
European Journal of Operational Research 311 (2023) 4 4 4–454

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An exact cutting plane method for the Euclidean max-sum diversity

problem

Sandy Spiers a , b , ∗, Hoa T. Bui a , b , Ryan Loxton

a , b

a ARC Centre for Transforming Maintenance through Data Science, Curtin University, Perth, Australia
b Curtin Centre for Optimisation and Decision Science, Curtin University, Perth, Australia

a r t i c l e i n f o

Article history:

Received 21 July 2022

Accepted 8 May 2023

Available online 12 May 2023

Keywords:

Combinatorial optimization

Maximum diversity

Cutting planes

Euclidean distance

Branch and cut

a b s t r a c t

This paper aims to answer an open question recently posed in the literature, that is to find a fast exact

method for solving the max-sum diversity problem, a nonconcave quadratic binary maximization prob-

lem. We show that, for Euclidean max-sum diversity problems (EMSDP), the distance matrix defining the

quadratic term is always conditionally negative definite. This interesting property ensures that the cutting

plane method is exact for (EMSDP), even in the absence of concavity. As such, the cutting plane method,

which is primarily designed for concave maximisation problems, converges to the optimal solution of

(EMDSP). The method was evaluated on several standard benchmark test sets, where it was shown to

outperform other exact solution methods for (EMSDP), and is capable of solving two-coordinate prob-

lems of up to eighty-five thousand variables.

© 2023 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

m

f

c

t

t

f

t

p

o

1

e

i

t

v

R

t

H

C

h

∥ ∥
d

i

m

T

2

a

i

1

o

w

a

s

d

(

h

0

(

. Introduction

The problem of maximizing diversity and dispersion arises in

any practical settings. It involves selecting a subset of elements

rom a larger set to maximize some distance metric. Since the con-

eption of the maximum diversity problem by Kuby (1987) (some-

imes referred to as the maximum dispersion problem), the in-

erpretation of diversity has taken many practical and theoretical

orms. The topic has now reached a level of maturity where a mul-

itude of problem variations, solution algorithms, and practical ap-

lications exist. Over the last thirty years, a significant quantity

f research has focused on the max-sum diversity problem (Kuby,

987), which is to maximize the sum of distances between selected

lements, and the max-min diversity problem (Erkut, 1990), which

s to maximize the minimum distance among selected points. For

his paper, we focus our attention on the Euclidean max-sum di-

ersity problem (EMSDP) .

Given a set of n predefined locations v 1 , . . . , v n in a vector space

s (s ≥ 1), the (EMSDP) aims to find a subset of p locations such

hat the sum of the distances between the p points is maximized.

ere, we consider q i j to be the distance between locations i and
∗ Corresponding author at: Curtin Centre for Optimisation and Decision Science,

urtin University, Perth, Australia.

E-mail addresses: sandy.spiers@postgrad.curtin.edu.au (S. Spiers),

oa.bui@curtin.edu.au (H.T. Bui), r.loxton@curtin.edu.au (R. Loxton) .

b

c

t

(

ttps://doi.org/10.1016/j.ejor.2023.05.014

377-2217/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
j defined by q i j =

∥v i − v j ∥ where ‖ ·‖ is the standard Euclidean

istance in R

s . Let Q = [q i j] denote the full distance matrix where

 = 1 , . . . , n and j = 1 , . . . , n . The (EMSDP) is then given as

ax f (x) =

1
2 〈 Qx, x 〉 , (EMSDP)

s.t.

n ∑

i =1

x i = p, (1)

x i ∈ { 0 , 1 } , 1 ≤ i ≤ n.

he (EMSDP) is known to be strongly NP-hard (Eremeev et al.,

019; Kuo et al., 1993; Ravi et al., 1994).

The practical applications of the maximum diversity problem

re vast. One of the first examples presented in the literature

s locating unwanted facilities on a network (Church & Garfinkel,

978). Since then, many other researchers have relaxed the notion

f distance to more general settings. One example is in genetics,

here breeders attempt to maximize the diversity of traits among

 breeding stock (Porter et al., 1975). Furthermore, social diversity

uch as gender, cultural and ethnic diversity has become highly

esirable in many communities, especially in a workplace setting

 Roberge & van Dick, 2010). More recently, maximum diversity has

een used to find the optimal locations of chairs for COVID-19 so-

ial distancing (Ferrero-Guillén et al., 2022).

While research into heuristic and meta-heuristic approaches to

he max-sum diversity problem has gathered significant interest

see Martí et al. (2022) for a recent review), the development
under the CC BY-NC-ND license

https://doi.org/10.1016/j.ejor.2023.05.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.05.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sandy.spiers@postgrad.curtin.edu.au
mailto:hoa.bui@curtin.edu.au
mailto:r.loxton@curtin.edu.au
https://doi.org/10.1016/j.ejor.2023.05.014
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

o

p

f

l

t

q

T

m

w

t

t

m

T

m

t

(

(

p

m

t

b

t

n

f

a

s

b

j

e

a

e

s

v

m

v

m

a

s

l

f

i

n

m

c

p

e

G

d

c

o

c

a

p

x

a

i

w

b

(

p

e

c

r

f

i

b

w

m

p

c

m

e

s

n

e

t

T

c

e

t

2

K

L

h

G

�

W

(

T

(

m

f exact algorithms has fallen behind. One of the first exact ap-

roaches was presented in Kuo et al. (1993) and used linear re-

ormulation techniques to transform the problem into an integer

inear form. This was done in two ways. The first used a lineariza-

ion technique presented in Glover & Woolsey (1974) , whereby the

uadratic x i x j terms are replaced by a new auxiliary variable y i j .

he linear formulation of (EMSDP) is then given as

ax

n −1 ∑

i =1

n ∑

j= i +1

q i j y i j , (2)

s.t.

n ∑

i =1

x i = p,

y i j ≥ x i + x j − 1 , 1 ≤ i < j ≤ n, (3)

y i j ≤ x i , 1 ≤ i < j ≤ n, (4)

y i j ≤ x j , 1 ≤ i < j ≤ n, (5)

y i j ≥ 0 , 1 ≤ i < j ≤ n,

x i ∈ { 0 , 1 } , 1 ≤ i ≤ n,

here constraints (3) –(5) enforce y i j = x i x j . A second reformula-

ion that uses inequalities and real variables to handle quadratic

erms, a technique first outlined in Glover (1975) , is given as

ax

n −1 ∑

i =1

w i ,

s.t.

n ∑

i =1

x i = p,

w i ≤ x i

n ∑

j= i +1

q i j , 1 ≤ i ≤ n − 1 ,

w i ≤
n ∑

j= i +1

q i j x j , 1 ≤ i ≤ n − 1 ,

w i ≥ 0 , 1 ≤ i ≤ n − 1 ,

x i ∈ { 0 , 1 } , 1 ≤ i ≤ n. (6)

his formulation was shown in Martí et al. (2010) to be far

ore efficient than (2) . It was later used as the exact solver for

he comprehensive empirical analyses presented in Parreño et al.

2021) and Martí et al. (2022) .

The first significant advancement in exact methods for the

EMSDP) came in Pisinger (2006) . This paper presented several up-

er bounds based on Lagrangean relaxation, semidefinite program-

ing and reformulation techniques. The upper bounds are compu-

ationally cheap and can therefore be implemented in a branch and

ound procedure. Numerical results show that for Euclidean dis-

ance problems, the procedure is capable of solving problems with

 = 80 with an average solve time of 60 seconds, but it struggles

or sizes n ≥ 100 . Martí et al. (2010) presented a branch and bound

lgorithm based on partial solutions, where a partial solution is a

et of k elements where k < p. Upper bounds are then calculated

ased on all other solutions that contain these k elements. The ob-

ective function is split into three parts, and an upper bound for

ach is calculated. These bounds are then integrated into a branch

nd bound search tree. While the algorithm is faster than the lin-

ar formulation (6) , the numerical results show that it struggles to

olve instances of n = 150 in under an hour of computation time.

This paper answers an open question posed in the recent re-

iew paper Martí et al. (2022) . That is, while progress in exact

ethods for variants of the maximum diversity problem have ad-

anced significantly (such as Sayyady & Fathi, 2016 for the max-

in problem and Garraffa et al., 2017 for the max-mean problem),

 fast exact solver for the max-sum diversity problem remains elu-

ive. The max-sum problem remains the most widely studied prob-
445
em variation, yet very few exact methods exist. One of the reasons

or this might be that the problem is generally nonconcave, mean-

ng the naive application of concave nonlinear programming tech-

iques is not appropriate. However, when the distance measure-

ents are taken as Euclidean, the problem exhibits certain special

haracteristics that allow for nonlinear programming techniques,

articularly cutting plane methods , to be applied, even in the pres-

nce of nonconcavity.

The cutting plane method (or outer approximation) (Duran &

rossmann, 1986; Leyffer, 1993; Yuan et al., 1988) is one of several

eterministic methods that provide general frameworks to tackle

oncave mixed integer problems. These methods require a concave

bjective function to guarantee convergence to optimality. For non-

oncave quadratic problems, the cutting plane algorithm requires

n extra concave reformulation step before applying the cutting

lanes procedure. In particular, using the property that x i = x 2
i

for

 i ∈ { 0 , 1 } , the nonconcave objective f (x) =

1
2 〈 Qx, x 〉 is replaced by

 concave function f ′ (x) :=

1
2

(〈 (Q − λI n) x, x 〉 + λ
∑ n

i =1 x i
)
, where λ

s the largest eigenvalue of Q (Lima & Grossmann, 2017), and

here I n is the identity matrix of dimension n . This method has

een implemented in commercial solvers like CPLEX and Gurobi
 Bliek et al., 2014; Lima & Grossmann, 2017). However, this ap-

roach can be slow to converge, particularly when λ is large (Bliek

t al., 2014; Bonami et al., 2022). We show in Section 2 that the

utting plane algorithm can solve the nonconcave (EMSDP) di-

ectly, without the need for a reformulation step, leading to much

aster convergence.

