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A B S T R A C T   

Soil spectroscopy with machine learning (ML) can estimate soil properties. Extensive soil spectral libraries (SSLs) 
have been developed for this purpose. However, general models built with those SSLs do not generalize well on 
new ‘unseen’ local data. The main reason is the different characteristics of the observations in the SSL and the 
local data, which cause their conditional and marginal distributions to differ. This makes the modelling of soil 
properties with spectra challenging. General models developed using large ‘global’ SSLs offer broad, systematic 
information on the soil-spectra relationships. However, to accurately generalize in a local situation, they must be 
adjusted to capture the site-specific characteristics of the local observations. Most current methods for ‘local-
izing’ spectroscopic modelling report inconsistent results. An understanding of spectroscopic ‘localization’ is 
lacking, and there is no framework to guide further developments. Here, we review current localization methods 
and propose their reformulation as a transfer learning (TL) undertaking. We then demonstrate the imple-
mentation of instance-based TL with RS-LOCAL 2.0 for modelling the soil organic carbon (SOC) content of 12 sites 
representing fields, farms and regions from 10 countries on the seven continents. The method uses a small 
number of instances or observations (measured soil property values and corresponding spectra) from the local 
site to transfer relevant information from a large and diverse global SSL (GSSL 2.0) with more than 50,000 
records. We found that with ≤ 30 local observations, RS-LOCAL 2.0 produces more accurate and stable estimates of 
SOC than modelling with only the local data. Using the information in the GSSL 2.0 and reducing the number of 
samples for laboratory analysis, the method improves the cost-efficiency and practicality of soil spectroscopy. We 
interpreted the transfer by analysing the data, models, and soil and environmental relationships of the local and 
the ‘transferred’ data to gain insight into the approach. Transferring instances from the GSSL 2.0 to the local sites 
helped to align their conditional and marginal distributions, making the spectra-SOC relationships in the models 
more robust. Finally, we propose directions for future research. The guiding principle for developing practical 
and cost-effective spectroscopy should be to think globally but fit locally. By reformulating the localization 
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problem within a TL framework, we hope to have acquainted the soil science community with a set of meth-
odologies that can inspire the development of new, innovative algorithms for soil spectroscopic modelling.   

1. Introduction 

Soil information is critical for environmental protection, food secu-
rity, and sustainable development (Bouma, 2019). We need soil data at 
different scales to assess and monitor changes in soil properties and soil 
health over time (Lehmann et al., 2020). The need for soil information 
presents an enormous challenge everywhere, particularly in developing 
countries (Cook et al., 2008) where soil and land degradation cause 
hunger and malnutrition and the cost of soil analysis is prohibitively 
expensive (Viscarra Rossel and Bouma, 2016). Soil spectroscopy can 
play an integral role in providing this information, and there is much 
international interest in the technology (Viscarra Rossel et al., 2022). 

Reflectance spectroscopy is a powerful soil analytical method that 
relies on the interaction of electromagnetic radiation at specific fre-
quencies, usually in the visible (vis, 400–700 nm), near infrared (NIR, 
700–2500 nm) or mid infrared (MIR, 2500–25,000 nm), with the soil 
constituents. This fundamental physical process provides insights into 
soil composition and enables the estimation of soil properties (Soriano- 
Disla et al., 2014). When MIR or NIR energies are emitted onto the soil, 
the light scatters within the sample, causing the bonds in the molecules 
present to vibrate and absorb some of that light. The rest is only diffusely 
returned to a detector, which records the response as a function of 
wavelength or wavenumber. The fundamental vibrations of bonds in 
molecules occur in the MIR, and the vibrations can be of different types, 
e.g., symmetric, asymmetric, bending, scissoring (Griffiths, 2010). These 
fundamentals cause the excitation of the vibrational modes in the bonds 
of molecules from their lowest ground energy state to their first excited 
state. Overtones and combination vibrations occur when the energy 
transitions are from the ground state to the second or higher vibrational 
state and when the transitions are between two or more vibrational 
modes, respectively. NIR spectra result only from overtones and com-
bination vibrations. The process differs in the visible range, where the 
energies are higher, and spectra result from the excitation of electrons 
and electronic transitions (Picollo et al., 2019). 

Depending on the resolution of the sensor, a single soil vis–NIR or 
MIR spectrum consists of hundreds to thousands of frequencies, and 
depending on the spectral range, those frequencies can hold information 
on soil colour, the iron oxides (e.g., hematite, goethite), clay minerals (e. 
g., gibbsite, kaolinite, illite, smectite), carbonates and gypsum when 
they are present in the soil, the types of organic matter, the content of 
(adsorbed and free) water, and the particle size (Clark et al., 1990; Ben- 
Dor and Banin, 1995; Nguyen et al., 1991; Viscarra Rossel and Hicks, 
2015). Thus, in a single measure, a soil spectrum characterizes the soil’s 
fundamental and multivariate composition, which determines soil 
properties and functions. The technique is non-destructive, rapid, 
inexpensive, and precise, making it an indispensable tool for soil 
analysis. 

The absorption at specific wavelengths can be used directly to derive 
measures of soil colour (Viscarra Rossel et al., 2009), the abundance of 
iron oxides (Viscarra Rossel et al., 2010), clay minerals (Viscarra Rossel, 
2011), and water (Baumann et al., 2022). However, to derive estimates 
of other soil properties, one must first develop a soil spectral library 
(SSL) and then model (or calibrate) those soil properties with the 
spectra. An SSL consists of data pairs with laboratory-measured soil 
properties and their corresponding spectra. These libraries serve as 
valuable repositories of soil information because, as explained above, 
they capture the unique composition of the soil samples and the spectral 
characteristics associated with specific soil properties. Ideally, SSLs 
should be developed by design considering the domain of application, 
the sampling strategy, the soil analytical methods, the spectral range 
and the protocols used. Often, however, SSLs are built using legacy soil 

samples stored in archives derived from experiments with different aims 
and using different analytical methods and spectroscopic protocols 
(Nocita et al., 2015). Although this is a cost-effective approach for 
developing SSLs and an excellent way to use archived soils, when 
developing spectroscopic calibrations, one must carefully consider the 
quality of the analytical data and the applicability of the models in 
different domains. There are now many examples of SSLs developed for 
different regions, countries, continents, and the world (e.g. Shepherd 
and Walsh, 2002; Viscarra Rossel and Webster, 2012; Stevens et al., 
2013; Shi et al., 2015; Viscarra Rossel et al., 2016; Demattê et al., 2019). 

The primary aim of soil spectroscopic modelling is to relate soil 
properties with the information contained in the various frequencies of 
the spectra to then be able to estimate those soil properties by inputting 
newly measured soil spectra into the models. Measuring soil spectra is 
easier, faster, and less expensive than measuring soil properties with 
conventional methods of soil analysis. Another advantage of the spec-
troscopic approach is that using the same spectra in the library, one can 
derive models to estimate many soil properties, of course, as long as 
corresponding measurements of those soil properties are present in the 
library. However, the technology is not a panacea for all our soil mea-
surement needs. When the soil’s physical, chemical, and biological 
properties derive from or are associated with the soil’s mineral–organic 
matrix, spectroscopy can reasonably accurately estimate the concen-
trations of those properties. However, when the constituents are not 
properties of the soil matrix, the correlations will be weak and only 
transient at best (Viscarra Rossel et al., 2022). 

Much of the earlier research and development in soil spectroscopic 
modelling relied on multivariate calibrations with principal component 
regression (PCR) (e.g. Chang et al., 2001) and partial least squares 
regression (PLSR) (Martens and Næs, 1989). These methods are robust 
and perform well when the response-spectra relationship is linear, 
which is more likely when the SSL represents a small, local domain. With 
the development of larger, more diverse and complex SSLs and the 
advent of machine learning (ML) in soil science, researchers began 
testing other methods that can cope better with more extensive, non- 
linear datasets, for example, using wavelets, random forests (RF), sup-
port vector machines (SVM), regression trees, the Gaussian pyramid 
scale (Viscarra Rossel and Lark, 2009; Viscarra Rossel and Behrens, 
2010; Behrens et al., 2022; Vohland et al., 2016). Most recently, coin-
ciding with developments in deep neural networks, studies have also 
tested these methods for modelling soil properties with spectra (e.g. Liu 
et al., 2018; Padarian et al., 2019). Although the deep learning algo-
rithms require more training data, are more complex, and their imple-
mentation more computationally expensive, they offer some advantages 
over conventional ML. For example, they can provide automatic 
pre-processing and extraction of useful feature representations, which 
streamline the modelling and improve their performance with large data 
sets (Tsakiridis et al., 2020; Shen and Viscarra Rossel, 2021). 

Research on soil spectroscopic modelling and the calibration and 
validation of predictive functions to estimate soil properties has, over 
the past decades, helped to establish the value of SSLs and the potential 
of soil spectroscopy for accurate and cost-effective estimation of soil 
properties (Li et al., 2022). But, despite the success of such research and 
the models built using SSLs, their ability to generalize well locally is 
limited (Shen et al., 2022). Soil properties exhibit significant variability 
over different spatial scales because they are affected by the local factors 
that affect soil formation, e.g., climate, organisms, relief, parent mate-
rial, land management practices, and time (Jenny, 1941). Therefore, 
models trained on large and diverse SSLs often fail to capture the site- 
specific soil variation needed for accurate local estimation (Viscarra 
Rossel et al., 2022). 
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General models built using entire SSLs, often called ‘global’ models, 
offer broad, systematic information on the spectra-soil relationships. 
The models need to be adjusted and fine-tuned to capture the site- 
specific characteristics of soil variation accurately and generalize 
effectively in a local context. Hence, researchers have developed spec-
tral localization techniques that attempt to update local models with 
information from the large SSLs. These techniques aim to enhance model 
performance by tailoring the models to the specific characteristics of 
individual sites, producing accurate local estimates of soil properties. 
There has been some research to develop such techniques, but they have 
shown variable success, and research is slow but ongoing. We describe 
those in Section 2. 

The localization of spectroscopic models is a problem that transfer 
learning (TL) can help to address. TL describes mathematical techniques 
that leverage information from one source domain to improve perfor-
mance in another related target (or local) domain. TL is inspired by a 
human’s ability to build upon pre-existing knowledge to solve a new 
problem faster and more effectively instead of starting from scratch. It 
aims to transfer helpful and relevant information from a source domain 
to a local domain, where data may be scarce or unavailable or when the 
estimation must be rapid. As such, combined with ML and artificial in-
telligence (AI), TL provides an intuitive framework for soil spectroscopic 
modelling and a powerful combination for future research and devel-
opment of practical, deployable soil spectroscopy. 

