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A B S T R A C T   

Vehicles equipped with various types of sensors have the great potentials to effectively evaluate the health 
conditions of a population of bridges at a low cost. However, existing drive-by structural health monitoring 
(SHM) methods acquire vehicle vibration responses offline and export them to a computer for postprocessing. 
Furthermore, the vehicle trajectory information on the bridge is important for scaling up the drive-by SHM for in 
situ applications, which is not synchronously measured by existing systems. Therefore, a single-board computer- 
based IoT sensing system for continuous and real-time drive-by bridge health monitoring is developed in this 
study. The developed IoT sensing system integrates a triaxial microelectromechanical system (MEMS) acceler-
ometer, temperature sensor, GPS and 4G module on Raspberry Pi 4 Model B. The sensor node can be mounted on 
a moving vehicle to collect the triaxial acceleration responses, temperature and GPS information. A graphical 
user interface (GUI) is developed based on the Python Tkinter package to remotely control the sensor node and 
visualise the collected data in real time. The fast Fourier transform of the measured acceleration responses is 
performed on the sensor node inboard processor. The raw data are sent to both the cloud server and remote 
terminal computer through a 4G module. The goal is to provide a low-cost, accurate and scalable sensing system 
for easy implementation of drive-by bridge health monitoring. The system architecture and workflow of the 
developed IoT sensing system are presented in detail. A series of experimental tests are conducted to validate the 
accuracy of the measured acceleration responses and feasibility of using the developed IoT sensing system for 
drive-by SHM applications.   

1. Introduction 

Transportation systems play an essential role in both social and 
economic activities. As a crucial transportation system component, in-
vestment in the construction and maintenance of bridge structures is 
massive. Bridges will experience construction, normal service, repair, 
and unavoidable demolition during their entire life cycle. It has been 
demonstrated that the timely condition assessment and maintenance of 
existing bridges significantly extends their life expectancy and decreases 
the overall life-cycle cost [1,2]. In the United States, more than 7.5% of 
bridges are deemed structurally deficient, and approximately 42% of the 
nation’s bridges have been in service for more than 50 years [3]. It has 
been reported [4] that the EU funded BRIME project in 2001 identified 
that highway bridges in three different European countries (France, 
Germany and the UK) present deficiencies at a rate of 39%, 30% and 
37%, respectively, with the main cause being the corrosion of 

reinforcement. A recent study found that between 2000 and 2020, there 
were 115 major bridge collapses worldwide, with the majority occurring 
while the bridges were in service [5]. Therefore, it is important to 
evaluate the health conditions of existing bridges in a timely manner and 
provide rational maintenance strategies to decision makers. 

Progressive structural damage usually alters the mechanical and 
dynamic characteristics of bridges. In the literature, vibration-based 
structural health monitoring (SHM) methods have been well devel-
oped and widely utilised in long-term bridge condition assessment 
[6–8]. The vibration-based SHM system refers to deploying a fixed 
sensor network on the critical components of the bridge and extracting 
damage-sensitive features (DSF) from the raw monitoring data. A pri-
mary advantage of vibration-based SHM is that invisible structural in-
ternal damage can be effectively identified at an early stage. However, it 
is still challenging to scale up vibration-based SHM systems to a large 
number of bridges, partly because: (i) human and economic resources 
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are extensively required to deploy fixed sensors for a population of 
bridges; and (ii) the life span of the installed sensor network and data 
acquisition system exposed to the operational condition is significantly 
shorter than that of the bridge. Thus, regular system maintenance is 
required to ensure normal functionality of SHM applications. Cost- 
effective and scalable SHM systems are required to monitor more 
bridges with a limited budget [9]. On the other hand, drive-by SHM 
refers to indirectly scanning the bridge vibration responses with sensors 
mounted on the passing vehicle, which has the potential to monitor a 
population of bridges in the transportation network. For example, all the 
bridges on the bus routes can be scanned multiple times per day by 
installing sensor nodes on the bus axles. The monitoring range and 
frequency can be significantly increased when mobile crowdsensing 
data are available from all public buses at the city level. The installation 
and maintenance costs of drive-by SHM are limited when compared with 
the traditional SHM system with fixed sensors. 

Drive-by SHM methods were first established by Yang et al. [10] and 
have attracted research attention over the past two decades. Several 
studies have analytically, numerically and experimentally investigated 
the feasibility of extracting the bridge’s natural frequencies and mode 
shapes from drive-by measurements [11,12]. For example, the vehi-
cle–bridge contact point response and its derivative [13–15], and the 
cross-power spectrum of two vehicle responses [16], have been 
demonstrated to be effective in extracting the natural frequencies of 
bridges from the drive-by measurement. Frequency domain decompo-
sition (FDD) and its derivative [17,18], stochastic subspace identifica-
tion (SSI) [19] and sparse matrix completion [20,21] have been 
successfully utilised in identifying bridge mode shapes in laboratory 
environments. More recently, drive-by methods have been integrated 
with the crowdsensing framework to identify the bridge natural fre-
quency and mode shape of a real bridge subjected to normal traffic flow 
[22–24]. One of the fundamental assumptions of drive-by methods for 
bridge modal identification and damage detection is that the vibration 
frequency of the bridge and the vehicle subsystem is different. 
Furthermore, as shown in Fig. 1, the IoT sensing system is developed for 
the mobile crowdsensing framework for the drive-by bridge SHM. In 
practical applications, many vehicle suspension systems with different 

