenging 
to precisely determine this relative positioning between the camera and 
the structure. Hence, instead of the camera’s filming position being 
meticulously adjusted or the relative positioning between the camera 
coordinate system and world coordinate system being estimated, the 3D 
point cloud of the structure is directly reconstructed using depth maps. 

With the 3D point clouds in hand, even with only the surface points, 

Fig. 9. Example segmentation masks of the wooden beam generated by TAM.  

Fig. 10. Wooden beam depth map’s samples as predicted by the fine-tunned depth estimation neural network.  
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the transformation matrix of the point cloud from the camera coordinate 
system to the desired world coordinate system can be estimated. This is 
attributed to the nature of civil structures, as their foundation is 
generally grounded, allowing points near the ground to serve as fixed 
points or the origin of the coordinate system. Once each frame’s point 
cloud has been generated, reference points (at least 3 non-collinear 
ones) at fixed area can be chosen from a frame to establish the world 
coordinate system. If three non-collinear points are elusive, gravita
tionally defined normal can be adopted as alternatives. These points can 
then be matched with corresponding points across frames using the 
point tracking method, which will be introduced in the next section. 
Through this method, transformation matrices, encompassing rotation 
and translation between the camera and world coordinate systems, can 
be estimated. 

Using Eq. (4), the 3D surface point cloud can be reconstructed once 
the depth map is estimated, combined with intrinsic parameters. The 3D 
surface point cloud represents the 3D location of every pixel. In essence, 
Eq. (4) back-projects each 2D pixel into its corresponding 3D point 
within the camera’s coordinate system. A distinct feature of this mea
surement system, in contrast to many contemporary displacement 
measurement methods, is the absence of camera calibration re
quirements. The reason for this simplification is the scale-invariance of 
the estimated depth maps, allowing for the direct use of camera 

parameters from the rendering process of images and depth maps. 

2.3.2. Key point detection and tracking 
In order to find the dynamic movement of the measured structure, 

key points are used to represent the structure. Key points refer to specific 
pixels that have significant appearance, such as corner points [32]. 
These key points often help in measuring in-plane displacement. To 
figure out this displacement, the first frame is analyzed to pick out these 
key points, while other points are ignored. The KAZE detector [33] is 
used for this detection. Once selected, the KLT tracker [34–36] moni
tors these key points across different frames to see how they move. By 
looking at the movement of these key points frame-by-frame, a path for 
each point can be mapped out. This path represents the in-plane 
displacement. This in-plane displacement trajectory tells how a key 
point moves within a video frame by frame. Meanwhile, by mapping the 
trajectory of the key points to their respective depth maps, variations in 
the depth of the key points across the video can be obtained. 

As previously described, in this measurement technique each image 
pixel is mapped back to a 3D location. As a result, for any given video, a 
sequential set of 3D surface point clouds is generated, each corre
sponding to an individual frame. By identifying the key point’s position 
in every frame, its location within each of these point clouds can also be 
determined. Through key point tracking, the 3D coordinates of each key 

Fig. 11. Comparison of out-of-plane displacement time histories of wood beam: (a) Vision based method vs. Laser 1; (b) Vision based method vs. Laser 2.  
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point within the sequential point clouds can be determined. These co
ordinates can subsequently be transformed into the desired world co
ordinate system. 

2.4. Object segmentation 

It is infeasible and unnecessary to generate vast number of different 
backgrounds for civil structures in the custom-made dataset. Therefore, 
for testing video, a model called TAM (Tracking Anything Model) [37] 
is leveraged to extract the interest object and reject the background. 
With TAM, users can effortlessly segment the object of interest by a 
single click in the initial frame. The model then continuously tracks the 
chosen object across the video, from one frame to the next. 

The TAM model is built upon a few advanced CV algorithms and 
architectures, each contributing to its robustness and efficiency. 1) 
Initialization with SAM (Segment Anything Model) [38]: The initiali
zation phase employs the Segment Anything Model (SAM), which is 
designed for promptable image segmentation, comprising three integral 
components: an image encoder, a prompt encoder, and a mask decoder. 
The image encoder utilizes a pre-trained Vision Transformer (ViT) [39] 
adapted for high-resolution inputs, outputting a 16× downscaled, 64 ×
64 image embedding. The prompt encoder is capable of handling sparse 
(points), dense (masks), and text prompts, each of which are embedded 
with positional embeddings, convolutional operations, and pre-trained 
text encoder CLIP [40]. To segment simple beam structures in this 
study, the user can easily select several points on the beam as the 
prompt. The mask decoder, designed for efficiency, employs a modified 
Transformer decoder block followed by a dynamic mask prediction 
head. It utilizes prompt self-attention and cross-attention mechanisms to 
update embeddings, ultimately mapping them to a binary segmentation 
mask through a dynamic linear classifier; 2) Tracking with XMem [41]: 
Following initialization, the model transitions to the tracking phase, 
which is managed by XMem. Given the initial object mask from SAM, 
XMem can track the object in the subsequent frames using ResNet-based 
architecture; 3) Mask Refinement with SAM: If the quality of the object 

Fig. 12. FFT spectra of the measured displacement responses of wood beam: (a) Vision based method vs. Laser 1; (b) Vision based method vs. Laser 2.  

