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A B S T R A C T   

Road tunnels might be exposed to Boiling Liquid Expansion Vapor Explosion (BLEVE) due to the transportation 
of liquified gas tankers passing through road tunnels. An efficient and accurate prediction of the response of road 
tunnels under internal BLEVEs can facilitate the reliable BLEVE-resistant design and risk assessment of road 
tunnels. This study introduces an advanced deep-learning model that employs a Transformer-based architecture 
with a modified self-attention mechanism, termed as Self-Attention Modified Transformer (SAMT), to predict 
BLEVE-induced support rotation of tunnel structure, which is a common criterion in assessing reinforced concrete 
structure damage to blast loads. Unlike the Transformer with the traditional self-attention mechanism, the 
proposed SAMT effectively aggregates global information across all variables while mitigating undue de-
pendencies among uncorrelated variables. Consequently, the proposed SAMT is better suited for processing 
tabular data with uncorrelated variables. The feasibility and advantages of the proposed SAMT are verified by 
extensive data generated using calibrated numerical models of box-shaped road tunnels subjected to internal 
BLEVEs. By comparing the performance of the proposed SAMT with the non-modified Transformer network (FT- 
Transformer) as well as two other typical deep learning networks, i.e., Multi-layer Perceptron (MLP) and Re-
sidual Network (ResNet), it is found that the SAMT offers higher prediction accuracy and robustness than the 
other three models in predicting BLEVE-induced support rotations of box-shaped road tunnels. The study 
demonstrates that the proposed SAMT is an effective tool for the prediction of BLEVE-induced support rotations 
of road tunnels.   

1. Introduction 

Road tunnels are important components in traffic networks for time 
and cost savings in the transportation of goods and personnel between 
two locations [1]. With the growing demand in liquefied petroleum gas 
(LPG) for residential and commercial use, the number of LPG tankers 
transported through road tunnels has been increasing rapidly [2], 
leading to an increasing probability of Boiling Liquid Expanding Vapors 
Explosion (BLEVE) inside road tunnels [3]. Accidental BLEVEs inside 
tunnels are very likely to cause significant damage to road tunnels, 
inevitable interruption of traffic, and great economic loss and injuries 

[4,5]. Therefore, it is essential to conduct the blast-resistant design to 
ensure the safety of road tunnels when exposed to internal BLEVE 
incidents. 

Current designs of road tunnels against blast loads, given in the 
existing codes and guidelines (e.g., GB 50038–2005 [6]), typically rely 
on simplified assumptions regarding blast loads and tunnel structure 
mechanical properties, as well as their surrounding conditions. These 
simplifications of blast loads and tunnel properties may lead to overly 
conservative or unsafe design of blast resistance of tunnels. To accu-
rately predict the response of road tunnels under blast loads, experi-
mental tests and numerical simulations have been widely employed in 
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current practice and research [7–10]. However, the tests of road tunnels 
under blast loads are expensive, time-consuming, and highly sensitive to 
testing setup. On the other hand, the numerical simulation of road 
tunnels under blast loads requires profound modeling knowledge, fine 
mesh, and careful model calibrations. The execution of finely-meshed 
numerical models needs advanced computational resources and pro-
fessional software and facilities, which hinders its application in engi-
neering practice. Therefore, more efficient approaches are needed for 
engineers to carry out the blast-resistant analysis and design of road 
tunnels to resist blast loads. 

In recent years, deep learning-based methods have made great 
progress and are applied to solve various civil engineering problems 
[11–15] due to their efficiency and ease of use once the model is 
established. The popular application of deep learning methods in pre-
dicting structural response is partially encouraged by their excellent 
performance in processing audio, texts, and images [16]. However, the 
nature of the data involved in predicting structural responses to blast 
loads is fundamentally different. Typically, such data is presented in 
tabular format where each column represents a variable, and each row is 
an instance [17]. Unlike image or text data, where local variables exhibit 
global dependencies and correlations among local variables significantly 
influence final outputs, the parameters for structural response predic-
tion are generally independent. This presents a distinct challenge for the 
applicability of many deep learning models designed for data with 
inherent inter-variable relationships. 

