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This paper aims to answer an open question recently posed in the literature, that is to find a fast exact 

method for solving the max-sum diversity problem, a nonconcave quadratic binary maximization prob- 

lem. We show that, for Euclidean max-sum diversity problems (EMSDP), the distance matrix defining the 

quadratic term is always conditionally negative definite. This interesting property ensures that the cutting 

plane method is exact for (EMSDP), even in the absence of concavity. As such, the cutting plane method, 

which is primarily designed for concave maximisation problems, converges to the optimal solution of 

(EMDSP). The method was evaluated on several standard benchmark test sets, where it was shown to 

outperform other exact solution methods for (EMSDP), and is capable of solving two-coordinate prob- 

lems of up to eighty-five thousand variables. 
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. Introduction 

The problem of maximizing diversity and dispersion arises in 

any practical settings. It involves selecting a subset of elements 

rom a larger set to maximize some distance metric. Since the con- 

eption of the maximum diversity problem by Kuby (1987) (some- 

imes referred to as the maximum dispersion problem), the in- 

erpretation of diversity has taken many practical and theoretical 

orms. The topic has now reached a level of maturity where a mul- 

itude of problem variations, solution algorithms, and practical ap- 

lications exist. Over the last thirty years, a significant quantity 

f research has focused on the max-sum diversity problem ( Kuby, 

987 ), which is to maximize the sum of distances between selected 

lements, and the max-min diversity problem ( Erkut, 1990 ), which 

s to maximize the minimum distance among selected points. For 

his paper, we focus our attention on the Euclidean max-sum di- 

ersity problem (EMSDP) . 

Given a set of n predefined locations v 1 , . . . , v n in a vector space

 

s ( s ≥ 1 ), the (EMSDP) aims to find a subset of p locations such

hat the sum of the distances between the p points is maximized. 

ere, we consider q i j to be the distance between locations i and 
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j defined by q i j = 

∥v i − v j ∥ where ‖ ·‖ is the standard Euclidean 

istance in R 

s . Let Q = [ q i j ] denote the full distance matrix where

 = 1 , . . . , n and j = 1 , . . . , n . The (EMSDP) is then given as 

ax f (x ) = 

1 
2 〈 Qx, x 〉 , (EMSDP) 

s.t. 

n ∑ 

i =1 

x i = p, (1) 

x i ∈ { 0 , 1 } , 1 ≤ i ≤ n. 

he (EMSDP) is known to be strongly NP-hard ( Eremeev et al., 

019; Kuo et al., 1993; Ravi et al., 1994 ). 

The practical applications of the maximum diversity problem 

re vast. One of the first examples presented in the literature 

s locating unwanted facilities on a network ( Church & Garfinkel, 

978 ). Since then, many other researchers have relaxed the notion 

f distance to more general settings. One example is in genetics, 

here breeders attempt to maximize the diversity of traits among 

 breeding stock ( Porter et al., 1975 ). Furthermore, social diversity 

uch as gender, cultural and ethnic diversity has become highly 

esirable in many communities, especially in a workplace setting 

 Roberge & van Dick, 2010 ). More recently, maximum diversity has 

een used to find the optimal locations of chairs for COVID-19 so- 

ial distancing ( Ferrero-Guillén et al., 2022 ). 

While research into heuristic and meta-heuristic approaches to 

he max-sum diversity problem has gathered significant interest 

see Martí et al. (2022) for a recent review), the development 
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f exact algorithms has fallen behind. One of the first exact ap- 

roaches was presented in Kuo et al. (1993) and used linear re- 

ormulation techniques to transform the problem into an integer 

inear form. This was done in two ways. The first used a lineariza- 

ion technique presented in Glover & Woolsey (1974) , whereby the 

uadratic x i x j terms are replaced by a new auxiliary variable y i j . 

he linear formulation of (EMSDP) is then given as 

ax 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

q i j y i j , (2) 

s.t. 

n ∑ 

i =1 

x i = p, 

y i j ≥ x i + x j − 1 , 1 ≤ i < j ≤ n, (3) 

y i j ≤ x i , 1 ≤ i < j ≤ n, (4) 

y i j ≤ x j , 1 ≤ i < j ≤ n, (5) 

y i j ≥ 0 , 1 ≤ i < j ≤ n, 

x i ∈ { 0 , 1 } , 1 ≤ i ≤ n, 

here constraints (3) –(5) enforce y i j = x i x j . A second reformula- 

ion that uses inequalities and real variables to handle quadratic 

erms, a technique first outlined in Glover (1975) , is given as 

ax 

n −1 ∑ 

i =1 

w i , 

s.t. 

n ∑ 

i =1 

x i = p, 

w i ≤ x i 

n ∑ 

j= i +1 

q i j , 1 ≤ i ≤ n − 1 , 

w i ≤
n ∑ 

j= i +1 

q i j x j , 1 ≤ i ≤ n − 1 , 

w i ≥ 0 , 1 ≤ i ≤ n − 1 , 

x i ∈ { 0 , 1 } , 1 ≤ i ≤ n. (6) 

his formulation was shown in Martí et al. (2010) to be far 

ore efficient than (2) . It was later used as the exact solver for

he comprehensive empirical analyses presented in Parreño et al. 

2021) and Martí et al. (2022) . 

The first significant advancement in exact methods for the 

EMSDP) came in Pisinger (2006) . This paper presented several up- 

er bounds based on Lagrangean relaxation, semidefinite program- 

ing and reformulation techniques. The upper bounds are compu- 

ationally cheap and can therefore be implemented in a branch and 

ound procedure. Numerical results show that for Euclidean dis- 

ance problems, the procedure is capable of solving problems with 

 = 80 with an average solve time of 60 seconds, but it struggles 

or sizes n ≥ 100 . Martí et al. (2010) presented a branch and bound 

lgorithm based on partial solutions, where a partial solution is a 

et of k elements where k < p. Upper bounds are then calculated 

ased on all other solutions that contain these k elements. The ob- 

ective function is split into three parts, and an upper bound for 

ach is calculated. These bounds are then integrated into a branch 

nd bound search tree. While the algorithm is faster than the lin- 

ar formulation (6) , the numerical results show that it struggles to 

olve instances of n = 150 in under an hour of computation time. 

This paper answers an open question posed in the recent re- 

iew paper Martí et al. (2022) . That is, while progress in exact 

ethods for variants of the maximum diversity problem have ad- 

anced significantly (such as Sayyady & Fathi, 2016 for the max- 

in problem and Garraffa et al., 2017 for the max-mean problem), 

 fast exact solver for the max-sum diversity problem remains elu- 

ive. The max-sum problem remains the most widely studied prob- 
445 
em variation, yet very few exact methods exist. One of the reasons 

or this might be that the problem is generally nonconcave, mean- 

ng the naive application of concave nonlinear programming tech- 

iques is not appropriate. However, when the distance measure- 

ents are taken as Euclidean, the problem exhibits certain special 

haracteristics that allow for nonlinear programming techniques, 

articularly cutting plane methods , to be applied, even in the pres- 

nce of nonconcavity. 

The cutting plane method (or outer approximation) ( Duran & 

rossmann, 1986; Leyffer, 1993; Yuan et al., 1988 ) is one of several 

eterministic methods that provide general frameworks to tackle 

oncave mixed integer problems. These methods require a concave 

bjective function to guarantee convergence to optimality. For non- 

oncave quadratic problems, the cutting plane algorithm requires 

n extra concave reformulation step before applying the cutting 

lanes procedure. In particular, using the property that x i = x 2 
i 

for 

 i ∈ { 0 , 1 } , the nonconcave objective f (x ) = 

1 
2 〈 Qx, x 〉 is replaced by

 concave function f ′ (x ) := 

1 
2 

(〈 (Q − λI n ) x, x 〉 + λ
∑ n 

i =1 x i 
)
, where λ

s the largest eigenvalue of Q ( Lima & Grossmann, 2017 ), and 

here I n is the identity matrix of dimension n . This method has 

een implemented in commercial solvers like CPLEX and Gurobi 
 Bliek et al., 2014; Lima & Grossmann, 2017 ). However, this ap- 

roach can be slow to converge, particularly when λ is large ( Bliek 

t al., 2014; Bonami et al., 2022 ). We show in Section 2 that the

utting plane algorithm can solve the nonconcave (EMSDP) di- 

ectly, without the need for a reformulation step, leading to much 

aster convergence. 