Table 1 
Cross-correlation coefficients and relative errors of key points at Lasers 1 and 2.  

Proposed Method Previous Method [17] 

No. Corr. (ρ) Relative Error. (%) Corr. (ρ) Relative Error. (%) 
G 1.0000 0.00 

17.87 
1.0000 0.00 

106.16 Laser 1 0.9521 0.4249 
Laser 2 0.9616 16.01 0.4720 94.56  

Fig. 13. Example segmentation masks of the aluminium beam generated by TAM.  
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mask deteriorates during the tracking process, the model re-engages 
SAM for mask refinement. A feedback mechanism activates SAM, 
which uses dynamic hyperparameters like probe radius and affinity 
threshold for adjustments. The refined mask undergoes a quality check 
using IoU metrics to ensure effective refinement. This iterative refine
ment process allows the model to adapt to complex scenarios, such as 
occlusions or drastic changes in object appearance, thereby maintaining 
high tracking accuracy; 4) Real-time Correction: TAM incorporates a 
real-time correction mechanism that allows users to pause the tracking 
process and manually adjust the object mask. This feature is particularly 
useful for handling complex scenarios where automated tracking may 
fail due to occlusions or drastic changes in object appearance. 

Using TAM, the object of interest can be precisely segmented in each 
frame. This not only streamlines the process by eliminating the need for 
background generation during dataset creation but also simplifies the 
training of the depth estimation network. Specifically, the absence of 
background allows the model to focus exclusively on the primary object, 
leading to potentially faster training convergence. 

3. Experimental tests of beam structures 

To validate the precision of the proposed approach for measuring 
out-of-plane vibration displacement in structural engineering, vibration 
experimental tests of two cantilever beams are conducted in a laboratory 
setting. The experimental tests utilized two distinct beams: one made of 
wood and the other of aluminium. The rationale for using two distinct 
beams lies in the differences in their different textures and vibration 
frequencies, despite both having the same cantilever mode shape. A 
reliable measurement system should be robust enough to accommodate 
these variations and provide consistent results across different materials 
and their associated modal behaviors. 

3.1. Experimental set-up 

Two distinct beams are employed as experimental specimens to 
evaluate the accuracy of the proposed measurement method across 
different materials and structural configurations. A wood cantilever 
beam, measuring 1200 mm in length, 30 mm in width, and 8 mm in 
thickness, and an aluminium beam, with dimensions of 1000 mm in 
length, 60 mm in width, and a thickness of 3 mm, were chosen. These 

beams were selected for their contrasting material properties and their 
common application in structural engineering. For the experiments, one 
end of each beam was securely anchored to a wall, creating a cantilever 
setup. An iPhone 14 Pro is employed to record the testing videos. 
Notably, rather than positioning the camera head-on to the structure’s 
movement direction, it is deliberated angled. This deliberate orientation 
ensures the presence of out-of-plane movement, effectively testing the 
method’s capability to measure such displacements. Fig. 7(a) provides a 
schematic representation of this setup. The recording parameters are set 
to a resolution of 1920 × 1080 and a capture rate of 155fps. For com
parison and validation, two LDS Keyence IL300 sensors are placed on the 
structure’s rear side to capture the ‘ground truth’ displacement data. 
Two lasers are employed to assess the full-field measurement capabil
ities of the system. If a good performance is observed at both laser- 
marked locations, full-field measurement is indicated. The detailed 
experimental configuration, including the placements of the sensors and 
other equipment, is shown in Fig. 7(b). During the experimental tests, 
the beam’s free end is manually tapped to produce minor vibrations. 

3.2. Dataset generation 

To accurately measure the out-of-plane displacement using the depth 
estimation neural network, a comprehensive dataset is created by 
3DGEN [24], specifically tailored to the characteristics of a wood beam. 
A beam model is designed using particular dimensions that maintain a 
length, width, and height ratio. For the wood beam, this ratio is 
1:0.025:0.00667, while for the aluminium beam, it is set at 
1:0.06:0.003. This ratio is in accordance with the dimensions of the 
testing specimens. After the model is established, static loads are applied 
at ten distinct points along the beam span. These points start from one 
end of the beam (position 1) and shifts 0.05 L each time, in which L is the 
beam span length, continuing until the position reaches mid span of the 
beam. For each location, 100 different loading intensities are applied, 
with the intensities calibrated to ensure that the largest displacement of 
the beam remains within L/5 of the beam length. During the rendering 
process, for each deformed beam, 100 images and the corresponding 
depth maps are generated, captured from various unique views. In total, 
200 K pairs of depth maps and images of each beam are generated for 
training the depth estimation neural network. Generating such dataset 
takes about 20 h. Some example depth maps are shown in Fig. 8. 