The performance of the cutting plane algorithm is evaluated us-

ng two publicly available test sets from the MDPLIB 2.0 test li-

rary (Martí et al., 2021), several randomly generated instances as

ell as a subset of problems from the TSPLIB test library. Nu-

erical results show that the cutting plane algorithm is vastly su-

erior to other exact solvers and is capable of solving large, two-

oordinate problems of up to n = 85 , 900 . The algorithm’s perfor-

ance deteriorates as the number of coordinates grows, however,

ven in these difficult instances it remains superior to other exact

olvers, and is able to solve large 20-coordinate problems of up to

 = 20 0 0 .

The paper is organized as follows. In Section 2 , we present an

xact cutting plane approach for solving (EMSDP) . The convergence

o optimality is established in Theorem 2 . We then provide in

heorem 5 an estimation of how many non-optimal solutions each

utting plane eliminates at each iteration. Finally, in Section 3 , we

valuate the effectiveness of the proposed cutting plane algorithm

hrough extensive numerical experiments.

. Cutting plane methodology

Denote the feasible set of (EMSDP) as

 :=

{

x ∈ { 0 , 1 } n :
n ∑

i =1

x i = p

}

.

et h : R

n × R

n → R be the tangent plane of f defined as follows,

 (x, y) := 〈 ∇ f (y) , x − y 〉 + f (y) , ∀ x, y ∈ R

n . (7)

iven a set A ⊂ K, let �A ⊂ K × R be defined as

A :=

{
(x, θ) ∈ R

n +1 : x ∈ K, θ ≤ h (x, y) , ∀ y ∈ A

}
.

e consider the following auxiliary linear maximization problem

max
x,θ) ∈ �A

θ . (LP A)

his linearization problem is known as the cutting-plane model of

EMSDP) , and can be written explicitly as

ax θ

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

W

m

c

c

1

d

a

E

d

m

c

R

d

A

a

a

p

P

(

F

(

P

θ

T

i

i

y

〈
T

h

T

h

T

m

m

a

(

H

l

a

m

p

s

l

θ

g

L

b

i

A

c

s

(

i

t

t

a

b

s

c

a

A

a

i

a

t

o

a

m

s

T

c

s

P

r

n

(

θ

w

n

fi

l

(

θ

w

m

(

N

(

s.t. θ ≤ h (x, y) , ∀ y ∈ A,

x ∈ K. (8)

e now briefly review some key properties of Euclidean distance

atrices. An n × n matrix D = [d i j] (n ≥ 1) is called a squared Eu-

lidean distance matrix if there are n vectors v 1 , . . . , v n in a Eu-

lidean space R

s (s ≥ 1) such that d i j =

∥∥v i − v j
∥∥2

for all i, j =
 , . . . , n , where ‖ ·‖ is the Euclidean norm (see Gower, 1982; Hay-

en et al., 1999; Schoenberg, 1937). Schoenberg (1935) proved that

 symmetric nonnegative matrix D with zero diagonal is a squared

uclidean distance matrix if and only if D is conditionally negative

efinite , that is 〈 Dx, x 〉 ≤ 0 for any x ∈ R

n with

∑ n
i =1 x i = 0 . Further-

ore, it is shown in Schoenberg (1937) that given any squared Eu-

lidean distance matrix D , we can construct n points u 1 , . . . , u n in

s such that

 i j =

∥∥v i − v j
∥∥2 =

∥∥u i − u j

∥∥, ∀ i, j = 1 , . . . , n.

s such, the Euclidean distance matrix Q in the (EMSDP) is also

 squared Euclidean distance matrix, and therefore it is condition-

lly negative definite. We now show that when A = K, the linear

roblem (LP K) is equivalent to the quadratic problem (EMSDP) .

roposition 1. It holds that

max
x,θ) ∈ �K

θ = max
x ∈ K

f (x) .

urthermore, if (x ∗, θ ∗) is a solution of (LP K) , then x ∗ is a solution of

EMSDP) .

roof. For any feasible solution (x, θ) of (LP K) , we have x ∈ K and

≤ h (x, x) = f (x) ≤ max
z∈ K

f (z) .

herefore, max (x,θ) ∈ �K
θ ≤ max x ∈ K f (x) . Now, we prove the reverse

nequality. Taking into account that Q is conditionally negative def-

nite, and for any feasible solutions x, y ∈ K we have
∑ n

i =1 (x i −
 i) = 0 , the following inequality holds

Q(x − y) , x − y 〉 ≤ 0 .

he inequality above yields

 (x, y) − f (x) = 〈 Qy, x − y 〉 +

1
2 〈 Qy, y 〉 − 1

2 〈 Qx, x 〉
= 〈 Qy, x − y 〉 +

1
2 〈 Q(y + x) , y − x 〉

= − 1
2 〈 Q(x − y) , x − y 〉 ≥ 0 .

hus,

 (x, y) ≥ f (x) , ∀ x, y ∈ K.

aking minimum over all y ∈ K in the inequality above yields

in y ∈ K h (x, y) ≥ f (x) for each x ∈ K. Thus, (x, ˜ θx) , with

˜ θx =
in y ∈ K h (x, y) , is a feasible solution of (LP K) such that ˜ θx ≥ f (x) ,

nd therefore

max
x,θ) ∈ �K

θ ≥ max
x ∈ K

˜ θx ≥ max
x ∈ K

f (x) .

ence, we have proved that max (x,θ) ∈ �K
θ = max x ∈ K f (x) . Finally,

et (x ∗, θ ∗) be a solution of (LP K) . Then, x ∗ is feasible for (EMSDP) ,

nd

ax
x ∈ K

f (x) = θ ∗ ≤ h (x ∗, x ∗) = f (x ∗) ,

roving the second assertion. �

Based on Proposition 1 , we propose a cutting plane approach to

olve the quadratic problem (EMSDP) by solving the linear prob-

em (LP K) . Since it is not practical to generate a cutting plane

≤ h (x, y) for every y ∈ K, our cutting plane algorithm successively

enerates cuts of type (8) whenever a candidate solution is found.

et A denote the set A at iteration k , and let LB denote the lower
k k

446
ound at iteration k . We say x ∈ K is a candidate solution if there

s (x, θ) ∈ �A k
such that θ > LB k . The Euclidean Diversity-Cut (EDC)

lgorithm successively generates candidate solutions and adds the

utting planes to the linear model (LP A k) to eliminate non-optimal

olutions until no candidate solution remains in the search space.

Algorithm 1: The Euclidean diversity-cut (EDC) algorithm.

Take x 0 ∈ K

Set A 0 ← { x 0 } , LB 0 ← f (x 0) , k ← 1

while ∃ (x k , θ k) ∈ �A k −1
s.t. θ k > LB k −1 do

LB k ← max { LB k −1 , f (x k) }
A k ← A k −1 ∪ { x k }
k ← k + 1

end

The EDC Algorithm does not require solving the linear problem

 LP A k) to optimality whenever an additional cut is added. Rather,

t looks for a feasible solution (x k , θ k) ∈ �A k −1
that improves upon

he current lower bound, i.e., θ k > LB k −1 . This algorithm outlines

he framework of a general branch and cut procedure, where cuts

re added during the solve process. A branch and cut procedure

ased on the EDC Algorithm can be implemented in standard MIP

olvers using the callback functionality. Callbacks allow certain pro-

esses or algorithms to be implemented alongside general branch

nd bound or branch and cut procedures. In the case of the EDC

lgorithm, we begin by solving (LP A 0) with a single cut gener-

ted by some feasible solution. Whenever an incumbent solution

s found during the solve process, a callback is used to add the

ssociated cutting plane. This allows the MIP solver to preserve

he information from previous steps and therefore generates only

ne search tree, improving the computational performance of the

lgorithm. A detailed demonstration of the EDC Algorithm imple-

ented using branch and cut is shown in Appendix A .

We now prove that the EDC Algorithm converges to an optimal

olution of the (EMSDP) .

heorem 2. The sequence { x k } ⊂ K generated by the EDC Algorithm

onverges to an optimal solution of (EMSDP) after a finite number of

teps.

roof. Consider the sequence { x k } generated by the EDC Algo-

ithm. We first show that the EDC Algorithm converges after a fi-

ite number of steps. Suppose x k 1 = x k 2 for some 0 ≤ k 1 < k 2 . Let

x k 2 , θ k 2) ∈ �A k 2 −1
. Then θ k 2 > LB k 2 −1 and,

k 2 ≤ h (x k 2 , x k 1) = f (x k 1) ≤ LB k 2 −1

hich is a contradiction. This shows that the EDC Algorithm will

ot revisit a previous point. Since the set K is finite, we must have

nite convergence.

We now prove that the algorithm terminates at an optimal so-

ution. Suppose the algorithm terminates at step k , then for every

 ̃ x , ˜ θ) ∈ �A k −1
, it holds that

˜ ≤ LB k −1 ≤ max
x ∈ K

f (x) = max
(x,θ) ∈ �K

θ,

here the last equality follows from Proposition 1 . Taking the

aximum over all (̃ x , ˜ θ) ∈ �A k −1
in the first inequality, we obtain

max
x,θ) ∈ �A k −1

θ ≤ LB k −1 ≤ max
(x,θ) ∈ �K

θ . (9)

ote that because A k −1 ⊂ K, we have �K ⊂ �A k −1
, and hence

max
x,θ) ∈ �A k −1

θ ≥ max
(x,θ) ∈ �K

θ .