The performance of the cutting plane algorithm is evaluated us- 

ng two publicly available test sets from the MDPLIB 2.0 test li- 

rary ( Martí et al., 2021 ), several randomly generated instances as 

ell as a subset of problems from the TSPLIB test library. Nu- 

erical results show that the cutting plane algorithm is vastly su- 

erior to other exact solvers and is capable of solving large, two- 

oordinate problems of up to n = 85 , 900 . The algorithm’s perfor- 

ance deteriorates as the number of coordinates grows, however, 

ven in these difficult instances it remains superior to other exact 

olvers, and is able to solve large 20-coordinate problems of up to 

 = 20 0 0 . 

The paper is organized as follows. In Section 2 , we present an 

xact cutting plane approach for solving (EMSDP) . The convergence 

o optimality is established in Theorem 2 . We then provide in 

heorem 5 an estimation of how many non-optimal solutions each 

utting plane eliminates at each iteration. Finally, in Section 3 , we 

valuate the effectiveness of the proposed cutting plane algorithm 

hrough extensive numerical experiments. 

. Cutting plane methodology 

Denote the feasible set of (EMSDP) as 

 := 

{ 

x ∈ { 0 , 1 } n : 
n ∑ 

i =1 

x i = p 

} 

. 

et h : R 

n × R 

n → R be the tangent plane of f defined as follows, 

 (x, y ) := 〈 ∇ f (y ) , x − y 〉 + f (y ) , ∀ x, y ∈ R 

n . (7)

iven a set A ⊂ K, let �A ⊂ K × R be defined as 

A := 

{
(x, θ ) ∈ R 

n +1 : x ∈ K, θ ≤ h (x, y ) , ∀ y ∈ A 

}
. 

e consider the following auxiliary linear maximization problem 

max 
x,θ ) ∈ �A 

θ . (LP A ) 

his linearization problem is known as the cutting-plane model of 

EMSDP) , and can be written explicitly as 

ax θ
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s.t. θ ≤ h (x, y ) , ∀ y ∈ A, 

x ∈ K. (8) 

e now briefly review some key properties of Euclidean distance 

atrices. An n × n matrix D = [ d i j ] ( n ≥ 1 ) is called a squared Eu-

lidean distance matrix if there are n vectors v 1 , . . . , v n in a Eu-

lidean space R 

s ( s ≥ 1 ) such that d i j = 

∥∥v i − v j 
∥∥2 

for all i, j =
 , . . . , n , where ‖ ·‖ is the Euclidean norm (see Gower, 1982; Hay-

en et al., 1999; Schoenberg, 1937 ). Schoenberg (1935) proved that 

 symmetric nonnegative matrix D with zero diagonal is a squared 

uclidean distance matrix if and only if D is conditionally negative 

efinite , that is 〈 Dx, x 〉 ≤ 0 for any x ∈ R 

n with 

∑ n 
i =1 x i = 0 . Further-

ore, it is shown in Schoenberg (1937) that given any squared Eu- 

lidean distance matrix D , we can construct n points u 1 , . . . , u n in

 

s such that 

 i j = 

∥∥v i − v j 
∥∥2 = 

∥∥u i − u j 

∥∥, ∀ i, j = 1 , . . . , n. 

s such, the Euclidean distance matrix Q in the (EMSDP) is also 

 squared Euclidean distance matrix, and therefore it is condition- 

lly negative definite. We now show that when A = K, the linear 

roblem ( LP K ) is equivalent to the quadratic problem (EMSDP) . 

roposition 1. It holds that 

max 
x,θ ) ∈ �K 

θ = max 
x ∈ K 

f (x ) . 

urthermore, if (x ∗, θ ∗) is a solution of ( LP K ) , then x ∗ is a solution of

EMSDP) . 

roof. For any feasible solution (x, θ ) of ( LP K ) , we have x ∈ K and

≤ h (x, x ) = f (x ) ≤ max 
z∈ K 

f (z) . 

herefore, max (x,θ ) ∈ �K 
θ ≤ max x ∈ K f (x ) . Now, we prove the reverse 

nequality. Taking into account that Q is conditionally negative def- 

nite, and for any feasible solutions x, y ∈ K we have 
∑ n 

i =1 (x i −
 i ) = 0 , the following inequality holds 

 

Q(x − y ) , x − y 〉 ≤ 0 . 

he inequality above yields 

 (x, y ) − f (x ) = 〈 Qy, x − y 〉 + 

1 
2 〈 Qy, y 〉 − 1 

2 〈 Qx, x 〉 
= 〈 Qy, x − y 〉 + 

1 
2 〈 Q(y + x ) , y − x 〉 

= − 1 
2 〈 Q(x − y ) , x − y 〉 ≥ 0 . 

hus, 

 (x, y ) ≥ f (x ) , ∀ x, y ∈ K. 

aking minimum over all y ∈ K in the inequality above yields 

in y ∈ K h (x, y ) ≥ f (x ) for each x ∈ K. Thus, (x, ˜ θx ) , with 

˜ θx =
in y ∈ K h (x, y ) , is a feasible solution of ( LP K ) such that ˜ θx ≥ f (x ) ,

nd therefore 

max 
x,θ ) ∈ �K 

θ ≥ max 
x ∈ K 

˜ θx ≥ max 
x ∈ K 

f (x ) . 

ence, we have proved that max (x,θ ) ∈ �K 
θ = max x ∈ K f (x ) . Finally, 

et (x ∗, θ ∗) be a solution of ( LP K ) . Then, x ∗ is feasible for (EMSDP) ,

nd 

ax 
x ∈ K 

f (x ) = θ ∗ ≤ h (x ∗, x ∗) = f (x ∗) , 

roving the second assertion. �

Based on Proposition 1 , we propose a cutting plane approach to 

olve the quadratic problem (EMSDP) by solving the linear prob- 

em ( LP K ) . Since it is not practical to generate a cutting plane

≤ h (x, y ) for every y ∈ K, our cutting plane algorithm successively

enerates cuts of type (8) whenever a candidate solution is found. 

et A denote the set A at iteration k , and let LB denote the lower
k k 

446 
ound at iteration k . We say x ∈ K is a candidate solution if there

s (x, θ ) ∈ �A k 
such that θ > LB k . The Euclidean Diversity-Cut (EDC) 

lgorithm successively generates candidate solutions and adds the 

utting planes to the linear model ( LP A k ) to eliminate non-optimal 

olutions until no candidate solution remains in the search space. 

Algorithm 1: The Euclidean diversity-cut (EDC) algorithm. 

Take x 0 ∈ K 

Set A 0 ← { x 0 } , LB 0 ← f (x 0 ) , k ← 1 

while ∃ (x k , θ k ) ∈ �A k −1 
s.t. θ k > LB k −1 do 

LB k ← max { LB k −1 , f (x k ) } 
A k ← A k −1 ∪ { x k } 
k ← k + 1 

end 

The EDC Algorithm does not require solving the linear problem 

 LP A k ) to optimality whenever an additional cut is added. Rather, 

t looks for a feasible solution (x k , θ k ) ∈ �A k −1 
that improves upon 

he current lower bound, i.e., θ k > LB k −1 . This algorithm outlines 

he framework of a general branch and cut procedure, where cuts 

re added during the solve process. A branch and cut procedure 

ased on the EDC Algorithm can be implemented in standard MIP 

olvers using the callback functionality. Callbacks allow certain pro- 

esses or algorithms to be implemented alongside general branch 

nd bound or branch and cut procedures. In the case of the EDC 

lgorithm, we begin by solving ( LP A 0 ) with a single cut gener- 

ted by some feasible solution. Whenever an incumbent solution 

s found during the solve process, a callback is used to add the 

ssociated cutting plane. This allows the MIP solver to preserve 

he information from previous steps and therefore generates only 

ne search tree, improving the computational performance of the 

lgorithm. A detailed demonstration of the EDC Algorithm imple- 

ented using branch and cut is shown in Appendix A . 

We now prove that the EDC Algorithm converges to an optimal 

olution of the (EMSDP) . 

heorem 2. The sequence { x k } ⊂ K generated by the EDC Algorithm 

onverges to an optimal solution of (EMSDP) after a finite number of 

teps. 

roof. Consider the sequence { x k } generated by the EDC Algo- 

ithm. We first show that the EDC Algorithm converges after a fi- 

ite number of steps. Suppose x k 1 = x k 2 for some 0 ≤ k 1 < k 2 . Let

x k 2 , θ k 2 ) ∈ �A k 2 −1 
. Then θ k 2 > LB k 2 −1 and, 

k 2 ≤ h (x k 2 , x k 1 ) = f (x k 1 ) ≤ LB k 2 −1 

hich is a contradiction. This shows that the EDC Algorithm will 

ot revisit a previous point. Since the set K is finite, we must have 

nite convergence. 