frequencies can participate in the crowdsensing data collection. The 
data collected from vehicles with similar frequency of target bridge 
could be discarded during the initial data cleaning stage. Wired or 
wireless accelerometers and data acquisition systems are commonly 
used to acquire the vibration responses of vehicles during the drive-by 
test while passing the bridge [25]. The measured data are exported to 
the terminal computer for further offline analysis. Furthermore, other 
useful vehicle running state parameters, namely, vehicle position and 
vehicle speed, are measured by a separate system and manually 
synchronised with the acceleration responses. These limitations prevent 
the scale-up of drive-by methods on a population of bridges in practical 
situations. The above-mentioned limitation can be overcome by inte-
grating several sensors on an Internet of Things (IoT) platform. 
Compared with the data acquisition systems used in existing drive-by 
tests, IoT sensor node provide comparable functionality with consider-
ably lower cost, compact size and easier implementation. 

Due to their affordability and high level of accuracy, an increasing 
number of IoT sensor nodes are being developed and installed on civil 
engineering structures to collect vibration responses and environmental 
conditions [26–28]. The existing IoT sensor nodes usually only in-
tegrates one sensor, that is, an accelerometer or piezoelectric (PZT) 
sensor on the microcomputer, and then wirelessly transmits the data to 
servers. For example, an IoT sensing system was developed [26] to 
measure the acceleration responses for construction-induced vibration 
monitoring and impact assessment. A low-cost adaptable reliable 
accelerometer was developed in an existing study [29]. The prototype 
was utilized to perform both operational and analytical modal analysis 
of a bridge. The results were then compared to those obtained from a 
commercially available wireless accelerometer. Komarizadehasl et al. 
[30] developed a novel low-cost inclinometer, which combines five 
gyroscopes and five accelerometers to measure the inclination. An IoT 
platform with PZT sensors was designed [31] to locate the damage in an 
aluminium plate. A smart IoT accelerometer for detecting and 
responding to earthquakes was presented [32]. However, no IoT sensing 
system has been specially developed for drive-by SHM applications. 

According to the application scenario, the existing IoT sensor node 
designed for the SHM system with fixed sensors may not be suitable for 

Fig. 1. Mobile Crowdsensing framework for drive-by bridge health monitoring.  
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drive-by SHM. First, a high resolution and a high sampling rate are 
necessary to characterise the relatively weak bridge vibrations from the 
dominant vehicle responses. For digital-output accelerometers, accuracy 
is related to the number of bits deployed to store the acceleration sam-
ples. Therefore, to achieve a high resolution and a high sampling rate, 
the microcomputer and integrated sensors should support a high sam-
pling data rate serial communication protocol. In addition, the on-board 
IoT sensing system moves with the vehicle during the drive-by test. 
Stable and long-range wireless communication is required for real-time 
transmission of the signal from the moving vehicle to the base station 
and then to the cloud server. Overall, the IoT sensing system for drive-by 
SHM should satisfy high resolution, high data rate and long transmission 
range requirements. 

Table 1 compares the transmission range, speed, power consumption 
and cost of different wireless technologies commonly used in IoT ap-
plications. Short-distance transmission techniques such as Wi-Fi, Blue-
tooth and ZigBee, which have been widely applied to wireless sensor 
networks, do not satisfy the transmission protocol requirements of drive- 
by tests. The LoRa (from “long range”) modulation technique is suitable 
for long range and low power consumption data transmission. However, 
the transmission speed of LoRa is between 0.3 kbit/s and 30 kbit/s, 
which is not enough for high resolution and high sampling rate accel-
eration acquisition. Considering the widely distributed 4G base stations, 
the 4G signal covers almost all city traffic networks with sufficient 
transmission speed. Therefore the 4G LTE technique is the optimal so-
lution among the five alternatives. Furthermore, time self- 
synchronization and GPS coordinate recording functions should be 
supported by the developed IoT sensing system to aggregate the spa-
tial–temporal labelled data and submit it to the database. 

The main objective of this study is to develop an IoT sensing system 
that integrates vibration responses, temperature and GPS coordinate 
data acquisition, data processing algorithms and wireless data trans-
mission. The developed IoT sensing system can be mounted on a bus or 
private vehicle to gather data for drive-by SHM. The remainder of this 
paper is organised as follows. In Section 3, hardware integration and 
software development of the IoT sensing system are detailed. Experi-
mental tests and validations of the sensor performance and system 
function are comprehensively conducted and discussed in Section 4. 
Conclusions and future research directions are presented in Section 5. 

2. Design of IoT sensing system 

Drive-by SHM has the potential to be integrated with mobile 
crowdsensing technique for monitoring the health of a large number of 
transportation infrastructure, i.e., bridges [37]. A mobile crowdsensing 
framework for a drive-by bridge SHM is presented in Fig. 1. The 
crowdsensing collections of acceleration, GPS trajectory and environ-
mental temperature are transmitted to the base station and cloud storage 
via 4G/5G data transmission. With massive amounts of data available 
from a collection of vehicles, it is possible to conduct structural system 

identification, finite element model (FEM) updating, and damage 
detection. Within this framework, this study will focus on developing a 
low-cost, high-accurate and programmable real-time sensing system for 
drive-by SHM. 

