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A B S T R A C T

This paper studies binary quadratic programs in which the objective is defined by the maximisation of a
Euclidean distance matrix, subject to a general polyhedral constraint set. This class of nonconcave maximisation
problems, which we refer to as the Euclidean Max-Sum problem, includes the capacitated, generalised and max-
sum diversity problems as special cases. Due to the nonconcave objective, traditional cutting plane algorithms
are not guaranteed to converge globally. In this paper, we introduce two exact cutting plane algorithms to
address this limitation. The new algorithms remove the need for a concave reformulation, which is known to
significantly slow down convergence. We establish exactness of the new algorithms by examining the concavity
of the quadratic objective in a given direction, a concept we refer to as directional concavity. Numerical results
show that the algorithms outperform other exact methods for benchmark diversity problems (capacitated,
generalised and max-sum), and can easily solve problems of up to three thousand variables.
1. Introduction

In this paper, we show how cutting planes can be used to generate
exact solutions for the problem of maximising the sum of pairwise
Euclidean distances between selected points, subject to general poly-
hedral constraints, hereafter referred to as the Euclidean Max-Sum
problem (EMSP). The (EMSP) is a generalisation of the Euclidean Max-
Sum diversity problem (Spiers et al., 2023), in which the cardinality
constraint is replaced by a general polyhedral set. More precisely, given
a set of locations 𝑣1,… , 𝑣𝑛 ∈ R𝑠 (𝑠 ≥ 1), the (EMSP) is defined as the
following nonconcave binary maximisation problem,

max 𝑓 (𝑥) ∶= 1
2 ⟨𝑄𝑥, 𝑥⟩ , (EMSP)

s.t. 𝑥 ∈ 𝑃 ∩ {0, 1}𝑛,

where 𝑄 = [𝑞𝑖𝑗 ]𝑖,𝑗=1,…,𝑛 is an 𝑛× 𝑛 Euclidean distance matrix defined by
𝑞𝑖𝑗 ∶=

‖

‖

‖

𝑣𝑖 − 𝑣𝑗
‖

‖

‖

, and where 𝑃 ⊂ R𝑛 is a polyhedral set defined by

𝑃 = {𝑥 ∈ R𝑛 ∶ 𝐴𝑥 ≤ 𝑎} ,

where 𝐴 ∈ R𝑚×𝑛 and 𝑎 ∈ R𝑚. Here, the definition of 𝑥 can be
easily generalised to include both integer and continuous variables. The
matrix 𝑄 is symmetric, hollow and has positive off-diagonal entries. By
a result from Schoenberg (1937), given 𝑣1,… , 𝑣𝑛 ∈ R𝑠, we can construct
another set of 𝑛 points 𝑢1,… , 𝑢𝑛 ∈ R𝑛 such that ‖‖

‖

𝑣𝑖 − 𝑣𝑗
‖

‖

‖

= ‖

‖

‖

𝑢𝑖 − 𝑢𝑗
‖

‖

‖

2
for

𝑖, 𝑗 = 1,… , 𝑛. As such, the distance matrix 𝑄 is also a squared Euclidean
distance matrix. Furthermore, it is well-known that squared Euclidean
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distance matrices are conditionally negative definite, i.e., ⟨𝑄𝑥, 𝑥⟩ ≤ 0
if ∑𝑛

𝑖=1 𝑥𝑖 = 0, and have exactly one positive eigenvalue (Bapat and
Raghavan, 1997, Corollary 4.1.5, Theorem 4.1.7). In this work, we
exploit this property to show how the cutting plane methodology,
which is normally restricted to concave maximisation problems, can
be applied to find an optimal solution of (EMSP).

The Euclidean max-sum problem has various important practical
applications. In machine learning and statistical analysis, Euclidean
distance is often used as a measure of dissimilarity between data points
in clustering algorithms (Madhulatha, 2012; Shirkhorshidi et al., 2015).
By maximising the Euclidean distance between points, clusters can be
formed based on their dissimilarity, allowing for effective grouping and
classification of data. An example of this is the well-known 𝑘-means
clustering problem (MacQueen et al., 1967; Lloyd, 1982). Furthermore,
in various practical applications such as urban planning or network
design, there is a need to strategically locate unwanted facilities such
as waste disposal sites or polluting industries (Kuby, 1987; Erkut and
Neuman, 1989). Maximising the distance between these unwanted (but
necessary) facilities and sensitive areas such as residential zones or
environmental conservation areas helps minimise the negative impact
on the surrounding communities or ecosystems. Lastly, maximising
Euclidean distances allows for the selection of points that capture
diverse characteristics or represent different regions of interest, thereby
enhancing the coverage and diversity of the chosen set.
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This is seen in the Euclidean max-sum diversity problem (Spiers
et al., 2023), which is a special case of the (EMSP) where the poly-
hedral set 𝑃 is defined by a single cardinality constraint. For a recent
review of this and other diversity models and their associated solution
algorithms, we direct the reader to the comprehensive reviews in Martí
et al. (2022) and Parreño et al. (2021). Among other applications, the
maximum diversity problem has gained recent attention for its use in
forming teams with diverse skill sets (Hochbaum et al., 2023).

Recently, in Spiers et al. (2023), we formulated a cutting plane
algorithm for the Euclidean max-sum diversity problem by establishing
the concavity of the objective function on the hyperplane ∑𝑛

𝑖=1 𝑥𝑖 = 𝑝,
which ensures that tangent planes of feasible solutions serve as valid
upper planes. As such, our cutting plane algorithm is globally conver-
gent for the Euclidean max-sum diversity problem. The resultant exact
algorithm is competitive with heuristic and meta-heuristic methods and
can solve two-coordinate instances of up to eighty thousand variables.
However, without the cardinality constraint, the objective function is
not concave over the feasible set, and hence tangent planes do not
always form valid cuts. The purpose of the current paper is to develop
a new cutting plane methodology that still converges for this more
general case, where concavity is not guaranteed.

To the best of our knowledge, outside of the Euclidean max-sum
diversity problem, quadratic maximisation problems defined by Eu-
clidean distance matrices have never been explored in isolation. One
reason for this is that these maximisation problems are, in general, non-
linear and nonconcave. Mixed-integer nonlinear programming is one of
the most challenging classes of optimisation problems. Although there
are several exact methods that provide general frameworks to tackle
concave maximisation problems, including outer approximation (Duran
and Grossmann, 1986; Leyffer, 1993; Lubin et al., 2018; Kronqvist
et al., 2020), branch and bound (Gupta and Ravindran, 1983; Vielma
et al., 2008; Bonami et al., 2013), and cutting plane methods (West-
erlund and Pettersson, 1995; Kronqvist et al., 2016; Lundell et al.,
2022), advancements in exact algorithms for nonconcave problems are
still modest. The most common way to handle binary nonconcave
maximisation is to reformulate the problem into an equivalent concave
problem by using a penalty approach, before applying exact methods
to the new concave problem (Androulakis et al., 1995). In particular,
thanks to the property 𝑥2𝑖 = 𝑥𝑖 (𝑖 = 1,… , 𝑛) for 𝑥 ∈ {0, 1}𝑛, the
nonconcave objective 𝑓 (𝑥) = 1

2 ⟨𝑄𝑥, 𝑥⟩ can be replaced by a concave
function 𝑓𝜌(𝑥) = 1

2 ⟨(𝑄 − 𝜌𝐼𝑛)𝑥, 𝑥⟩ + 1
2𝜌

∑𝑛
𝑖=1 𝑥𝑖, where 𝜌 is greater

than the largest eigenvalue of 𝑄. This technique is one of the ways
modern solvers such as CPLEX and Gurobi solve binary quadratic
programming problems (Bliek et al., 2014; Lima and Grossmann, 2017).
However, computational studies have shown that the convergence of
this approach is often slow, especially when 𝜌 is large (Bliek et al.,
2014; Lima and Grossmann, 2017; Bonami et al., 2022). This is
explained mathematically in our recent work (Proposition 6, Spiers
et al. (2023)). In the case of the (EMSP), where 𝑄 is a Euclidean
distance matrix, the Perron–Frobenius Theorem implies that the largest
eigenvalue of 𝑄 is bounded by the minimum and maximum row sums,
and hence the concave reformulation requires choosing 𝜌 > 0 to ensure
concavity. However, we proved in Spiers et al. (2023) that if the
polyhedral set 𝑃 is defined by a single cardinality constraint, then the
concave reformulation is actually unnecessary, since it is possible to
develop a globally convergent cutting plane methodology that directly
tackles the original problem.