We now prove that the algorithm terminates at an optimal so- 

ution. Suppose the algorithm terminates at step k , then for every 

 ̃ x , ˜ θ ) ∈ �A k −1 
, it holds that 

˜ ≤ LB k −1 ≤ max 
x ∈ K 

f (x ) = max 
(x,θ ) ∈ �K 

θ, 

here the last equality follows from Proposition 1 . Taking the 

aximum over all ( ̃  x , ˜ θ ) ∈ �A k −1 
in the first inequality, we obtain 

max 
x,θ ) ∈ �A k −1 

θ ≤ LB k −1 ≤ max 
(x,θ ) ∈ �K 

θ . (9) 

ote that because A k −1 ⊂ K, we have �K ⊂ �A k −1 
, and hence 

max 
x,θ ) ∈ �A k −1 

θ ≥ max 
(x,θ ) ∈ �K 

θ . 
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rom (9) , the inequality above and the definition of LB k −1 , the fol- 

owing equations hold 

max 
x,θ ) ∈ �A k −1 

θ = max 
(x,θ ) ∈ �K 

θ = max 
x ∈ K 

f (x ) = LB k −1 = f (x l ) , 

or some l ∈ { 0 , 1 , . . . , k − 1 } , and hence x l is optimal for

EMSDP) . �

We now study the efficiency of the cutting planes by answering 

he question, after iteration k , how many non-optimal solutions are 

liminated by the cut θ ≤ h (x, x k ) ? We first establish the following

lementary results. 

roposition 3. Let x k ∈ K ( k ≥ 0 ) be the iterate generated by the EDC

lgorithm during iteration k . If ∇ f (x k ) = 0 , then x k is an optimal so-

ution of (EMSDP) and the algorithm terminates. 

roof. If ∇ f (x k ) = 0 , then the cutting plane h (x, x k ) ≥ θ becomes

f (x k ) ≥ θ . (10) 

ence, f (x k ) ≥ max (x,θ ) ∈ �A k +1 
θ ≥ max (x,θ ) ∈ �K 

θ = max x ∈ K f (x ) , and 

he candidate x k is an optimal solution of (EMSDP) . The constraint 

10) implies that there will be no candidate solution found in iter- 

tion k + 1 , and hence the EDC Algorithm must terminate. �

emma 4. Let x k be the iterate generated by the EDC Algorithm dur- 

ng iteration k . Then, for any subsequent iteration l > k , it holds that

LB l−1 − f (x k ) ∥∥∇ f (x k ) 
∥∥ < 

∥∥x l − x k 
∥∥. (11) 

roof. Let k < l be iterations of the EDC Algorithm, and let 

x l , θ l ) ∈ �A l−1 
. Then 

f (x k ) ≤ LB l−1 < θ l ≤ f (x k ) + 

〈∇ f (x k ) , x l − x k 
〉

nd hence we have that 

B l−1 − f (x k ) < 

〈∇ f (x k ) , x l − x k 
〉
≤

∥∥x l − x k 
∥∥ ·

∥∥∇ f (x k ) 
∥∥. 

s k < l, the algorithm did not terminate at k and hence from

roposition 3 , 
∥∥∇ f (x k ) 

∥∥ � = 0 . Therefore we have that 

LB l−1 − f (x k ) ∥∥∇ f (x k ) 
∥∥ < 

∥∥x l − x k 
∥∥

hus proving the assertion. �

heorem 5. Let k and l be iterations of the EDC Algorithm such that 

 < l. Suppose at iteration l there exists a non-negative integer N l 

uch that 
 

2 N l ≤ LB l−1 − f (x k ) 

‖ 

∇ f (x k ) ‖ 

. (12) 

hen at step l onwards, the cutting plane θ ≤ h (x, x k ) removes at least 

N l 
 

 =0 

(
p 

q 

)(
n − p 

q 

)

inary points from the feasible set K, where 
(

a 
b 

)
= 

b!(a −b)! 
a ! for all 

, b ∈ N , and a ≥ b. 

roof. Let k and l be iterations of the EDC Algorithm such that 

 < l, and suppose (12) holds for some non-negative integer N l . It

ollows from Lemma 4 that at iteration l, the cutting plane θ ≤
 (x, x k ) removes all points x ∈ K such that 

x − x k 
∥∥ ≤

√ 

2 N l . (13) 

onsider two sets of indices 

 1 := { i : x k = 1 } , I 2 := { i : x k = 0 } . 
i i 

447 
ince x k ∈ K, we have | I 1 | = p and | I 2 | = n − p. For any x ∈ K, we

onsider 

 1 (x ) := { i : x i = 1 } , I 2 (x ) := { i : x i = 0 } . 
hen for any point x ∈ K, we have that 

x − x k 
∥∥2 = | I 1 ∩ I 2 (x ) | + | I 2 ∩ I 1 (x ) | 

.e., the squared distance between x and x k is the sum of the in-

ices that are in x k but not in x , and the indices that are not in x k 

ut are in x . Furthermore, we can see that 

 

I 1 ∩ I 2 (x ) | = 

n ∑ 

i =1 

x k i (1 − x i ) 

= 

n ∑ 

i =1 

(
x k i − x k i x i + x i − x i 

)

= 

n ∑ 

i =1 

(
x k i + x i (1 − x k i ) − x i 

)

= 

n ∑ 

i =1 

x i (1 − x k i ) + p − p 

= | I 2 ∩ I 1 (x ) | 
nd hence 

x − x k 
∥∥ = 

√ 

2 | I 1 ∩ I 2 (x ) | . 
ow, for any q ∈ { 0 , 1 , . . . , N l } , consider all the solutions x ∈ K such

hat 

 = | I 1 ∩ I 2 (x ) | . (14) 

ltogether there are 
(

p 
q 

)(
n −p 

q 

)
feasible solutions x ∈ K that satisfy 

14) . Therefore in total, there are precisely 
∑ N l 

q =0 

(
p 
q 

)(
n −p 

q 

)
feasible 

oints in K that satisfy (13) . This proves the assertion. �

Theorem 5 provides insight on the strength of individual cuts 

ithin the cutting plane algorithm as iterations progress. It shows 

hat cuts are stronger when N l is chosen larger. We now explore 

he general strength of cuts of type (8) by comparing them to the 

tandard concave reformulation technique commonly used to solve 

inary quadratic problems such as (EMSDP) . Let f (x ) be defined as 

n (EMSDP) , then given a regulator ρ ∈ R let 

f ρ (x ) = 

1 
2 

( 

〈 (Q − ρI n ) x, x 〉 + ρ
n ∑ 

i =1 

x i 

) 

efine a ρ-perturbation of f , where I n is the identity matrix of 

imension n . Given x is binary we have that x i = x 2 
i 

and hence

f (x ) = f ρ (x ) for all x ∈ { 0 , 1 } n and ρ ∈ R . Therefore solving the

erturbed problem given by 

ax 
x ∈ K 

f ρ (x ) 

s equivalent to solving the original problem. Provided ρ is chosen 

uch that the perturbed quadratic term is negative semi-definite, 

.e., Q − ρI n � 0 , the objective function f ρ (x ) becomes concave, 

hereby guaranteeing the global convergence of a cutting plane or 

uter approximation algorithm. This is a common technique found 

n many binary quadratic solvers ( Billionnet & Elloumi, 2007; Lima 

 Grossmann, 2017 ). However, the perturbation term should be 

sed with caution, as shown by the following result. 

roposition 6. Similar to (7) , let h ρ (x, y ) denote the tangent plane

f f ρ (x ) at y ∈ K. If ρ1 ≤ ρ2 , then 

 ρ1 
(x, y ) ≤ h ρ2 

(x, y ) 

or all x ∈ K. 
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roof. Let e = (1 , . . . , 1) ∈ R 

n , then 

 ρ1 
(x, y ) = f ρ1 

(y ) + 

〈
Qy − ρ1 y + 

1 
2 
ρ1 e, x − y 

〉
, 

= f ρ1 
(y ) + 〈 Qy, x − y 〉 + 

1 
2 
ρ1 〈 e − 2 y, x − y 〉 . 