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

F

l

(

f

(

t

e

e

P

A

l

P

H

t

(

a

L

i

P

(

a

L

A

P

t

T

k

s√
T

∑
q

b

a

P

k

f

h∥∥
C

I

S

c

I

T∥∥
i

d

b

|

a∥∥
N

t

q

A

(

p

w

t

t

s

b

i

d

d

p

m

i

s

i

t

o

i

&

u

P

o

h

f

rom (9) , the inequality above and the definition of LB k −1 , the fol-

owing equations hold

max
x,θ) ∈ �A k −1

θ = max
(x,θ) ∈ �K

θ = max
x ∈ K

f (x) = LB k −1 = f (x l) ,

or some l ∈ { 0 , 1 , . . . , k − 1 } , and hence x l is optimal for

EMSDP) . �

We now study the efficiency of the cutting planes by answering

he question, after iteration k , how many non-optimal solutions are

liminated by the cut θ ≤ h (x, x k) ? We first establish the following

lementary results.

roposition 3. Let x k ∈ K (k ≥ 0) be the iterate generated by the EDC

lgorithm during iteration k . If ∇ f (x k) = 0 , then x k is an optimal so-

ution of (EMSDP) and the algorithm terminates.

roof. If ∇ f (x k) = 0 , then the cutting plane h (x, x k) ≥ θ becomes

f (x k) ≥ θ . (10)

ence, f (x k) ≥ max (x,θ) ∈ �A k +1
θ ≥ max (x,θ) ∈ �K

θ = max x ∈ K f (x) , and

he candidate x k is an optimal solution of (EMSDP) . The constraint

10) implies that there will be no candidate solution found in iter-

tion k + 1 , and hence the EDC Algorithm must terminate. �

emma 4. Let x k be the iterate generated by the EDC Algorithm dur-

ng iteration k . Then, for any subsequent iteration l > k , it holds that

LB l−1 − f (x k) ∥∥∇ f (x k)
∥∥ <

∥∥x l − x k
∥∥. (11)

roof. Let k < l be iterations of the EDC Algorithm, and let

x l , θ l) ∈ �A l−1
. Then

f (x k) ≤ LB l−1 < θ l ≤ f (x k) +

〈∇ f (x k) , x l − x k
〉

nd hence we have that

B l−1 − f (x k) <

〈∇ f (x k) , x l − x k
〉
≤

∥∥x l − x k
∥∥ ·

∥∥∇ f (x k)
∥∥.

s k < l, the algorithm did not terminate at k and hence from

roposition 3 ,
∥∥∇ f (x k)

∥∥ � = 0 . Therefore we have that

LB l−1 − f (x k) ∥∥∇ f (x k)
∥∥ <

∥∥x l − x k
∥∥

hus proving the assertion. �

heorem 5. Let k and l be iterations of the EDC Algorithm such that

 < l. Suppose at iteration l there exists a non-negative integer N l

uch that

2 N l ≤ LB l−1 − f (x k)

‖

∇ f (x k) ‖

. (12)

hen at step l onwards, the cutting plane θ ≤ h (x, x k) removes at least

N l

 =0

(
p

q

)(
n − p

q

)

inary points from the feasible set K, where
(

a
b

)
=

b!(a −b)!
a ! for all

, b ∈ N , and a ≥ b.

roof. Let k and l be iterations of the EDC Algorithm such that

 < l, and suppose (12) holds for some non-negative integer N l . It

ollows from Lemma 4 that at iteration l, the cutting plane θ ≤
 (x, x k) removes all points x ∈ K such that

x − x k
∥∥ ≤

√

2 N l . (13)

onsider two sets of indices

 1 := { i : x k = 1 } , I 2 := { i : x k = 0 } .
i i

447
ince x k ∈ K, we have | I 1 | = p and | I 2 | = n − p. For any x ∈ K, we

onsider

 1 (x) := { i : x i = 1 } , I 2 (x) := { i : x i = 0 } .
hen for any point x ∈ K, we have that

x − x k
∥∥2 = | I 1 ∩ I 2 (x) | + | I 2 ∩ I 1 (x) |

.e., the squared distance between x and x k is the sum of the in-

ices that are in x k but not in x , and the indices that are not in x k

ut are in x . Furthermore, we can see that

I 1 ∩ I 2 (x) | =

n ∑

i =1

x k i (1 − x i)

=

n ∑

i =1

(
x k i − x k i x i + x i − x i

)

=

n ∑

i =1

(
x k i + x i (1 − x k i) − x i

)

=

n ∑

i =1

x i (1 − x k i) + p − p

= | I 2 ∩ I 1 (x) |
nd hence

x − x k
∥∥ =

√

2 | I 1 ∩ I 2 (x) | .
ow, for any q ∈ { 0 , 1 , . . . , N l } , consider all the solutions x ∈ K such

hat

 = | I 1 ∩ I 2 (x) | . (14)

ltogether there are
(

p
q

)(
n −p

q

)
feasible solutions x ∈ K that satisfy

14) . Therefore in total, there are precisely
∑ N l

q =0

(
p
q

)(
n −p

q

)
feasible

oints in K that satisfy (13) . This proves the assertion. �

Theorem 5 provides insight on the strength of individual cuts

ithin the cutting plane algorithm as iterations progress. It shows

hat cuts are stronger when N l is chosen larger. We now explore

he general strength of cuts of type (8) by comparing them to the

tandard concave reformulation technique commonly used to solve

inary quadratic problems such as (EMSDP) . Let f (x) be defined as

n (EMSDP) , then given a regulator ρ ∈ R let

f ρ (x) =

1
2

(

〈 (Q − ρI n) x, x 〉 + ρ
n ∑

i =1

x i

)

efine a ρ-perturbation of f , where I n is the identity matrix of

imension n . Given x is binary we have that x i = x 2
i

and hence

f (x) = f ρ (x) for all x ∈ { 0 , 1 } n and ρ ∈ R . Therefore solving the

erturbed problem given by

ax
x ∈ K

f ρ (x)

s equivalent to solving the original problem. Provided ρ is chosen

uch that the perturbed quadratic term is negative semi-definite,

.e., Q − ρI n � 0 , the objective function f ρ (x) becomes concave,

hereby guaranteeing the global convergence of a cutting plane or

uter approximation algorithm. This is a common technique found

n many binary quadratic solvers (Billionnet & Elloumi, 2007; Lima

 Grossmann, 2017). However, the perturbation term should be

sed with caution, as shown by the following result.

roposition 6. Similar to (7) , let h ρ (x, y) denote the tangent plane

f f ρ (x) at y ∈ K. If ρ1 ≤ ρ2 , then

 ρ1
(x, y) ≤ h ρ2

(x, y)

or all x ∈ K.

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

P

h

N

〈

T

h

a

H

s

i

g

o

t

P

n

e

a

3

r

V

p

m

o

g
w

p

p

h

s

w

2

d

c

a

t

O

b

f

g

t

t

l

o

i

(

a

p

a

t

t

o

t

c

p

r

(

G
s

o

i

t

t

t

a

o

l

c

I

s

l

m

p

m

a

h

p

m

s

a

o

l

m

d

t

r

T

q

s

d

n

o

a

A

c

t

m

i

s

a

t

l

b

roof. Let e = (1 , . . . , 1) ∈ R

n , then

 ρ1
(x, y) = f ρ1

(y) +

〈
Qy − ρ1 y +

1
2
ρ1 e, x − y

〉
,

= f ρ1
(y) + 〈 Qy, x − y 〉 +

1
2
ρ1 〈 e − 2 y, x − y 〉 .

ow, as x 2
i

= x i and y 2
i

= y i we have that

e − 2 y, x − y 〉 =

n ∑

i =1

(
x i − y i − 2 x i y i + 2 y 2 i

)
=

n ∑

i =1

(
x 2 i + y 2 i − 2 x i y i

)

=

n ∑

i =1

(x i − y i)
2 ≥ 0 .

herefore,

 ρ1
(x, y) = f ρ1

(y) + 〈 Qy, x − y 〉 +

1
2
ρ1 〈 e − 2 y, x − y 〉

≤ f ρ1
(y) + 〈 Qy, x − y 〉 +

1
2
ρ2 〈 e − 2 y, x − y 〉

= f ρ2
(y) + 〈 Qy, x − y 〉 +

1
2
ρ2 〈 e − 2 y, x − y 〉 = h ρ2

(x, y) ,

s required. �

Let λmax denote the largest eigenvalue of Q . It is proved in

ammer & Rubin (1970) that when ρ ≥ λmax , Q − ρI n is negative

emidefinite and hence f ρ (x) is concave. As such, an outer approx-

mation algorithm is guaranteed to converge thanks to concavity in

f ρ (x) . However, unlike outer approximation, our cutting plane al-

orithm does not require any perturbation or reformulation of the

riginal problem. In other words, the EDC Algorithm converges to

he global solution even for the case where ρ = 0 . Moreover, from

roposition 6 , we can see that cuts become weaker (remove fewer

onoptimal solutions) as ρ increases. Hence, the EDC Algorithm is

xpected to perform better than an outer approximation algorithm

pplied to the perturbed problem.

. Numerical results

We now explore the performance of the EDC Algorithm on a

ange of test instances. The algorithm was implemented in CPLEX
ersion 22.1 using the callback functionality. As explained in the

revious section, callbacks allow for cuts to be added to the

odel during the general solve procedure, thus generating only

ne branch and cut search tree. The program was compiled using

++ and run on a machine with a 2.3 GHz AMD EPYC processor

ith 32 GB of RAM, using a single thread.