In contrast to the traditional SHM system using sensors fixed on the 
critical components or locations of bridges, the drive-by SHM method 
indirectly measures the bridge vibration characteristics from responses 
of a moving vehicle. The vehicle suspension system can be viewed as a 
low-pass filter that mitigates the bridge vibration responses measured by 
the vehicle on-board sensors. Accordingly, the vehicle system vibration 
dominates the drive-by measurement. Furthermore, the quality of the 
measured vehicle vibration responses is adversely affected by road 
roughness and measurement noise. Therefore, the accuracy of mea-
surements on the vehicle is critical for successfully extracting the signal 
components corresponding to the bridge system. Furthermore, the 
vehicle location on the bridge deck and overall transportation network 
are important for extracting bridge local-scale mechanical properties 
and archiving the measurement corresponding to a specific bridge to the 
city-level database. Therefore, GPS signals should be recorded simulta-
neously. Considering that the environmental temperature affects the 
bridge vibration characteristics and may even submerge the change 
induced by structural performance degradation, the environmental 
temperature conditions should be recorded. The functional re-
quirements that need to be guaranteed by the IoT sensing system for 
drive-by SHM are summarised in Table 2. 

To meet the requirements listed in Table 2, an IoT sensing system 
integrating a microcomputer, a microelectromechanical system (MEMS) 
accelerometer, temperature sensor, GPS receiver and wireless trans-
mission module is developed. The recently released Raspberry Pi oper-
ation system (OS) includes the ‘Timedatectl’ tool by default, which 
enables the time synchronisation of the IoT sensing system clock to the 
Internet servers. Therefore, the second functional requirement (R2) can 
be satisfied by choosing Raspberry Pi 4B as the microcomputer. Some 
existing drive-by methods require multiple vehicles to scan the bridge 
simultaneously, which can be achieved by synchronising the data 
collected from each vehicle to the internet time. The other key technical 
issues in the design of IoT sensing systems, including serial interface 
communication between the sensor and Raspberry Pi, signal acquisition, 
pre-processing, and data transmission, will be addressed in the 
remainder of this section. The general scheme of the proposed IoT 
sensing system with hardware configuration is shown in Fig. 2. As shown 
in Fig. 2, the IoT sensing system mainly consists of two layers in terms of 
data flows, namely, the hardware and software layers. The hardware 
layer shows the components of the IoT sensing system and how the 
sensors are paired with the Raspberry Pi. The software layer shows the 
main functions, including programming, graphical user interface (GUI) 
application, and the database of the developed IoT sensing system. 

2.1. Hardware integration of the IoT sensing system 

This section describes the hardware integration of the IoT sensing Table 1 
Comparison between different wireless technologies used in IoT platforms 
[33–35].  

Wireless 
technologies 

Transmission 
range 

Transmission 
speed 

Power 
consumption  
[36] 

Ongoing 
cost 

Wi-Fi 15 m–100 m 54 Mbps–1.3 
Gbps 

Medium One time 

Bluetooth 10 m–150 m 125 kbps-2 
Mbps 

Low One time 

4G LTE 1 km-10 km Up to 20 
Mbps 

Medium Recurring 

ZigBee 30 m–50 m 10 kbps–100 
kbps 

Low One time 

LoRa 2 km–20 km 0.3 kbps–30 
kbps 

Low One time  

Table 2 
Functional requirement descriptions of IoT sensing system.  

No. Descriptions 

R1 Acquisition and transmission of time labelled acceleration responses, 
temperature, and GPS data with desirable accuracy. 

R2 System time synchronisation with the internet. 
R3 Real-time signal processing capacity, for example, analysis of the acceleration 

responses in frequency domain and application of programmable filters. 
R4 Sending commands to the sensing unit from remote terminal computer to 

modify the sensor sampling rate, duration and control the start/stop of sensor 
data recording. 

R5 Remote GUI surface enables real-time visualisation of collected data. 
R6 Data storage in sensor node and cloud storage for post-processing of historical 

data.  
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system. The microcomputer adopted in this study is Raspberry Pi 4 
model B, which is the latest version of the credit card-sized single-board 
computer with desirable processing performance. The Raspberry Pi is 
regarded as a cost-effective, compact and multiple-function platform, 
and it has been widely used in IoT applications. Details about wiring 
ADXL355 accelerometer to Raspberry Pi 4B are presented in Table 3. 

The 40 general-purpose input/output (GPIO) pins and USB ports are 
programmable, which enables synchronous data acquisition from mul-
tiple types of sensors. The collected data can be stored and processed in 
real time using an integrated central processing unit and a random ac-
cess memory (RAM). 