This paper extends the results in Spiers et al. (2023) to general
Euclidean distance maximisation by relaxing the requirement for a car-
dinality constraint. This is achieved by exploiting the property that Eu-
clidean distance matrices have exactly one positive eigenvalue. To pro-
vide intuition on the key idea, consider a full eigenvalue decomposition
of the objective function,

𝑓 (𝑥) = 1
2 ⟨𝑄𝑥, 𝑥⟩ = 1

2𝑥
𝑇

( 𝑛
∑

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖

)

𝑥 = 1
2

𝑛
∑

𝜆𝑖𝑥
𝑇 (

𝑣𝑖𝑣
𝑇
𝑖
)

𝑥,
2

𝑖=1 𝑖=1
Fig. 1. The intersection of a paraboloid and a hyperplane is either convex or concave.

where {𝑣1,… , 𝑣𝑛} and 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 are eigenvectors and eigenvalues of
𝑄. This expresses the quadratic objective as a sum of functional compo-
nents, which are either convex or concave depending on the sign of the
respective eigenvalues. However, as 𝑄 is a Euclidean distance matrix,
it is known to contain exactly one positive eigenvalue, and therefore
𝑓 (𝑥) has only one convex component. By restricting our search domain
to exclude directions that traverse this convex component, our objective
function can effectively be treated as a concave function (see Lemma 1).

As an example, consider the hyperbolic paraboloid defined by

𝑔(𝑥, 𝑦) = 𝑥𝑦 = 1
4 (𝑥 + 𝑦)2 − 1

4 (𝑥 − 𝑦)2.

Clearly, whenever 𝑎𝑥+𝑏𝑦 = 0 (𝑎𝑏 > 0), the function reduces to 𝑔(𝑥, 𝑦) =
𝑥(− 𝑎𝑥

𝑏 ) = − 𝑎
𝑏𝑥

2, which is concave. Hence, while 𝑔(𝑥, 𝑦) is nonconcave
for 𝑥, 𝑦 ∈ R, it is concave on the 𝑎𝑥+𝑏𝑦 = 0 plane. The resultant concave
parabola is shown in red in Fig. 1. This is essentially the technique used
in Spiers et al. (2023), where the Euclidean distance matrix is known
to contain exactly one positive eigenvalue, and hence the objective
has one convex functional component. The cardinality constraint then
ensures that the feasible set excludes this convex component, and
the quadratic function can be treated as concave. For the general
problem (EMSP), which may not include a cardinality constraint, the
main idea of our approach is to only generate the tangent planes on
concave directions. By doing so, the cutting planes are valid, and the
algorithm always converges to an optimal solution.

The remainder of this paper is organised as follows. In Section 2,
we formalise the concept of directional concavity and, based on this,
formulate two key sufficient conditions for valid tangent planes, as
detailed in Theorem 3. These conditions then form the basis of two
exact cutting plane algorithms, which vary in their approach to gener-
ating new cuts. Finally, in Section 3 we conduct extensive numerical
experiments to evaluate the effectiveness of the proposed solution
approaches.

2. Cutting plane algorithms

We denote the feasible set of (EMSP) as  ∶= {𝑥 ∈ {0, 1}𝑛 ∶ 𝑥 ∈ 𝑃 }⧵
{0}, where 𝑥 = 0 is excluded because 𝑓 (𝑥) ≥ 0 = 𝑓 (0) for every 𝑥 ∈ .
Let ℎ ∶ R𝑛 × R𝑛 → R𝑛 be the tangent plane of the function 𝑓 , defined
as:

ℎ(𝑥, 𝑦) ∶= ⟨𝑄𝑦, 𝑥 − 𝑦⟩ + 1
2 ⟨𝑄𝑦, 𝑦⟩ .

We say that the tangent plane at a feasible solution 𝑦 ∈  forms a
valid cut if it provides an upper approximation for the optimal value
of (EMSP), i.e, 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦), where 𝑥∗ is an optimal solution
of (EMSP). This differs from the majority of the existing literature,
where valid cuts provide an upper approximation of the objective
function at all feasible solutions (not just at an optimal solution).

Since the function 𝑓 in (EMSP) is not concave, not every feasible
solution 𝑦 ∈  generates a valid cut. In this section, we establish
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sufficient conditions for when the tangent plane ℎ(𝑥, 𝑦) is valid. The
key to our approach is to study the concavity of the function 𝑓 when
restricted to a given direction, exploiting the observation that the
restriction of a quadratic function to a line is either concave or convex.

2.1. Directional concavity

Given a vector 𝑢 ∈ R𝑛 ⧵ {0}, we say that 𝑢 is a concave direction
of 𝑄 if ⟨𝑄𝑢, 𝑢⟩ ≤ 0; this means that 𝑓 (𝑥) is concave along the line with
direction 𝑢 emanating from the origin. Conversely, a vector 𝑣 ∈ R𝑛 ⧵{0}
is a convex direction of 𝑄 if ⟨𝑄𝑣, 𝑣⟩ ≥ 0. Note that 𝑥 − 𝑦 is a concave
direction of 𝑄 if and only if

ℎ(𝑥, 𝑦) − 𝑓 (𝑥) = ⟨𝑄𝑦, 𝑥 − 𝑦⟩ + 1
2 ⟨𝑄𝑦, 𝑦⟩ − 1

2 ⟨𝑄𝑥, 𝑥⟩

= ⟨𝑄𝑦, 𝑥 − 𝑦⟩ − 1
2 ⟨𝑄(𝑥 + 𝑦), 𝑥 − 𝑦⟩

= − 1
2 ⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≥ 0.

Thus, the tangent plane at 𝑦 is an upper approximation of 𝑓 (𝑥) when
the line from 𝑦 to 𝑥 is a concave direction of 𝑄. We now show that
𝑢 = 𝑥−𝑦 is a concave direction of the matrix 𝑄 if 𝑢 is orthogonal to 𝑄𝑧,

here 𝑧 is a convex direction of 𝑄.

emma 1. Suppose 𝑥, 𝑦 ∈ R𝑛, and there is vector 𝑧 ∈ R𝑛 ⧵ {0} such that

a. ⟨𝑄𝑧, 𝑧⟩ ≥ 0, and
b. ⟨𝑄𝑧, 𝑥 − 𝑦⟩ = 0.

hen, ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥).

roof. The inequality ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) is equivalent to

𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0.

e suppose to the contrary that ⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ > 0. Because 𝑄 is a
uclidean distance matrix, by Bapat and Raghavan (1997, Corollary
.1.5, Theorem 4.1.7), matrix 𝑄 has exactly one positive eigenvalue.
urthermore, because 𝑄 is a real symmetric matrix, it is orthogonally
iagonalisable. Let 𝜆1 > 0 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 be the eigenvalues
f 𝑄, and let 𝑣1,… , 𝑣𝑛 be the corresponding eigenvectors, which are
ormalised, and orthogonal. Then, we can express 𝑥 − 𝑦 and 𝑧 on the
asis {𝑣1,… , 𝑣𝑛} as follows:

− 𝑦 =
𝑛
∑

𝑖=1
𝛼𝑖𝑣𝑖, 𝑧 =

𝑛
∑

𝑖=1
𝛽𝑖𝑣𝑖,

or some 𝛼𝑖, 𝛽𝑖 ∈ R (𝑖 = 1,… , 𝑛). Then,

⟨𝑄𝑧, 𝑧⟩ =
𝑛
∑

𝑖=1
𝜆𝑖𝛽

2
𝑖 ≥ 0, (1)

⟨𝑄𝑧, 𝑥 − 𝑦⟩ =
𝑛
∑

𝑖=1
𝜆𝑖𝛽𝑖𝛼𝑖 = 0, (2)

⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ =
𝑛
∑

𝑖=1
𝜆𝑖𝛼

2
𝑖 > 0. (3)

ecause 𝜆𝑖 ≤ 0 (𝑖 = 2,… , 𝑛), inequality (1) and 𝑧 ≠ 0 imply that 𝛽1 ≠ 0,
nd (3) implies that 𝛼1 ≠ 0. Therefore, we can multiply both sides of (1)
y 𝛼21 > 0, (2) by −2𝛼1𝛽1 ≠ 0, and (3) by 𝛽21 > 0, and sum up to obtain