The performance of the EDC Algorithm was evaluated on three

ublicly available and four randomly generated test libraries. The

ublicly available test library MDPLIB 2.0 1 (Martí et al., 2021)

as commonly been used as a benchmark for the maximum diver-

ity problem and contains many test sets. Within this test library,

e use the test sets GKD-c and GKD-d . Test set GKD-c contains

0 Euclidean distance matrices of 500 locations. Each location is

efined by 20 coordinates in the range of 0 to 100. Test set GDK-d
ontains 70 Euclidean distance matrices between randomly gener-

ted points with two coordinates in the range 0 to 100. There are

en matrices for each value n = 25 , 50 , 100 , 250 , 500 , 1000 , 2000 .

ne of the major differences between these test sets is the num-

er of coordinates of original locations. To explore further the ef-

ect the number of coordinates has on the algorithm, we randomly

enerate an additional four test sets similar to GKD-d , where each

est set uses a different number of coordinates. Finally, in order to

est the limits of the EDC Algorithm, we use a subset of the very

arge problems available within the TSPLIB test library. 2

The algorithm was compared against three exact solution meth-

ds. The first method solves the Glover reformulation (6) us-

ng CPLEX . This linear reformulation was shown in Martí et al.
1 Available at https://www.uv.es/rmarti/paper/mdp.html .
2 Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ .

448
2022) to be competitive among other exact solvers. Additionally,

s CPLEX can handle binary quadratic programs, we also solve the

roblem in its original form using quadratic CPLEX . The final exact

pproach is to apply outer approximation to the perturbed objec-

ive function, f ρ (x) , where ρ = λmax . Such a perturbation makes

he function concave and hence guarantees the global convergence

f outer approximation. Note that when using outer approxima-

ion, calculating λmax is done as a preprocessing step and is not

onsidered to count towards the solver’s runtime. Finally, we com-

ared the performance of the algorithm against the heuristic algo-

ithm OBMA (Zhou et al., 2017), which was shown in Martí et al.

2022) to be one of the most effective on Euclidean instances.

Table 1 summarises the performance of all solvers on test sets

KD-c and GKD-d . The table is broken down by time limit, test

et, and

p
n ratio. Then, the average final optimality gap at the end

f the time limit is reported for each exact solver. For all solvers,

ncluding the heuristic OBMA , the number of times the final solu-

ion matched the best-known solution is also reported. 3 Note that

his is not necessarily the number of times the algorithm was able

o confirm optimality but rather gives an indication of the solvers’

bility to locate good solutions quickly.

On test set GKD-d , the EDC Algorithm was vastly superior to

ther exact solvers across all time limits. For the 10-seconds time

imit, the algorithm was able to confirm optimality in almost all

ases and locate more optimal solutions than the heuristic OBMA .
ncreasing the time limit to 100 seconds, the algorithm could easily

olve all test instances of set GKD-d to optimality (including the

arge instances of n = 20 0 0), representing a significant improve-

ent when compared to the other exact algorithms. While still su-

erior to the other exact solution methods, the algorithm’s perfor-

ance appears slightly worse on test set GKD-c . It is able to locate

lmost all optimal solutions within the 600-seconds time limit,

owever the algorithm struggles to close the optimality gap com-

letely. That said, the performance is still a noticeable improve-

ent compared to the other exact solvers.

Figure 1 shows the performance of the EDC Algorithm on test

et GKD-d . The figure shows the average solve time and the aver-

ge number of cuts required to solve to optimality for each value

f n and p in the test set. Interestingly, the average solve time for

arge instances of n = 20 0 0 remains less than 10 seconds. Further-

ore, increasing the size of the problem from n = 250 to n = 20 0 0

emands a similar number of cuts to prove optimality. This is tes-

ament to the strength of the cuts themselves and their ability to

emove a vast number of nonoptimal solutions easily, as shown in

heorem 5 . Finally, we note that substantially fewer cuts are re-

uired for p = � 0 . 5 n � compared with p = � 0 . 1 n � and p = � 0 . 2 n � .
It is worth noting that the performance of the EDC Algorithm

eems to contradict a previously held notion about the difficulty of

iversity problems. Martí et al. (2022) state that as p approaches

/ 2 , a problem instance becomes harder due to the larger number

f feasible solutions. While this may be true for many existing ex-

ct and heuristic solvers, this result was not observed for the EDC

lgorithm. The results in Table 1 and Fig. 1 show that when p is

hosen as the larger value, fewer cuts are required on average, and

herefore the problem is solved faster. This contradicts the state-

ent in Martí et al. (2022) and shows that the run time does not

ncrease for the EDC Algorithm as p approaches n/ 2 .

Table 2 details the performance of the EDC Algorithm on test

et GKD-c after an hour of solve time. For each value of p
n , there

re 20 test instances, and we report the number of tests where

he EDC Algorithm managed to prove optimality within the time

imit, as well as the average solve time, optimality gap and num-

er of cuts added. When p = � 0 . 5 n � , the algorithm can still solve
3 The best-known values for large instances (n ≥ 500) are listed in Appendix B .

https://www.uv.es/rmarti/paper/mdp.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

Table 1

For every combination of time limit, test set and p
n

ratio, we report the average final gap as a percentage for all exact solvers. For all solvers (including the heuristic OBMA),
we also report the number of times the final solution matched the best-known solution.

Average gap (%) Number best

Time limit

(seconds) Set Tests p
n

EDC

Algorithm

Glover

CPLEX
Quadratic

CPLEX
Outer

approx

EDC

algorithm

Glover

CPLEX
Quadratic

CPLEX
Outer

approx OBMA
10 GKD-d 70 0.1 0.0 0 01 104.5611 3193.7143 1222.6446 69 20 28 10 60

10 GKD-d 70 0.2 0.0 0 0 0 70.9375 851.8493 621.9356 70 13 25 1 68

10 GKD-d 70 0.5 0.0 0 0 0 29.6054 128.7590 153.1647 70 20 29 1 70

10 GKD-c 20 0.1 0.1439 126.9552 921.7808 1610.4214 5 0 0 0 20

10 GKD-c 20 0.2 0.0178 123.7596 406.2149 731.2725 12 0 0 0 20

10 GKD-c 20 0.5 0.0 0 02 67.1518 100.4986 178.9432 20 0 0 0 20

100 GKD-d 70 0.1 0.0 0 0 0 97.6257 3156.0311 1139.4223 70 29 30 10 70

100 GKD-d 70 0.2 0.0 0 0 0 73.0 0 0 0 841.8472 580.3135 70 26 28 3 70

100 GKD-d 70 0.5 0.0 0 0 0 29.9724 125.2907 145.2900 70 32 30 1 70

100 GKD-c 20 0.1 0.0995 116.9812 921.7808 1597.5409 9 0 0 0 20

100 GKD-c 20 0.2 0.0067 104.1303 406.2149 721.2425 18 0 0 0 20

100 GKD-c 20 0.5 0.0 0 01 57.8678 100.4986 175.8901 20 0 0 0 20

600 GKD-d 70 0.1 0.0 0 0 0 91.1853 3120.6212 1103.8050 70 40 30 10 70

600 GKD-d 70 0.2 0.0 0 0 0 75.9072 833.0172 54 8.4 910 70 37 29 10 70

600 GKD-d 70 0.5 0.0 0 0 0 32.0015 121.4612 141.8368 70 40 30 1 70

600 GKD-c 20 0.1 0.0668 109.6791 904.1314 1588.1770 15 0 0 0 20

600 GKD-c 20 0.2 0.0022 93.2871 402.3066 715.2041 20 0 0 0 20

600 GKD-c 20 0.5 0.0 0 0 0 51.5980 99.2862 175.7679 20 0 0 0 20

Fig. 1. Performance of the EDC Algorithm on test set GKD-d . For each value n and

p, there are 10 problems to solve. We report the average solve time and the average

number of cuts added for each pair n and p.

Table 2

Performance of the EDC Algorithm on test set GKD-c . For each

value p
n

, there are 20 problems to solve. The number of tests

solved to optimality, average solve time (sec), gap (%) and cuts

added after an hour time limit is reported.

p
n

Number

optimal

Average solve

time (seconds)

Average

gap (%)

Average

cuts added

0.1 8 2738.1935 0.0382 6704.65

0.2 19 643.5760 0.0001 2632.50

0.5 20 28.0190 0.0000 381.30

p

e

w

b

s

G
l

n

s

i

c

3

t

c

G

s

t

�
s

G
o

E

o

b

r

i

G
w

s

i

s

t

i

s

t

c

l

p

449
roblem instances to optimality well within the time limit. How-

ver, when p = � 0 . 1 n � , the algorithm could only solve eight tests

ithin an hour. While the final optimality gap is small, the num-

er of cuts required significantly increases compared to the results

een in Fig. 1 . The number of cuts required to solve an instance in

KD-c can be more than 100 times that of a similar-sized prob-

em in GKD-d , the key difference between these tests being the

umber of coordinates of each location. This suggests that the cut

trength decreases as the number of original coordinates increases.

To explore this relationship further, four new tests sets are

ntroduced. Each test set contains 5 Euclidean distance matri-

es for each value n = 25 , 50 , 100 , 250 , 500 , 1000 , 2000 , totalling

5 distance matrices in each test set. The key difference be-

ween the test sets is the number of coordinates of original lo-

ations. The four test sets are denoted as GKD-d5 (with s = 5),

KD-d10 (with s = 10), GKD-d15 (with s = 15), GKD-d20 (with

 = 20). Each coordinate is then uniformly randomly generated in

he range 0 to 100. As before, every instance is then run with p =

0 . 1 n � , � 0 . 2 n � , � 0 . 5 n � , making three tests for each distance matrix.