Fig. 14. Aluminium beam depth map’s samples as predicted by the fine-tunned depth estimation neural network.  
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During training, the PyTorch framework was employed, adhering to 
a mini-batch strategy with a batch size set to 32. Optimization during 
training was facilitated through the Adam optimizer [42], a choice 
motivated by its adaptive learning rate capabilities, which has been 
configured with an initial learning rate of 0.001. To further refine the 
optimization process, the exponential decay rates for the moment esti
mates were meticulously set: 0.9 for the first moment and 0.999 for the 
second moment, aligning with common practices that balance respon
siveness and stability in gradient updates. 

3.3. Experimental results 

3.3.1. Wood beam experimental results 
In Fig. 9, a series of segmented wooden beam images are presented 

next to their original RGB counterparts, showcasing the effectiveness of 
the Tracking Anything Model (TAM) in isolating and identifying struc
tural elements. 

Fig. 10 presents a selection of predicted wooden beam depth maps 
juxtaposed with their corresponding input RGB images. These visuals 
offer insights into the accuracy and capability of the depth estimation 

neural network, highlighting the intricate details captured. 
Fig. 11(a) presents the out-of-plane displacement time history of an 

arbitrarily chosen key point in the area where Laser 1 is installed, 
comparing against the ground truth. Similarly, Fig. 11(b) illustrates the 
out-of-plane displacement derived from both the proposed system and 
the previous state-of-the-art (SOTA) monocular displacement measure
ment methods reported by Ref. [17]. Fig. 11 illustrates three separate 
displacement time histories: the green line represents the ground truth, 
the blue line corresponds to the results of the previous measurement 
method, and the red line shows the results of the proposed measurement 
system. 

The results demonstrate that the proposed vision system delivers 
highly precise displacement measurements for wood beam, in line with 
those captured by physical sensors. When compared with the previous 
SOTA method, it is evident that the proposed measurement system 
significantly improves the accuracy. Fig. 12 illustrates the FFT spectrum 
of the measured displacements with different methods. It is evident that 
the proposed method aligns closely with the ground truth, demon
strating its effectiveness and precision in measuring out-of-plane dis
placements in terms of both vibration frequency and amplitude. In 

Fig. 15. Comparison of out-of-plane displacement time histories of aluminium beam: (a) Vision based methods vs. Laser 1; (b) Vision based methods vs. Laser 2.  
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contrast, the previous STOA method deviates significantly in the spec
trum amplitude although it successfully captures the vibration fre
quency, highlighting its limitations and inaccuracies in out-of-plane 
displacement measurement. 

Two evaluation metrics, namely the cross-correlation coefficient ρ 
and the relative error ϵ, are employed to assess the performance of the 
proposed approach. The parameters ρ and ϵ are defined as follows: 

ρ =
1

N − 1
∑N

i=1

(
Ai − μA

δA

)(
Bi − μB

δB

)

(5)  

ϵ =
‖Bi − Ai‖

‖Bi‖
× 100%, (6)  

where N represents the total number of observations in the displacement 
response’s time history. The symbols Bi and Ai correspond to the ith 
displacement response from the ground truth and the proposed system, 
respectively. Additionally, μA and δA are the mean and standard devia
tion of A, while μB and δB are the mean and standard deviation of B. 

The evaluation results for the displacements measured at locations 
with two LDS are detailed in Table 1. The displacement readings taken 
from the respective physical sensors serve as the benchmark or ground 
truth (denoted as G in the table). These readings have a relative error of 
0 and a correlation coefficient of 1. The correlation coefficients and 
relative errors between the measured displacements at two laser sensor 
locations are also given in the table. The results clearly illustrate the 
capability of the proposed system to accurately measure the out-of-plane 
displacement. The cross-correlation coefficient between the measured 
displacement time histories from the laser sensor and the proposed 
methods at sensor location 1 is 0.9521, while at sensor location 2 is 

0.9616. Furthermore, the accumulated relative errors are below 18%. 

3.3.2. Aluminium beam experimental results 
The experimental design for the aluminium beam maintains a high 

degree of similarity to the wooden beam’s setup, with a key variation 
being the deliberate repositioning of the camera. This change is specif
ically intended to assess the algorithm’s robustness concerning varia
tions in camera placement, ensuring its adaptability and accuracy across 
different observational perspectives. Fig. 13 displays the RGB images 
captured by the camera alongside the segmentation masks of the 
aluminium beam. 