<

(

𝜆1𝛽
2
1𝛼

2
1 + 𝛼21

𝑛
∑

𝑖=2
𝜆𝑖𝛽

2
𝑖

)

− 2

(

𝜆1𝛽
2
1𝛼

2
1 + 𝛼1𝛽1

𝑛
∑

𝑖=2
𝜆𝑖𝛽𝑖𝛼𝑖

)

+

(

𝜆1𝛽
2
1𝛼

2
1 + 𝛽21

𝑛
∑

𝑖=2
𝜆𝑖𝛼

2
𝑖

)

=
𝑛
∑

𝑖=2
𝜆𝑖(𝛼21𝛽

2
𝑖 − 2𝛼1𝛽1𝛼𝑖𝛽𝑖 + 𝛽21𝛼

2
𝑖 ) =

𝑛
∑

𝑖=2
𝜆𝑖(𝛼1𝛽𝑖 − 𝛼𝑖𝛽1)2.

he inequality above only holds when there is at least one positive
igenvalue among 𝜆2,… , 𝜆𝑛, which is a contradiction. Hence, it must
3

old that ⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0. □
Recall that the Euclidean distance matrix 𝑄 is conditionally negative
efinite. The next result exploits this fact to replace condition (b) in
emma 1 with two new conditions.

emma 2. Suppose 𝑥, 𝑦 ∈ R𝑛, and there is 𝑧 ∈ R𝑛 ⧵ {0} such that

a. ⟨𝑄𝑧, 𝑧⟩ ≥ 0,
b. ⟨𝑄𝑧, 𝑥 − 𝑦⟩ ≤ 0, and
c. either

∑𝑛
𝑖=1(𝑥𝑖−𝑦𝑖)
∑𝑛

𝑖=1 𝑧𝑖
≥ 0, or ∑𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖) =
∑𝑛

𝑖=1 𝑧𝑖 = 0.

Then, ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥).

Proof. Similar to Lemma 1, 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦) is equivalent to
𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0. Let 𝑢 ∶= 𝑥 − 𝑦, and choose 𝑤 ∈ R𝑛 such that

∶= 𝛼𝑧, where 𝛼 ∶=

⎧

⎪

⎨

⎪

⎩

1 if ∑𝑛
𝑖=1 𝑢𝑖 =

∑𝑛
𝑖=1 𝑧𝑖 = 0,

∑𝑛
𝑖=1 𝑢𝑖

∑𝑛
𝑖=1 𝑧𝑖

otherwise.

rom (c), 𝛼 ≥ 0 and ∑𝑛
𝑖=1 𝑢𝑖 =

∑𝑛
𝑖=1 𝑤𝑖, or equivalently ∑𝑛

𝑖=1(𝑢𝑖−𝑤𝑖) = 0.
Note that from (a) and (b), we have

⟨𝑄𝑤,𝑤⟩ = 𝛼2 ⟨𝑄𝑧, 𝑧⟩ ≥ 0, ⟨𝑄𝑤, 𝑢⟩ ≤ 0.

Because 𝑄 is conditionally negative definite, we have ⟨𝑄(𝑤 − 𝑢), 𝑤 − 𝑢⟩
≤ 0. Combining this with ⟨𝑄𝑤,𝑤⟩ ≥ 0 and ⟨𝑄𝑤, 𝑢⟩ ≤ 0, we get

⟨𝑄𝑢, 𝑢⟩ = ⟨𝑄(𝑤 − 𝑢), 𝑤 − 𝑢⟩ − ⟨𝑄𝑤,𝑤⟩ + 2 ⟨𝑄𝑤, 𝑢⟩ ≤ 0,

thus giving 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦). □

Using Lemmas 1 and 2, we now establish conditions for when a
tangent plane ℎ(𝑥, 𝑦) provides an upper approximation for higher value
solutions in , i.e., ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) for all 𝑥 such that 𝑓 (𝑥) ≥ 𝑓 (𝑦).

heorem 3. Suppose 𝑥, 𝑦 ∈ R𝑛
+ ⧵ {0}, such that 𝑓 (𝑥) ≥ 𝑓 (𝑦). Then,

(𝑥, 𝑦) ≥ 𝑓 (𝑥) if either

a. ∑𝑛
𝑖=1 𝑥𝑖 ≤

∑𝑛
𝑖=1 𝑦𝑖, or

b. there is 𝑤 ∈ R𝑛
+ ⧵ {0} such that ⟨𝑄𝑤, 𝑥 − 𝑦⟩ ≤ 0.

roof. Because 𝑓 (𝑥) ≥ 𝑓 (𝑦), we have

⟨𝑄(𝑥 + 𝑦), 𝑥 − 𝑦⟩ ≥ 0. (4)

a. Suppose ∑𝑛
𝑖=1 𝑥𝑖 ≤

∑𝑛
𝑖=1 𝑦𝑖. Choose 𝑧 ∶= −(𝑥 + 𝑦). Because 𝑄 has

positive off-diagonal entries, then

⟨𝑄𝑧, 𝑧⟩ = ⟨−𝑄(𝑥 + 𝑦),−(𝑥 + 𝑦)⟩ = ⟨𝑄(𝑥 + 𝑦), 𝑥 + 𝑦⟩ ≥ 0,

and ⟨𝑄𝑧, 𝑥 − 𝑦⟩ ≤ 0. Taking into account that ∑𝑛
𝑖=1 𝑥𝑖 ≤

∑𝑛
𝑖=1 𝑦𝑖

and 𝑥+ 𝑦 ∈ R𝑛
+, condition (c) in Lemma 2 is fulfilled. Hence, by

Lemma 2, the inequality ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) holds.
b. Suppose there is 𝑤 ∈ R𝑛

+ ⧵ {0} such that ⟨𝑄𝑤, 𝑥 − 𝑦⟩ ≤ 0. Then,
given (4), there exists a 𝑧 ∈ R𝑛

+ ⧵ {0} on the line between 𝑤 and
𝑥 + 𝑦 such that ⟨𝑄𝑧, 𝑥 − 𝑦⟩ = 0. Note that 𝑄 has zero diagonal
and positive off-diagonal entries, hence ⟨𝑄𝑧, 𝑧⟩ > 0. Therefore by
Lemma 1, we have that the inequality ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) holds. □

.2. Cutting plane algorithms

We now introduce two cutting plane algorithms designed to solve
he nonconcave quadratic problem (EMSP). Let 𝐴 ⊂ R𝑛

+ denote an
rbitrary finite set of points that generate valid tangent planes, such
hat for all 𝑦 ∈ 𝐴 we have 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦) for an optimal solution 𝑥∗

here 𝑥∗ is an optimal solution. Then, we define

𝐴 ∶=
{

(𝑥, 𝜃) ∈ R𝑛+1 ∶ 𝑥 ∈ , 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐴
}

.

he cutting plane model of the (EMSP) is then given as the following
ixed-integer linear program,

max 𝜃. (ILP𝐴)

(𝑥,𝜃)∈𝛤𝐴
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Since the points in 𝐴 generate valid tangents we have ℎ(𝑥∗, 𝑦) ≥ 𝑓 (𝑥∗)
for all 𝑦 ∈ 𝐴 and hence (𝑥∗, 𝑓 (𝑥∗)) is feasible for (ILP𝐴), meaning the
ptimal value of (ILP𝐴) is a valid upper bound for EMSP. We now
resent two algorithms for solving the (EMSP) that iteratively gener-
te new, valid tangent planes, thereby tightening the approximation
f (ILP𝐴). Provided the first cut added is valid, both methods are
uaranteed to converge to an optimal solution of the (EMSP). Note
hat from Theorem 3.a, we can always choose the first cut to be the
olution to the maximum cardinality problem. Let 𝑦 be the solution
o max𝑥∈

∑𝑛
𝑖=1 𝑥𝑖, then 𝑦 ∈ 𝐾, 𝑓 (𝑥∗) ≥ 𝑓 (𝑦) and ∑𝑛

𝑖=1 𝑥
∗
𝑖 ≤

∑𝑛
𝑖=1 𝑦𝑖.

Therefore, by Theorem 3.a, 𝑦 generates a valid tangent.
The first algorithm makes use of the following proposition, which

asserts that the tangent plane at the optimal solution of (ILP𝐴) is always
valid.