The vibration responses of the vehicle passing the bridge can be used 

to extract bridge modal parameters and damage features. However, the 
drive-by vibration responses are dominated by the vehicle responses and 
are significantly affected by road surface roughness and/or measure-
ment noise. Therefore, the accuracy and reliability of the accelerometer 
are critical to the success of drive-by bridge modal identification and 
damage detection. Owing to the high resolution (20 bit), ultralow noise 
density (22.5 μg/√Hz), low temperature offset (0.15 mg/◦C), and low 
power (200 μA in measurement mode) properties, the Analog ADXL355 
triaxial MEMS accelerometers are selected. The ADXL355 accelerometer 
is connected to a Raspberry Pi GPIO via a female/female jumper wire. 
The accelerometer supports three different measurement ranges (±2g, 

±4g and ± 8 g). The acceleration resolution of the least significant bit 
(LSB) corresponding to the different measurement ranges is calculated 
using Eq. (1) and are listed in Table 4. The number of bits of the 
ADXL355 accelerometer is 20, which generates more accurate acceler-
ation response signals than those of other 12-bit or 16-bit smartphone in- 
built accelerometers. As indicated in Eq. (1), the resolution of a 20 bits 
sensor can be 16 times better than that of a 16 bits sensor [23,24,38]. 

Fig. 2. Component and system architecture of the IoT sensing system for drive-by SHM.  

Table 3 
Wiring ADXL355 accelerometer to Raspberry Pi.  

ADXL355 Pin ADXL Pin description GPIO Pin GPIO Pin description 

1 Chip Select 24 SPIO CS0 
2 MOSI 19 SPIO MOSI 
3 MISO 21 SPIO MISO 
4 Serial Clock (SCLK) 23 SPIO SCLK 
5 Digital Ground 25 GND 
6 Digital Power 17 3.3 V PWR 
7 Interrupt 1 Not Connected  
8 Not Connected Not Connected  
9 Interrupt 2 Not Connected  
10 Data Ready Not Connected  
11 Digital Ground 09 GND 
12 Digital Power 01 3.3 V PWR  

Table 4 
Resolution of ADXL355 MEMS accelerometer corresponding to various mea-
surement ranges.  

Range ±2g, 20-bit mode ±4g, 20-bit mode ±8g, 20-bit mode 

Resolution (mg/ 
LSB)  

0.0038  0.0076  0.0153  
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Since the vehicle vibration amplitude under normal operating condi-
tions is within the ±2 g range, the measurement range of the ADXL 355 
accelerometer is set as ±2 g to maximise the resolution. The output data 
rates (ODRs) of ADXL355 ranged from 3.906 to 4000 Hz. 

Resolution = Range/
(
2number of bits) (1)  

where the number of bits of the ADXL355 accelerometer is 20, which 
generates more accurate acceleration response signals than those of 
other 16-bit accelerometers, that is, LIS3DHH, MPU9250 [32] and 
LSM9DS1 [26] used in existing IoT sensor nodes. According to Eq. (1), 
the smaller the range, the higher the resolution will be. The greater the 
number of bits of the sensor, the better the resolution. When the mea-
surement range is set as ±2 g, the highest resolution provided by the 
ADXL355 accelerometer is given as 

Resolution =
2 − ( − 2)

220 ≈ 0.0038mg/LSB (2) 

It is widely recognised that the vibration characteristics and other 
mechanical properties of bridges are affected by the environmental 
conditions such as temperature, which adversely affects the accuracy of 
vibration-based damage detection methods. When the temperature data 
are available, the temperature effects on the bridge modal parameters 
and damage-sensitive features (DSF) can be removed using regression 
analysis [39]. Therefore, the environmental temperature is measured 
using the ADXL355 accelerometer in-built temperature sensor. 

In contrast to the SHM systems with a fixed sensor network, the 
drive-by SHM method indirectly scans the bridge vibration responses via 
vehicle on-board sensors. The relative position and moving speed of the 
moving sensor on the bridge should be collected to extract the vibration 
properties of the bridge. Furthermore, it is possible to establish a city- 
level bridge management database to store the spatial–temporal 
labelled vibration responses, modal parameters, and environmental 
temperature information corresponding to a population of scanned 
bridges. To achieve these goals, the GPS sensor should be integrated into 
the IoT sensing system. A USB GPS/GNSS receiver with horizontal po-
sition accuracy < 3.5 m and a sampling rate of 1 Hz is selected. Another 
function of GPS sensors is time synchronisation. Since the developed IoT 
sensing system communicates with the cloud servers independently, 
high-precision time can be synchronised through the network time 
protocol (NTP) or GPS. GPS-based time synchronisation provides a 
higher precision and a wider coverage than NTP. 

The Raspberry Pi has an integrated Bluetooth and Wi-Fi adapter to 
communicate with the computer terminal and Internet. However, 
Bluetooth and Wi-Fi are suitable for relatively short-distance commu-
nication, which may not be realistic for drive-by SHM application sce-
narios. A HUAWEI 4G USB Dongle is employed to guarantee the 

reliability and effectiveness of wireless communication between the IoT 
sensing system and the Internet. The HUAWEI 4G USB Dongle supports a 
150 Mbps download rate and 50 Mbps upload rate. Under laboratory 
conditions, the developed IoT sensing system generates approximately 
800 kb of data per minute with a sampling rate of 200 Hz. Therefore, the 
data transfer rate of the selected 4G module is sufficient to transmit the 
measured data to the cloud server real-time. Fig. 3 shows the fully 
assembled prototype of an IoT sensing system for drive-by SHM. The 
Raspberry Pi is packaged in an acrylonitrile butadiene styrene case with 
a cooling fan and heatsink. The accelerometer is covered by a plastic 
case made with 3D printing, which can be conveniently attached to the 
structure in practical applications. 