ow, as x 2 
i 

= x i and y 2 
i 

= y i we have that 

 

e − 2 y, x − y 〉 = 

n ∑ 

i =1 

(
x i − y i − 2 x i y i + 2 y 2 i 

)
= 

n ∑ 

i =1 

(
x 2 i + y 2 i − 2 x i y i 

)

= 

n ∑ 

i =1 

( x i − y i ) 
2 ≥ 0 . 

herefore, 

 ρ1 
(x, y ) = f ρ1 

(y ) + 〈 Qy, x − y 〉 + 

1 
2 
ρ1 〈 e − 2 y, x − y 〉 

≤ f ρ1 
(y ) + 〈 Qy, x − y 〉 + 

1 
2 
ρ2 〈 e − 2 y, x − y 〉 

= f ρ2 
(y ) + 〈 Qy, x − y 〉 + 

1 
2 
ρ2 〈 e − 2 y, x − y 〉 = h ρ2 

(x, y ) , 

s required. �

Let λmax denote the largest eigenvalue of Q . It is proved in 

ammer & Rubin (1970) that when ρ ≥ λmax , Q − ρI n is negative 

emidefinite and hence f ρ (x ) is concave. As such, an outer approx- 

mation algorithm is guaranteed to converge thanks to concavity in 

f ρ (x ) . However, unlike outer approximation, our cutting plane al- 

orithm does not require any perturbation or reformulation of the 

riginal problem. In other words, the EDC Algorithm converges to 

he global solution even for the case where ρ = 0 . Moreover, from 

roposition 6 , we can see that cuts become weaker (remove fewer 

onoptimal solutions) as ρ increases. Hence, the EDC Algorithm is 

xpected to perform better than an outer approximation algorithm 

pplied to the perturbed problem. 

. Numerical results 

We now explore the performance of the EDC Algorithm on a 

ange of test instances. The algorithm was implemented in CPLEX 
ersion 22.1 using the callback functionality. As explained in the 

revious section, callbacks allow for cuts to be added to the 

odel during the general solve procedure, thus generating only 

ne branch and cut search tree. The program was compiled using 

++ and run on a machine with a 2.3 GHz AMD EPYC processor 

ith 32 GB of RAM, using a single thread. 

The performance of the EDC Algorithm was evaluated on three 

ublicly available and four randomly generated test libraries. The 

ublicly available test library MDPLIB 2.0 1 ( Martí et al., 2021 ) 

as commonly been used as a benchmark for the maximum diver- 

ity problem and contains many test sets. Within this test library, 

e use the test sets GKD-c and GKD-d . Test set GKD-c contains 

0 Euclidean distance matrices of 500 locations. Each location is 

efined by 20 coordinates in the range of 0 to 100. Test set GDK-d 
ontains 70 Euclidean distance matrices between randomly gener- 

ted points with two coordinates in the range 0 to 100. There are 

en matrices for each value n = 25 , 50 , 100 , 250 , 500 , 1000 , 2000 .

ne of the major differences between these test sets is the num- 

er of coordinates of original locations. To explore further the ef- 

ect the number of coordinates has on the algorithm, we randomly 

enerate an additional four test sets similar to GKD-d , where each 

est set uses a different number of coordinates. Finally, in order to 

est the limits of the EDC Algorithm, we use a subset of the very 

arge problems available within the TSPLIB test library. 2 

The algorithm was compared against three exact solution meth- 

ds. The first method solves the Glover reformulation (6) us- 

ng CPLEX . This linear reformulation was shown in Martí et al. 
1 Available at https://www.uv.es/rmarti/paper/mdp.html . 
2 Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ . 
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2022) to be competitive among other exact solvers. Additionally, 

s CPLEX can handle binary quadratic programs, we also solve the 

roblem in its original form using quadratic CPLEX . The final exact 

pproach is to apply outer approximation to the perturbed objec- 

ive function, f ρ (x ) , where ρ = λmax . Such a perturbation makes 

he function concave and hence guarantees the global convergence 

f outer approximation. Note that when using outer approxima- 

ion, calculating λmax is done as a preprocessing step and is not 

onsidered to count towards the solver’s runtime. Finally, we com- 

ared the performance of the algorithm against the heuristic algo- 

ithm OBMA ( Zhou et al., 2017 ), which was shown in Martí et al.

2022) to be one of the most effective on Euclidean instances. 

Table 1 summarises the performance of all solvers on test sets 

KD-c and GKD-d . The table is broken down by time limit, test 

et, and 

p 
n ratio. Then, the average final optimality gap at the end 

f the time limit is reported for each exact solver. For all solvers, 

ncluding the heuristic OBMA , the number of times the final solu- 

ion matched the best-known solution is also reported. 3 Note that 

his is not necessarily the number of times the algorithm was able 

o confirm optimality but rather gives an indication of the solvers’ 

bility to locate good solutions quickly. 

On test set GKD-d , the EDC Algorithm was vastly superior to 

ther exact solvers across all time limits. For the 10-seconds time 

imit, the algorithm was able to confirm optimality in almost all 

ases and locate more optimal solutions than the heuristic OBMA . 
ncreasing the time limit to 100 seconds, the algorithm could easily 

olve all test instances of set GKD-d to optimality (including the 

arge instances of n = 20 0 0 ), representing a significant improve- 

ent when compared to the other exact algorithms. While still su- 

erior to the other exact solution methods, the algorithm’s perfor- 

ance appears slightly worse on test set GKD-c . It is able to locate 

lmost all optimal solutions within the 600-seconds time limit, 

owever the algorithm struggles to close the optimality gap com- 

letely. That said, the performance is still a noticeable improve- 

ent compared to the other exact solvers. 

Figure 1 shows the performance of the EDC Algorithm on test 

et GKD-d . The figure shows the average solve time and the aver- 

ge number of cuts required to solve to optimality for each value 

f n and p in the test set. Interestingly, the average solve time for 

arge instances of n = 20 0 0 remains less than 10 seconds. Further- 

ore, increasing the size of the problem from n = 250 to n = 20 0 0

emands a similar number of cuts to prove optimality. This is tes- 

ament to the strength of the cuts themselves and their ability to 

emove a vast number of nonoptimal solutions easily, as shown in 

heorem 5 . Finally, we note that substantially fewer cuts are re- 

uired for p = � 0 . 5 n � compared with p = � 0 . 1 n � and p = � 0 . 2 n � . 
It is worth noting that the performance of the EDC Algorithm 

eems to contradict a previously held notion about the difficulty of 

iversity problems. Martí et al. (2022) state that as p approaches 

/ 2 , a problem instance becomes harder due to the larger number 

f feasible solutions. While this may be true for many existing ex- 

ct and heuristic solvers, this result was not observed for the EDC 

lgorithm. The results in Table 1 and Fig. 1 show that when p is 

hosen as the larger value, fewer cuts are required on average, and 

herefore the problem is solved faster. This contradicts the state- 

ent in Martí et al. (2022) and shows that the run time does not 

ncrease for the EDC Algorithm as p approaches n/ 2 . 

Table 2 details the performance of the EDC Algorithm on test 

et GKD-c after an hour of solve time. For each value of p 
n , there

re 20 test instances, and we report the number of tests where 

he EDC Algorithm managed to prove optimality within the time 

imit, as well as the average solve time, optimality gap and num- 

er of cuts added. When p = � 0 . 5 n � , the algorithm can still solve 
3 The best-known values for large instances ( n ≥ 500 ) are listed in Appendix B . 

https://www.uv.es/rmarti/paper/mdp.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 1 

For every combination of time limit, test set and p 
n 

ratio, we report the average final gap as a percentage for all exact solvers. For all solvers (including the heuristic OBMA ), 
we also report the number of times the final solution matched the best-known solution. 