Proposition 4. Given 𝐴 ⊂ R𝑛
+ is a set of points that generate valid tan-

gents, let (𝑥, 𝜃) be an optimal solution of the cutting plane problem (ILP𝐴).
hen 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑥), where 𝑥∗ is an optimal solution of (EMSP).

roof. We begin by proving that there is a 𝑦 ∈ 𝐴 such that ⟨𝑄𝑦, 𝑥∗ − 𝑥⟩
0. Suppose, for a contradiction, that for all 𝑦 ∈ 𝐴 we have

𝑄𝑦, 𝑥∗ − 𝑥⟩ > 0, or equivalently, ⟨𝑄𝑦, 𝑥∗⟩ > ⟨𝑄𝑦, 𝑥⟩. Then,

≤ ℎ(𝑥, 𝑦) < ℎ(𝑥∗, 𝑦)

olds for all 𝑦 ∈ 𝐴. Let 𝜃̂ be such that,

̂ ∶= min
𝑦∈𝐴

ℎ(𝑥∗, 𝑦) > 𝜃.

owever, (𝑥∗, 𝜃̂) ∈ 𝛤𝐴, and 𝜃̂ > 𝜃, which contradicts (𝑥, 𝜃) being
an optimal solution. Hence, the first assertion is settled. The second
assertion is a direct consequence of Theorem 3.b, where 𝑤 = 𝑦 ≠ 0
(since otherwise 𝑦 would not generate a valid cut), and noting that
𝑓 (𝑥) ≤ 𝑓 (𝑥∗). Hence, 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑥). □

Using this result, we can now solve the (EMSP) by repeatedly solv-
ing (ILP𝐴) to optimality, and using the solutions as new valid tangent
planes. An implementation of this approach is shown in Algorithm 1,
and its convergence is established in Proposition 5.

Algorithm 1: Repeated (ILP𝐴) method for solving (EMSP).

1 function RepeatedILP(𝑓 ,,𝜖)
2 𝑘 ← 0, 𝑈𝐵𝑘 ← +∞
3 Take 𝑥0 ∈ argmax𝑥∈

∑𝑛
𝑖=1 𝑥𝑖

4 Set 𝐴1 ← {𝑥0}, 𝐿𝐵𝑘 ← 𝑓 (𝑥𝑘)
5 while 𝑈𝐵𝑘−𝐿𝐵𝑘

𝐿𝐵𝑘
> 𝜖 do

6 𝑘 ← 𝑘 + 1
7 Solve (ILP𝐴𝑘

) to obtain (𝑥𝑘, 𝜃𝑘)
8 𝑈𝐵𝑘 ← 𝜃𝑘, 𝐿𝐵𝑘 ← max{𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)}
9 𝐴𝑘+1 ← 𝐴𝑘 ∪ {𝑥𝑘}
10 end
11 return 𝐿𝐵𝑘
12 end

Proposition 5. Algorithm 1 converges to an optimal solution of the
(EMSP) in a finite number of steps.

Proof. As every (ILP𝐴) is solved to optimality, we have from Propo-
sition 4 that the tangent plane of every 𝑥𝑘 is valid. This implies that
(𝑥∗, 𝑓 (𝑥∗)) is always feasible at every step 𝑘, i.e., (𝑥∗, 𝑓 (𝑥∗)) ∈ 𝛤𝐴𝑘

for
all 𝑘 ≥ 0. Thus,

𝑈𝐵𝑘 = max
(𝑥,𝜃)∈𝛤𝐴𝑘

𝜃 ≥ 𝑓 (𝑥∗) = max
𝑥∈

𝑓 (𝑥) ≥ 𝐿𝐵𝑘.

Because the feasible region  is finite (variables 𝑥 are discrete, and the
4

polyhedral set 𝑃 is bounded), there is a step 𝑘 such that the optimal
solution (𝑥𝑘, 𝜃𝑘) of (ILP𝐴𝑘
) satisfies 𝑥𝑘 ∈ 𝐴𝑘. In this case, we have

UB𝑘 = 𝜃𝑘 ≤ ℎ(𝑥𝑘, 𝑥𝑘) = 𝑓 (𝑥𝑘) ≤ LB𝑘, and hence, UB𝑘 = LB𝑘. When
UB𝑘 = LB𝑘, we have 𝜃𝑘 = max𝑥∈ 𝑓 (𝑥), and therefore Algorithm 1 has
converged to an optimal solution. □

We show a worked example outlining the steps of Algorithm 1 in
Appendix. Note that the repeated (ILP𝐴) algorithm is similar to the
extended cutting plane method presented in Westerlund and Pettersson
(1995), with a modification on the first cut added ℎ(𝑥, 𝑥0).

Although Algorithm 1 is globally convergent, it requires solving
(ILP𝐴) to optimality at every iteration, since only the optimal solution
is guaranteed to generate a valid cut. Depending on , this potentially
represents a difficult mixed-integer programming problem. We now de-
scribe an alternative algorithm in which cuts are added at intermediate
feasible points to accelerate convergence.

Recall from Theorem 3.a that 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦) whenever 𝑓 (𝑥) ≥ 𝑓 (𝑦)
and ∑𝑛

𝑖=1 𝑥𝑖 ≤
∑𝑛

𝑖=1 𝑦𝑖. As such, consider the restriction of the (EMSP)
to points with cardinality 𝑐 ∈ N. The feasible region of this problem is
then given by 𝑐 ∶= {𝑥 ∈  ∶

∑𝑛
𝑖=1 𝑥𝑖 = 𝑐}. We can solve max𝑥∈𝑐

𝑓 (𝑥)
exactly by instead solving the following linear cutting plane problem,

max 𝜃 (5)

s.t. 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝑐 , (6)
𝑥 ∈ 𝑐 .

Although there are an exponential number of constraints in (6), we can
accelerate the solution process by using a branch and cut methodology,
whereby cuts are added on the fly during the search procedure.

Given we can solve max𝑥∈𝑐
𝑓 (𝑥) by the cutting plane problem (5),

we can therefore decompose (EMSP) such that

max
𝑥∈

𝑓 (𝑥) = max
𝑐=1,…,𝐶

max
𝑥∈𝑐

𝑓 (𝑥)

= max
𝑐=1,…,𝐶

max
𝑥,𝜃

{

𝜃 ∶ 𝑥 ∈ 𝑐 , 𝜃 ≤ ℎ(𝑥, 𝑦),∀𝑦 ∈ 𝑐
}

where 𝐶 is the maximum cardinality achievable in . Algorithm 2
below executes this decomposition by solving the inner maximisation
problem repeatedly for decreasing cardinality 𝑐. At each step 𝑘 (corre-
sponding to cardinality 𝑐𝑘), the algorithm imposes not only the cuts
corresponding to points in 𝑐𝑘 , but also additional cuts generated
by feasible points with higher cardinality that were encountered in
previous iterations. By Theorem 3.a, for such feasible points 𝑦, the cut
𝜃 ≤ ℎ(𝑥, 𝑦) does not exclude improved solutions with cardinality less
than or equal to 𝑦, and hence the decomposition remains valid. The
process repeats until the optimal solution is found.

Algorithm 2: Forced cardinality method for solving (EMSP).

1 function ForcedCardinality(𝑓 ,,𝜖)
2 𝑘 ← 0, 𝑈𝐵0 ← +∞
3 Take 𝑥0 ∈ argmax𝑥∈

∑𝑛
𝑖=1 𝑥𝑖

4 𝐿𝐵𝑘 ← 𝑓 (𝑥𝑘)
5 𝑐1 ←

∑𝑛
𝑖=1 𝑥

0
𝑖 , 𝐴1 ← {𝑥0}

6 while 𝑈𝐵𝑘−𝐿𝐵𝑘
𝐿𝐵𝑘

> 𝜖 and 𝑐𝑘 > 0 do
7 𝑘 ← 𝑘 + 1

8 Solve max𝑥,𝜃
{

𝜃 ∶ 𝑥 ∈ 𝑐𝑘 , 𝜃 ≤ ℎ(𝑥, 𝑦),∀𝑦 ∈ 𝑐𝑘 ∪ 𝐴𝑘

}

for
(𝑥𝑘, 𝜃𝑘) using branch and cut, saving all cuts found and
adding their corresponding points to 𝐴𝑘+1

9 𝐿𝐵𝑘 ← max{𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)}
10 Solve max(𝑥,𝜃)∈𝛤𝐴𝑘+1 {𝜃 ∶

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑐𝑘 − 1} for 𝑈𝐵𝑘

11 𝑐𝑘+1 ← 𝑐𝑘 − 1
12 end
13 return 𝐿𝐵𝑘
14 end



Computers and Operations Research 168 (2024) 106682H.T. Bui et al.
Proposition 6. Algorithm 2 converges to an optimal solution of the
(EMSP) in a finite number of steps.