Fig. 14 displays the RGB images captured by the camera alongside 
the depth maps inferred by the neural network. 

Similar to Fig. 11, Fig. 15 shows three distinct displacement time 
histories measured along the aluminium beam under external stimula
tion at the free end. Fig. 15(a) displays the out-of-plane displacement 
time history of a randomly selected key point from the area where Laser 
1 is positioned. In a similar vein, Fig. 15(b) depicts the out-of-plane 
displacement as determined by both the proposed system and the pre
vious method at a location near Laser 2. 

Fig. 16 showcases the FFT spectrum derived from aluminium beam 
displacements measured using the three methods. The displayed results 
clearly indicate that the proposed method closely mirrors the ground 
truth, highlighting its accuracy and reliability in gauging out-of-plane 
displacements. 

Likewise, performance evaluation of the measurement system is 
carried out using the cross-correlation coefficient and the relative error. 
These metrics are presented in Table 2. At sensor location 1, the cross- 
correlation coefficient between the displacement time histories 
captured by the laser sensor and those from the proposed methods 
stands at 0.9810. For sensor location 2, this coefficient is 0.9764. 
Additionally, the total relative errors do not exceed 20%. 

The paper refrains from detailing the in-plane displacement results. 
This is because the out-of-plane displacement, which is derived from the 
union of in-plane displacement and depth maps, acts as an indicator: its 
accuracy vouches for the precision of the in-plane displacement. The 
methodology reconstructs the structure’s surface point cloud for each 
frame, facilitating displacement measurements in every conceivable 
direction. This 3D measurement prowess offers a comprehensive insight 

Fig. 16. FFT spectra of the measured displacement responses of aluminium beam: (a) Vision-based method vs. Laser 1; (b) Vision-based method vs. Laser 2.  

Table 2 
Cross-correlation coefficients and relative errors of key points at Lasers 1 and 2.  

Proposed Method Previous Method [17] 

No. Corr. (ρ) Relative Error. (%) Corr. (ρ) Relative Error. (%) 
G 1.0000 0.00 

19.43 
1.0000 0.00 

194.32 Laser 1 0.9810 − 0.1249 
Laser 2 0.9764 19.40 0.0376 124.39  
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into the structure’s movements across all dimensions. While the method 
can easily measure in-plane displacement, this essentially represents 
mere pixel movement in the videos. This pixel displacement cannot be 
transformed into any meaningful real-world displacement, due to the 
majority of the movement of the experiments are registered in the depth 
direction. Its relevance real-world analysis is minimal. Based on the 
results from two experimental tests, the proposed method consistently 
yields accurate displacement measurements. For both tests, the cross- 
correlation values exceed 0.95 and the relative errors remain below 
20%. These findings highlight a significant improvement of the pro
posed measurement system over the previous method [17]. However, 
the relative errors observed from both wood beam and aluminium vi
bration tests are still relatively high. They can be attributed to the 
accumulation of errors throughout the measurement duration, as well as 
a combination of factors related to the equipment and computational 
constraints. Initially, there is a discrepancy in the data acquisition rates: 
the camera operates at 155.83fps, while the laser sensor at 200 Hz. 
Furthermore, due to computational limitations associated with the 
Training Anything [37] segmentation process, the camera’s resolution 
must be reduced, resulting in videos being down-sampled to 50fps. 
Concurrently, the ground truth data from LDS was also asdjusted to 50 
Hz. This down sampling process introduced synchronization challenges 
between the laser data and the video, potentially leading to the observed 
larger relative errors. 

4. Conclusion 

This paper proposes a novel system for out-of-plane displacement 
measurement leveraging monocular vision. The presented approach 
amalgamates a monocular vision-based depth estimation neural 
network with a novel 3D data generation technique, and an advanced 
large vision segmentation model to measure the full-field out-of-plane 
displacement of civil structures. When comparing with the previous 
state-of-the-art monocular depth estimation based measurement 
methods, the proposed system offers significantly superior measurement 
accuracy. Using the advanced synthetic data generation technique, data 
collection for training the neural network becomes significantly easier 
and time efficient. Two experimental tests are conducted to verify the 
effectiveness of the proposed measurement system. Results demonstrate 
that the proposed approach can measure the out-of-plane vibration 
displacement using monocular vision-based methods. Future research 
might explore the applicability of this vision system to more complex 
structures, like bridges and wind turbines. Additionally, integrating this 
measurement system into a UAV (Unmanned Aerial Vehicle) could also 
be a valuable avenue for exploration. 
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