Average gap (%) Number best 

Time limit 

(seconds) Set Tests p 
n 

EDC 

Algorithm 

Glover 

CPLEX 
Quadratic 

CPLEX 
Outer 

approx 

EDC 

algorithm 

Glover 

CPLEX 
Quadratic 

CPLEX 
Outer 

approx OBMA 
10 GKD-d 70 0.1 0.0 0 01 104.5611 3193.7143 1222.6446 69 20 28 10 60 

10 GKD-d 70 0.2 0.0 0 0 0 70.9375 851.8493 621.9356 70 13 25 1 68 

10 GKD-d 70 0.5 0.0 0 0 0 29.6054 128.7590 153.1647 70 20 29 1 70 

10 GKD-c 20 0.1 0.1439 126.9552 921.7808 1610.4214 5 0 0 0 20 

10 GKD-c 20 0.2 0.0178 123.7596 406.2149 731.2725 12 0 0 0 20 

10 GKD-c 20 0.5 0.0 0 02 67.1518 100.4986 178.9432 20 0 0 0 20 

100 GKD-d 70 0.1 0.0 0 0 0 97.6257 3156.0311 1139.4223 70 29 30 10 70 

100 GKD-d 70 0.2 0.0 0 0 0 73.0 0 0 0 841.8472 580.3135 70 26 28 3 70 

100 GKD-d 70 0.5 0.0 0 0 0 29.9724 125.2907 145.2900 70 32 30 1 70 

100 GKD-c 20 0.1 0.0995 116.9812 921.7808 1597.5409 9 0 0 0 20 

100 GKD-c 20 0.2 0.0067 104.1303 406.2149 721.2425 18 0 0 0 20 

100 GKD-c 20 0.5 0.0 0 01 57.8678 100.4986 175.8901 20 0 0 0 20 

600 GKD-d 70 0.1 0.0 0 0 0 91.1853 3120.6212 1103.8050 70 40 30 10 70 

600 GKD-d 70 0.2 0.0 0 0 0 75.9072 833.0172 54 8.4 910 70 37 29 10 70 

600 GKD-d 70 0.5 0.0 0 0 0 32.0015 121.4612 141.8368 70 40 30 1 70 

600 GKD-c 20 0.1 0.0668 109.6791 904.1314 1588.1770 15 0 0 0 20 

600 GKD-c 20 0.2 0.0022 93.2871 402.3066 715.2041 20 0 0 0 20 

600 GKD-c 20 0.5 0.0 0 0 0 51.5980 99.2862 175.7679 20 0 0 0 20 

Fig. 1. Performance of the EDC Algorithm on test set GKD-d . For each value n and 

p, there are 10 problems to solve. We report the average solve time and the average 

number of cuts added for each pair n and p. 

Table 2 

Performance of the EDC Algorithm on test set GKD-c . For each 

value p 
n 

, there are 20 problems to solve. The number of tests 

solved to optimality, average solve time (sec), gap (%) and cuts 

added after an hour time limit is reported. 

p 
n 

Number 

optimal 

Average solve 

time (seconds) 

Average 

gap (%) 

Average 

cuts added 

0.1 8 2738.1935 0.0382 6704.65 

0.2 19 643.5760 0.0001 2632.50 

0.5 20 28.0190 0.0000 381.30 
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roblem instances to optimality well within the time limit. How- 

ver, when p = � 0 . 1 n � , the algorithm could only solve eight tests 

ithin an hour. While the final optimality gap is small, the num- 

er of cuts required significantly increases compared to the results 

een in Fig. 1 . The number of cuts required to solve an instance in

KD-c can be more than 100 times that of a similar-sized prob- 

em in GKD-d , the key difference between these tests being the 

umber of coordinates of each location. This suggests that the cut 

trength decreases as the number of original coordinates increases. 

To explore this relationship further, four new tests sets are 

ntroduced. Each test set contains 5 Euclidean distance matri- 

es for each value n = 25 , 50 , 100 , 250 , 500 , 1000 , 2000 , totalling

5 distance matrices in each test set. The key difference be- 

ween the test sets is the number of coordinates of original lo- 

ations. The four test sets are denoted as GKD-d5 (with s = 5 ),

KD-d10 (with s = 10 ), GKD-d15 (with s = 15 ), GKD-d20 (with

 = 20 ). Each coordinate is then uniformly randomly generated in 

he range 0 to 100. As before, every instance is then run with p =
 

0 . 1 n � , � 0 . 2 n � , � 0 . 5 n � , making three tests for each distance matrix. 

Figure 2 outlines the performance profiles for the four exact 

olution methods on the four new test sets GKD-d5 , GKD-d10 , 
KD-d15 and GKD-d20 . The results show that as the number 

f coordinates increases from 5 to 20, the performance of the 

DC Algorithm deteriorates substantially. This is in contrast to the 

ther three exact solvers, whose performance remains fairly sta- 

le as the number of coordinates increases. Although the algo- 

ithm is not able to solve large coordinate instances as effectively, 

t still remains superior to the other exact solution methods. For 

KD-d5 , the EDC Algorithm can solve almost all tests to optimality 

ithin the 600-seconds time limit (including some of the large in- 

tances with n = 20 0 0 ). However, once the number of coordinates 

ncreases to 20, the performance is almost halved. This appears to 

upport the observation made on test sets GKD-c and GKD-d that 

he strength of the cuts decreases as the number of coordinates 

ncreases. 

Table 3 outlines the performance of the EDC Algorithm on test 

ets GKD-d5 , GKD-d10 , GKD-d15 and GKD-d20 in more de- 

ail. For the large ratio problems where p = � 0 . 5 n � , the algorithm 

an still easily solve all problem instances well within the time 

imit. However, across all ratios, the number of cuts required to 

rove optimality is significantly higher than the results seen on set 
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Fig. 2. Performance profile on test sets GKD-d5 , GKD-d10 , GKD-d15 and GKD-d20 . For each test set, there are a total of 105 test instances. The number solved to 

optimality is shown for each of the exact solvers used. 

Table 3 

Performance of the EDC Algorithm on test sets GKD-d5 , GKD-d10 , GKD-d15 and 

GKD-d20 over an hour time limit. For each pair of test set and ratio p 
n 

, 35 tests are solved. 

The number solved to optimality, average solve time, optimality gap and number of cuts 

are reported. 

Set p 
n 

Number 

optimal 

Average solve 

time (seconds) 

Average 

gap (%) 

Average number 

cuts added 

GKD-d5 0.1 32 322.0020 0.0006 990.0857 

GKD-d5 0.2 35 29.7180 0.0000 418.4000 

GKD-d5 0.5 35 1.1731 0.0000 46.1429 

GKD-d10 0.1 23 1469.1109 0.0263 4005.7429 

GKD-d10 0.2 32 554.1971 0.0005 2302.8286 

GKD-d10 0.5 35 5.2383 0.0000 149.8286 

GKD-d15 0.1 12 2395.1338 0.0909 6416.5938 

GKD-d15 0.2 21 1824.7223 0.0276 5652.9143 

GKD-d15 0.5 35 29.1460 0.0000 463.9143 

GKD-d20 0.1 9 2604.2534 0.1462 7237.7586 

GKD-d20 0.2 13 2325.6716 0.0391 6901.9355 

GKD-d20 0.5 35 144.6117 0.0000 1310.8286 
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KD-d . As such, the EDC Algorithm’s performance on high coordi- 

ate instances with low 

p 
n ratio is considerably worse and is often 

nable to prove optimality within an hour time limit. 

We now test the limits of the EDC Algorithm on a subset of 

est instances available within the TSPLIB test library. The library 

ontains several location problems of very large dimensions (up 

o n = 85 , 900 ) and contains original coordinate locations. To solve 

uch large instances, the computational implementation is modi- 

ed slightly such that the pairwise distances between locations are 

nly calculated when required. As such, the full pairwise distance 

atrix is no longer loaded into memory, only the original coordi- 

ates. In doing so, we avoid the memory burden that arises from 

aving large distance matrices. However, this strategy means that 

enerating cuts requires calculating all pairwise distances associ- 
450 
ted with a given solution, creating extra steps to generate cuts. 

his is not expected to create significant issues, as we have already 

hown that for two-dimensional problems, the number of cuts re- 

uired to prove optimality is very small. 