Proof. Let 𝑥∗ be an optimal solution of the (EMSP) and suppose
∑𝑛

𝑖=1 𝑥
∗
𝑖 = 𝑐𝑘. We will prove two things: at step 𝑘, 𝑥𝑘 is a solution

of (EMSP), and prior to step 𝑘, 𝑈𝐵𝑘 is an upper bound for the optimal
value of (EMSP), ensuring the algorithm does not terminate early. For
the first assertion, observe that ∑𝑛

𝑖=1 𝑥
∗
𝑖 ≤

∑𝑛
𝑖=1 𝑦𝑖 and 𝑓 (𝑥∗) ≥ 𝑓 (𝑦)

for all 𝑦 ∈ 𝑐𝑘 ∪ 𝐴𝑘. Therefore, by Theorem 3.a, 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦)
for all 𝑦 ∈ 𝑐𝑘 ∪ 𝐴𝑘. Hence, (𝑥∗, 𝑓 (𝑥∗)) is a feasible solution to the
subproblem on line 8 of Algorithm 2. Suppose that (𝑥𝑘, 𝜃𝑘) is optimal
for this subproblem. Then we have that

𝑓 (𝑥∗) ≤ 𝜃𝑘 ≤ ℎ(𝑥𝑘, 𝑥𝑘) = 𝑓 (𝑥𝑘).

Therefore 𝑥𝑘 obtained at step 𝑘 must be optimal for (EMSP), and 𝐿𝐵𝑘 =
𝑓 (𝑥∗).

We now prove that the upper bound determined on line 10 of
Algorithm 2 is always valid if the optimal solution has not yet been
reached, i.e., at iterations 𝑙 < 𝑘 where ∑𝑛

𝑖=1 𝑥
∗
𝑖 = 𝑐𝑘. At step 𝑙 < 𝑘, the

set 𝐴𝑙+1 contains only solutions with cardinality at least 𝑐𝑙. Therefore,
∑𝑛

𝑖=1 𝑥
∗
𝑖 = 𝑐𝑘 ≤ 𝑐𝑙 − 1 <

∑𝑛
𝑖=1 𝑦𝑖 and 𝑓 (𝑥∗) ≥ 𝑓 (𝑦) for all 𝑦 ∈ 𝐴𝑘+1. By

Theorem 3.a, this ensures that 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦), meaning (𝑥∗, 𝑓 (𝑥∗)) is a
feasible solution for the subproblem on line 10 of Algorithm 2. Hence,
the optimal value of this subproblem (𝑈𝐵𝑙) is an upper bound of the
globally optimal solution, i.e.,

𝑈𝐵𝑙 = max
(𝑥,𝜃)∈𝛤𝐴𝑙+1

{

𝜃 ∶
𝑛
∑

𝑖=1
𝑥𝑖 ≤ 𝑐𝑙 − 1

}

≥ 𝑓 (𝑥∗).

As such, the algorithm does not terminate until a globally optimal
solution has been found. □

Note that, the lower bound at each iteration 𝑘 of Algorithm 2
satisfies

𝐿𝐵𝑘 = max
𝑐=𝑐𝑘 ,…,𝐶

max
𝑥∈𝑐

𝑓 (𝑥) = max
𝑥∈

{

𝑓 (𝑥) ∶
𝑛
∑

𝑖=1
𝑥𝑖 ≥ 𝑐𝑘

}

. (7)

In other words, it is the best function value achievable for the current
and higher cardinalities. We can show this by induction. For 𝑘 = 1,
this statement is clearly true since 𝐴1 = {𝑥0} ⊂ 𝑐1 meaning that
the subproblem on line 8 of Algorithm 2 reduces to problem (5), and
hence by the arguments given above, 𝑥1 is optimal for max𝑥∈𝑐1

𝑓 (𝑥)

and consequently 𝐿𝐵1 = max𝑥∈𝑐1
𝑓 (𝑥). Suppose the assertion holds at

step 𝑘 − 1. Then, for step 𝑘, there are two cases to consider;

(i) max𝑥∈𝑐𝑘
𝑓 (𝑥) < 𝐿𝐵𝑘−1, or

(ii) max𝑥∈𝑐𝑘
𝑓 (𝑥) ≥ 𝐿𝐵𝑘−1.

For case (i), given (7) holds for 𝑘 − 1 we have that

𝐿𝐵𝑘 = max{𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)}

= 𝐿𝐵𝑘−1

= max
𝑐=𝑐𝑘−1 ,…,𝐶

max
𝑥∈𝑐

𝑓 (𝑥)

= max
𝑐=𝑐𝑘 ,…,𝐶

max
𝑥∈𝑐

𝑓 (𝑥)

as required. For case (ii), suppose 𝑥′ is optimal for max𝑥∈𝑐𝑘
𝑓 (𝑥). Then

we must have 𝑓 (𝑥′) ≥ 𝑓 (𝑦) and ∑𝑛
𝑖=1 𝑥

′
𝑖 ≤

∑𝑛
𝑖=1 𝑦𝑖 for all 𝑦 ∈ 𝐴𝑘,

and hence from Theorem 3.a, 𝑓 (𝑥′) ≤ ℎ(𝑥′, 𝑦). Therefore, (𝑥′, 𝑓 (𝑥′)) is
feasible for the linear subproblem on line 8 of Algorithm 2. This implies

𝑓 (𝑥′) ≤ 𝜃𝑘 ≤ ℎ(𝑥𝑘, 𝑥𝑘) = 𝑓 (𝑥𝑘).

Thus, given (7) holds for 𝑘 − 1, we have

𝐿𝐵𝑘 = max
{

𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)
}

= 𝑓 (𝑥𝑘) = max
𝑐=𝑐𝑘 ,…,𝐶

max
𝑥∈𝑐

𝑓 (𝑥)
5

as required.
In difficult instances of the (EMSP), a large number of tangent
planes are potentially required to sufficiently approximate the objective
function (such as with high-coordinate instances in Spiers et al. (2023)).
To accelerate cut generation, recall that the Euclidean distance matrix
is conditionally negative definite, and therefore ⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0
holds for all 𝑥, 𝑦 ∈ R𝑛 with ∑𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖) = 0. This implies that we can
generate valid cuts even for non-integer 𝑦; specifically, 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦)
holds for any 𝑦 (integer or continuous) that has the same cardinality
as 𝑥. Therefore, Proposition 6 still holds if we modify the subproblem
on line 8 of Algorithm 2 to include additional cuts generated by non-
integer points with cardinality 𝑐𝑘. These tangents can be generated by
solving the linear relaxation, and are therefore computationally cheap
to generate and may improve the approximation.

However, using the linear relaxation potentially introduces a large
integrality gap, possibly reducing the effectiveness of these cuts. A good
strategy to reduce this gap is to ensure additional cuts are generated
close to the best-known solution. This is achieved by employing a trust-
region methodology, where the continuous solutions are constrained to
the region defined by ‖

‖

𝑥 − 𝑦𝑘‖
‖1 ≤ 𝛾, where 𝑦𝑘 is the current best-known

integer solution up to step 𝑘 and 𝛾 ≥ 0 is a given parameter. When
𝑥 ∈ [0, 1]𝑛, this is easily enforced by the following constraint
𝑛
∑

𝑖=1
𝑦𝑘𝑖 =0

𝑥𝑖 +
𝑛
∑

𝑖=1
𝑦𝑘𝑖 =1

(1 − 𝑥𝑖) ≤ 𝛾. (8)

Algorithm 3 outlines the process for generating LP tangents, where 𝜖
is the maximum allowable relative tolerance between bounds and 𝑀
is the maximum number of cuts to be added. This algorithm is called
during each iteration 𝑘, before solving the subproblem on line 8, and
its main inputs are 𝐴𝑘 and the current best-known solution 𝑦𝑘. The cuts
from Algorithm 3 can then be introduced by replacing the subproblem
in line 8 with

max
𝑥,𝜃

{

𝜃 ∶ 𝑥 ∈ 𝑐𝑘 , 𝜃 ≤ ℎ(𝑥, 𝑦),∀𝑦 ∈ 𝑐𝑘 ∪ 𝐴𝑘 ∪ 𝐿𝑘

}

where 𝐿𝑘 comes from Algorithm 3. Note that as the points 𝑦 ∈ 𝐿𝑘 are
not necessarily integer feasible, it is not always true that 𝑓 (𝑥∗) ≥ 𝑓 (𝑦)
and hence they do not satisfy the requirements for Theorem 3. As
such, the tangents of these solutions may only be used for the current
iteration.