2.2. Software development of the IoT sensing system 

This section describes the software development of the IoT sensing 
system. The system is developed in a Python open-source environment 
to handle data acquisition, storage, processing and transmission in real 
time. Two types of stable and robust communication protocol interfaces, 
namely, Serial Peripheral Interface (SPI) and Inter-Integrated Circuit 
(I2C), are supported between Raspberry Pi and sensors. The SPI inter-
face has a separate line for transmitting data and receiving commands, 
which is better for high-speed and low-power applications. Therefore, 
the SPI interface is selected in this study to record data measured from 
the ADXL355 accelerometer. The unit of the measured data is converted 
from the bit to physical unit (g) by multiplying the resolution given in 
Table 4. The USB GPS/GNSS receiver and 4G module are connected to 
the Raspberry Pi via a USB port. The service daemon ‘gpsd’ is installed 
on the Raspberry Pi and set as an automatic start-up on the boot to ac-
quire three-dimensional coordinates and the velocity of the vehicle 
within the transportation network. 

There are two main ways to remotely access the Raspberry Pi in the 
Windows OS environment: virtual network computing and secure shell. 
However, both require that the terminal computer and Raspberry Pi be 
in the same local area network. To enable secure remote access to the 
IoT sensing system from anywhere and on any device, peer-to-peer 
(P2P) virtual global area networking is established using the ZeroTier 
tool. To enable remote control and visualise the acceleration, tempera-
ture and GPS information collected by the IoT sensing system, a GUI (as 
shown in Fig. 4 is developed based on the Python Tkinter package. The 
sampling rate and sampling duration of the accelerometer can be 
adjusted in the GUI according to practical monitoring requirements. As 
mentioned previously, the sampling rate of the temperature and GPS 
sensor is set to 1 Hz. The IoT sensing system will start recording when 
the “Start Run” button is clicked. Since Raspberry Pi 4 has a desirable 
computation capacity, a fast Fourier transform is conducted to obtain 

Fig. 3. Developed IoT sensing system: (a) Fully assembled prototype of IoT sensing system for drive-by SHM; and (b) zoom in view of the ADXL355 accelerometer.  
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the frequency spectrum of the triaxial acceleration responses. It is 
convenient to further integrate other signal processing algorithms or 
damage detection methods into the developed IoT sensing system. The 
collected signal is saved in a ‘csv’ file and stored in the local 16 GB flash 
memory and simultaneously updated to the cloud database for perma-
nent data storage. In Fig. 4, the sampling rate and sampling duration are 
set to 100 Hz and 60 s, respectively. The triaxial acceleration and its 
Fourier spectrum, temperature and GPS information are presented in the 
GUI. 

The self-contained storage of Raspberry Pi is insufficient for long- 
term SHM applications. As shown in Fig. 5, two types of remote data 
storage, namely cloud storage and network file systems, are developed 
for IoT sensing system. Many popular commercial cloud storage pro-
viders are available on the market. The cloud storage provider selected 
in this study is ownCloud, which is free for individual users. A detailed 
tutorial about the configuration of PHP, SSL certificate, and MySQL 
Database for the ownCloud server is available at https://pimylifeup. 
com/raspberry-pi-owncloud/. Once the cloud server is established, the 

measured data are automatically synchronised with cloud storage. 
Authorised users can interact with the established OwnCloud server to 
upload and download files. A network file system protocol is also 
established for the IoT sensing system. A detailed tutorial for setting up 
the NFS on Raspberry Pi is available at https://pimylifeup.com/raspberr 
y-pi-nfs/. The NFS mounted a network drive on a terminal computer. 
The NFS server directly synchronises the file folder in Raspberry Pi 
corresponding to the IoT sensing system measurement to the network 
drive, which is convenient for signal postprocessing on the terminal 
computer. 

The component retail prices of the developed IoT sensing system are 
listed in Table 5. The annual ongoing cost of 4G data is approximately 
150 AUD at the current market. This cost would be cheaper with the 
further development of technologies. In comparison, the cost of 
achieving similar functions using commercial sensors and data acquisi-
tion systems would be several times higher than that of the developed 
system. 

Fig. 4. GUI designed for real-time data collection and visualization.  

Fig. 5. Data storage on: (a) cloud servers and (b) network file system.  

Z. Peng et al.                                                                                                                                                                                                                                     

https://pimylifeup.com/raspberry-pi-owncloud/
https://pimylifeup.com/raspberry-pi-owncloud/
https://pimylifeup.com/raspberry-pi-nfs/
https://pimylifeup.com/raspberry-pi-nfs/


Engineering Structures 293 (2023) 116705

7

3. Experimental verifications 

This section experimentally evaluates the sampling rate stability and 
acceleration measurement accuracy of the developed IoT sensing sys-
tem. Comparison to the commercially available wired accelerometer is 
conducted in ambient and drive-by vibration tests. The performance of 
temperature measurement on the IoT sensing system is also discussed. 