Within the TSPLIB test library, 17 Euclidean two-coordinate 

est instances with n ≥ 20 0 0 are used. As before, every test in-

tance is then run with p = � 0 . 1 n � , � 0 . 2 n � , � 0 . 5 n � , comprising 

hree tests for each set of locations. Each problem is then solved to 

roven optimality using the EDC Algorithm. In Table 4 , we report 

he solve time in seconds and the number of cuts added across 

he three values of p 
n . The results in Table 4 are consistent with 

revious tests. The number of cuts required to solve the problem 

o optimality remains small, indicating that the cuts are tight, and 

ence large problems are easily solved within a reasonable time 
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Table 4 

Performance of the EDC Algorithm on a subset of tests within the TSPLIB test library. For each set 

of locations, the problem is run with p = � 0 . 1 n � , � 0 . 2 n � , and � 0 . 5 n � , and we report the solve time 

in seconds and the number of cuts required to solve the problem to optimality. 

p = � 0 . 1 n � p = � 0 . 2 n � p = � 0 . 5 n � 

Instance n 

Solve time 

(seconds) Cuts 

Solve time 

(seconds) Cuts 

Solve time 

(seconds) Cuts 

d2103.tsp 2103 8.43 98 7.49 62 6.54 22 

u2152.tsp 2152 9.02 86 6.93 55 10.52 34 

u2319.tsp 2319 6.58 74 6.30 43 12.19 34 

pr2392.tsp 2392 7.43 76 8.20 53 10.59 28 

pcb3038.tsp 3038 12.89 78 27.61 109 27.44 45 

fl3795.tsp 3795 21.04 90 36.67 69 38.83 41 

fnl4461.tsp 4461 48.09 143 35.09 64 66.42 48 

rl5915.tsp 5915 65.14 117 116.67 121 116.75 49 

rl5934.tsp 5934 54.27 93 51.94 54 81.12 34 

pla7397.tsp 7397 121.92 118 166.82 106 198.15 54 

rl11849.tsp 11,849 208.72 87 363.62 89 389.30 37 

usa13509.tsp 13,509 675.39 197 324.01 64 339.21 26 

brd14051.tsp 14,051 507.15 148 676.59 116 506.14 36 

d15112.tsp 15,112 676.25 171 776.97 116 842.26 49 

d18512.tsp 18,512 799.56 129 775.45 73 1379.92 56 

pla33810.tsp 33,810 2053.07 113 3320.10 110 3519.85 47 

pla85900.tsp 85,900 18291.56 151 16374.19 74 19986.27 38 
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rame. Even for the very large problems of n = 85 , 900 , the number

f cuts required to solve for p = � 0 . 1 n � is only 151. This is a very

mall number considering the size of the problem. The strength in 

uts allows this very large problem to be solved to optimality in 

ve hours. 

. Conclusions and future work 

This paper presented a cutting plane algorithm for the max- 

um diversity problem. While the problem is inherently noncon- 

ave, the cuts are shown to be appropriate, and the algorithm con- 

erges to the optimal solution. As the cuts can be applied directly 

o the original problem, the algorithm can avoid the reformulation 

teps needed in some integer quadratic solvers such as CPLEX . 
The EDC Algorithm’s performance was evaluated on several test 

ibraries, where it was found to be vastly superior to other ex- 

ct solution methods. The algorithm is especially effective for low- 

oordinate problems where the cuts are tight, allowing the algo- 

ithm to solve large instances quickly. As the number of coordi- 

ates grows, the cuts become less effective, and the algorithm’s 

erformance deteriorates. The reason for this is unclear, however, 

e suspect it is closely related to the rank of the matrix. It is 

nown that the rank of a Euclidean distance matrix of points in 

 

s is at most s + 2 (see Dokmanic et al., 2015 ). Therefore, as the

umber of original coordinates increases, so does the rank of the 

atrix. We can think of this as increasing the complexity of the 

istance matrix and, therefore, the complexity of the maximum di- 

ersity problem. Future research should explore this relationship 

urther and examine why the cuts are weaker for a larger number 

f coordinates and if there are ways to combat this challenge. 

The cuts are appropriate because they do not remove feasible 

olutions and are upper planes of the objective in the domain of 

easible solutions. However, the cuts are no longer valid if either 

he integrality condition or constraint (1) is relaxed. As such, this 

aximisation problem can be considered to be concave when the 

omain is restricted to purely discrete feasible solutions. This proof 

f concavity is different to much of the previous research into cut- 

ing plane algorithms for mixed-integer nonlinear programming, 

here concavity is usually assured by showing concavity when the 

ntegrality condition, constraint set, or both, are relaxed. Future re- 

earch should (1) redefine concavity notions on the discrete do- 

ains and (2) uncover other well-known integer nonlinear max- 
451 
misation problems where the problem is concave on the domain 

f feasible solutions, but nonconcave when the domain is relaxed. 
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ppendix A. Worked example 

We now demonstrate in detail the steps of the EDC Algorithm 

hrough a worked example. Suppose we are asked to solve 

ax f (x ) = 

1 

2 

〈 Qx, x 〉 , (A.1) 

.t. 

n ∑ 

i =1 

x i = p, (A.2) 

 i ∈ { 0 , 1 } , i = 1 , . . . , n, (A.3)

here Q is a symmetric hollow (zero diagonal) matrix. The first 

tep is to confirm that Q is a Euclidean distance matrix. Given 

he original locations, this could easily be confirmed by finding 

he pairwise Euclidean distances between locations and confirm- 

ng they agree with the corresponding component of Q . Without 

he original locations, one can use the Schoenberg Criterion to de- 

ermine whether Q is a Euclidean distance matrix. We begin by 

onstructing the (n − 1) × (n − 1) matrix G = [ g i j ] i, j=2 , ... ,n where 

 i j = 

1 
2 

(
q 1 i + q 1 j − q i j 

)
. 

t is then shown in Schoenberg (1935) that a symmetric hollow 

 × n matrix Q is a Euclidean distance matrix if and only if the 

atrix G is positive semidefinite. Then, provided Q is a Euclidean 

istance matrix, the EDC Algorithm will converge to a globally op- 

imal solution. 

The algorithm begins by finding a feasible solution to (A.1) . This 

an be done using some heuristic procedure or by choosing an ar- 

itrary set of p locations. Let the starting solution be denoted by 
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0 , then LB 0 = f (x 0 ) . We are then required to find some feasible

olution to the subproblem 

ax θ0 

s.t. θ0 ≤ f (x 0 ) + 

〈∇ f (x 0 ) , x − x 0 
〉

θ0 > LB 

0 

(A. 2) , (A. 3) . (A.4) 

ote that while the problem is to maximise θ0 , we may termi- 

ate whenever an integer feasible solution is found. While the op- 

imal solution of the subproblem is not required, the maximisation 

ighlights quality search directions. Suppose a feasible solution to 

A.4) was given by x 1 . Then LB 1 = max { LB 0 , f (x 1 ) } . Then the next

ubproblem is to solve 

ax θ1 (A.5) 

.t. θ1 ≤ f (x 0 ) + 

〈∇ f (x 0 ) , x − x 0 
〉

θ1 ≤ f (x 1 ) + 

〈∇ f (x 1 ) , x − x 1 
〉

θ1 > LB 

1 

(A. 2) , (A. 3) . (A.6) 

his process is repeated until no feasible solution exists. At which 

oint, by Theorem 2 , we will have converged to the optimal solu- 

ion. 

ppendix B. Summary of results 

We now report the results of the EDC Algorithm on large test 

nstances ( n ≥ 500 ) in GKD-c and GKD-d . For each instance, a

ime limit of one hour is set, and the final objective value, gap as 

 percentage and solve time in seconds is reported. 

Set Instance n p Objective value Gap (%) Solve 

time 

(seconds) 

GKD-c GKD-c_1_n500_m50. 

txt 

500 50 19483.736005 0.10799 3600.01 

GKD-c GKD-c_2_n500_m50. 

txt 

500 50 19701.534791 0.0 1380.11 

GKD-c GKD-c_3_n500_m50. 

txt 

500 50 19547.206837 0.07894 3600.03 

GKD-c GKD-c_4_n500_m50. 

txt 

500 50 19596.468381 0.0 967.77 

GKD-c GKD-c_5_n500_m50. 

txt 

500 50 19602.622005 0.0 2052.38 

GKD-c GKD-c_6_n500_m50. 

txt 

500 50 19421.539095 0.04772 3600.01 

GKD-c GKD-c_7_n500_m50. 

txt 

500 50 19534.303582 0.07854 3600.02 

GKD-c GKD-c_8_n500_m50. 

txt 

500 50 19486.671883 0.09651 3600.01 

GKD-c GKD-c_9_n500_m50. 

txt 

500 50 19221.628796 0.0 3152.37 

GKD-c GKD-c_10_n500_m50. 

txt 

500 50 19703.339933 0.03193 3600.01 

GKD-c GKD-c_11_n500_m50. 

txt 

500 50 19587.120163 0.06183 3600.04 

GKD-c GKD-c_12_n500_m50. 

txt 

500 50 19360.223938 0.0 832.0 

GKD-c GKD-c_13_n500_m50. 