Figure 2 outlines the performance profiles for the four exact

olution methods on the four new test sets GKD-d5 , GKD-d10 ,
KD-d15 and GKD-d20 . The results show that as the number

f coordinates increases from 5 to 20, the performance of the

DC Algorithm deteriorates substantially. This is in contrast to the

ther three exact solvers, whose performance remains fairly sta-

le as the number of coordinates increases. Although the algo-

ithm is not able to solve large coordinate instances as effectively,

t still remains superior to the other exact solution methods. For

KD-d5 , the EDC Algorithm can solve almost all tests to optimality

ithin the 600-seconds time limit (including some of the large in-

tances with n = 20 0 0). However, once the number of coordinates

ncreases to 20, the performance is almost halved. This appears to

upport the observation made on test sets GKD-c and GKD-d that

he strength of the cuts decreases as the number of coordinates

ncreases.

Table 3 outlines the performance of the EDC Algorithm on test

ets GKD-d5 , GKD-d10 , GKD-d15 and GKD-d20 in more de-

ail. For the large ratio problems where p = � 0 . 5 n � , the algorithm

an still easily solve all problem instances well within the time

imit. However, across all ratios, the number of cuts required to

rove optimality is significantly higher than the results seen on set

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

Fig. 2. Performance profile on test sets GKD-d5 , GKD-d10 , GKD-d15 and GKD-d20 . For each test set, there are a total of 105 test instances. The number solved to

optimality is shown for each of the exact solvers used.

Table 3

Performance of the EDC Algorithm on test sets GKD-d5 , GKD-d10 , GKD-d15 and

GKD-d20 over an hour time limit. For each pair of test set and ratio p
n

, 35 tests are solved.

The number solved to optimality, average solve time, optimality gap and number of cuts

are reported.

Set p
n

Number

optimal

Average solve

time (seconds)

Average

gap (%)

Average number

cuts added

GKD-d5 0.1 32 322.0020 0.0006 990.0857

GKD-d5 0.2 35 29.7180 0.0000 418.4000

GKD-d5 0.5 35 1.1731 0.0000 46.1429

GKD-d10 0.1 23 1469.1109 0.0263 4005.7429

GKD-d10 0.2 32 554.1971 0.0005 2302.8286

GKD-d10 0.5 35 5.2383 0.0000 149.8286

GKD-d15 0.1 12 2395.1338 0.0909 6416.5938

GKD-d15 0.2 21 1824.7223 0.0276 5652.9143

GKD-d15 0.5 35 29.1460 0.0000 463.9143

GKD-d20 0.1 9 2604.2534 0.1462 7237.7586

GKD-d20 0.2 13 2325.6716 0.0391 6901.9355

GKD-d20 0.5 35 144.6117 0.0000 1310.8286

G
n

u

t

c

t

s

fi

o

m

n

s

g

a

T

s

q

t

s

t

p

t

t

p

t

h

KD-d . As such, the EDC Algorithm’s performance on high coordi-

ate instances with low

p
n ratio is considerably worse and is often

nable to prove optimality within an hour time limit.

We now test the limits of the EDC Algorithm on a subset of

est instances available within the TSPLIB test library. The library

ontains several location problems of very large dimensions (up

o n = 85 , 900) and contains original coordinate locations. To solve

uch large instances, the computational implementation is modi-

ed slightly such that the pairwise distances between locations are

nly calculated when required. As such, the full pairwise distance

atrix is no longer loaded into memory, only the original coordi-

ates. In doing so, we avoid the memory burden that arises from

aving large distance matrices. However, this strategy means that

enerating cuts requires calculating all pairwise distances associ-
450
ted with a given solution, creating extra steps to generate cuts.

his is not expected to create significant issues, as we have already

hown that for two-dimensional problems, the number of cuts re-

uired to prove optimality is very small.

Within the TSPLIB test library, 17 Euclidean two-coordinate

est instances with n ≥ 20 0 0 are used. As before, every test in-

tance is then run with p = � 0 . 1 n � , � 0 . 2 n � , � 0 . 5 n � , comprising

hree tests for each set of locations. Each problem is then solved to

roven optimality using the EDC Algorithm. In Table 4 , we report

he solve time in seconds and the number of cuts added across

he three values of p
n . The results in Table 4 are consistent with

revious tests. The number of cuts required to solve the problem

o optimality remains small, indicating that the cuts are tight, and

ence large problems are easily solved within a reasonable time

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

Table 4

Performance of the EDC Algorithm on a subset of tests within the TSPLIB test library. For each set

of locations, the problem is run with p = � 0 . 1 n � , � 0 . 2 n � , and � 0 . 5 n � , and we report the solve time

in seconds and the number of cuts required to solve the problem to optimality.

p = � 0 . 1 n � p = � 0 . 2 n � p = � 0 . 5 n �

Instance n

Solve time

(seconds) Cuts

Solve time

(seconds) Cuts

Solve time

(seconds) Cuts

d2103.tsp 2103 8.43 98 7.49 62 6.54 22

u2152.tsp 2152 9.02 86 6.93 55 10.52 34

u2319.tsp 2319 6.58 74 6.30 43 12.19 34

pr2392.tsp 2392 7.43 76 8.20 53 10.59 28

pcb3038.tsp 3038 12.89 78 27.61 109 27.44 45

fl3795.tsp 3795 21.04 90 36.67 69 38.83 41

fnl4461.tsp 4461 48.09 143 35.09 64 66.42 48

rl5915.tsp 5915 65.14 117 116.67 121 116.75 49

rl5934.tsp 5934 54.27 93 51.94 54 81.12 34

pla7397.tsp 7397 121.92 118 166.82 106 198.15 54

rl11849.tsp 11,849 208.72 87 363.62 89 389.30 37

usa13509.tsp 13,509 675.39 197 324.01 64 339.21 26

brd14051.tsp 14,051 507.15 148 676.59 116 506.14 36

d15112.tsp 15,112 676.25 171 776.97 116 842.26 49

d18512.tsp 18,512 799.56 129 775.45 73 1379.92 56

pla33810.tsp 33,810 2053.07 113 3320.10 110 3519.85 47

pla85900.tsp 85,900 18291.56 151 16374.19 74 19986.27 38

f

o

s

c

fi

4

s

c

v

t

s

l

a

c

r

n

p

w

k

R

n

m

d

v

f

o

s

f

t

m

d

o

t

w

i

s

m

i

o

A

c

S

r

w

o

A

t

m

s

x

w

s

t

t

i

t

t

c

g

I

n

m

d

t

c

b

rame. Even for the very large problems of n = 85 , 900 , the number

f cuts required to solve for p = � 0 . 1 n � is only 151. This is a very

mall number considering the size of the problem. The strength in

uts allows this very large problem to be solved to optimality in

ve hours.

. Conclusions and future work

This paper presented a cutting plane algorithm for the max-

um diversity problem. While the problem is inherently noncon-

ave, the cuts are shown to be appropriate, and the algorithm con-

erges to the optimal solution. As the cuts can be applied directly

o the original problem, the algorithm can avoid the reformulation

teps needed in some integer quadratic solvers such as CPLEX .
The EDC Algorithm’s performance was evaluated on several test

ibraries, where it was found to be vastly superior to other ex-

ct solution methods. The algorithm is especially effective for low-

oordinate problems where the cuts are tight, allowing the algo-

ithm to solve large instances quickly. As the number of coordi-

ates grows, the cuts become less effective, and the algorithm’s

erformance deteriorates. The reason for this is unclear, however,

e suspect it is closely related to the rank of the matrix. It is

nown that the rank of a Euclidean distance matrix of points in

s is at most s + 2 (see Dokmanic et al., 2015). Therefore, as the

umber of original coordinates increases, so does the rank of the

atrix. We can think of this as increasing the complexity of the

istance matrix and, therefore, the complexity of the maximum di-

ersity problem. Future research should explore this relationship

urther and examine why the cuts are weaker for a larger number

f coordinates and if there are ways to combat this challenge.

The cuts are appropriate because they do not remove feasible

olutions and are upper planes of the objective in the domain of

easible solutions. However, the cuts are no longer valid if either

he integrality condition or constraint (1) is relaxed. As such, this

aximisation problem can be considered to be concave when the

omain is restricted to purely discrete feasible solutions. This proof

f concavity is different to much of the previous research into cut-

ing plane algorithms for mixed-integer nonlinear programming,

here concavity is usually assured by showing concavity when the

ntegrality condition, constraint set, or both, are relaxed. Future re-

earch should (1) redefine concavity notions on the discrete do-

ains and (2) uncover other well-known integer nonlinear max-
451
misation problems where the problem is concave on the domain

f feasible solutions, but nonconcave when the domain is relaxed.

cknowledgements

The authors are supported by the Australian Research Coun-

il through the Centre for Transforming Maintenance through Data

cience (grant number IC18010 0 030). This work was supported by

esources provided by the Pawsey Supercomputing Research Centre

ith funding from the Australian Government and the Government

f Western Australia.

ppendix A. Worked example

We now demonstrate in detail the steps of the EDC Algorithm

hrough a worked example. Suppose we are asked to solve

ax f (x) =

1

2

〈 Qx, x 〉 , (A.1)

.t.

n ∑

i =1

x i = p, (A.2)

 i ∈ { 0 , 1 } , i = 1 , . . . , n, (A.3)

here Q is a symmetric hollow (zero diagonal) matrix. The first

tep is to confirm that Q is a Euclidean distance matrix. Given

he original locations, this could easily be confirmed by finding

he pairwise Euclidean distances between locations and confirm-

ng they agree with the corresponding component of Q . Without

he original locations, one can use the Schoenberg Criterion to de-

ermine whether Q is a Euclidean distance matrix. We begin by

onstructing the (n − 1) × (n − 1) matrix G = [g i j] i, j=2 , ... ,n where

 i j =

1
2

(
q 1 i + q 1 j − q i j

)
.

t is then shown in Schoenberg (1935) that a symmetric hollow

 × n matrix Q is a Euclidean distance matrix if and only if the

atrix G is positive semidefinite. Then, provided Q is a Euclidean

istance matrix, the EDC Algorithm will converge to a globally op-

imal solution.