Algorithm 3: LP-relaxation cuts for (EMSP).
1 function GetLPTangents(𝑓 , , 𝐴𝑘, 𝑐𝑘, 𝛾, 𝑦𝑘, 𝜖, 𝑀)

2 𝑝 ← 0, 𝑈𝐵0 ← +∞, 𝐿𝐵0 ← 𝑓 (𝑦𝑘)
3 𝐿 ← ∅.
4 while 𝑈𝐵𝑝−𝐿𝐵𝑝

𝐿𝐵𝑝
> 𝜖 𝐚𝐧𝐝 𝑝 ≤ 𝑀 do

5 𝑝 ← 𝑝 + 1
6 Solve the continuous relaxation of

max𝑥,𝜃
{

𝜃 ∶ 𝑥 ∈ 𝑐𝑘 , 𝜃 ≤ ℎ(𝑥, 𝑦),∀𝑦 ∈ 𝐴𝑘 ∪ 𝐿
}

with
trust-region constraint (8) to obtain (𝑥𝑝, 𝜃𝑝)

7 𝑈𝐵𝑝 ← 𝜃𝑝, 𝐿𝐵𝑝 ← max{𝐿𝐵𝑝−1, 𝑓 (𝑥𝑝)}, 𝐿 ← 𝐿 ∪ {𝑥𝑝}
8 end
9 return 𝐿
10 end

3. Numerical results

We now present numerical results for Algorithms 1 and 2. These
algorithms were implemented in Julia 1.10 using the JuMP mathe-
matical programming package (Lubin et al., 2023) and Gurobi version
11.0 as the mixed-integer linear solver. The branch and cut method in
Algorithm 2 utilised the lazy constraint callback function, enabling the
addition of tangent planes as constraints during the branch and bound

procedure. For Algorithm 2, we add LP-tangents by Algorithm 3 with
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𝛾 = 0, 0.5𝑛, or 𝑛 and with a maximum iteration limit of 𝑀 = 100. This
results in four distinct solver configurations.

Our implementation’s source code, including the raw results data,
can be accessed at https://github.com/sandyspiers/EuclideanMaximis
ation/tree/v1.0-julia.1 The results data also include tests using CPLEX
22.1.1 as the MIP solver, which produce similar results to those re-
ported here. A relative termination tolerance of 𝜖 = 10−6 was used for
the main iterations of Algorithms 1–3, as well as for any mixed-integer
subproblems solved by Gurobi. All other mixed-integer programming
parameters were set to their defaults. All tests were conducted on a
machine with a 2.3 GHz AMD EPYC processor with 64 GB RAM, using
a single thread.

The performance of the algorithms was evaluated against the well-
known Glover linearisation of the objective function. This reformula-
tion was first introduced in Glover (1975) and is given as

max
𝑛−1
∑

𝑖=1
𝑤𝑖, (9)

s.t. 𝑥 ∈ 𝑃 ∩ {0, 1}𝑛,

𝑤𝑖 ≤ 𝑥𝑖
𝑛
∑

𝑗=𝑖+1
𝑞𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤𝑖 ≤
𝑛
∑

𝑗=𝑖+1
𝑞𝑖𝑗𝑥𝑗 , 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 − 1.

This formulation was shown in Martí et al. (2010) to be effective for
diversity-sum problems and was later used as the exact solver for the
comprehensive empirical analysis presented in Parreño et al. (2021)
and Martí et al. (2022). In addition to (9), we solve (EMSP) using the
mixed-integer quadratic programming solver available within Gurobi.

3.1. Capacitated diversity problem

We begin by evaluating the performance of the different solution
methods for solving the capacitated diversity problem. In this problem,
the constraint set 𝑃 contains only the following knapsack constraint,
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖 ≤ 𝑏,

where 𝑐𝑖 ∈ R+ (𝑖 = 1,… , 𝑛), and min𝑖=1,…,𝑛 𝑐𝑖 ≤ 𝑏 <
∑𝑛

𝑖=1 𝑐𝑖. As
such, (EMSP) then becomes the problem of selecting a subset of pre-
defined locations, each with a weight, to maximise the sum of the
pairwise distances while keeping the total weight less than or equal
to a given limit. The capacitated diversity problem belongs to the
family of diversity problems, which have a wide variety of practical
applications, including facility location, social network analysis, and
ecological conservation (Lu et al., 2023; Lai et al., 2018; Peiró et al.,
2021).

The test instances used are derived from the publicly available
MDPLIB 2.02 test library (Martí et al., 2021). Within this test library,
we use the Euclidean instances of the capacitated diversity problem.
This includes 10 instances each of sizes 50, 150, and 500. These in-
stances were generated such that the weight of each node was randomly
generated in the range [1, 1000], with the capacity set to 𝑏 = 0.2

∑𝑛
𝑖=1 𝑐𝑖

and 𝑏 = 0.3
∑𝑛

𝑖=1 𝑐𝑖, making 60 instances in total.
In addition to the previous publicly available test sets, we randomly

generated some larger instances of the capacitated diversity problem.
These instances are made up of either 1000, 1500, 2000, 2500, or 3000
nodes, where each node contains either 2, 10, or 20 coordinates. Each
coordinate of a location was uniformly randomly generated in the range
[0, 100]. The weight of each node was uniformly randomly generated

1 Commit reference b921170.
2 Available at https://www.uv.es/rmarti/paper/mdp.html.
6

Table 1
Average solve time in seconds of the various solver setups, broken down by test set
and test size. Each problem is solved with a time limit of 600 s, using a single thread.

Type 𝑛 Repeated Forced cardinality Glover Quadratic

(ILP𝐴) 𝛾 = 0 𝛾 = 0.5𝑛 𝛾 = 𝑛 linearisation programming

CDP
50 0.21 0.05 0.16 0.15 0.40 196.52
150 0.08 0.04 0.10 0.10 12.59 600.00
500 0.15 0.09 0.14 0.14 245.49 600.01

RCDP

1000 0.58 0.64 0.63 0.58 – –
1500 0.68 1.93 1.75 1.71 – –
2000 0.80 3.88 3.36 3.37 – –
2500 0.54 12.48 7.09 6.94 – –
3000 0.59 12.55 9.35 9.16 – –

GDP
50 0.25 0.19 0.14 0.05 0.21 0.13
150 0.39 0.08 0.11 0.11 4.01 3.67
500 0.36 0.32 0.39 0.39 36.43 600.01

RGDP
1000 0.80 1.83 1.73 1.69 – –
1500 0.93 4.58 4.32 4.29 – –
2000 1.22 10.15 7.72 7.62 – –

in the range [1, 1000], and the capacity was set to 𝑏 = 0.2
∑𝑛

𝑖=1 𝑐𝑖 or
= 0.3

∑𝑛
𝑖=1 𝑐𝑖. For every combination of the number of nodes and the

umber of coordinates, we generated 5 instances, comprising a total of
50 test instances in total.

The performance of various solvers for the benchmark problem
nstances (labeled CDP) and randomised problem instances (labeled
CDP) over a 600-s time limit is displayed in Figs. 2 and 3, respectively.
or CDP test instances, Algorithms 1 and 2 exhibit similar performance,
oth efficiently solving the entire test set within a maximum of 3.14 s.
his represents a substantial improvement compared to the other exact
ethods. While Glover linearisation can solve some of the smaller

nstances within 5 s of run time, it fails to solve the entire problem
et within the 600-s time limit. Solving the problem in its original
uadratic form proved to be the worst method by a significant margin,
olving fewer than 20 instances. The use of LP-tangents did not appear
o improve Algorithm 2 and, in fact, worsened the runtime slightly.

On the larger RCDP test instances, we continue to see impressive
erformance from both Algorithms 1 and 2. Remarkably, even with the
mmense size of these instances, the repeated (ILP𝐴) method was still
ble to solve all instances in under 5 s. We also begin to see a difference
n performance between the two algorithms, with the forced cardinality
ethod beginning to perform worse for these very large problem sizes.
hat said, it is still able to solve all instances within 60 s of run time.