Therefore, our aims are to:  

• Describe the localization problem and the current methods for 
localizing soil spectroscopic models.  

• Describe how TL offers a framework for explicitly describing the 
problem and developing innovative new research and solutions.  

• Demonstrate how a TL algorithm can relay helpful information from 
a large global SSL to 12 local sites worldwide from 10 countries and 
The Ross Dependency in the seven continents.  

• Delve into the results from the TL algorithm to gain insight into the 
transfer and better understand and interpret it from statistical and 
scientific perspectives. and  

• Propose directions for future research. 

2. Localization of spectroscopic modelling 

Large, country, continental, and global SSLs have been developed to 
enable the estimation of a range of soil properties (Viscarra Rossel et al., 
2016; Stevens et al., 2013; Demattê et al., 2019; Shi et al., 2015; Viscarra 
Rossel and Webster, 2012). We can generally find good statistical re-
lationships between soil properties, e.g., soil organic carbon (SOC) and 
spectra (Viscarra Rossel and Behrens, 2010). However, these empirical 
models can vary, and when derived with all of the data in a large SSL (i. 
e., a ‘global’ model), they often fail to capture accurately the local 
characteristics of the soil properties at the site (e.g., a field in a farm), 
particularly when using linear multivariate methods such as PLSR. 

Non-linear methods and ML algorithms (Viscarra Rossel and 

Fig. 1. Summary of methods for localizing soil spectroscopic modelling. Models built using all observations in a soil spectral library (SSL; Global modelling) tend to 
be biased. Models built using only local observations (Local modelling) are accurate but expensive. Localization methods aim to improve the accuracy and cost- 
effectiveness of soil spectroscopy. X represents the spectral matrix, y the soil property vector, f the predictive function; K is the number of observations in the 
SSL, c and k are subsets of ‘localized’ observations from the SSL, N is the number of observations in the local data, n is the number of representative local observations 
with the measured soil property, and i is the ith sample in N. 
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Behrens, 2010; Shen and Viscarra Rossel, 2021) have helped to make use 
of large SSLs for analyses and interpretation over country or larger 
scales, e.g., for continental scale digital soil mapping (Viscarra Rossel 
et al., 2014, 2019). However, it is now well-understood that even if one 
accounts for nonlinearities in the data, e.g., by partitioning the dataset, 
‘global’ models tend to not generalize well locally, with spectra from 
fields or farms (Fig. 1). The reasons might be the complex composition of 
soil and the diversity of the organic-mineral matrix (Stenberg et al., 
2010), which is pertinent when modelling SOC because in many parts of 
the world, SOC concentrations are generally small (Köchy et al., 2015). 
Typically, there is an increase in average prediction errors with 
increasing variability in the ‘global’ model (e.g. Sankey et al., 2008; 
Guerrero et al., 2016; Lobsey et al., 2017; Shen et al., 2022). Local 
models predict well (Fig. 1); however, they incur a greater soil analytical 
cost and are inefficient because local modelling does not use the infor-
mation in large and diverse SSLs. 

Various approaches have been proposed to better use large SSLs for 
local predictions of soil properties. Most aim to reduce, minimize or even 
remove the need for conventional soil analyses and maximize the overall 
accuracy of the spectroscopic estimates at the local site. Current 
methods for such localization (Fig. 1) are based on either classification 
of the SSLs to constrain the modelling, data augmentation, deterministic 
local search algorithms based on spectral or sample similarities, data- 
driven stochastic search methods, or the reuse of transformed spectral 
features, or representations. In Section 2, we review the localization 
methods in soil spectroscopy, and in Section 3 describe this challenge 
using a TL framework.Section 3 

2.1. Similarity-based deterministic methods 

Similarity-based methods attempt to divide large SSLs into smaller 
groups where linear models can describe the relationships between the 
soil property and spectra. All use deterministic similarity methods, and 
not all methods require the measured soil property (Fig. 1). 

The most intuitive way to use large, diverse SSLs is to classify them 
into smaller, more homogeneous subsets with soil samples that share 
similar characteristics. In this way, the intra-subset variability is smaller 
than the overall variability of the SSL. One could constrain the SSL with 
ancillary information that helps to characterize the pedological context 
and the relationships between soil properties and the spectra, for 
example, using taxonomic, geographic or land use information (e.g., 
Sankey et al., 2008; Vasques et al., 2010; Xu et al., 2016; Moura-Bueno 
et al., 2020). Spectroscopic models can then be developed using data 
from each subset (Fig. 1). To estimate soil properties at a local site, one 
uses the model that best captures the characteristics of the local condi-
tions. Although such classification might result in smaller libraries, they 
might not capture the spectra-response relationship needed for local 
estimation (e.g., on data from individual fields). 

More sophisticated methods that either ‘memorize’ the training data 
to find similarities, or that perform data-driven classifications of the 
spectra include memory-based learning (MBL), local regressions (e.g. 
Rabenarivo et al., 2013), the spectrum-based learner (SBL) (Ramirez- 
Lopez et al., 2013), and CUBIST (e.g. Viscarra Rossel and Webster, 2012). 

One of the most common recent methods for similarity-based local 
search is MBL, a.k.a k-nearest neighbours. The MBL methods extract 
spectrally similar samples (e.g., using the Mahalanobis distance) from 
the SSL for each observation in the local set, develop a specific cali-
bration with the selected neighbours and predict the unknown local 
data, effectively deriving a site-specific, local calibration (Fig. 1). The 
LOCAL (Shenk et al., 1997) and locally weighted regression (LWR) al-
gorithms (Naes et al., 1990; Gupta et al., 2018) and their variants are 
MBL examples. In LWR, the selected calibration samples are weighted 
according to the spectral similarity between the SSL and the unknowns. 
In the SBL, the nearest neighbours from an SSL are selected using dis-
tance metrics calculated in principal component space. The training data 
set for the spectroscopic modelling uses the selected neighbours and the 

matrix of distances to the unknown samples. Tsakiridis et al. (2020) used 
SBL to select the nearest neighbours in a continental SSL and used their 
prediction errors to correct the estimates of soil properties in the test set. 
The method effectively accounts for non-linear relationships in large and 
complex data sets since the relationships can be well-described by 
simple linear models within the neighbourhoods (Ramirez-Lopez et al., 
2013). However, the method is computationally expensive for very large 
SSLs since every new prediction requires the calculation of its similarity 
to every spectrum in the SSL. The CUBIST algorithm is a tree-based method 
that generates rules with linear models at each leaf (Quinlan, 1992). 
These rules are used to classify the spectra. A new observation is pre-
dicted by classifying it and applying the corresponding model. The al-
gorithm, like other regression-tree methods, can accommodate other 
ancillary data to generate the rulesets. CUBIST has been extensively re-
ported in the literature and shown to produce accurate and interpretable 
models (e.g. Viscarra Rossel and Webster (2012)). 

2.2. Spiking and spiking with extra weighting 

Simple spiking uses several local observations (response variable 
with their spectra) to augment a larger SSL before modelling (Fig. 1). 
The reported success of the approach is mixed. Some studies show that 
the method can produce more accurate (less biased) estimates of soil 
properties compared to global models derived with only the SSL, while 
others report little or no improvement (e.g. Brown, 2007; Sankey et al., 
2008; Viscarra Rossel et al., 2009; Guerrero et al., 2010; Wetterlind and 
Stenberg, 2010; Gogé et al., 2014; Barthès et al., 2020). Guerrero et al. 
(2014) proposed that spiking could be improved by using multiple 
copies of the local samples to augment the SSL (Fig. 1). They called this 
method spiking with extra weighting and proposed that it was better 
than simple spiking, particularly with larger SSLs, because it improves 
the leverage of the local data in the models. Both simple spiking and 
spiking with extra weighting increase the size of the calibration set 
(Fig. 1). Barthès et al. (2020) showed that the spiking with extra 
weighting could improve the accuracy of models over simple spiking for 
estimating soil inorganic carbon. The success of these approaches may 
be inversely related to the size and diversity of the SSL and the degree of 
similarity between the SSL, the spiking subset, and the local sites for 
estimation (Guerrero et al., 2016). The methods are less effective and 
can fail when the distributions of the SSL and the local data are too 
dissimilar. That is when the data and model are not all relevant. For 
example, in Seidel et al. (2019), the SSL was from an entire country, 
Germany, the local data were from an agricultural field, and the spiking 
subset had ≤30 local observations. In this case, spiking was less accurate 
than local modelling. 

2.3. Data-driven heuristic search 

RS-LOCAL, a data-driven heuristic search method, was developed by 
Lobsey et al. (2017). It uses a small number of local observations, or 
instances (measured soil property and spectra) to select a subset of data 
from an existing SSL for modelling (Fig. 1). It uses a stochastic selection 
procedure that repeatedly samples the observations from the SSL 
without replacement. RS-LOCAL does not assume specific relationships 
between the response variable and the spectra in the SSL (e.g., does not 
assume linearity); instead, the relationships are specific to the local site. 
Only the instances from the SSL that perform well on the local data are 
selected. Thus, the approach filters out data that, when added to linear 
models consistently increase the inaccuracy of the local predictions. The 
filtered-out data are inconsistent with the local spectra-response rela-
tionship, that may result from erroneous spectra, measurements with 
different spectrometers, or inaccurate analytical measurements in the 
SSL. The approach has been shown to produce robust localized vis–NIR 
and MIR models developed using only a few well selected samples from 
the local site (Shen et al., 2022; Lobsey et al., 2017; Baumann et al., 
2021; Helfenstein et al., 2021). Lobsey et al. (2017) showed that RS-LOCAL 
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performs better than other methods such as ‘spiking’ and MBL. In Shen 
et al. (2022), we developed an improved version of RS-LOCAL, which we 
refer to as RS-LOCAL 2.0. It includes parallelization and is computationally 
more efficient because parts of the algorithm are implemented in C++. 

2.4. Reuse of representations 

As we alluded to earlier, in the context of soil spectroscopic model-
ling, representations are transformations of the input spectra into more 
informative and compact forms that facilitate localization and modelling 
(Fig. 1). They can be obtained using a different techniques, depending 
on the problem (e.g., dimensionality reduction, feature extraction, deep 
neural networks). 