The algorithm begins by finding a feasible solution to (A.1) . This

an be done using some heuristic procedure or by choosing an ar-

itrary set of p locations. Let the starting solution be denoted by

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

x

s

m

N

n

t

h

(

s

m

s

T

p

t

A

i

t

a

0 , then LB 0 = f (x 0) . We are then required to find some feasible

olution to the subproblem

ax θ0

s.t. θ0 ≤ f (x 0) +

〈∇ f (x 0) , x − x 0
〉

θ0 > LB

0

(A. 2) , (A. 3) . (A.4)

ote that while the problem is to maximise θ0 , we may termi-

ate whenever an integer feasible solution is found. While the op-

imal solution of the subproblem is not required, the maximisation

ighlights quality search directions. Suppose a feasible solution to

A.4) was given by x 1 . Then LB 1 = max { LB 0 , f (x 1) } . Then the next

ubproblem is to solve

ax θ1 (A.5)

.t. θ1 ≤ f (x 0) +

〈∇ f (x 0) , x − x 0
〉

θ1 ≤ f (x 1) +

〈∇ f (x 1) , x − x 1
〉

θ1 > LB

1

(A. 2) , (A. 3) . (A.6)

his process is repeated until no feasible solution exists. At which

oint, by Theorem 2 , we will have converged to the optimal solu-

ion.

ppendix B. Summary of results

We now report the results of the EDC Algorithm on large test

nstances (n ≥ 500) in GKD-c and GKD-d . For each instance, a

ime limit of one hour is set, and the final objective value, gap as

 percentage and solve time in seconds is reported.

Set Instance n p Objective value Gap (%) Solve

time

(seconds)

GKD-c GKD-c_1_n500_m50.

txt

500 50 19483.736005 0.10799 3600.01

GKD-c GKD-c_2_n500_m50.

txt

500 50 19701.534791 0.0 1380.11

GKD-c GKD-c_3_n500_m50.

txt

500 50 19547.206837 0.07894 3600.03

GKD-c GKD-c_4_n500_m50.

txt

500 50 19596.468381 0.0 967.77

GKD-c GKD-c_5_n500_m50.

txt

500 50 19602.622005 0.0 2052.38

GKD-c GKD-c_6_n500_m50.

txt

500 50 19421.539095 0.04772 3600.01

GKD-c GKD-c_7_n500_m50.

txt

500 50 19534.303582 0.07854 3600.02

GKD-c GKD-c_8_n500_m50.

txt

500 50 19486.671883 0.09651 3600.01

GKD-c GKD-c_9_n500_m50.

txt

500 50 19221.628796 0.0 3152.37

GKD-c GKD-c_10_n500_m50.

txt

500 50 19703.339933 0.03193 3600.01

GKD-c GKD-c_11_n500_m50.

txt

500 50 19587.120163 0.06183 3600.04

GKD-c GKD-c_12_n500_m50.

txt

500 50 19360.223938 0.0 832.0

GKD-c GKD-c_13_n500_m50.

txt

500 50 19366.698508 0.01825 3600.01

GKD-c GKD-c_14_n500_m50.

txt

500 50 19458.564660 0.01806 3600.01

(continued on next column)
452
Set Instance n p Objective value Gap (%) Solve

time

(seconds)

GKD-c GKD-c_15_n500_m50.

txt

500 50 19422.146399 0.06996 3600.03

GKD-c GKD-c_16_n500_m50.

txt

500 50 19678.190189 0.08247 3600.01

GKD-c GKD-c_17_n500_m50.

txt

500 50 19331.388407 0.0 2037.43

GKD-c GKD-c_18_n500_m50.

txt

500 50 19461.394615 0.0 1134.67

GKD-c GKD-c_19_n500_m50.

txt

500 50 19474.800409 0.0711 3600.01

GKD-c GKD-c_20_n500_m50.

txt

500 50 19604.843569 0.0 6.94

GKD-c GKD-c_1_n500_m50.

txt

500 100 75809.909454 0.0 310.82

GKD-c GKD-c_2_n500_m50.

txt

500 100 76435.555515 0.0 171.99

GKD-c GKD-c_3_n500_m50.

txt

500 100 75838.544292 0.0 814.39

GKD-c GKD-c_4_n500_m50.

txt

500 100 75716.598228 0.0 2180.7

GKD-c GKD-c_5_n500_m50.

txt

500 100 75974.214099 0.0 126.84

GKD-c GKD-c_6_n500_m50.

txt

500 100 75701.792895 0.0 13.58

GKD-c GKD-c_7_n500_m50.

txt

500 100 75976.436247 0.00229 3600.01

GKD-c GKD-c_8_n500_m50.

txt

500 100 76019.127767 0.0 57.55

GKD-c GKD-c_9_n500_m50.

txt

500 100 75086.877566 0.0 100.94

GKD-c GKD-c_10_n500_m50.

txt

500 100 76248.246543 0.0 6.4

GKD-c GKD-c_11_n500_m50.

txt

500 100 76011.670781 0.0 11.07

GKD-c GKD-c_12_n500_m50.

txt

500 100 75016.432733 0.0 397.74

GKD-c GKD-c_13_n500_m50.

txt

500 100 75124.215072 0.0 2998.98

GKD-c GKD-c_14_n500_m50.

txt

500 100 75617.353164 0.0 10.87

GKD-c GKD-c_15_n500_m50.

txt

500 100 75294.90 0 081 0.0 14.3

GKD-c GKD-c_16_n500_m50.

txt

500 100 76448.106158 0.0 48.55

GKD-c GKD-c_17_n500_m50.

txt

500 100 75250.955832 0.0 1057.48

GKD-c GKD-c_18_n500_m50.

txt

500 100 75553.610354 0.0 13.69

GKD-c GKD-c_19_n500_m50.

txt

500 100 75546.717875 0.0 75.56

GKD-c GKD-c_20_n500_m50.

txt

500 100 75735.371694 0.0 860.06

GKD-c GKD-c_1_n500_m50.

txt

500 250 443719.723950 0.0 0.83

GKD-c GKD-c_2_n500_m50.

txt

500 250 447225.685882 0.0 0.56

GKD-c GKD-c_3_n500_m50.

txt

500 250 443045.271559 0.0 1.54

GKD-c GKD-c_4_n500_m50.

txt

500 250 442681.290872 0.0 1.03

GKD-c GKD-c_5_n500_m50.

txt

500 250 445473.734823 0.0 8.61

GKD-c GKD-c_6_n500_m50.

txt

500 250 442339.168595 0.0 2.51

GKD-c GKD-c_7_n500_m50.

txt

500 250 445073.835956 0.0 8.2

GKD-c GKD-c_8_n500_m50.

txt

500 250 446734.873298 0.0 0.36

GKD-c GKD-c_9_n500_m50.

txt

500 250 439877.960575 0.0 0.78

GKD-c GKD-c_10_n500_m50.

txt

500 250 4 4 4247.120213 0.0 0.68

GKD-c GKD-c_11_n500_m50.

txt

500 250 443853.915174 0.0 516.78

GKD-c GKD-c_12_n500_m50.

txt

500 250 440215.996121 0.0 0.91

GKD-c GKD-c_13_n500_m50.

txt

500 250 440976.117254 0.0 2.95

GKD-c GKD-c_14_n500_m50.

txt

500 250 442437.866858 0.0 0.7

(continued on next page)

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454
Set Instance n p Objective value Gap (%) Solve

time

(seconds)

GKD-c GKD-c_15_n500_m50.

txt

500 250 440651.808120 0.0 0.93

GKD-c GKD-c_16_n500_m50.

txt

500 250 448315.951367 0.0 0.2

GKD-c GKD-c_17_n500_m50.

txt

500 250 440843.055227 0.0 3.26

GKD-c GKD-c_18_n500_m50.

txt

500 250 441399.555997 0.0 7.14

GKD-c GKD-c_19_n500_m50.

txt

500 250 441966.308420 0.0 1.78

GKD-c GKD-c_20_n500_m50.

txt

500 250 440996.317489 0.0 0.63

GKD-d GKD_d_1_n500_coor.

txt

500 50 93273.991901 0.0 0.48

GKD-d GKD_d_2_n500_coor.

txt

500 50 95855.136509 0.0 0.69

GKD-d GKD_d_3_n500_coor.

txt

500 50 94219.878866 0.0 0.5

GKD-d GKD_d_4_n500_coor.

txt

500 50 95180.977517 0.0 0.7

GKD-d GKD_d_5_n500_coor.

txt

500 50 91962.114047 0.0 0.54

GKD-d GKD_d_6_n500_coor.

txt

500 50 95149.924437 0.0 0.53

GKD-d GKD_d_7_n500_coor.

txt

500 50 96618.050271 0.0 0.18

GKD-d GKD_d_8_n500_coor.

txt

500 50 94917.487984 0.0 0.64

GKD-d GKD_d_9_n500_coor.

txt

500 50 95234.618740 0.0 0.36

GKD-d GKD_d_10_n500_coor.

txt

500 50 95195.426995 0.0 0.99

GKD-d GKD_d_1_n500_coor.

txt

500 100 356991.795777 0.0 0.26

GKD-d GKD_d_2_n500_coor.

txt

500 100 365625.471836 0.0 1.51

GKD-d GKD_d_3_n500_coor.

txt

500 100 359815.333541 0.0 0.3

GKD-d GKD_d_4_n500_coor.

txt

500 100 361327.488337 0.0 0.42

GKD-d GKD_d_5_n500_coor.

txt

500 100 352597.651107 0.0 0.24

GKD-d GKD_d_6_n500_coor.

txt

500 100 362028.785981 0.0 0.61

GKD-d GKD_d_7_n500_coor.