3.1. Stability of the sampling rate of accelerometer 

The frequency domain information of responses can be accurately 
obtained from Fourier spectrum of the acceleration responses, when the 
vibration responses are uniformly sampled. It was reported [40] that the 
sampling intervals of smartphones based measurements might not be 
perfectly consistent and stable, which may affect the accuracy in some 
applications, e.g. drive-by modal identification. Therefore, the stability 
of the sampling rate of the used accelerometer is an important aspect of 
IoT sensing systems. To specify the time interval between two samples, 
the Python time sleep function is used to add a delay in the execution of 
the data logging program. Since Python spends time on interpreting the 
code for data collection, the execution time corresponding to each ac-
celeration sample can presumably achieve a more stable sampling rate. 
The delay time between each sample is given as 

Δti = 1/fs − te
i (3)  

where fs is the predefined sampling rate and Δti and te
i denote the actual 

delay time and program execution time during the collection of the i-th 
sample, respectively. 

Repeated data collection tests with different predefined sampling 
frequencies are conducted to evaluate the stability of sampling rate. The 
sampling rate is subsequently defined as 20–500 Hz with increments of 
10 Hz. For each sampling rate scenario, triaxial acceleration responses 
with a sampling duration of 100 s are recorded. The mean value of the 
actual sampling rate along with its standard deviation are shown in 
Fig. 6. The relative error between the mean value of the actual and 
defined sampling frequencies is within 0.006%. The maximum relative 
error of standard deviation is 4.16%, which is observed at a defined 

sampling frequency of 220 Hz. The maximum relative error of standard 
deviation is within 1.5% when the sampling frequency is below 200 Hz. 
A sampling rate of 200 Hz is sufficient to cover the first several modes of 
natural frequencies of the actual bridge. 

3.2. Accelerometer accuracy 

In this section, a series of comparisons between the developed sensor 
node and a single-axis capacitive wired accelerometer (Kistler 8330A3 is 
used in this study) are conducted to evaluate the accuracy and reliability 
of the developed IoT sensing system. It is noted that the wired acceler-
ometer refers to the Kistler 8330A3 accelerometer in this study. The 
wired accelerometer is an analogue force feedback sensor incorporating 
a silicon micromachined variable capacitance-sensing element that 
provides excellent bandwidth, dynamic range, stability, and robustness. 
The sensitivity and measurement range of the wired accelerometer used 
in this study are 1132 mV/g and ± 3.0 g, respectively. The noise density 
(f = 100 Hz) is 0.4 μg/

̅̅̅̅̅̅
Hz

√
. A sixteen-channel conditioner and data 

acquisition system are employed to record the signals. Previous studies 
have verified that the wired accelerometer is very sensitive and accurate 
to conduct vibration tests of civil engineering structures [41–43]. 

First, the characteristics of the measurement noise in the ADXL355 
accelerometer are investigated to determine if the sensor can be used in 
drive-by SHM applications. Noise characteristics determine the mini-
mum level of movement that can be detected by an accelerometer. As 
shown in Fig. 7, both the developed IoT sensing system and the wired 

Table 5 
Price breakdown of the developed IoT sensing system in 2023.  

Item Raspberry Pi 
4B 

Accelerometer GPS 
receiver 

4G 
module 

Overall 

Price: 
AUD  

92.40  56.00  21.00  29.00  198.40  
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Fig. 6. Relationship between defined and actual sampling frequency.  

Fig. 7. Test configuration to obtain noise characteristics and sensor accuracy.  
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accelerometer are attached to a cube steel mass block fixed on the 
ground. The experimental test is conducted at midnight to ensure that 
there are almost no sources of vibration transmitted through the air or 
human walking. Fig. 8 shows the acceleration responses measured by 
both sensors for a duration of 60 s. The root mean square (RMS) of the 
noise measured by the developed IoT sensing system in the x-, y-, and z- 
axes directions are 0.4076 × 10-3, 0.6196 × 10-3 and 0.4056 × 10-3g, 
respectively. The RMS of the noise measured by the wired accelerometer 
is 1.3 × 10-3 g. The comparison results on the RMS of noise responses 
measured by these two sensors indicate that the noise level of the 
developed IoT sensing system outperforms that of the wired 
accelerometer. 

To further investigate the feasibility and accuracy of the developed 
IoT sensing system in identifying the bridge modal parameters, drive-by 
tests are conducted on the third-floor footbridge of Building 215, Curtin 
University. A long-term SHM system is installed in Building 215 to 
continuously monitor the structural vibrations and environmental con-
ditions. A detailed description of the installed SHM system is available at 
http://livinglabs.curtin.edu.au/. According to the vibration responses 
measured from the installed SHM system, the first-order natural fre-
quency of the third-floor footbridge is approximately 7 Hz. The experi-
mental setup is shown in Fig. 9. The vehicle shown in Fig. 9(c) is 
remotely controlled at an adjustable speed. Considering that the mass 
ratio between the vehicle and footbridge is relatively small, an addi-
tional pedestrian load with a few people walking on the bridge is applied 
to excite the bridge during the tests. The vehicle model is powered by a 
15 V lithium battery. A 15 V-to-5 V converter is connected to the vehicle 
battery to satisfy the power requirement of the developed IoT sensing 
system. In practical applications, vehicle batteries, portable power 
banks, and vibration energy-harvesting systems have been employed to 
power the developed IoT sensing system. As shown in Fig. 9(c), the 