The most common examples are feature extraction or fine-tuning of 
artificial neural networks, where an existing pre-trained model is 
updated on new data. Recent studies have explored reusing represen-
tations learned in large-scale convolutional neural networks (CNNs) 
built on continental and global SSLs to improve the local estimation of 
soil properties (Liu et al., 2018; Padarian et al., 2019; Shen et al., 2022). 
The approach is based on the notion that initial layers in a CNN learn 
generic representations while those in latter layers are task-specific 
(Zeiler and Fergus, 2014; Yosinski et al., 2014). These generic repre-
sentations, learnt from a large data set, can be reused to improve the 
accuracy of local modelling. Hence, one fixes the initial layers in a large- 
scale CNN to implement the method and retrains the remaining layers 
using the local data. Reusing representations performed well when 
localizing spectroscopic models from continental to country scales 
(Padarian et al., 2019). Performance for local estimation, however, 
varies (Shen et al., 2022). We need more research to improve the 
method’s robustness for local modelling, e.g., by enhancing or selecting 
only the most relevant representations. Reusing representations in other 
models is also possible. Ng et al. (2022) extracted representations by 
training a PLSR on a regional SSL and reusing its loadings on the local 
spectra. The approach did not consistently improve the estimates 
compared to local modelling. 

2.5. Hybrid methods 

Combining the above techniques to extract useful information from a 
large SSL is also possible. Wetterlind and Stenberg (2010) used spectral 
neighbours with spiking of a national SSL to improve the local estima-
tion of clay and SOC at four different farms. Shi et al. (2015) proposed 
using spectral similarities and geographical constraints to model SOC 
and estimate it locally. They reported improvements in the accuracy of 
estimates when the SSL was constrained to the geographical region from 
which the unknown samples originated. The GLOBAL-LOCAL algorithm in-
tegrates distance-based spectral similarity and heuristic search methods 
(St. Luce et al., 2022). It generates SSL subsets containing neighbours of 
the representative local observations using the Mahalonobis distance on 
the spectral principal components and develops PLSRs that are evalu-
ated on the representative subset of the local data to select the one that 
performs best. The method was tested using two relatively homogenous 
data sets and requires further testing. In a previous study (Shen et al., 
2022) combined the reuse of representations and heuristic search with 
RS-LOCAL 2.0. They trained a CNN on a global SSL and partially retrained 
the CNN on data selected by RS-LOCAL 2.0. Combining the reused repre-
sentations with RS-LOCAL 2.0 did not consistently improve the SOC esti-
mation in all the local sites tested. 

3. Transfer learning 

Implementing TL is like taking what one has learned from an expe-
rience and applying it to a different but related situation, making the 
‘learning’ faster, cheaper, easier, or all combined. TL is beneficial when 
there are only few data available to train a model or when a model could 
benefit from general domain information to help it capture important 

patterns and features that are relevant to the new situation, or when 
model training needs to be fast, accurate, and adaptable to changing 
requirements and data distributions. TL provides an appealing frame-
work and a set of methodologies that can be applied in the various fields 
of science, engineering, and ML. 

TL is not a new concept. The first report that describes TL was 
published in the 1970s for pattern recognition using neural networks 
(Bozinovski, 2020), and research continued throughout the 1980s and 
1990s (e.g. Pratt et al., 1991). Since then, TL has attracted increasingly 
more attention and under different names and related methods, such as 
‘knowledge transfer’, ‘inductive transfer’, ‘meta-learning’ and ‘multitask 
learning’. In 2005 the Defense Advanced Research Projects Agency 
(DARPA) of the United States Department of Defense defined TL as ‘the 
ability of a system to recognize and apply knowledge and skills learned 
in previous tasks to novel tasks’ (Pan and Yang, 2010). 

The development and adoption of TL have been driven by several 
shortcomings of traditional ML, including their need for large volumes 
of data to train models, the computationally expensive training times, 
the poor generalization of the ‘global’ models on ‘unseen’ local data and 
the distribution mismatch between the datasets. Advances in informa-
tion and communications technologies, Graphics Processing Units 
(GPUs), cloud computing, and the simultaneous and astonishing leaps in 
the development of AI and ML have also fueled developments in TL. TL 
remains an active and vibrant area of research, and there have been 
several publications that report on advances in the techniques and their 
application (e.g. Pan and Yang, 2010; Weiss et al., 2016; Zhuang et al., 
2020; Niu et al., 2020). 

3.1. Definition of transfer learning in soil spectroscopic modelling 

We must first introduce some terminology, definitions, and notation 
to understand TL. To enhance its relevance to soil spectroscopic 
modelling, we have adapted the terminology, definitions and notation 
from different texts (e.g. Pan and Yang, 2010; Weiss et al., 2016; Zhuang 
et al., 2020; Niu et al., 2020). 

A spectral domain, D is defined as having a feature (or spectral) 
space X and a soil property space Y . X contains the entire collection of 
spectra in a matrix X, which has m observations, n features (or spectral 
intensities at specific frequencies), and a marginal probability distribu-
tion P(X). X holds the spectra as vectors, x, where x = {x1,…, xn} ∈ X 

and x1,…, xn are the spectral intensities associated with a particular 
observation. Y contains the soil properties in a matrix Y with m ob-
servations and p soil properties and with conditional distribution P(Y|X). 
Thus, Y holds the soil property vectors, y, where y =
{

y1, y2,…, yp

}
∈ Y , and y1,…, yp are the soil property values associ-

ated with a particular observation. 
Then, given a particular D , its task, T = {X,y, f(⋅) }, consists of the 

training data X, y (note that in this case, we are training a single soil 
property, e.g. SOC) and the predictive function f(⋅) that is not known but 
‘learned’ from the training data. The function f(⋅) can be a statistical or 
ML model (e.g., PLSR, CUBIST) or a deep neural network. If the latter, the 
method is called deep transfer learning (DTL) (Tan et al., 2018). The task 
can also be represented probabilistically (Weiss et al., 2016), as T =

{X,y,P(y|X) }, where P(y|X) is the conditional probability distribution 
of the soil property given the spectra. 

Therefore, given a source spectral domain, D s, with its correspond-
ing learning task T s, and a target (or local) spectral domain, D l, with its 
learning task T l, TL aims to improve the local predictive function, fl(⋅)
using the relevant and useful information gained from D s and T s. 
Usually, D s >> D l and from the definition, the source and local spec-
tral domains and tasks are different, i.e., D s ∕= D l and T s ∕= T l, but 
somewhat related. Thus, four possible TL scenarios emerge (Pan and 
Yang, 2010; Weiss et al., 2016): 
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1. The source and local spectral spaces are different, i.e., X s ∕= X l. For 
example, when the source spectra are one type (e.g., MIR) and local 
spectra another (e.g., vis–NIR).  

2. The marginal distributions of the source and local spectra are 
different, i.e. P(Xs) ∕= P(Xl). For example, when the source and local 
spectra are measured with different spectrometer types that measure 
the same type of spectra. In this case, the types of spectra are the 
same and share the same feature space (i.e. X l = X s), but their 
spectral intensities are different. This scenario is often referred to as 
domain adaptation (e.g., Pan et al., 2011).  

3. The source and local soil property spaces are different, i.e. Y s ∕= Y l. 
For example, when the soil property in the source spectral domain is 
SOC content and that in the local spectral domain is soil organic 
matter (SOM) content, or a proxy, e.g., soil colour.  

4. The conditional distributions of the source and local soil property are 
different, i.e., P(Ys|Xs) ∕= P(Yl|Xl). For example, when the soil 
properties in the source and local data are measured using different 
methods, in different laboratories, and by different practitioners. In 
this case, the conditional distributions of the source and local do-
mains are likely to be different because of the variations in analytical 
procedures. 

Of these four scenarios, 2. and 4. are likely to be the most useful and 
practically in soil spectroscopic TL. 

3.2. Categorization of transfer learning for soil spectroscopic modelling 

The terminology and definitions used to categorize the different TL 
scenarios and solutions are somewhat inconsistent in the literature. 
Possibly due to the considerable research interest and rapidly evolving 
concepts, algorithms, and applications (e.g. Weiss et al., 2016; Niu et al., 
2020; Zhuang et al., 2020). 

In their paper, Pan and Yang (2010) classified TL according to the 
similarities between the source and target (local) domains and the 
availability of measured response variable values (or ‘labels’ as referred 

to in the ML literature). Thus, they proposed three categories: ‘induc-
tive’, ‘transductive’, and ‘unsupervised’ TL—we describe these below. 
Weiss et al. (2016) used a broader classification that considers TL ac-
cording to the similarities between the domains regardless of the 
availability or unavailability of measured response data. They proposed 
‘homogeneous’ and ‘heterogeneous’ TL. Homogeneous TL occurs when 
the variable spaces in the source and target domains are similar or 
closely related, i.e., when X s = X l and Y s = Y l, and ‘heterogeneous’ 
TL occurs when they are dissimilar, i.e., when X s ∕= X l or Y s ∕= Y l. 
Zhuang et al. (2020) reviewed homogeneous TL, and Day and Khosh-
goftaar (2017) reviewed heterogeneous TL and the methodologies used 
for such cross-domain learning. 

Here, we borrow from those classifications, and Fig. 2 shows our 
proposed categorization, which is relevant to our context: soil spectro-
scopic modelling. 

3.2.1. Defining the transfer learnign problem 
When implementing TL in soil spectroscopy, the first decision is to 

assess the similarity between the source and local domains and deter-
mine if the problem is homogeneous or heterogeneous (Fig. 2). Since in 
heterogeneous TL, the feature or response variable spaces are not 
equivalent, the first aim of their solutions is to reduce the dissimilarity 
between the spaces so that the problem becomes a homogeneous TL 
problem. No examples of heterogeneous TL exist in the soil or spectro-
scopic literature, but exploring the methods may be helpful. Interested 
readers can find a detailed description of the heterogeneous TL problem 
and methodologies used to derive solutions in Day and Khoshgoftaar 
(2017). Homogeneous TL methods aim to reduce the dissimilarities in 
the marginal and conditional distributions (or both) of the source and 
local domains. All of the spectroscopic localization methods (Fig. 1) are 
homogeneous TL problems (Fig. 2). Homogenous and heterogeneous TL 
methods can be ‘inductive’, ‘transductive’, or ‘unsupervised’ (Fig. 2). We 
describe these below. 