txt

500 100 368290.092382 0.0 0.3

GKD-d GKD_d_8_n500_coor.

txt

500 100 359798.807175 0.0 0.99

GKD-d GKD_d_9_n500_coor.

txt

500 100 3614 4 4.899761 0.0 1.31

GKD-d GKD_d_10_n500_coor.

txt

500 100 363096.240153 0.0 0.35

GKD-d GKD_d_1_n500_coor.

txt

500 250 2003881.529806 0.0 0.18

GKD-d GKD_d_2_n500_coor.

txt

500 250 2046325.289184 0.0 0.09

GKD-d GKD_d_3_n500_coor.

txt

500 250 2013203.283427 0.0 0.15

GKD-d GKD_d_4_n500_coor.

txt

500 250 2013390.437355 0.0 0.2

GKD-d GKD_d_5_n500_coor.

txt

500 250 1995722.778598 0.0 0.08

GKD-d GKD_d_6_n500_coor.

txt

500 250 2016805.751319 0.0 0.12

GKD-d GKD_d_7_n500_coor.

txt

500 250 2060936.704385 0.0 0.08

GKD-d GKD_d_8_n500_coor.

txt

500 250 2004824.886174 0.0 0.3

GKD-d GKD_d_9_n500_coor.

txt

500 250 2031726.233231 0.0 0.32

GKD-d GKD_d_10_n500_coor.

txt

500 250 2036966.697518 0.0 0.35

GKD-d GKD_d_1_n10 0 0_coor.

txt

10 0 0 100 379396.664223 0.0 1.42

GKD-d GKD_d_2_n10 0 0_coor.

txt

10 0 0 100 372966.630874 0.0 1.56

GKD-d GKD_d_3_n10 0 0_coor.

txt

10 0 0 100 373355.875821 0.0 2.73

(continued on next column)
453
Set Instance n p Objective value Gap (%) Solve

time

(seconds)

GKD-d GKD_d_4_n10 0 0_coor.

txt

10 0 0 100 378060.355307 0.0 2.06

GKD-d GKD_d_5_n10 0 0_coor.

txt

10 0 0 100 371493.807089 0.0 5.33

GKD-d GKD_d_6_n10 0 0_coor.

txt

10 0 0 100 379212.777302 0.0 1.23

GKD-d GKD_d_7_n10 0 0_coor.

txt

10 0 0 100 375718.555535 0.0 2.12

GKD-d GKD_d_8_n10 0 0_coor.

txt

10 0 0 100 381667.774945 0.0 2.33

GKD-d GKD_d_9_n10 0 0_coor.

txt

10 0 0 100 376493.160043 0.0 1.79

GKD-d GKD_d_10_n10 0 0_coor.

txt

10 0 0 100 375135.506418 0.0 2.02

GKD-d GKD_d_1_n10 0 0_coor.

txt

10 0 0 200 1438611.847242 0.0 1.98

GKD-d GKD_d_2_n10 0 0_coor.

txt

10 0 0 200 1420412.950815 0.0 1.07

GKD-d GKD_d_3_n10 0 0_coor.

txt

10 0 0 200 1421214.934140 0.0 5.44

GKD-d GKD_d_4_n10 0 0_coor.

txt

10 0 0 200 1437118.696240 0.0 1.89

GKD-d GKD_d_5_n10 0 0_coor.

txt

10 0 0 200 1415046.354927 0.0 4.44

GKD-d GKD_d_6_n10 0 0_coor.

txt

10 0 0 200 1437228.201619 0.0 1.54

GKD-d GKD_d_7_n10 0 0_coor.

txt

10 0 0 200 1430955.645799 0.0 1.85

GKD-d GKD_d_8_n10 0 0_coor.

txt

10 0 0 200 1451304.222995 0.0 1.92

GKD-d GKD_d_9_n10 0 0_coor.

txt

10 0 0 200 1435965.052080 0.0 1.62

GKD-d GKD_d_10_n10 0 0_coor.

txt

10 0 0 200 1423298.383413 0.0 3.47

GKD-d GKD_d_1_n10 0 0_coor.

txt

10 0 0 500 8042767.196980 0.0 0.48

GKD-d GKD_d_2_n10 0 0_coor.

txt

10 0 0 500 7939991.703937 0.0 0.69

GKD-d GKD_d_3_n10 0 0_coor.

txt

10 0 0 500 7983853.480681 0.0 0.53

GKD-d GKD_d_4_n10 0 0_coor.

txt

10 0 0 500 8036332.278672 0.0 0.64

GKD-d GKD_d_5_n10 0 0_coor.

txt

10 0 0 500 7936191.375905 0.0 0.49

GKD-d GKD_d_6_n10 0 0_coor.

txt

10 0 0 500 8002225.363103 0.0 0.4

GKD-d GKD_d_7_n10 0 0_coor.

txt

10 0 0 500 7993013.768650 0.0 0.74

GKD-d GKD_d_8_n10 0 0_coor.

txt

10 0 0 500 8101496.623474 0.0 0.58

GKD-d GKD_d_9_n10 0 0_coor.

txt

10 0 0 500 8007673.872360 0.0 0.82

GKD-d GKD_d_10_n10 0 0_coor.

txt

10 0 0 500 7976595.297690 0.0 0.46

GKD-d GKD_d_1_n20 0 0_coor.

txt

20 0 0 200 1500742.236348 0.0 10.44

GKD-d GKD_d_2_n20 0 0_coor.

txt

20 0 0 200 1512175.815531 0.0 5.94

GKD-d GKD_d_3_n20 0 0_coor.

txt

20 0 0 200 1498803.361784 0.0 6.8

GKD-d GKD_d_4_n20 0 0_coor.

txt

20 0 0 200 1509820.670307 0.0 4.53

GKD-d GKD_d_5_n20 0 0_coor.

txt

20 0 0 200 1503100.556353 0.0 12.7

GKD-d GKD_d_6_n20 0 0_coor.

txt

20 0 0 200 1508381.015547 0.0 6.98

GKD-d GKD_d_7_n20 0 0_coor.

txt

20 0 0 200 1506677.211363 0.0 7.22

GKD-d GKD_d_8_n20 0 0_coor.

txt

20 0 0 200 1521157.939744 0.0 7.47

GKD-d GKD_d_9_n20 0 0_coor.

txt

20 0 0 200 1497554.074402 0.0 8.31

GKD-d GKD_d_10_n20 0 0_coor.

txt

20 0 0 200 1492059.155164 0.0 13.01

GKD-d GKD_d_1_n20 0 0_coor.

txt

20 0 0 400 5705960.536860 0.0 5.45

GKD-d GKD_d_2_n20 0 0_coor.

txt

20 0 0 400 5743090.860038 0.0 8.74

(continued on next page)

S. Spiers, H.T. Bui and R. Loxton European Journal of Operational Research 311 (2023) 4 4 4–454

R

B

B

B

C

D

D

E

E

F

G

G

G

G
H

H

K

K

L

L

M

M

M

P

P

P

R

R

S

S

S

Y

Z

Set Instance n p Objective value Gap (%) Solve

time

(seconds)

GKD-d GKD_d_3_n20 0 0_coor.

txt

20 0 0 400 5692144.007735 0.0 8.89

GKD-d GKD_d_4_n20 0 0_coor.

txt

20 0 0 400 5742603.152477 0.0 8.41

GKD-d GKD_d_5_n20 0 0_coor.

txt

20 0 0 400 5730547.159057 0.0 5.28

GKD-d GKD_d_6_n20 0 0_coor.

txt

20 0 0 400 5738995.070550 0.0 7.86

GKD-d GKD_d_7_n20 0 0_coor.

txt

20 0 0 400 5742235.066713 0.0 6.44

GKD-d GKD_d_8_n20 0 0_coor.

txt

20 0 0 400 5777956.898553 0.0 6.96

GKD-d GKD_d_9_n20 0 0_coor.

txt

20 0 0 400 5698890.335320 0.0 6.95

GKD-d GKD_d_10_n20 0 0_coor.

txt

20 0 0 400 5685547.519134 0.0 10.84

GKD-d GKD_d_1_n20 0 0_coor.

txt

20 0 0 10 0 0 31937349.129220 0.0 2.48

GKD-d GKD_d_2_n20 0 0_coor.

txt

20 0 0 10 0 0 31940376.184016 0.0 2.44

GKD-d GKD_d_3_n20 0 0_coor.

txt

20 0 0 10 0 0 31862045.862833 0.0 1.93

GKD-d GKD_d_4_n20 0 0_coor.

txt

20 0 0 10 0 0 32192249.230364 0.0 4.37

GKD-d GKD_d_5_n20 0 0_coor.

txt

20 0 0 10 0 0 32134403.082757 0.0 1.68

GKD-d GKD_d_6_n20 0 0_coor.

txt

20 0 0 10 0 0 32276048.370771 0.0 3.07

GKD-d GKD_d_7_n20 0 0_coor.

txt

20 0 0 10 0 0 32070339.848466 0.0 2.17

GKD-d GKD_d_8_n20 0 0_coor.

txt

20 0 0 10 0 0 32443307.901856 0.0 3.86

GKD-d GKD_d_9_n20 0 0_coor.

txt

20 0 0 10 0 0 31862204.959855 0.0 3.1

GKD-d GKD_d_10_n20 0 0_coor.

txt

20 0 0 10 0 0 31922071.525118 0.0 1.81

eferences

illionnet, A., & Elloumi, S. (2007). Using a mixed integer quadratic programming

solver for the unconstrained quadratic 0–1 problem. Mathematical Programming,
109 , 55–68. https://doi.org/10.1007/s10107- 005- 0637- 9 .

liek, C., Bonami, P., & Lodi, A. (2014). Solving mixed-integer quadratic programming

problems with IBM-CPLEX: A progress report. In Proceedings of the twenty-sixth
ramp symposium (pp. 16–17) .

onami, P., Lodi, A., & Zarpellon, G. (2022). A classifier to decide on the linearization
of mixed-integer quadratic problems in CPLEX. Operations Research . https://doi.

org/10.1287/opre.2022.2267 .
hurch, R. L., & Garfinkel, R. S. (1978). Locating an obnoxious facility on a network.