The results from these tests are further summarised in Table 1,
hich shows the average solve time for each test set, broken down
y problem size. It clearly shows how, on the capacitated diversity
roblem, the performance of Algorithm 1 remains stable for increasing
roblem size.

.2. Generalised diversity problem

The generalised diversity problem (GDP) represents a fundamental
ptimisation problem in the fields of facility location, supply chain
anagement, and network design (Martinez-Gavara et al., 2021). At

ts core, the GDP seeks to strategically position a set of facilities on a
etwork to efficiently serve a given demand distribution. This entails
ptimising not only the allocation of facilities to locations but also
onsidering the spread of these facilities. The max-sum GDP is given
s

max 𝑓 (𝑥) (GDP-f)

s.t.
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖 ≥ 𝐵,

𝑛
∑

𝑎𝑖𝑥𝑖 ≤ 𝐾,

𝑖=1
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Fig. 2. Solver performance on the 60 capacitated diversity problem instances available within the MDPLIB 2.0 test library, using a single thread for computation. The time axis
is split at 5 s due to marked differences in solver performance.
Fig. 3. Solver performance on the 150 randomly generated capacitated diversity problem instances.
𝑥𝑖 ∈ {0, 1}, 𝑖 = 1,… , 𝑛,

here 𝑐𝑖 and 𝑎𝑖 represent the capacity and cost of site 𝑖. Sites must
e chosen such that the minimum demand 𝐵 is met, and setup cost

is kept below the maximum 𝐾. The formulation in (GDP-f) considers
the capacity to be fixed once a facility is open. A more realistic model
considers variable setup costs, where extra capacity can be achieved at
a given cost, once the facility is open. The variable cost version of the
GDP is given as

max 𝑓 (𝑥) (GDP-v)

s.t.
𝑛
∑

𝑖=1
𝑡𝑖 ≥ 𝐵,

𝑛
∑

𝑖=1

(

𝑎𝑖𝑥𝑖 + 𝑏𝑖𝑡𝑖
)

≤ 𝐾,

𝑡𝑖 ≤ 𝑐𝑖𝑥𝑖, 𝑖 = 1,… , 𝑛,

𝑡𝑖 ∈ Z, 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1,… , 𝑛.
7

We note that (GDP-f) and (GDP-v) were first introduced in Martinez-
Gavara et al. (2021) where the objective was to maximise the minimum
distance, however for our purposes we have changed this objective to
maximise the sum of pairwise distances.

For the GDP, we again use the Euclidean test instances avail-
able within the MDPLIB 2.0 test library on the (GDP-v) model.
All parameters were uniformly randomly generated as follows. The
capacity 𝑐𝑖 was generated in the range [1, 1000], the fixed cost 𝑎𝑖
in the range [𝑐𝑖∕2, 2𝑐𝑖] and finally the variable cost 𝑏𝑖 in the range
[min{1, 𝑎𝑖}∕100,max{1, 𝑎𝑖}∕100]. The minimum capacity is set at either
𝐵 = 0.2

∑𝑛
𝑖=1 𝑐𝑖 or 𝐵 = 0.3

∑𝑛
𝑖=1 𝑐𝑖. Finally, the maximum budget is set

as 𝐾 = 𝜙
∑𝑛

𝑖=1
(

𝑎𝑖 + 𝑏𝑖𝑐𝑖
)

, where 𝜙 = 0.5 or 𝜙 = 0.6. As before, there are
10 instances each of size 50, 150 and 500, making a total of 120 test
instances.

To test the solution algorithms on a larger scale, we generated
several large instances of (GDP-v). These instances were generated
similarly to the method described above; however, we increased the
number of locations to 1000, 1500, and 2000 and generated locations
with 2, 10, and 20 sets of coordinates. Furthermore, to reduce the
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Fig. 4. Solver performance on the 120 variable cost generalised diversity problem instances within the MDPLIB 2.0 test library. The time axis is split at 5 s due to marked
differences in solver performance.
Fig. 5. Solver performance on the 180 randomised variable cost generalised diversity problem instances.
ardinality of the optimal solution and avoid the possibility of full
olutions, we decreased the minimum capacity and maximum budget
arameters such that 𝐵 = 0.05

∑𝑛
𝑖=1 𝑐𝑖 or 𝐵 = 0.1

∑𝑛
𝑖=1 𝑐𝑖 and 𝐾 =

𝜙
∑𝑛

𝑖=1
(

𝑎𝑖 + 𝑏𝑖𝑐𝑖
)

, where 𝜙 = 0.1 or 𝜙 = 0.2. For every combination of
the number of nodes, the number of coordinates, minimum capacity,
and maximum budget, we generated 5 instances, comprising a total of
180 test instances in total.

The performance of different solver setups for the benchmark in-
stances (labeled GDP) and random instances (labeled RGDP) over a
600-s time limit is displayed in Figs. 4 and 5, respectively. For GDP
instances, Algorithms 1 and 2 exhibit similar performance, both ef-
ficiently solving nearly the entire set within 4 s. The incorporation
of LP-tangent planes for Algorithm 2 has a negligible effect on its
solve time. However, both Glover linearisation and the quadratic pro-
gramming approach find this test set comparatively easier than the
capacitated diversity problem, as the Glover linearisation model can
solve over half the instances within five seconds and the full set in
under 200 s. Turning to the results of the RGDP instances shown in
Fig. 5, the repeated (ILP𝐴) method continues to outperform other solver
setups. Moreover, the results suggest that introducing LP-tangent planes
8

can marginally improve Algorithm 2 at large problem sizes. A summary
of solve times for these larger instances is provided in Table 1.

3.3. Cardinality and cut strength

To gain a deeper insight into the strength of the cutting planes, we
present a breakdown of the number of each type of cut added in Fig. 6.
The figure shows the number of integer cuts (defined by points in 𝐴𝑘)
and LP-tangents (defined by points in 𝐿𝑘) across the four solver setups
for the CDP, RCDP, GDP, and RGDP test instances. Interestingly, the
repeated (ILP𝐴) method consistently outperforms the forced cardinality
method in almost all test sets, despite the latter introducing signifi-
cantly more cutting planes since all intermediate feasible solutions are
used to generate cuts. This suggests that by solving (ILP𝐴) to optimality,
the cut generated provides a very tight approximation of the objective
function at the optimal solution. Therefore, in many cases, it is worth
taking the extra time to solve the (ILP𝐴) subproblem to optimality,
as the cut generated is expected to be tight. This also explains why
the addition of LP-tangent planes does not seem to provide much

computational benefit to either approach. As these cuts are generated
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Fig. 6. Breakdown of the number of integer- and LP-tangents added across the CDP, RCDP, GDP and RGDP test instances.
n the continuous relaxation, they are expected to be even further away
rom the optimal solution than any integer solution, and hence provide
worse approximation. Tightening the trust region by decreasing 𝛾 also

seems to have little effect. While LP-tangents are easy to generate and
can therefore introduce a large number of cuts, they do not provide a
good approximation of the objective function, and hence they do not
substantially reduce the number of integer tangents required.

One example of where LP-tangents become highly beneficial is
in problems that have a large difference between the maximum car-
dinality and the cardinality of an optimal solution. In such cases,
the forced cardinality approach must solve many iterations before
reaching an iteration that contains an optimal solution. Fig. 7 shows
the minimum, average, and maximum solve time at each difference
between the maximum cardinality and the cardinality of the found
solution across the CDP, RCDP, GDP, and RGDP test instances. The
repeated (ILP𝐴) method is virtually unaffected by this metric, and
its average runtime remains steady. However, the forced cardinality
method performs substantially worse as this number increases. That
said, LP-tangents appear to improve the performance by quickly solving
earlier iterations, thereby reducing overall solve time. As such, they
become fairly beneficial in these cases.

3.4. Multi-threaded tests

While all tests mentioned thus far use a single thread for computa-
tion to provide a fair test setup, this is rarely required in practice. As
such, we now revisit test sets CDP and GDP, allowing the solver to use
all 16 available threads. Note that for Algorithms 1–3, the main loop
iterations are still single-threaded, but the mixed-integer solver may
now use all threads to solve the required subproblems.