Fig. 2. Classification of transfer learning (TL). Dashed lines extending from Heterogeneous TL indicate that we have found no studies on heterogeneous TL in the soil 
spectroscopic literature. 
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3.2.2. The availability of local data for transfer learning 
The availability of local observations with the measured soil prop-

erty will determine whether the TL is transductive, inductive or unsu-
pervised (Fig. 2). Transductive TL occurs when the measured response 
variable is only present in the source domain, and the TL can be on the 
observations (i.e., the instances) or the representations (i.e., the 
extracted spectral features that capture the underlying structure in the 
input spectra). The most widely known example of transductive TL is 
domain adaptation (e.g., Pan et al., 2011). Interested readers should see 
Niu et al. (2020) for a detailed description and possible algorithms and 
solutions. There are few examples of transductive TL in the soil spec-
troscopic literature (see Fig. 2 and Section 2). 

Inductive TL occurs when the measured response variable is present 
in both source and local spectral domains. It aims to develop a predictive 
function with a small set of observations (with measured response var-
iable) from the local domain to induce the local predictive function. Four 
approaches exist (Fig. 2), TL on instances, features, parameters, or 
combinations. Interested readers should see (e.g., Pan and Yang, 2010; 
Weiss et al., 2016; Niu et al., 2020) for detailed descriptions of inductive 
TL and the range of possible algorithms and solutions. There are ex-
amples of inductive TL in the soil spectroscopic literature (see Fig. 2 and 
Section 2). 

Unsupervised TL refers to the case where neither the source nor the 
local spectral domains have data on the response variable (i.e., the soil 
property). There is limited application of unsupervised TL in soil spec-
troscopy. The only possible approach might be to aid with the clustering 
or dimensionality reduction of the local spectra with sufficient spectra 
from the source spectral library. 

3.2.3. The possible transfer learnign solutions 
Once the similarity between the source and local domains and data 

availability is known, the next decision will be the solution sought, 
which will depend on the specific undertaking. Experimentation and 
empirical evaluation are often needed to determine the most suitable 
approach. 

Instance-based TL (Fig. 2) uses a small sample from the local domain 
(with or without measured response varaibles), to either re-weight the 
instances in the source domain or to extract relevant parts of the source 
data that can be reused with the small sample set to reduce the differ-
ences in the data distribution between the domains (Pan and Yang, 
2010). One of the most popular methods uses the TrAdaBoost algorithm 
(Dai et al., 2007), which uses a few observations from the local domain 
to extract helpful information from the source domain by iteratively re- 
weighting the source observations. Instance-based methods can be 
useful when the measured soil property in the local domain is scarce or 
unavailable. 

There are few examples of transductive instance-based TL in the soil 
spectroscopic literature; for example, the similarity-based localization 
methods (Fig. 1), may be classed as instance-based transductive TL 
(Fig. 2). Most of the existing spectroscopic localization methods (Section 
2), can be categorized as inductive instance-based TL, e.g., spiking, 
conditional filtering, and heuristic search methods (Fig. 1). Spiking is an 
extreme case of instance-based TL, where all observations in the source 
spectral domain are reused to derive the local predictive function. 

Representation-based TL (Fig. 2) assumes that the source and local 
spectral domains have representations in common, i.e. that the repre-
sentations (of the spectral features) are domain invariant (Tzeng et al., 
2014). It aims to transfer the ‘learned’ representations from a model that 
is typically trained on a large dataset to the local domain. Using the pre- 
trained representations, the local model can benefit from the informa-
tion captured during pre-training. Representation-based TL may be a 
good choice when the pre-trained model captures general patterns and 
features that are relevant across the domains (Yosinski et al., 2014). 
Representation-based transfer can be effective when there is no 
measured soil property data in the local domain and the source and local 
domains have similar high-level features. 

Weiss et al. (2016) describe asymmetric and symmetric feature TL. 
Asymmetric feature transformations are used when the conditional 
distributions of the source and local response variable are the same so 
that transformation can occur without context feature bias. Symmetric 
feature transformations help find underlying structures in the data by 
transforming both domains to a common predictive low dimensional 
latent feature space while reducing the marginal distribution between 
the domains (Weiss et al., 2016). Examples of feature transfer in the 
localization of spectroscopic soil modelling (Fig. 1 and Fig. 2) include 
the reusing of the representations in neural networks (Liu et al., 2018) 
and PLSR (Ng et al., 2022). 

Parameter TL (Fig. 2) uses shared model parameters or prior distri-
butions of hyperparameters from source and target domains. Some or all 
pre-trained parameters are transferred to the local model in this case. 
Parameter transfer may be useful when the source and local domains 
have similar low- and high-level features, and the pre-trained model’s 
parameters can be directly applied to the local undertaking. This 
approach is typically used when there is sufficient local data for fine- 
tuning the pre-trained model’s parameters. This transfer type is only 
suitable when the dissimilarity between the domains is small (Niu et al., 
2020). There are no studies in soil spectroscopic modelling that use 
parameter transfer, however, parameter transfer has been used for the 
classification of remote sensing images (Ma et al., 2021). 

Emerging approaches in the TL literature include hybrid methods 
that simultaneously transfer instances, features or shared parameters 
and relational TL methods that aim to ‘learn’ the common relationships 
between the source and target domains. They have yet to be explored in 
soil science. Shen et al. (2022) combined instance- with feature-transfer 
using the RS-LOCAL 2.0 algorithm and representation-transfer by fine- 
tuning CNNs. Further research on these methods is needed. 

3.2.4. Positive, negative and zero transfer 
The distinction between positive, negative and zero transfer is a 

point to note. TL depends on the relevance and compatibility of the 
information transferred from the source to the local domain. Therefore, 
positive TL occurs when the information gained from the source domain 
improves the performance of the predictive function in the local domain, 
fl(⋅). In this case, the transfer enhances the ‘learning’ by fl(⋅) and im-
proves the model’s generalization and the soil property estimation in the 
local domain. Conversely, negative TL occurs when the information 
from the source domain degrades the performance of fl(⋅). Negative TL 
can occur when the information from the source domain is irrelevant or 
incompatible with the local domain (Wang et al., 2019). Of course, we 
should aim for positive TL and avoid negative TL because it can produce 
inaccurate or erroneous results, which can mislead decision-making. 
Although, there are studies in soil spectroscopic modelling literature 
that report on the variable and poor performance of localization (i.e. 
spectroscopic TL) (e.g. Guerrero et al., 2010; Seidel et al., 2019; Ng 
et al., 2022; Shen et al., 2022), we have not found studies that explicitly 
diagnose and address negative TL. Zero transfer refers to a situation 
where the information from the source does not offer substantial bene-
fits or improvements in the performance at the local domain. It occurs 
either when there is significant dissimilarity between the domains or no 
helpful transferable information. 

3.3. Implementing transfer learning 

For the effective implementation of TL, one should answer three 
fundamental questions: when to transfer, what to transfer, and how to 
transfer (Pan and Yang, 2010). The order in which these questions are 
addressed can vary depending on the context and problem. Unless there 
are resource limitations, prior knowledge or expertise, it may be prac-
tical to sequentially address the when, what, and how, for a systematic 
and practical use of TL. (1) When to transfer emphasizes that one should 
not use TL in all situations. TL should only be used when it improves the 
accuracy of the local predictive function. There may be situations when 
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the transfer does not improve or even degrades the accuracy of the local 
estimates, resulting in zero transfer or negative transfer where the 
estimation fails. (2) What to transfer asks to identify the information that 
should be transferred from the source to the local domain. Whether 
transferring the information contained in the observations, representa-
tions, or both, the aim is to leverage the helpful information from the 
source domain to improve the estimation in the local domain and ach-
ieve positive TL. Therefore, knowing what to transfer allows us to use 
the soil property data, the spectra, and learned representations to 
improve the accuracy, efficiency and generalization of the local pre-
dictive function. (3) How to transfer pertains to the strategies and tech-
niques for transferring the information effectively from the source to the 
local domain (Fig. 2). Selecting the most appropriate techniques will 
ensure optimal transfer, maximizing the use of the transferred 
information. 

We have discussed spectroscopic localization and proposed that TL 
can elegantly describe the problem and help to develop robust and 
practical solutions systematically. Next, we report on experiments that 
test the implementation of a TL method with a large and diverse global 
vis–NIR SSL and data from 12 local sites worldwide. Following our 
framework above, the TL problem is homogeneous because the SSL (i.e. 
the source domain) and the local data (i.e. the target or local domain) 
share the same response variable and the same spectral range; it is 
inductive because several local samples analyzed for SOC help to induce 
the transfer; and it is instance-based because the method transfers 
helpful observations from the SSL to assist the local modelling at each 
site. 

4. Data and methods 

The global SSL used in this work (GSSL 2.0) encompasses a subset of 
the global soil spectral library (GSSL) described by Viscarra Rossel et al. 
(2016), the World Soil Information (ISRIC) spectral library (World 
Agroforestry (ICRAF) and International Soil Reference Information 
Centre (ISRIC), 2021; Shepherd and Walsh, 2002; Shepherd et al., 
2003), the European Land Use and Coverage Area frame Survey 
(LUCAS) database (Stevens et al., 2013), the Mediterranean spectral 
database (i-BEC et al., 2019; Tziolas et al., 2019), the Rapid Carbon 
Assessment Program (RaCA) (Wills et al., 2014), and the Chinese spec-
tral library (Shi et al., 2015). Thus far, it holds 52,742 spectra. Table 1 
summarises the spectroscopic information of each database. Interested 

readers should see the relevant publications above for more specific 
details. 

To combine the reflectance spectra from the different libraries with 
different spectral ranges, resolutions, and wavelength intervals 
(Table 1), we interpolated the spectra to a standard 10 nm wavelength 
interval using a local polynomial regression (Cleveland, 1981). The 
interpolation also improved the signal-to-noise ratio and reduced the 
dimensionality and redundancy in the spectra. 

Fig. 3a shows the spatial distribution of the samples in the GSSL 2.0. 
The reflectance spectra of the GSSL 2.0 were transformed to apparent 
absorbance using A = log10R− 1, where R is the reflectance, and then 
standardised using the standard normal variate (SNV) transformation 
(Barnes et al., 1989). Fig. 3b shows the pre-processed spectra by 
continent. 