developed IoT sensing system and wired accelerometer are attached to 
the same longitudinal position of the vehicle body to measure the 
vehicle body accelerations. A drive-by test with a vehicle speed of 0.15 
m/s is conducted to collect data from both sensors. The sampling rate for 
both sensors is set to 120 Hz. Cross-correlation analysis is conducted to 
determine and remove the time lag between the two signals measured by 
two sensors. Fig. 10 shows the acceleration responses measured by the 
wired accelerometer and developed IoT sensing system during the drive- 
by test. As shown in the zoomed-in subfigure of Fig. 10, the responses 
measured by the developed IoT sensing system agree well with those of 
the wired sensor. In particular, the normalised root mean square error 
(NRMSE) between these two measurements [6], as defined by Eq. (4), is 
0.0144. The correlation coefficient between these two measurements is 
obtained as 0.9753. NRMSE is calculated as 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
(
(aiot − awired)

2 )
√

max(awired) − min(awired)
(4)  

where aiot and awired represent the acceleration responses measured by 
the developed IoT sensing system and the wired accelerometer, 
respectively. 

The frequency spectra obtained by applying fast Fourier transform to 
the acceleration responses measured by the wired accelerometer and the 
developed IoT sensing system are presented in Fig. 11(a). The frequency 
spectra obtained from both sensors are consistent in all frequency bands. 
Furthermore, the first-order natural frequency identified from the drive- 
by measurement is approximately 7.31 Hz, which is close to that iden-
tified from the long-term SHM system installed on the building. Overall, 
the experimental results demonstrate a satisfactory agreement between 
the reference wired sensor and IoT sensing system in both the time and 
frequency domains. A peak at approximately 10 Hz is observed in Fig. 10 

Fig. 8. Acceleration responses measured by: (a) the developed IoT sensing system; and (b) the wired accelerometer.  
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(a) from the sensors on the vehicle. The drive-by measurements usually 
contain bridge subsystem and vehicle subsystem vibrations. According 
to Fig. 11(b), the Fourier spectra of acceleration responses measured 
from the long term SHM system on the bridge does not have the second 
peak at approximately 10 Hz. Therefore, the second peak at approxi-
mately 10 Hz should be likely the frequency component of the vehicle 
subsystem. 

The drive-by vibration responses are dominated by the vehicle re-
sponses and are significantly affected by road surface roughness and/or 
measurement noise. Therefore, the accuracy and reliability of the 
accelerometer are critical to the success of drive-by bridge modal 
identification and damage detection methods. The resolution, noise 
density and zero-g offset drift of ADXL355 accelerometer are 
0.0038 mg/LSB, 22.5μg/

̅̅̅̅̅̅
Hz

√
and ±75 mg, respectively. 

Fig. 9. Experimental validation setup: (a) Elevation view of Building 215; (b) drive-by test conducted on the third floor footbridge; and (c) the vehicle model and 
placement of developed IoT sensing system and wired accelerometer. 

Fig. 10. Acceleration responses measured by the wired accelerometer and the developed IoT sensing system during the drive-by test.  

Fig. 11. Fourier spectra of the acceleration responses measured by: (a) the developed IoT sensing system and the wired accelerometer during the drive-by test; and 
(b) the long term SHM system on the bridge. 
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3.3. Temperature sensor and GPS sensor 

Environmental conditions affect the vibration characteristics of 
bridges. According to existing studies [8], temperature effect has a more 
significant impact on the variation of modal parameters than other 
environmental factors. This is primarily due to the direct or indirect 
variations in the stiffness, geometric dimension and boundary condi-
tions of structures caused by changes in the thermal coefficient of 
Young’s modulus and the thermal expansion coefficient. Therefore, to 
supplement this information in the measurement, temperature is also 
measured in this study. Since the bridge vibration characteristic can be 
affected by the environmental temperature, the temperature time series 
are minutely recorded using the built-in temperature sensor in 
ADXL355. The resolution and measurement range of the temperature 
sensor are 0.1105 ℃/LSB and from –40 to 125 ℃, respectively. Fig. 12 
shows the indoor temperature curve of Building 216 at Curtin University 
for a duration of 18 h. The IoT sensing system is placed on an office table 
close to the window. It was observed that the indoor temperature sud-
denly decreased at sunset (around 19:00 pm) and gradually increased at 
sunrise on the next day (around 5:00 am). This observation is consistent 
with the effect of sunlight on buildings. The oscillation of the temper-
ature at the end stage may have been induced by the air condition during 
the working hours. 

As show in Fig. 4, the latitude and longitude GPS coordinates 
recorded by the IoT sensing system are − 32.00741◦, 115.893768◦, 
respectively. In Fig. 13, the location of the GPS receiver point and the 
actual point are marked in red and blue in the Google map, respectively. 
There is approximately a 20 m error between the measured coordinates 
and ground truth (blue marked) in the horizontal direction. The posi-
tioning error is larger than the average positioning error of 3.5 m given 
by the GPS receiver product specification. The test is conducted indoors, 
which would affect the positioning accuracy. With the triaxial acceler-
ation, the acceleration responses in the longitudinal direction can be 
fused with the GPS signal to obtain a more accurate vehicle location and 
travelling speed [44]. 