txt 

500 50 19366.698508 0.01825 3600.01 

GKD-c GKD-c_14_n500_m50. 

txt 

500 50 19458.564660 0.01806 3600.01 

( continued on next column ) 
452 
Set Instance n p Objective value Gap (%) Solve 

time 

(seconds) 

GKD-c GKD-c_15_n500_m50. 

txt 

500 50 19422.146399 0.06996 3600.03 

GKD-c GKD-c_16_n500_m50. 

txt 

500 50 19678.190189 0.08247 3600.01 

GKD-c GKD-c_17_n500_m50. 

txt 

500 50 19331.388407 0.0 2037.43 

GKD-c GKD-c_18_n500_m50. 

txt 

500 50 19461.394615 0.0 1134.67 

GKD-c GKD-c_19_n500_m50. 

txt 

500 50 19474.800409 0.0711 3600.01 

GKD-c GKD-c_20_n500_m50. 

txt 

500 50 19604.843569 0.0 6.94 

GKD-c GKD-c_1_n500_m50. 

txt 

500 100 75809.909454 0.0 310.82 

GKD-c GKD-c_2_n500_m50. 

txt 

500 100 76435.555515 0.0 171.99 

GKD-c GKD-c_3_n500_m50. 

txt 

500 100 75838.544292 0.0 814.39 

GKD-c GKD-c_4_n500_m50. 

txt 

500 100 75716.598228 0.0 2180.7 

GKD-c GKD-c_5_n500_m50. 

txt 

500 100 75974.214099 0.0 126.84 

GKD-c GKD-c_6_n500_m50. 

txt 

500 100 75701.792895 0.0 13.58 

GKD-c GKD-c_7_n500_m50. 

txt 

500 100 75976.436247 0.00229 3600.01 

GKD-c GKD-c_8_n500_m50. 

txt 

500 100 76019.127767 0.0 57.55 

GKD-c GKD-c_9_n500_m50. 

txt 

500 100 75086.877566 0.0 100.94 

GKD-c GKD-c_10_n500_m50. 

txt 

500 100 76248.246543 0.0 6.4 

GKD-c GKD-c_11_n500_m50. 

txt 

500 100 76011.670781 0.0 11.07 

GKD-c GKD-c_12_n500_m50. 

txt 

500 100 75016.432733 0.0 397.74 

GKD-c GKD-c_13_n500_m50. 

txt 

500 100 75124.215072 0.0 2998.98 

GKD-c GKD-c_14_n500_m50. 

txt 

500 100 75617.353164 0.0 10.87 

GKD-c GKD-c_15_n500_m50. 

txt 

500 100 75294.90 0 081 0.0 14.3 

GKD-c GKD-c_16_n500_m50. 

txt 

500 100 76448.106158 0.0 48.55 

GKD-c GKD-c_17_n500_m50. 

txt 

500 100 75250.955832 0.0 1057.48 

GKD-c GKD-c_18_n500_m50. 

txt 

500 100 75553.610354 0.0 13.69 

GKD-c GKD-c_19_n500_m50. 

txt 

500 100 75546.717875 0.0 75.56 

GKD-c GKD-c_20_n500_m50. 

txt 

500 100 75735.371694 0.0 860.06 

GKD-c GKD-c_1_n500_m50. 

txt 

500 250 443719.723950 0.0 0.83 

GKD-c GKD-c_2_n500_m50. 

txt 

500 250 447225.685882 0.0 0.56 

GKD-c GKD-c_3_n500_m50. 

txt 

500 250 443045.271559 0.0 1.54 

GKD-c GKD-c_4_n500_m50. 

txt 

500 250 442681.290872 0.0 1.03 

GKD-c GKD-c_5_n500_m50. 

txt 

500 250 445473.734823 0.0 8.61 

GKD-c GKD-c_6_n500_m50. 

txt 

500 250 442339.168595 0.0 2.51 

GKD-c GKD-c_7_n500_m50. 

txt 

500 250 445073.835956 0.0 8.2 

GKD-c GKD-c_8_n500_m50. 

txt 

500 250 446734.873298 0.0 0.36 

GKD-c GKD-c_9_n500_m50. 

txt 

500 250 439877.960575 0.0 0.78 

GKD-c GKD-c_10_n500_m50. 

txt 

500 250 4 4 4247.120213 0.0 0.68 

GKD-c GKD-c_11_n500_m50. 

txt 

500 250 443853.915174 0.0 516.78 

GKD-c GKD-c_12_n500_m50. 

txt 

500 250 440215.996121 0.0 0.91 

GKD-c GKD-c_13_n500_m50. 

txt 

500 250 440976.117254 0.0 2.95 

GKD-c GKD-c_14_n500_m50. 

txt 

500 250 442437.866858 0.0 0.7 

( continued on next page ) 
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time 

(seconds) 

GKD-c GKD-c_15_n500_m50. 

txt 

500 250 440651.808120 0.0 0.93 

GKD-c GKD-c_16_n500_m50. 

txt 

500 250 448315.951367 0.0 0.2 

GKD-c GKD-c_17_n500_m50. 

txt 

500 250 440843.055227 0.0 3.26 

GKD-c GKD-c_18_n500_m50. 

txt 

500 250 441399.555997 0.0 7.14 

GKD-c GKD-c_19_n500_m50. 

txt 

500 250 441966.308420 0.0 1.78 

GKD-c GKD-c_20_n500_m50. 

txt 

500 250 440996.317489 0.0 0.63 

GKD-d GKD_d_1_n500_coor. 

txt 

500 50 93273.991901 0.0 0.48 

GKD-d GKD_d_2_n500_coor. 

txt 

500 50 95855.136509 0.0 0.69 

GKD-d GKD_d_3_n500_coor. 

txt 

500 50 94219.878866 0.0 0.5 

GKD-d GKD_d_4_n500_coor. 

txt 

500 50 95180.977517 0.0 0.7 

GKD-d GKD_d_5_n500_coor. 

txt 

500 50 91962.114047 0.0 0.54 

GKD-d GKD_d_6_n500_coor. 

txt 

500 50 95149.924437 0.0 0.53 

GKD-d GKD_d_7_n500_coor. 

txt 

500 50 96618.050271 0.0 0.18 

GKD-d GKD_d_8_n500_coor. 

txt 

500 50 94917.487984 0.0 0.64 

GKD-d GKD_d_9_n500_coor. 

txt 

500 50 95234.618740 0.0 0.36 

GKD-d GKD_d_10_n500_coor. 

txt 

500 50 95195.426995 0.0 0.99 

GKD-d GKD_d_1_n500_coor. 

txt 

500 100 356991.795777 0.0 0.26 

GKD-d GKD_d_2_n500_coor. 

txt 

500 100 365625.471836 0.0 1.51 

GKD-d GKD_d_3_n500_coor. 

txt 

500 100 359815.333541 0.0 0.3 

GKD-d GKD_d_4_n500_coor. 

txt 

500 100 361327.488337 0.0 0.42 

GKD-d GKD_d_5_n500_coor. 

txt 

500 100 352597.651107 0.0 0.24 

GKD-d GKD_d_6_n500_coor. 

txt 

500 100 362028.785981 0.0 0.61 

GKD-d GKD_d_7_n500_coor. 

txt 

500 100 368290.092382 0.0 0.3 

GKD-d GKD_d_8_n500_coor. 

txt 

500 100 359798.807175 0.0 0.99 

GKD-d GKD_d_9_n500_coor. 

txt 

500 100 3614 4 4.899761 0.0 1.31 

GKD-d GKD_d_10_n500_coor. 

txt 

500 100 363096.240153 0.0 0.35 

GKD-d GKD_d_1_n500_coor. 

txt 

500 250 2003881.529806 0.0 0.18 

GKD-d GKD_d_2_n500_coor. 

txt 

500 250 2046325.289184 0.0 0.09 

GKD-d GKD_d_3_n500_coor. 

txt 

500 250 2013203.283427 0.0 0.15 

GKD-d GKD_d_4_n500_coor. 

txt 

500 250 2013390.437355 0.0 0.2 

GKD-d GKD_d_5_n500_coor. 

txt 

500 250 1995722.778598 0.0 0.08 

GKD-d GKD_d_6_n500_coor. 

txt 

500 250 2016805.751319 0.0 0.12 

GKD-d GKD_d_7_n500_coor. 

txt 

500 250 2060936.704385 0.0 0.08 

GKD-d GKD_d_8_n500_coor. 