The SOC content in the different datasets was measured using 
different analytical methods. The SOC content of the LUCAS samples 
was measured by dry combustion (Orgiazzi et al., 2018), and those of the 
Chinese samples by H2SO4-dichromate oxidation (Shi et al., 2015). The 
SOC of the samples from the GSSL and ISRIC sets was measured using 
different methods, including Walkely-Black, oxidation with H2O2, loss 
on ignition, CHN pyrolysis, Tyurin method, Springer-Klee, and dry 
combustion (Viscarra Rossel et al., 2016). The SOC content of the 
Mediterranean samples was measured using Walkely-Black and oxida-
tion with H2O2 and loss on ignition (Tziolas et al., 2019). The GSSL 2.0 
holds data from diverse soils, including organic soils in temperate re-
gions in the northern hemisphere (Fig. 3a). The SOC content of the soils 
in the GSSL 2.0 ranges from 0.01% to 58.68%. 

4.1. The local data 

We tested local datasets from 10 countries (Canada, USA, Brazil, 
Sweden, Spain, Israel, Nigeria, Zimbabwe, China, and Australia) and a 
region of Antarctica (Ross Dependency), independent from the GSSL 2.0, 
originating from each continent and from soil that is used for different 
purposes including cropping, grasslands, forests, and shrublands. These 
local data represent soil at within-field, field, farm, and regional scales. 

The mean SOC of the local data ranges from 0.07% to 11.13% 
(Table 2). The Canadian site has the largest variation in SOC content 
(0.10% to 53.30%), whereas SOC in the Ross Dependency has the 
smallest (0.01% to 0.46%). 

The local soil samples were measured with different instruments but 

Table 1 
Summary of spectrometers used to measure the samples in the GSSL 2.0.  

Instruments ISRIC LUCAS GSSL Mediterranean Chinese 

Spectrometer ASD FieldSpec Pro XDS RCA ASD spectrometers aASD FieldSpec ASD FieldSpec Pro     
bPSR + 3500  

Manufacturer Malvern Panalytical FOSS Malvern Panalytical aMalvern Panalytical Malvern Panalytical     
bSpectral Evolution  

Detectors (nm) Silicon: 350–1000, Silicon: 400–1100, Silicon: 350–1000, aSilicon: 350–1000 Silicon: 350–1000     
bSilicon: 350–1000   

InGaAs: 1001–1800, PbS: 1100–2500, InGaAs: 1001–1800; aInGaAs: 1001–1800; InGaAs: 1001–1800;     
bPhotodiode: 970–1910;   

InGaAs: 1801–2500  InGaAs: 1801–2500 aInGaAs: 1801–2500 InGaAs: 1801–2500     
bPhotodiode: 1900–2500  

Resolution (nm) 3 at 700, 2 3 at 700, a3 at 700 3 at 350–1000     
b3 at 700   

3 at 700, 2 3 at 700, a3 at 700 3 at 350–1000     
b2.8 at 700   

10 at 1400, 2100  10 at 1400, 2100 a10 at 1400, 2100 10 at 1000–2500     
b8 at 1500; 6 at 2100  

Wavelength 350–2500 400–2500 350–2500 a350–2500 350–2500 
range (nm)    b350–2500  
Sampling 1 0.5 1 a1 1 
interval (nm)    b1  

Part of the soil samples in the Mediterranean library were measured with an ASDa spectrometer and part with a PSR + 3500b spectrometer.  
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Fig. 3. (a) Spatial distribution of the GSSL 2.0, colored by total soil organic carbon (SOC%̇). Note that grey discs represent missing SOC data, but the GSSL 2.0 is 
likely to hold other soil properties data at these sites. (b) Average and standard deviation log10R− 1 spectra by continent, pre-processed by the standard normal 
variate (SNV). 

Table 2 
Descriptive statistics of the total soil organic carbon (SOC) content in the GSSL 2.0 and in each of the 12 local sites. K represents the number of observations in the GSSL 
2.0, N number of observations in the local data, S.d.is the standard deviation of the SOC contents, Min. the minimum value of SOC, Q0.25 is the first quartile, Q0.75 the 
third quartile, and Max. is the maximum SOC. Soil types are from the FAO-UNESCO soil type classification (Food and Agriculture Organization of the United Nations 
and Unesco, 2003): A = Acrisols, B=Cambisols, E = Rendzinas, F=Ferralsols, I = Lithosols, L = Luvisols, N=Nitosols, Q = Arenosols, R = Regosols, V=Vertisols, 
W=Planosols, X = Xerosols, Y=Yermosols.  

Databases    K Mean S.d. Min. Q0.25 Median Q0.75 Max. 

GSSL 2.0    52,742 2.84 6.19 0.01 0.53 1.26 2.54 58.68 
Local data Code Area 

(
km2

)
Soil type N Mean S.d. Min. Q0.25 Median Q0.75 Max. 

Antarctica AQ 3 – 54 0.07 0.09 0.01 0.02 0.03 0.07 0.46 
Brazil BR 10 F 899 0.77 0.42 0.06 0.47 0.64 1.10 2.97 
Canada CA 8208 B 76 11.13 18.69 0.10 0.30 0.70 11.28 53.30 
China CN 165 A 135 1.75 0.58 0.89 1.41 1.59 2.05 4.54 
E. Australia AUe 61 W 100 0.64 0.79 0.05 0.19 0.32 0.75 3.78 
Israel IL 5558 E,L,R,X,Y 146 1.52 1.27 0.03 0.52 1.25 2.35 6.43 
Nigeria NG 12,248 I,L,N 142 0.40 0.48 0.02 0.13 0.29 0.49 3.84 
Spain ES 260 B 107 0.89 0.71 0.23 0.56 0.70 0.97 5.81 
Sweden SE 0.8 B,W 108 2.25 0.57 1.31 1.78 2.23 2.64 4.47 
USA US 0.1 W 216 1.62 0.63 0.78 1.11 1.43 2.07 3.74 
W. Australia AUw 75 W 108 0.56 0.78 0.03 0.10 0.23 0.53 3.25 
Zimbabwe ZW 15,521 I,L,N,Q 91 0.41 0.46 0.02 0.11 0.20 0.51 2.45 
Median  113  108 0.83 0.60 0.05 0.38 0.67 1.04 3.81  
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same make of spectrometer (ASD spectrometers, Malvern Panalytical, 
Worcestershire, United Kingdom) and we preprocessed the spectra in 
the same manner as the GSSL 2.0 (see above). Fig. 3a shows the locations 
of each local site and Fig. 4 their spectra. 

4.2. Experiments 

We designed our experiments using the GSSL 2.0 and local datasets 
(described above). For each of the 12 sites, we compared estimates of 
SOC using local models with a different number of representative local 
data, n (localn), and transfer set models with n + k observations 
(
transfern+k

)
, where k represents a subset of the GSSL 2.0, which con-

tains K observations. We also tested the effect of PLSR and ML algo-
rithms on the modelling and the stability of the localn and transfern+k 
models. We used estimates from global models with K observations and 
local models with all N local observations as benchmarks, assuming that 
the global models would result in the least accurate estimates, while the 
local models with all N data would produce the most accurate estimates. 
Below, we detail the procedures. 

4.2.1. Selecting different localn subsets 
To test the effect of (small and affordable) sample size on local 

modelling, for each of the local datasets with N observations from the 
ten countries and the Ross Dependency, we selected n representative 
samples using the Kennard-Stone algorithm (Kennard and Stone, 1969). 
Thus, for each of the 12 sites, we produced 10 ‘localn’ subsets with n =

5, 10,15,…,50 observations for modelling. The remaining (N − n) data 
served as the independent set to validate the models (see Section 1). 

4.2.2. Selecting transfern+k subsets 
To test the value of using the GSSL 2.0 for local modelling, we used 

the different localn data from the ten countries and the Ross Dependency 
to perform an RS-LOCAL 2.0 search (Lobsey et al., 2017; Shen et al., 2022) 
and transfer k ≈ 100 instances from the GSSL 2.0. Detail on the algo-
rithm can be found in Lobsey et al. (2017) and Shen et al. (2022). Briefly, 

RS-LOCAL 2.0 has two key components: (i) it uses repeated simple random 
resampling to search over the large spectral library and select instances 
that are useful for modelling locally, and (ii) the selection is based on the 
performance of PLSRs derived with the random subsets, which help to 
account for the covariation between the response variable and the 
spectra. Thus, the algorithm keeps only the k instances from the large 
spectral library that produce the most accurate local models when 
assessed on the local n observations. Once selected, the k are combined 
with the n data to construct the transfern+k sets. Our implementation of 
RS-LOCAL 2.0 sets its b parameter, the number of times a sample is drawn 
from the GSSL 2.0, on average, during the re-sampling, to b = 80, 
following recommendations in Lobsey et al. (2017) and Shen et al. 
(2022). 

4.2.3. Modelling with different algorithms 
To assess the effects of different algorithms on the modelling with the 

global, localN, localn, and transfern+k, we used PLSR (Wold et al., 2001), 
the regression tree method CUBIST (Quinlan, 1992), SVM with a radial 
basis function (Vapnik et al., 1996), and optimised one-dimensional 
CNN (Shen and Viscarra Rossel, 2021). Readers are directed to those 
publications for detail on the methods. Examples of their use in spec-
troscopic modelling can be found in Viscarra Rossel and Behrens (2010) 
and Shen and Viscarra Rossel (2021). 

Implementation. Before modelling, we centred the spectra in the 
global, localN, localn, and transfern+k sets. Each regression method has 
several hyperparameters to be optimised. For each method, we set the 
optimisation objective to minimize the root mean squared error (RMSE) 
derived from 10-fold cross-validation of the global and localN, and 5-fold 
cross-validation of the localn, and transfern+k models. For PLSR, we 
optimised the number of PLS factors; for CUBIST, the number of com-
mittees and neighbours; for SVM, the cost (C) and sigma; and CNNs, the 
number of convolutions and fully-connected blocks and their internal 
hyperparameters. Optimisation of the CUBIST and SVM hyperparameters 
were performed using the differential evolution algorithm (Mullen et al., 
2011) and optimisation of the one-dimensional CNNs was performed 

Fig. 4. Average and standard deviation log10R− 1 spectra of each of the local sites, pre-processed by the standard normal variate (SNV).  
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using Bayesian optimisation with the Tree Parzen Estimators (Bergstra 
et al., 2011; Shen and Viscarra Rossel, 2021). We implemented PLSR, 
CUBIST, and SVM using the R software (R Core Team, 2022) and the caret 
library (Kuhn, 2008). The CNNs were developed in Python using the 
deep learning framework TensorFlow (Abadi et al., 2016). 