3.4. Main contribution 

There are many wireless sensor prototypes that have been developed 
and implemented to monitor civil engineering structures under opera-
tional conditions [45–47]. The main features of existing wireless sensors 
are: i) usually only one type of physical quantity, e.g., acceleration or 
strain is measured; ii) the wireless sensor node is attached on structures 
to measure the vibration responses of a specific location; and iii) the 
wireless transmission rate, such as Zigbee, is limited and the trans-
mission distance is limited to a few hundreds of meters. In contrast, as 
demonstrated in Fig. 1, the proposed IoT sensing system developed in 
this study aims to integrate with mobile crowdsensing for monitoring 
the health of a large number of transportation infrastructure, i.e., 
bridges. To achieve this goal, the developed IoT sensing system has the 
following novelties compared with the existing work: i) the highly 

accurate acceleration, temperature, GPS trajectory can be synchro-
nously collected and visualized in real-time; ii) the developed GUI 
supports the remote control and programming of the IoT sensing system; 
iii) the raw data are sent to both the cloud server and remote terminal 
computer through a 4G module, with a higher transmission rate and a 
longer transmission range. 

Compared to the existing drive-by methods that use in-built smart-
phone motion sensors, the developed IoT sensing system offers a supe-
rior performance in two key aspects: 1) Functionality: the proposed IoT 
sensing system integrates a triaxial microelectromechanical system 

Fig. 12. Evolution of indoor temperature Building 216, Curtin University. The red and blue vertical line represent the sunset and sunrise time. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. The GPS coordinate recorded by the IoT sensing system (reproduced 
from Google map). 
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(MEMS) accelerometer, temperature sensor, GPS, and 4G module on 
Raspberry Pi 4 Model B, which enables on-board signal processing and 
remote programming; 2) Accuracy and stability: The ADXL355 accel-
erometer used in this study has a better resolution, lower noise density, 
lower zero-g offset drift and higher sampling rate stability than the 
general-purpose motion sensors commonly found in smartphones. These 
features enable the developed IoT sensing system to provide more reli-
able and accurate measurements for the further modal identification and 
condition monitoring of bridges. 

The primary contribution of this study is the development and vali-
dation of an affordable, precise and customizable real-time sensing 
system for SHM of bridges based on drive-by measurements. This study 
mainly concentrates on the development and validation of an IoT 
sensing system that integrates vibration acceleration measurement, 
temperature measurement and GPS coordinates data acquisition, data 
processing algorithms and wireless data transmission, which will be 
used for SHM of transport infrastructure such as bridges. The IoT sensing 
system allows for in-node processing of drive-by data, as well as trans-
mission of the data to cloud storage. At the current stage, a fast Fourier 
transform of the real time measured acceleration data is integrated into 
the developed IoT sensing system for data processing. Additionally, the 
newly developed modal identification and damage detection methods 
based on drive-by measurements could be remotely programmed into 
the sensor prototype node in future studies. Recently, the authors pro-
posed a mobile crowdsensing framework for drive-by-based dense 
spatial-resolution bridge mode shape identification [48]. In the next 
stage, studies will be conducted to install the developed IoT sensing 
system on commercial vehicles to identify the mode shapes for bridge 
condition monitoring. 

4. Conclusions and discussions on future work 

To scale up the drive-by technique for the health monitoring of a 
population of bridges, a low-cost IoT sensing system is developed in this 
study. The acceleration responses, environmental temperature and GPS 
coordinates of the moving vehicles can be simultaneously acquired, 
processed and stored in a cloud server by using the developed IoT 
sensing system. A GUI is designed in a Python environment to remotely 
interact with the sensor node and visualise the measured data in real 
time. A series of experimental tests are conducted to evaluate the ac-
curacy and practicability of the developed IoT sensing system. The 
experimental results indicate that the noise characteristics of the inte-
grated accelerometer outperform that of the wired accelerometer. When 
the sampling rate is set below 200 Hz, the relative error in mean value 
and maximum relative error in standard deviation of the developed IoT 
sensing system are within 0.006% and 1.5%, respectively. The drive-by 
test results verify that the developed IoT sensing system could success-
fully identify the first-order natural frequency of a full-scale footbridge. 
It is also verified that the temperature sensor and GPS receiver function 
normally. Owing to the desirable computation and communication ca-
pacity, additional signal processing and drive-by damage detection 
methods could be remotely integrated into the IoT sensing system under 
normal operating conditions. 

For the practical implementations of the developed IoT sensing sys-
tem, several aspects require further investigations. First, to use the 
storage and processing sources effectively, a GPS-based trigger switch 
should be developed to automatically start and stop recording when the 
IoT sensing system approaches and leaves the bridge. Second, consid-
ering the drive-by measurements available from a collection of vehicles 
within the transportation system, a cloud-based sensing data manage-
ment system should be developed. Expansion joints can cause significant 
bouncing and pitching movements in vehicles, which can overshadow 
the bridge’s response and make it difficult to analyse its dynamic pa-
rameters. Therefore, advanced signal processing technique could be 
developed and integrated into the IoT sensing system to alleviate the 
measurement error induced by vehicle bouncing and pitching 

movements [49]. The studies by using the developed IoT sensing system 
for modal identification of bridges from drive-by tests are ongoing and 
the results will be presented in the subsequent papers. 
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