The results on sets CDP and GDP are shown in Figs. 8 and 9
respectively. Given their already short runtimes, the performances
of Algorithms 1 and 2 do not improve substantially. This is partly
explained by the fact each subproblem is easy to solve, and hence
do not benefit greatly from parallelism. For Glover linearisation, the
performance difference within the first 5 s is marginal, solving only
a few extra instances in each case. However, after this time frame,
the solver benefits greatly and sees marked improvements, especially
on the CDP instances. Finally, the quadratic programming approach
benefits the most from parallelism, allowing it to perform comparably
with Glover linearisation on the GDP instances. That said, the cutting
9

plane algorithms remain the best performers on each test set.
Fig. 7. Average solve time based on the difference between the maximum cardinality
and cardinality of the optimal solution, across the CDP, RCDP, GDP and RGDP
test instances. The shaded regions denote the range bounded by the minimum and
maximum solve times.

3.5. Max-sum diversity problem

We finish this section by looking at difficult instances of the max-
sum diversity problem. This is similar to the capacitated diversity
problem visited earlier, except the knapsack constraint is replaced by
the following cardinality constraint,
𝑛
∑

𝑖=1
𝑥𝑖 = 𝑝.

The problem has many real-world applications and fits the structure
of (EMSP). While this problem can be efficiently solved using the
cutting plane approach in Spiers et al. (2023), we can use this problem
to test the robustness of Algorithms 1 and 2. Notably, we showed
in Spiers et al. (2023) that instances with a large number of coordinates
are particularly difficult to approximate by cutting planes, thereby
resulting in poor performance. As such, we use the test instances in set
GKD-c of MDPLIB2.0. These 20 instances each contain 500 locations
with 20 coordinates, and where 𝑝 = 50.
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Fig. 8. Solver performance on the 60 capacitated diversity problem instances available within the MDPLIB 2.0 test library, using all 16 threads for computation.
Fig. 9. Solver performance on the 120 generalised diversity problem instances available within the MDPLIB 2.0 test library, using all 16 threads for computation.
Table 2 shows the average gap as a percentage, average objective
alue, average number of integer cuts added, and the number of
roblems solved to optimality on the GKD-c test set over a 600-s time

limit. While Algorithm 1 is only able to solve 3 out of 20 instances, the
average final gap is very small at just 0.07%. Furthermore, it is able
to achieve this gap with an average of only 141 cuts. In contrast, the
forced cardinality approach is only able to solve a single instance to
optimality. For the remaining instances, the algorithm is never able to
reach its upper bounding subproblem (line 10, Algorithm 2) as it times
out beforehand. Consequently, the algorithm never determines a valid
upper bound. This represents a major shortcoming of this approach.
That said, it can still achieve a decent lower bound, close to that of
Algorithm 1.

4. Conclusion and future work

In this paper, we present two exact cutting plane algorithms for
the general Euclidean distance maximisation problem. We establish the
validity of tangents by introducing the concept of directional concavity.
This notion led to the formulation of two important sufficient condi-
tions for valid cuts, shown in Theorem 3. Two cutting plane solution
10
algorithms were then introduced. The algorithms exploit Theorem 3 to
ensure the search for the optimal solution always stays on a concave
direction of the objective function, therefore ensuring all cuts are
valid. This was achieved by either repeatedly solving the cutting plane
subproblem to optimality, or by iteratively forcing and decreasing the
cardinality of the problem.

Extensive numerical experiments were conducted to test the sug-
gested solution algorithms. The results are very promising, with all
proposed methods easily able to solve capacitated diversity problem in-
stances with 3000 locations in under 60 s. This represents a significant
improvement compared to other exact methods for the (EMSP). The
repeated (ILP𝐴) method appeared to be the best overall performer as it
generates tight cuts and remains fairly stable for increasing dimensions.
Additionally, the approach is still able to provide a good upper bound
even for very difficult instances, unlike the forced cardinality approach.
Therefore, the choice of which approach to use should depend on the
specific problem structure, especially the expected difference between
the maximum cardinality and the cardinality of an optimal solution.

The identification of specific problem structures remains an im-
portant avenue for future research. We note a significant gap in the
literature on the application of the (EMSP) to real-world problems.
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Table 2
Solver performance on test set GKD-c using a single thread over a 600 s time limit.

Repeated Forced cardinality Glover Quadratic

(ILP𝐴) 𝛾 = 0 𝛾 = 0.5𝑛 𝛾 = 𝑛 linearisation programming

Ave gap (%) 0.07 ∞ ∞ ∞ 115.59 702.83
Ave objective value 19 500.83 19 490.72 19 482.78 19 482.78 18 985.52 19 501.70
Ave number integer cuts 141.45 3820.10 4015.80 4001.40 – –
Number solved 3 1 0 0 0 0
The tests used here provide interesting conceptual frameworks and
future work should expand on these results by applying the meth-
ods to real-world datasets and problems. In addition to identifying
practical (EMSP) models, we should also attempt to identify difficult
instances of these problems. In Spiers et al. (2023) we showed how
the diversity problem becomes more challenging with a larger number
of coordinates. That difficulty was not observed for the CDP or GDP
problems, and hence more work is required to identify other difficult
instances of the (EMSP). These problems can also help to understand
and decide on which algorithm to use in which scenario.
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Appendix. Worked example

We now show the steps of Algorithm 1 through a small worked
example. Suppose we are asked to solve a Euclidean max-sum problem
of the form,

max 𝑓 (𝑥) = 1
2
⟨𝑄𝑥, 𝑥⟩ , (A.1)

s.t. 𝑥 ∈ 𝑃 ∩ {0, 1}𝑛, (A.2)

where 𝑄 is a symmetric hollow (zero diagonal) matrix and 𝑃 is a
polyhedral set. We must first confirm that 𝑄 is in fact a Euclidean
distance matrix by using the Schoenberg Criterion. Let the (𝑛−1)×(𝑛−1)
Gram matrix 𝐺 = [𝑔𝑖𝑗 ]𝑖,𝑗=2,…,𝑛 be given by

𝑔𝑖𝑗 =
1
2

(

𝑞1𝑖 + 𝑞1𝑗 − 𝑞𝑖𝑗
)

.

Then from Schoenberg (1935) we have that 𝑄 is a Euclidean distance
matrix if and only if its Gram matrix 𝐺 is positive semidefinite.

Provided 𝑄 is a valid Euclidean distance matrix, both Algorithms 1
nd 2 are known to converge to an optimal solution of (A.1). To begin
ither algorithm, one must first solve the maximum cardinality problem

ax
𝑛
∑

𝑖=1
𝑥𝑖,

s.t. 𝑥 ∈ 𝑃 ∩ {0, 1}𝑛,
11
to generate a valid starting cut.
Algorithm 1 then begins by solving the outer-approximation sub-

problem given by

𝑈𝐵 = max 𝜃 (A.3)
𝑠.𝑡. 𝜃 ≤ 𝑓 (𝑥0) +

⟨

∇𝑓 (𝑥0), 𝑥 − 𝑥0
⟩

𝜃 ≥ 0,

𝑥 ∈ 𝑃 ∩ {0, 1}𝑛,

where 𝑥0 is a solution of maximum cardinality. Let 𝜃1, 𝑥1 be the solution
to (A.3). Then 𝑈𝐵 = 𝜃1 and 𝐿𝐵 = max{𝑓 (𝑥1), 𝑓 (𝑥0)} provide valid
upper and lower bounds for (A.1). The tangent plane of 𝑥1 is then gen-
erated and used to formulate the next iteration of outer-approximation
subproblems, given by

max 𝜃

𝑠.𝑡. 𝜃 ≤ 𝑓 (𝑥0) +
⟨

∇𝑓 (𝑥0), 𝑥 − 𝑥0
⟩

𝜃 ≤ 𝑓 (𝑥1) +
⟨

∇𝑓 (𝑥1), 𝑥 − 𝑥1
⟩

𝜃 ≥ 0,

𝑥 ∈ 𝑃 ∩ {0, 1}𝑛.

This problem is once again solved to optimality to generate a new
solution 𝜃2, 𝑥2. Bounds are again updated such that 𝑈𝐵 = 𝜃2 and 𝐿𝐵 =
max{𝐿𝐵, 𝑓 (𝑥2)}. The algorithm continues to repeat these iterations until
𝐿𝐵 = 𝑈𝐵, at which point an optimal solution to (A.1) has been found.
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