Evaluating the accuracy of the models. We validated the global, localn, 
and transfern+k models by comparing their estimates of SOC to the 
measured N − n observations from each of the ten countries and the Ross 
Dependency. The localN models were validated with a 10-fold cross- 
validation. We used the difference between the observed versus pre-
dicted SOC values to compute Lin’s concordance correlation coefficient 
(ρc) (Lin, 1989), which helped to compare the different models, the 
RMSE to measure their inaccuracy, the mean error (ME) to measure their 
bias and the standard deviation of the error (SDE) to measure their 
imprecision. ρc is unit invariant and ranges from − 1 to 1, making the 
direct comparison between sites possible. The RMSE, ME, and SDE 
explicitly characterize the models’ estimation errors (Viscarra Rossel 
and McBratney, 1998). 

4.2.4. The stability of the localn, and transfern+k models 
To test the stability of the SOC models that used the localn and 

transfern+k data, we identified the algorithm that produced the best 
estimates of SOC and modelled the data with that method using 50 non- 
parametric bootstraps (Viscarra Rossel, 2007). The bootstrap uses 
samples drawn at random with replacement to assess the variations in 
the modelling that arise from data structurally similar to that under 
study, which could have plausibly arisen instead. We computed the 
mean and standard deviation of the 50 estimates to quantify the stability 
of the localn and transfern+k models. 

4.3. Interpreting the transfer 

We interpreted the transfer from data, modelling and soil science 
perspectives to gain insights into the RS-LOCAL 2.0 transfer and the in-
formation carried from the GSSL 2.0 to the local sites. As stated above, 
TL aims to reduce the discrepancies in the marginal and conditional 
distributions of the data in the source and local domains. We used the 
principal component scores of the spectra as a proxy for the marginal 
distributions of the global, localn, and transferk data and to assess the RS- 
LOCAL 2.0 transfer. We also compared the conditional distributions of the 
SOC in the global, localn, and transferk datasets to assess the transfer 
with RS-LOCAL 2.0. 

Because RS-LOCAL 2.0 uses PLSR to select the information to transfer, it 
considers the co-variation between the SOC and the spectra. Therefore, 
we were able to analyse the variable importance of the PLS models of the 
global, localn, and transferk data to assess if the information selected by 
RS-LOCAL 2.0 for the transfer helped derive the local predictive function. 
The transfer is positive if the spectra-SOC relationships of the localn and 
transferk models are similar and related. If they are not, the local pre-
dictive function will be biased, no transfer will occur, and the transfer 
could be negative. We performed PLSRs on the global, localn, and 
transferk data and tuned the models using 5-fold cross-validation. Var-
iable importance was calculated using the varImp function from the CARET 

library in the software R. The function calculates variable importance as 
a weighted sum of the absolute regression coefficients (Kuhn, 2008). 

To determine if soil and environmental factors were responsible for, 
or at least contributed to the RS-LOCAL 2.0 transfer, we compared different 
attributes of the localn and transferk samples. For the comparison, we 
plotted the coordinates (latitude and longitude) of the data to assess 
geographical similarities, then using a geographic information system 
(GIS), extracted values at the data locations from maps of: i) soil prop-
erties including bulk density, cation exchange capacity (CEC), water pH, 
and clay content, from the global soil grids (Poggio et al., 2021), ii) 
climate variables, mean annual temperature (MAT), and mean annual 
precipitation (MAP) (Fick and Hijmans, 2017), iii) soil types using the 
only currently available digitised global soil classification system (Food 

and Agriculture Organization of the United Nations and Unesco, 2003), 
and iv) a global land cover classification (Buchhorn et al., 2020). 

5. Results 

The GSSL 2.0 holds data from diverse soils, including organic soils in 
temperate regions in the northern hemisphere (Fig. 3a). In contrast, the 
local data originate mainly from agricultural fields, farms or areas with 
relatively small concentrations of SOC. The exception is the data from 
Canada, where the range in SOC is 0.1% to 53.3%. 

The principal component analysis (PCA) scores of the pre-processed 
GSSL 2.0 spectra generally overlap, suggesting subtle differences in the 
mineral-organic composition of the soils from the seven continents 
(Fig. 5). The European spectra extend the feature space of the GSSL 2.0 
(Figs. 5), with a more significant proportion of soils from temperate 
regions in the northern hemisphere (Figs. 3a). The projection of the local 
spectra from the 12 local sites onto the global (feature) space shows that 
the local spectra mostly fall within the space of the GSSL 2.0 (Fig. 5), 
indicating that the GSSL 2.0 contains spectrally similar samples for the 
local sites. 

5.1. Modelling with different algorithms 

The different algorithms used to model SOC content in the localn and 
transfern+k data had only minor effects on the estimates. However, PLSR 
produced the most accurate estimates when the sample size was small 
(n ≤ 20), and CUBIST was most accurate with larger sample sizes 
(25 ≤ n ≤ 50) (Fig. 6a). 

Modelling with all of the global data produced inaccurate estimates 
(ρc ≈ 0), regardless of the algorithm used (Fig. 6a). As might be ex-
pected, cross-validation with the localN data produced the most accurate 
estimates (mean ρc = 0.81 ± 0.14 s.d., depending on the algorithm). 
Modelling with the transfern+k data improved the results compared to 
using only the localn data, particularly when the models used a smaller 
sample size (n ≤ 35) (Fig. 6a). Improvement started to level off around 
n = 30. There was little benefit of using TL for n ≥ 40. 

5.2. Modelling with the localn and transfern+k data 

For a more detailed comparison of the models with the localn and 
transfern+k data, we compared the estimates of SOC in the 12 sites using 
only CUBIST (Fig. 6b, Table 3). On average, modelling with the transfern+k 
data produced more accurate SOC estimates than using only the localn 
data. The differences in ρc are slightly larger at smaller sample sizes, but 
on the whole, the CUBIST estimates with the transfern+k data were, on 
average, 13.3% more accurate (Fig. 6). Since the advantage of TL started 
to diminish at n = 30, we show the assessment statistics for CUBIST using 
n = 30 in Table 3. 

The accuracy of the SOC estimates varied at the different local sites. 
The CUBIST models from Brazil, Nigeria, Israel, and Spain produced 
somewhat inaccurate estimates (ρc < 0.65), although those using the 
transfern+k data were better (Fig. 6b, Table 3). Conversely, estimates for 
Canada, Sweden, the USA, and China were accurate (ρc ≥ 0.8) and more 
so when the transfern+k data were used. The transfern+k data also 
improved the accuracy of the SOC estimates in Antarctica and eastern 
Australia. Overall, except for Israel and Western Australia, which 
exhibited negative TL, the SOC estimates with the transfern+k were more 
accurate than those with only the localn data (RMSE, Table 3). 

5.3. Instability of the localn and transfern+k models 

Models built with the transfern+k data were more stable than the 
localn models (Fig. 6c). The instability of the localn models decreased 
somewhat as the number of samples n increased, as shown by the nar-
rowing width of the standard deviations of their mean estimates. 
However, the transfern+k models were consistently more stable 
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regardless of sample size, as shown by the similar width of their standard 
deviations (Fig. 6c). 

5.4. Interpreting the transfer: data and models 

The statistical distributions of the SOC data in the GSSL 2.0 and the 
12 local sites are different (Fig. 7a). However, the SOC distributions of 
the localn and transferk data are more similar because the transfer with 
RS-LOCAL 2.0 helped to reduce the dissimilarity between the conditional 
distribution of the GSSL 2.0 and the local data. 

The projection of the localn and transferk data onto the spectral space 
of the GSSL 2.0 shows that RS-LOCAL 2.0 selects instances that enhance and 
extend the spectral space occupied by the localn observations (Fig. 7b). 
Instance-based TL with RS-LOCAL 2.0 produced similar spectral distribu-
tions in PCA space, implying a reduction of the dissimilarities between 
the marginal distributions of the GSSL 2.0 and the local spectra. A few 
Western Australian observations fell outside the GSSL 2.0 spectral space 
(Fig. 7b), indicating that the library does not hold observations similar 
to those from this site, causing the marginal distributions in the localn 
and the transferk data to be different, resulting in negative TL (W. 
Australia, Table 3). 

Generally, for each of the 12 sites, the variable importance of the 
localn PLSRs were more similar to those from the transferk PLSRs than 
the variable importance of the global model (Fig. 8). TL with RS-LOCAL 2.0 
selected instances from the GSSL 2.0 that shared similar spectra- 
response relationships with the localn data. The magnitude of the vari-
able importance between the localn and transferk data from Western 
Australia are very different, though the models used similar wave-
lengths. The variable importance of the Nigerian localn and transferk 
models were the most different. Differences in the magnitude of the 
importance or the wavelength regions indicate differences in the 
spectra-response relationships of the localn and transferk models, which 
contributed to their reduced performance and negative TL (Table 3). 

5.5. Interpreting the transfer: geography and soil science 

Exploring the geographical distribution of the transferk data (Fig. 9) 
shows that geography alone does not explain the transfer by RS-LOCAL 2.0 
from the GSSL to local sites. However, we can discern general patterns. 
The transferk selection for each site comes from various locations 
worldwide, but mainly from the US, Europe, China, and Australia, which 
constitute the largest contributions of the data in the GSSL 2.0 (Fig. 3). 
The transferk instances selected by RS-LOCAL 2.0 from the GSSL 2.0 
extended beyond the geographic space of localn data, implying that 
observations from a location anywhere in the world are related to those 
from other places (presumably because they occur under similar pedo-
climatic conditions) and benefit TL and the local estimation. 

Unsurprisingly, the selection shows to be related to the SOC content 
of the soil at the sites. Australian samples are prominent in the transferk 
samples of all 12 local sites (Fig. 9). Samples from the Midwest of the 
United States also tend to be more prominent in the selections, while 
there is no discernible pattern in the selection of samples from South 
America, Africa, and Asia (except China), possibly due to the sparsity of 
data on these continents (Fig. 3). 

The selection of European samples tends to differ for the 12 sites. For 
example, the spatial distribution of the selected samples for Canada, 
Sweden, the United States, China, and Spain is similar, with a large se-
lection of samples from all over Europe (Fig. 9). The average SOC of the 
soil at these sites ranges from 0.9 to 11.1% (Table 2). The selection of 
European samples is more sparse for the Brazilian and eastern Australian 
sites. The average SOC content of the soil at these sites ranges from 0.64 
to 0.77% (Table 2). The selection for Nigeria and Zimbabwe are pri-
marily from southern Europe and the Mediterranean (Fig. 9), and SOC 
content of the soil at these sites ranges from 0.4 to 0.56% (Table 2). The 
selection for the Antarctica site has the least number of European sam-
ples, and the SOC content of the samples is 0.1%. 