txt 

500 250 2004824.886174 0.0 0.3 

GKD-d GKD_d_9_n500_coor. 

txt 

500 250 2031726.233231 0.0 0.32 

GKD-d GKD_d_10_n500_coor. 

txt 

500 250 2036966.697518 0.0 0.35 

GKD-d GKD_d_1_n10 0 0_coor. 

txt 

10 0 0 100 379396.664223 0.0 1.42 

GKD-d GKD_d_2_n10 0 0_coor. 

txt 

10 0 0 100 372966.630874 0.0 1.56 

GKD-d GKD_d_3_n10 0 0_coor. 

txt 

10 0 0 100 373355.875821 0.0 2.73 

( continued on next column ) 
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Set Instance n p Objective value Gap (%) Solve 

time 

(seconds) 

GKD-d GKD_d_4_n10 0 0_coor. 

txt 

10 0 0 100 378060.355307 0.0 2.06 

GKD-d GKD_d_5_n10 0 0_coor. 

txt 

10 0 0 100 371493.807089 0.0 5.33 

GKD-d GKD_d_6_n10 0 0_coor. 

txt 

10 0 0 100 379212.777302 0.0 1.23 

GKD-d GKD_d_7_n10 0 0_coor. 

txt 

10 0 0 100 375718.555535 0.0 2.12 

GKD-d GKD_d_8_n10 0 0_coor. 

txt 

10 0 0 100 381667.774945 0.0 2.33 

GKD-d GKD_d_9_n10 0 0_coor. 

txt 

10 0 0 100 376493.160043 0.0 1.79 

GKD-d GKD_d_10_n10 0 0_coor. 

txt 

10 0 0 100 375135.506418 0.0 2.02 

GKD-d GKD_d_1_n10 0 0_coor. 

txt 

10 0 0 200 1438611.847242 0.0 1.98 

GKD-d GKD_d_2_n10 0 0_coor. 

txt 

10 0 0 200 1420412.950815 0.0 1.07 

GKD-d GKD_d_3_n10 0 0_coor. 

txt 

10 0 0 200 1421214.934140 0.0 5.44 

GKD-d GKD_d_4_n10 0 0_coor. 

txt 

10 0 0 200 1437118.696240 0.0 1.89 

GKD-d GKD_d_5_n10 0 0_coor. 

txt 

10 0 0 200 1415046.354927 0.0 4.44 

GKD-d GKD_d_6_n10 0 0_coor. 

txt 

10 0 0 200 1437228.201619 0.0 1.54 

GKD-d GKD_d_7_n10 0 0_coor. 

txt 

10 0 0 200 1430955.645799 0.0 1.85 

GKD-d GKD_d_8_n10 0 0_coor. 

txt 

10 0 0 200 1451304.222995 0.0 1.92 

GKD-d GKD_d_9_n10 0 0_coor. 

txt 

10 0 0 200 1435965.052080 0.0 1.62 

GKD-d GKD_d_10_n10 0 0_coor. 

txt 

10 0 0 200 1423298.383413 0.0 3.47 

GKD-d GKD_d_1_n10 0 0_coor. 

txt 

10 0 0 500 8042767.196980 0.0 0.48 

GKD-d GKD_d_2_n10 0 0_coor. 

txt 

10 0 0 500 7939991.703937 0.0 0.69 

GKD-d GKD_d_3_n10 0 0_coor. 

txt 

10 0 0 500 7983853.480681 0.0 0.53 

GKD-d GKD_d_4_n10 0 0_coor. 

txt 

10 0 0 500 8036332.278672 0.0 0.64 

GKD-d GKD_d_5_n10 0 0_coor. 

txt 

10 0 0 500 7936191.375905 0.0 0.49 

GKD-d GKD_d_6_n10 0 0_coor. 

txt 

10 0 0 500 8002225.363103 0.0 0.4 

GKD-d GKD_d_7_n10 0 0_coor. 

txt 

10 0 0 500 7993013.768650 0.0 0.74 

GKD-d GKD_d_8_n10 0 0_coor. 

txt 

10 0 0 500 8101496.623474 0.0 0.58 

GKD-d GKD_d_9_n10 0 0_coor. 

txt 

10 0 0 500 8007673.872360 0.0 0.82 

GKD-d GKD_d_10_n10 0 0_coor. 

txt 

10 0 0 500 7976595.297690 0.0 0.46 

GKD-d GKD_d_1_n20 0 0_coor. 

txt 

20 0 0 200 1500742.236348 0.0 10.44 

GKD-d GKD_d_2_n20 0 0_coor. 

txt 

20 0 0 200 1512175.815531 0.0 5.94 

GKD-d GKD_d_3_n20 0 0_coor. 

txt 

20 0 0 200 1498803.361784 0.0 6.8 

GKD-d GKD_d_4_n20 0 0_coor. 

txt 

20 0 0 200 1509820.670307 0.0 4.53 

GKD-d GKD_d_5_n20 0 0_coor. 

txt 

20 0 0 200 1503100.556353 0.0 12.7 

GKD-d GKD_d_6_n20 0 0_coor. 

txt 

20 0 0 200 1508381.015547 0.0 6.98 

GKD-d GKD_d_7_n20 0 0_coor. 

txt 

20 0 0 200 1506677.211363 0.0 7.22 

GKD-d GKD_d_8_n20 0 0_coor. 

txt 

20 0 0 200 1521157.939744 0.0 7.47 

GKD-d GKD_d_9_n20 0 0_coor. 

txt 

20 0 0 200 1497554.074402 0.0 8.31 

GKD-d GKD_d_10_n20 0 0_coor. 

txt 

20 0 0 200 1492059.155164 0.0 13.01 

GKD-d GKD_d_1_n20 0 0_coor. 

txt 

20 0 0 400 5705960.536860 0.0 5.45 

GKD-d GKD_d_2_n20 0 0_coor. 

txt 

20 0 0 400 5743090.860038 0.0 8.74 

( continued on next page ) 
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Set Instance n p Objective value Gap (%) Solve 

time 

(seconds) 

GKD-d GKD_d_3_n20 0 0_coor. 

txt 

20 0 0 400 5692144.007735 0.0 8.89 

GKD-d GKD_d_4_n20 0 0_coor. 

txt 

20 0 0 400 5742603.152477 0.0 8.41 

GKD-d GKD_d_5_n20 0 0_coor. 

txt 

20 0 0 400 5730547.159057 0.0 5.28 

GKD-d GKD_d_6_n20 0 0_coor. 

txt 

20 0 0 400 5738995.070550 0.0 7.86 

GKD-d GKD_d_7_n20 0 0_coor. 

txt 

20 0 0 400 5742235.066713 0.0 6.44 

GKD-d GKD_d_8_n20 0 0_coor. 

txt 

20 0 0 400 5777956.898553 0.0 6.96 

GKD-d GKD_d_9_n20 0 0_coor. 

txt 

20 0 0 400 5698890.335320 0.0 6.95 

GKD-d GKD_d_10_n20 0 0_coor. 

txt 

20 0 0 400 5685547.519134 0.0 10.84 

GKD-d GKD_d_1_n20 0 0_coor. 

txt 

20 0 0 10 0 0 31937349.129220 0.0 2.48 

GKD-d GKD_d_2_n20 0 0_coor. 

txt 

20 0 0 10 0 0 31940376.184016 0.0 2.44 

GKD-d GKD_d_3_n20 0 0_coor. 

txt 

20 0 0 10 0 0 31862045.862833 0.0 1.93 

GKD-d GKD_d_4_n20 0 0_coor. 

txt 

20 0 0 10 0 0 32192249.230364 0.0 4.37 

GKD-d GKD_d_5_n20 0 0_coor. 

txt 

20 0 0 10 0 0 32134403.082757 0.0 1.68 

GKD-d GKD_d_6_n20 0 0_coor. 

txt 

20 0 0 10 0 0 32276048.370771 0.0 3.07 

GKD-d GKD_d_7_n20 0 0_coor. 

txt 

20 0 0 10 0 0 32070339.848466 0.0 2.17 

GKD-d GKD_d_8_n20 0 0_coor. 

txt 

20 0 0 10 0 0 32443307.901856 0.0 3.86 

GKD-d GKD_d_9_n20 0 0_coor. 

txt 

20 0 0 10 0 0 31862204.959855 0.0 3.1 

GKD-d GKD_d_10_n20 0 0_coor. 

txt 

20 0 0 10 0 0 31922071.525118 0.0 1.81 
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