Transportation Science, 12 (2), 107–118. https://doi.org/10.1287/trsc.12.2.107 .
okmanic, I., Parhizkar, R., Ranieri, J., & Vetterli, M. (2015). Euclidean distance ma-

trices: Essential theory, algorithms, and applications. IEEE Signal Processing Mag-

azine, 32 , 12–30. https://doi.org/10.1109/MSP.2015.2398954 . Conference Name:
IEEE Signal Processing Magazine

uran, M. A., & Grossmann, I. E. (1986). An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical Programming, 36 (3),

307–339. https://doi.org/10.1007/BF02592064 .
remeev, A. V., Kel ́manov, A. V., Kovalyov, M. Y., & Pyatkin, A. V. (2019). Maximum

diversity problem with squared Euclidean distance. In M. Khachay, Y. Kochetov,

& P. Pardalos (Eds.), Mathematical optimization theory and operations research . In
Lecture notes in computer science (pp. 541–551). Cham: Springer International

Publishing. https://doi.org/10.1007/978- 3- 030- 22629- 9 _ 38 .
rkut, E. (1990). The discrete p -dispersion problem. European Journal of Operational

Research, 46 (1), 48–60. https://doi.org/10.1016/0377- 2217(90)90297- O .
errero-Guillén, R., Díez-González, J., Verde, P., Martínez-Gutiérrez, A., Alija-Pérez, J.-

M., & Álvarez, R. (2022). Optimal chair location through a maximum diver-

sity problem genetic algorithm optimization. In I. Rojas, O. Valenzuela, F. Ro-
jas, L. J. Herrera, & F. Ortuño (Eds.), Bioinformatics and biomedical engineering .

In Lecture notes in computer science (pp. 417–428). Cham: Springer International
Publishing. https://doi.org/10.1007/978- 3- 031- 07704- 3 _ 34 .
454
arraffa, M., Della Croce, F., & Salassa, F. (2017). An exact semidefinite programming
approach for the max-mean dispersion problem. Journal of Combinatorial Opti-

mization, 34 , 71–93. https://doi.org/10.1007/s10878- 016- 0065- 1 .
lover, F. (1975). Improved linear integer programming formulations of nonlinear

integer problems. Management Science, 22 (4), 455–460. https://doi.org/10.1287/
mnsc.22.4.455 .

lover, F., & Woolsey, E. (1974). Technical note-converting the 0–1 polynomial pro-
gramming problem to a 0–1 linear program. Operations Research, 22 (1), 180–182.

https://doi.org/10.1287/opre.22.1.180 .

ower, J. C. (1982). Euclidean distance geometry. Mathematical Sciences, 7 (1), 1–14 .
ammer, P. L., & Rubin, A . A . (1970). Some remarks on quadratic programming with

0–1 variables. Revue Française d’Informatique et de Recherche Opérationnelle. Série
Verte, 4 (V3), 67–79 .

ayden, T. L., Reams, R., & Wells, J. (1999). Methods for constructing distance ma-
trices and the inverse eigenvalue problem. Linear Algebra and Its Applications,

295 (1–3), 97–112 .

uby, M. J. (1987). Programming models for facility dispersion: The p -dispersion
and maxisum dispersion problems. Geographical Analysis, 19 , 315–329. https://

doi.org/10.1111/J.1538-4632.1987.TB00133.X .
uo, C.-C. C., Glover, F., & Dhir, K. S. (1993). Analyzing and modeling the maximum

diversity problem by zero-one programming ∗ . Decision Sciences, 24 , 1171–1185.
https://doi.org/10.1111/J.1540-5915.1993.TB00509.X .

eyffer, S. (1993). Deterministic methods for mixed integer nonlinear programming .

Citeseer Ph.D. thesis. .
ima, R. M., & Grossmann, I. E. (2017). On the solution of nonconvex cardinal-

ity Boolean quadratic programming problems: A computational study. Com-
putational Optimization and Applications, 66 (1), 1–37. https://doi.org/10.1007/

s10589- 016- 9856- 7 .
artí, R., Duarte, A., Martínez-Gavara, A., & Sánchez-Oro, J. (2021). The MDPLIB

2.0 library of benchmark instances for diversity problems. https://www.uv.es/

rmarti/paper/mdp.html .
artí, R., Gallego, M., & Duarte, A. (2010). A branch and bound algorithm for the

maximum diversity problem. European Journal of Operational Research, 200 , 36–
44. https://doi.org/10.1016/J.EJOR.2008.12.023 .

artí, R., Martínez-Gavara, A., Pérez-Peló, S., & Sánchez-Oro, J. (2022). A review on
discrete diversity and dispersion maximization from an OR perspective. Euro-

pean Journal of Operational Research, 299 , 795–813. https://doi.org/10.1016/j.ejor.

2021.07.044 .
arreño, F., Álvarez Valdés, R., & Martí, R. (2021). Measuring diversity. A review and

an empirical analysis. European Journal of Operational Research, 289 , 515–532.
https://doi.org/10.1016/J.EJOR.2020.07.053 .

isinger, D. (2006). Upper bounds and exact algorithms for p-dispersion problems.
Computers and Operations Research, 33 , 1380–1398. https://doi.org/10.1016/J.COR.

2004.09.033 .

orter, W., Rawal, K., Rachie, K., Wien, H., & Williams, R. (1975). Cowpea germplasm
catalog no 1. In International institute of tropical agriculture, Ibadan, Nigeria .

avi, S. S., Rosenkrantz, D. J., & Tayi, G. K. (1994). Heuristic and special case al-
gorithms for dispersion problems. Operations Research, 42 (2), 299–310. https:

//doi.org/10.1287/opre.42.2.299 .
oberge, M.-È., & van Dick, R. (2010). Recognizing the benefits of diversity: When

and how does diversity increase group performance? Human Resource Manage-
ment Review, 20 (4), 295–308. https://doi.org/10.1016/j.hrmr.20 09.09.0 02 .

ayyady, F., & Fathi, Y. (2016). An integer programming approach for solving the

p -dispersion problem. European Journal of Operational Research, 253 , 216–225.
https://doi.org/10.1016/j.ejor.2016.02.026 .

choenberg, I. J. (1935). Remarks to maurice fréchet’s article “sur la défini-
tion axiomatique d’une classe d’espaces distanciés vectoriellement applicable

sur l’espace de Hilbert”. Annals of Mathematics, 36 (3). https://doi.org/10.2307/
1968654 .

choenberg, I. J. (1937). On certain metric spaces arising from Euclidean spaces by

a change of metric and their imbedding in Hilbert space. Annals of Mathematics ,
787–793. https://doi.org/10.2307/1968835 .

uan, X., Zhang, S., Pibouleau, L., & Domenech, S. (1988). Une méthode
d’optimisation non linéaire en variables mixtes pour la conception de procédés.

RAIRO-Operations Research, 22 (4), 331–346 .
hou, Y., Hao, J.-K., & Duval, B. (2017). Opposition-based memetic search for the

maximum diversity problem. IEEE Transactions on Evolutionary Computation,

21 , 731–745. https://doi.org/10.1109/TEVC.2017.2674800 . Conference Name: IEEE
Transactions on Evolutionary Computation

https://doi.org/10.1007/s10107-005-0637-9
http://refhub.elsevier.com/S0377-2217(23)00379-X/sbref0002
https://doi.org/10.1287/opre.2022.2267
https://doi.org/10.1287/trsc.12.2.107
https://doi.org/10.1109/MSP.2015.2398954
https://doi.org/10.1007/BF02592064
https://doi.org/10.1007/978-3-030-22629-9_38
https://doi.org/10.1016/0377-2217(90)90297-O
https://doi.org/10.1007/978-3-031-07704-3_34
https://doi.org/10.1007/s10878-016-0065-1
https://doi.org/10.1287/mnsc.22.4.455
https://doi.org/10.1287/opre.22.1.180
http://refhub.elsevier.com/S0377-2217(23)00379-X/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00379-X/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00379-X/sbref0015
https://doi.org/10.1111/J.1538-4632.1987.TB00133.X
https://doi.org/10.1111/J.1540-5915.1993.TB00509.X
http://refhub.elsevier.com/S0377-2217(23)00379-X/sbref0018
https://doi.org/10.1007/s10589-016-9856-7
https://www.uv.es/rmarti/paper/mdp.html
https://doi.org/10.1016/J.EJOR.2008.12.023
https://doi.org/10.1016/j.ejor.2021.07.044
https://doi.org/10.1016/J.EJOR.2020.07.053
https://doi.org/10.1016/J.COR.2004.09.033
http://refhub.elsevier.com/S0377-2217(23)00379-X/sbref0024
https://doi.org/10.1287/opre.42.2.299
https://doi.org/10.1016/j.hrmr.2009.09.002
https://doi.org/10.1016/j.ejor.2016.02.026
https://doi.org/10.2307/1968654
https://doi.org/10.2307/1968835
http://refhub.elsevier.com/S0377-2217(23)00379-X/sbref0030
https://doi.org/10.1109/TEVC.2017.2674800

	An exact cutting plane method for the Euclidean max-sum diversity problem
	1 Introduction
	2 Cutting plane methodology
	3 Numerical results
	4 Conclusions and future work
	Acknowledgements
	Appendix A Worked example
	Appendix B Summary of results
	References