In Fig. 10, we show the soil type of the samples from each local site 
and the soil type of the transferk data. The soil types of the transferk 

Fig. 5. Principal component analysis (PCA) of the data in the GSSL 2.0 colored by (a) continent and (b) local (localN) data. In (b) the GSSL 2.0 spectra are shown 
in black. 
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selection did not all match the local soil types (Fig. 10). There were some 
similarities, however; for example, the soil types of the selected transferk 
observations were similar to the soil types from the local sites in Nigeria, 
the USA, Western Australia, Zimbabwe, and to some extent Sweden and 
Israel (Fig. 10). 

Fig. 11 shows the land cover at each local site and the land cover of 
the transferk data. Generally, the most prominent land cover types of the 
selected transferk observations matched the land cover at the local sites. 

Climate, represented by MAT and MAP, did not directly affect the 
transfer (Fig. 12). The localn and transferk data at four sites (eastern 
Australia, Spain, Sweden, and Zimbabwe) had similar MAP. The localn 
and transferk data at only one site, Zimbabwe, had similar MAT. 

However, the MAP and MAT representing the global data were also 
similar to the transferk data. 

Soil properties did not seem to affect the selection of transferk ob-
servations. In most cases, the soil property distributions of the localn and 
transferk data are similar only if the distribution in the global data is also 
similar, e.g. bulk density (BD) in Nigeria and Spain, CEC in China, 
eastern Australia, and Spain, pHW in Nigeria, Sweden, and Zimbabwe. 
The clay content distribution of the localn and transferk data was similar 
but different to the global data in only three sites (Nigeria, Spain, and 
Zimbabwe). Generally, however, climate and soil properties appear not 
to have affected the RS-LOCAL 2.0 selection (Fig. 12). However, the climate 
data are from global maps with coarse pixel resolutions, and the soil data 
are from extrapolated coarse resolution and uncertain soil property 
maps (see Methods). 

6. Discussions 

Despite the many regional, national, continental, and global SSLs 
developed and the remarkable evolution of ML and AI, they have yet to 
significantly impact the application and deployment of soil spectroscopy 
beyond research (Viscarra Rossel et al., 2022). Reasons for this might be 
the significant investment needed to develop SSLs with a comprehensive 
and precisely analyzed set of soil properties, and ML methods’ need for 
large volumes of data for training the models. Obtaining soil analytical 
data on chemical, physical and biological properties is expensive (Vis-
carra Rossel and Bouma, 2016). 

We now also understand that models developed using large ‘global’ 
vis–NIR SSLs cannot generalize to any local situation, so direct soil 
property estimation based on global models (e.g. Shepherd et al., 2022) 
will not generalize well or simply not work—see Table 3. At the core of 
this problem are the discrepancies between the marginal or conditional 
distributions of the data in the SSL and the local site. Like other pre-
dictive methods, spectroscopic modelling assumes that the data distri-
butions in the training and prediction sets are similar. If the assumption 
is satisfied, the modelling should succeed. TL provides a framework and 
a continuously improving and rapidly developing set of methodologies 
that can help explicitly address the discrepancies in the data 
distributions. 

We have shown that instance-based TL with RS-LOCAL 2.0 can help 
overcome the mentioned drawbacks by transferring relevant and bene-
ficial information from a global spectral library, the GSSL 2.0, to 
improve the local modelling of SOC worldwide. TL with RS-LOCAL 2.0 
improved the local modelling of SOC at 10 of the 12 local sites (Table 3). 
Negative TL occurred at two sites. Poor prediction at the Western 
Australian site is most likely because the GSSL 2.0 does not contain 
sufficient helpful data to estimate at this site (Fig. 7). For Israel, the 
spectra-SOC relationships in the localn and transferk data sets differed, 
implying the transfer of observations that did not effectively improve the 
modelling, possibly because the SOC values in the localn data were 
imprecise. 

When the TL was positive, RS-LOCAL 2.0 reduced the dissimilarity 
between the marginal and conditional distributions of the GSSL 2.0 and 
the local data. It resulted in spectroscopic models that were at least as 
accurate or better than entirely local models derived using the same 
number of local observations (Fig. 6b, Table 3). Local models with fewer 
than 30 observations produced estimates that were, on average, less 
accurate than those derived with an equivalent number of observations 
used in the transfer with RS-LOCAL 2.0. If one can only measure a small 
number of local samples, then RS-LOCAL 2.0 can help improve the cost 
effectiveness of soil spectroscopy. Therefore, instance-based TL with RS- 
LOCAL 2.0 and the GSSL 2.0 can facilitate the measurement and moni-
toring of SOC by minimizing the need for analytical measurements and 
reducing the cost of soil analysis. 

RS-LOCAL 2.0 is an inductive instance-based TL method because it aims 
to derive a local predictive function with a small set of local observa-
tions. The selection of the transfer set is based on the performance of the 

Fig. 6. Modelling assessment. (a) Concordance correlation, ρc, showing the 
estimates of SOC with the different algorithms and the global (K), localN , localn, 
and transfern+k data sets. (b) Concordance correlation of the CUBIST estimates of 
SOC for each local site using the localn and transfern+k data sets; (c) Bootstrap 
estimates of modelling stability with the localn and transfern+k data sets using 
CUBIST. The error bars represent the standard deviation of ρc and the horizontal 
dashed lines in (a) and (b) the standard deviation of ρc for the estimates with 
the global (K) and the cross validated localN models. 
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PLSRs that help account for the covariation between the SOC and the 
spectra, and the selected transferk instances from the GSSL 2.0, which 
share similar spectra-SOC relationships with the local observations 
(Fig. 8). Leveraging the soil spectra-SOC relationships helped to ‘filter’ 
the instances from the GSSL 2.0 to extract only the most relevant data for 
local modelling. 

The GSSL 2.0 consists of spectra recorded for different projects, with 
different spectrometers (Table 1), and with SOC measurements made 
using different analytical methods. These inconsistencies in the spectra 
and the SOC analysis contribute to the differences in the marginal and 
conditional distributions of the data sets. However, RS-LOCAL 2.0 can 
reduce the differences in these distributions, reducing the effect of 
measurement inconsistencies. Therefore, the method should remove the 
need for separate ‘calibration transfer’ (Andrew and Fearn, 2004; 

Pittaki-Chrysodonta et al., 2021). 
At each local site, RS-LOCAL 2.0 extracted instances from the GSSL 2.0 

from places across the world that generally have similar mineral and 
organic matter composition (see Fig. 8), presumably because of similar 
pedoclimatic and management contexts. This aspect of the method is 
encouraging because samples collected and measured at one location 
can potentially help with modelling in other locations. Therefore, for 
spectroscopy to be a truly global, practical and cost-effective method, we 
should expand the GSSL 2.0 further and collect soil samples from under- 
represented areas to represent the vast diversity of global soils. A more 
extensive and diverse GSSL will provide richer and more helpful infor-
mation for spectral TL. 

We also carried out experiments to gain insight into the critical 
components of the transfer with RS-LOCAL 2.0 and to help users 

Table 3 
Evaluation statistics for CUBIST models using the entire GSSL 2.0 (global, K = 52,742), all of the local data with N observations (see Table 2) and cross-validation 
(localN), with n = 30 and k = 100.  

Statistic Model Antarctica Brazil Canada China E. Australia Israel Nigeria Spain Sweden USA W. Australia Zimbabwe 

ρc Global 0.02 0.00 0.05 0.11 − 0.06 − 0.01 0.02 − 0.04 − 0.04 0.00 0.01 0.00  
LocalN CV 0.53 0.64 0.97 0.85 0.79 0.78 0.71 0.81 0.96 0.93 0.94 0.80  
Localn 0.64 0.28 0.95 0.62 0.62 0.52 0.48 0.48 0.90 0.79 0.77 0.67  
Transfern+k 0.69 0.40 0.98 0.82 0.76 0.54 0.49 0.56 0.92 0.83 0.67 0.72 

RMSE Global 1.04 1.15 20.16 1.00 2.15 2.38 1.70 0.96 1.43 0.98 6.67 3.08  
LocalN CV 0.08 0.31 4.20 0.29 0.49 0.76 0.35 0.40 0.15 0.22 0.26 0.29  
Localn 0.07 0.40 5.70 0.43 0.66 0.97 0.44 0.46 0.24 0.38 0.51 0.30  
Transfern+k 0.06 0.37 3.68 0.29 0.61 0.99 0.40 0.42 0.23 0.32 0.56 0.29 

ME Global 0.86 0.56 − 8.41 − 0.51 1.08 0.57 1.30 0.31 − 1.19 − 0.29 4.34 1.89  
LocalN CV − 0.00 0.00 − 0.02 − 0.01 − 0.02 0.01 0.02 − 0.01 0.00 0.00 0.01 0.02  
Localn 0.00 0.02 0.86 0.06 0.45 0.03 0.00 0.01 − 0.10 − 0.07 − 0.06 − 0.07  
Transfern+k 0.02 − 0.06 0.39 − 0.02 0.36 − 0.15 0.03 0.05 − 0.08 − 0.05 − 0.12 − 0.05 

SDE Global 0.59 1.00 18.32 0.86 1.86 2.31 1.11 0.901 0.80 0.94 5.07 2.42  
LocalN CV 0.08 0.31 4.20 0.29 0.49 0.76 0.35 0.40 0.15 0.22 0.26 0.29  
Localn 0.07 0.40 5.64 0.42 0.49 0.97 0.44 0.46 0.22 0.37 0.51 0.29  
Transfern+k 0.06 0.36 3.65 0.29 0.49 0.98 0.39 0.42 0.22 0.32 0.55 0.29  

Fig. 7. (a) Density plots showing the distribution of soil organic carbon (SOC) in the GSSL 2.0 (K = 52,742), localn (n = 30), and transferk (k = 100). (b) Scatter plot 
of the first two scores from a principal component analysis (PCA) of the global, localn, and transferk spectra. The localn and transferk spectra were projected on the 
GSSL’s principal component space. 
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understand the algorithm. Developing and applying new interpretable 
and transparent methods is essential to encourage innovation and the 
adoption and development of soil spectroscopy. TL with RS-LOCAL 2.0 
helped to diminish the dissimilarities in the marginal and conditional 
distributions between the GSSL 2.0 and the local data (Figs. 7). The 
selection of the instances from the GSSL 2.0 was relatively uncon-
strained by the geography of the local data (Fig. 9), climate, soil types 
(Fig. 10), or even soil attributes (Fig. 12) other than SOC. However, we 
understand the mismatch in the datasets’ resolution and scale. The 
climate data are from global maps with 1 km pixel resolutions (Fick and 

Hijmans, 2017), the FAO soil map is at 1:5000000 scale and the classi-
fication is based on data from soil profiles (Food and Agriculture Or-
ganization of the United Nations and Unesco, 2003), and the soil 
property data are from extrapolated coarse resolution and uncertain soil 
property maps (Poggio et al., 2021). The selection of the transfer data 
appeared somewhat more affected by the land cover (Fig. 11), possibly 
because of the data’s finer, 100 m pixel resolution (Buchhorn et al., 
2020), and because of the direct effect of land cover on SOC 
concentrations. 

Our results support the development of large and diverse SSLs, not to 

Fig. 8. Variable importance derived from modelling with the global (GSSL 2.0, K = 52,742), localn (n = 30), and transferk (k ≈ 100) data.  
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derive global predictive functions but as a source of information for 
spectroscopic TL. We postulate that the larger and more diverse the 
global spectral library, the more likely it is to hold helpful information 
that can be transferred to derive accurate local soil spectroscopic models 
anywhere in the world. Therefore, maintaining and expanding global 
SSLs like the GSSL 2.0 to better represent the vast diversity of soils 
worldwide is essential and valuable for developing soil spectroscopy and 
cost-effective soil assessments and monitoring. 

7. Future directions 

The development and application of TL are necessary for the adop-
tion of soil spectroscopy and its practical and cost-effective application 
for soil assessments and monitoring. We have shown that TL can help 
address the localization problem in soil spectroscopy. There is potential 
for developing innovative new methods for spectroscopic TL under the 
proposed framework (Fig. 2). Below, we briefly propose directions for 
the development of future research:  

• Computationally efficient TL methods (Fig. 2) for better addressing 
the disparity in the marginal and conditional distributions and better 
capturing the spectra-response relationship of the source and local 
domain data. 

• Inductive TL methods that can dynamically adapt to the local do-
main’s size, diversity or even changing conditions. For instance, 

methods that use incremental learning and continuously update the 
model with new local data could be helpful in continuous soil sensing 
and mapping applications (e.g. mobile sensing platforms). 

• Methods for adapting models across domains using domain adapta-
tion algorithms, including those that combine domain adaptation 
with deep learning (e.g., deep adaptive neural networks, or DANN) 
(Tzeng et al., 2014). These techniques can help align the spectral 
distributions between the domains, considering the variations 
caused by, e.g., instrument calibration, measurement conditions, and 
environmental differences.  

• Multi-task learning in spectroscopic TL. By jointly training the model 
on related soil properties (e.g. compositional data such as clay, sand 
and silt contents, or the organic carbon fractions), the model can 
leverage shared representations and transfer information across the 
data to improve local estimation.  

• Fusing spectra from multiple sources or modalities. For example, 
combining spectra from different sensors (e.g. vis–NIR with laser 
induced breakdown spectroscopic (LIBS) spectra), or with auxiliary 
data, such as other soil properties, satellite imagery, climate and 
other environmental data (Yang et al., 2019, 2022), could provide 
complementary information for TL. Developing effective spectral 
fusion techniques can enhance the model’s ability to capture diverse 
information from multiple data.  

• Unsupervised learning techniques such as self-supervised learning 
(Zhai et al., 2019) or co-training (Ning et al., 2021) for leveraging the 

Fig. 9. Geographic locations of the localn (red dots) and transferk (blue dots) observations.  
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abundance of ‘unlabelled’ local spectra (i.e. local spectra without 
measured soil properties) to improve TL.  

• Extend the TL methods and those above to hyperspectral remote 
sensing, which involves a high-dimensional 2-D local spectral feature 
space. Similarly, extend spectroscopic TL to and its implementation 
with digital soil mapping.  

• Methods to identify when TL will be positive, zero or negative. 
Positive TL is what we aim for. The methods can help determine 
whether TL is beneficial.  

• Methods for interpretable TL to understand what information is 
reused in the transfer and how it helps the prediction.  

• Easy-to-use software tools that enable the implementation of TL for 
globally-distributed, practical and cost-effective soil spectroscopy. 

8. Conclusions 

We reviewed current methods for localizing spectroscopic modelling 
and argued that localization is a typical TL problem. Then we reviewed 
and defined TL in the context of soil spectroscopic modelling and pro-

posed that the proposed framework can guide the development of new 
methods in soil spectroscopy. We applied an instance-based TL method 
for soil spectroscopy with the RS-LOCAL 2.0 algorithm and used the GSSL 
2.0 and local spectra from sites within ten countries worldwide and The 
Ross Dependency. Our results show that the GSSL 2.0 contains useful 
information for TL. The estimation of SOC with ≈100 transfer instances 
selected with ≤ 30 local data improved compared to local modelling 
with an equivalent number of local data and the transfer produced more 
stable estimates. We also showed that TL with RS-LOCAL 2.0 can be 
explained. The method helped to ‘learn’ from the specific soil informa-
tion contained in the GSSL 2.0 and helped to improve the accuracy of the 
local estimation of SOC. The transfer relied on the spectra-SOC rela-
tionship to align the marginal and conditional distributions in the 
transferred data from the GSSL 2.0 and the local data. The application 
and further development of transfer learning in soil spectroscopy will 
benefit from the further development and expansion of global SSLs like 
the GSSL 2.0 to include additional data from under-represented regions 
worldwide. There are substantial opportunities for research and devel-
opment of transfer learning for localizing soil spectroscopic modelling. 

Fig. 10. The soil type(s) of the localn (n = 30) and transferk (k ≈ 100) data. Soil types are from the FAO-UNESCO soil type classification (Food and Agriculture 
Organization of the United Nations and Unesco, 2003): A = Acrisols, B=Cambisols, C=Chernozems, D=Podzoluvisols, E = Rendzinas, F=Ferralsols, G = Gleysols, 
H=Phaeozems, I = Lithosols, J = Fluvisols, K=Kastanozems, L = Luvisols, M = Greyzems, N=Nitosols, O=Histosols, P=Podzols, Q = Arenosols, R = Regosols, 
S=Solonetz, T = Andosols, U = Rankers, V=Vertisols, W=Planosols, X = Xerosols, Y=Yermosols, Z = Solonchaks. Soil type frequencies for the localn were derived 
from sample counts. Because the sample counts of the soil types in the GSSL 2.0 are imbalanced, counts of the soil types in the transferk were normalised by the total 
of each soil type in the GSSL 2.0. The largest counts in the localn and transferk data were scaled to 1.0. 
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We hope that our manuscript helps to inform and incite further 
developments. 

Data and code availability 

The spectral libraries from the World Soil Information (ISRIC), the 
European Land Use and Coverage Area frame Survey (LUCAS) and the 

Mediterranean region are open source. The remaining data including the 
local datasets are used under agreement and are not open. They may be 
available from the data owners via the corresponding author on 
reasonable request. The RS-LOCAL 2.0 algorithm is available from the 
corresponding author. A version of RS-LOCAL will be available  in the near 
future in an R software library. 

Fig. 11. Land cover type(s) of in the localn (n = 30) and transferk (k ≈ 100) data. Land cover frequencies for the localn were derived from sample counts. Because the 
sample counts of the land cover in the GSSL 2.0 are imbalanced, counts of land cover types in the transferk were normalised by the total of each class in the GSSL 2.0. 
The largest counts in the localn and transferk data were scaled to 1.0. 

R.A. Viscarra Rossel et al.                                                                                                                                                                                                                    



Earth-Science Reviews 254 (2024) 104797

19

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 

R.A.Viscarra Rossel reports financial support was provided by 
Australian Government Department of Industry Science Energy and 
Resources. R.A.Viscarra Rossel reports financial support was provided 
by Australian Research Council. 

Data availability 

Some data is open source, some is private, but may be available 
under agreement and on reasonable request. 

Acknowledgements 

RAVR and ZShen thank the Australian Government’s Australia-China 

Fig. 12. Density plots showing the distribution of climate and soil properties of the GSSL 2.0, localn and transferk data. Climate is represented by the mean annual 
precipitation (MAP) and mean annual temperature (MAT) and soil properties by bulk density (BD), cation exchange capacity (CEC), pH measured in water (pHw) and 
clay content (Clay). Values were extracted from coarse resolution global maps. 

R.A. Viscarra Rossel et al.                                                                                                                                                                                                                    



Earth-Science Reviews 254 (2024) 104797

20

Science and Research Fund-Joint Research Centres (ACSRF-JRCs) (grant 
ACSRIV000077) and RAVR thanks the Australian Research Council’s 
Discovery Projects scheme (project DP210100420) for funding. This 
work was supported by the Pawsey Supercomputing Centre with fund-
ing from the Australian Government and the Government of Western 
Australia. We thank the many people who contributed to the voluntary 
global soil spectral library project (listed in Viscarra Rossel et al. 
(2016)), as well as those who contributed to the ISRIC, LUCAS, Medi-
terranean, and Chinese spectral libraries. We also thank Dr Mingxi 
Zhang who helped to source some of the global spatial datasets. 

References 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., 
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., 
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., 
2016. TensorFlow: A system for Large-Scale machine learning. In: 12th USENIX 
Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX 
Association, Savannah, GA, pp. 265–283. URL. https://www.usenix.org/confer 
ence/osdi16/technical-sessions/presentation/abadi. 

Andrew, A., Fearn, T., 2004. Transfer by orthogonal projection: making near-infrared 
calibrations robust to between-instrument variation. Chemom. Intell. Lab. Syst. 72, 
51–56. https://doi.org/10.1016/j.chemolab.2004.02.004. 

Barnes, R., Dhanoa, M.S., Lister, S.J., 1989. Standard normal variate transformation and 
de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43, 
772–777. 

Barthès, B.G., Kouakoua, E., Coll, P., Clairotte, M., Moulin, P., Saby, N.P., Le Cadre, E., 
Etayo, A., Chevallier, T., 2020. Improvement in spectral library-based quantification 
of soil properties using representative spiking and local calibration–the case of soil 
inorganic carbon prediction by mid-infrared spectroscopy. Geoderma 369, 114272. 
https://doi.org/10.1016/j.geoderma.2020.114272. 

Baumann, P., Helfenstein, A., Gubler, A., Keller, A., Meuli, R.G., Wächter, D., Lee, J., 
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