Several studies have tried to use typical deep learning method such 
as Multi-layer perceptron (MLP) to process the tabular dataset for the 
prediction of structural response under blast loads. For instance, Zhou 
et al. [18] adopted MLP to evaluate the damage levels of reinforced 
concrete (RC) columns subjected to blast loads. The parameters of the 
RC columns and blast loads are used as the variables to train MLP to 
predict structural damage levels. In addition, Liu et al. [19] employed 
MLP to predict the final plastic deformations of stiffened plates sub-
jected to close-in explosions. The charge weight, the stand-off distance 
between the charge and stiffened plates, and the thicknesses of the plate 
and stiffener were used as the variables in tabular datasets. It should be 
noted that many advanced deep learning methods [20] have been 
developed and proven to outperform MLP in computer vision and nat-
ural language processing. The performance of MLP, although it yielded 
good predictions, was not compared with other emerging deep learning 
methods for the prediction of structural response under blast loads. Li 
et al. [21] performed a comparative study of different deep learning 

methods in BLEVE load predictions and concluded Transformer method 
outperformed other commonly used deep learning methods in explosion 
load predictions. This is attributed to the self-attention (SA) mechanism 
in Transformer architectures, which excels at aggregating features from 
different variables [22]. However, the SA mechanism, by design, cap-
tures inter-variable dependencies, potentially reducing the model’s 
performance when applied to engineering tasks with independent var-
iables, such as predicting the responses of engineering structures and 
civil infrastructures (e.g., road tunnels) under blast loads. 

The aim of this study is to develop an improved Transformer-based 
architecture specifically tailored for the response prediction of road 
tunnels subjected to internal BLEVEs. The proposed model, namely the 
Transformer with modified self-attention (SAMT), refines the conven-
tional self-attention mechanism of the Transformer-based network to 
better process the tabular data with uncorrelated variables. Many 
advanced techniques, such as hyperparameter tuning based on Tree- 
Structured Parzen Estimator (TPE) approach and early stopping, have 
been incorporated into the proposed SAMT model to obtain optimal 
performances. A total of 115 cases and 3450 instances generated from 
the validated numerical simulations of box-shaped road tunnels sub-
jected to internal BLEVEs are utilized to train the proposed model and 
evaluate its performance. 

It is noted that the support rotation of tunnel structures under blast 
loads is used as the indicator of tunnel damage level under internal 
BLEVEs, since many existing codes (e.g., UFC-3–340-02 [23]) adopt this 
indicator to establish the structural damage criteria. Its detailed calcu-
lation has been given in the authors’ previous study [27]. To demon-
strate the advantage of the proposed SAMT to predict the support 
rotations of road tunnels subjected to internal BLEVEs, the non-modified 
Transformer-based network (Feature-Tokenizer Transformer) and two 
typical deep learning models, including Multi-layer perceptron (MLP) 
and Residual Network (ResNet) are also employed to process these data 
for comparative analysis. In addition, the datasets with different 
numbers of variables and instances are generated based on the given 
data to test the robustness of the SAMT in predicting the support rota-
tions of road tunnels. The methodology of the SAMT is given in Section 
2, followed by the data preparation of BLEVE-induced support rotations 
of road tunnels in Section 3. The implementation details and perfor-
mance evaluation of the SAMT in predicting the support rotations of 
road tunnels under internal BLEVEs are presented in Section 4. 

Fig. 1. Flowchart of trainable FT-Transformer model for the prediction of BLEVE-induced support rotations of tunnels.  
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2. Methodology of Transformer with modified self-attention 
(SAMT) 

Transformer-based networks, as one type of advanced deep learning 
models, have been developed and widely used to treat complex texts, 
audio, and images [24]. They have achieved remarkable accomplish-
ments on various natural language processing and computer vision tasks 
[25]. To extend this success to the domain of tabular data with instances 
given in rows and variables given in columns, Feature-Tokenizer 
Transformer (FT-Transformer) has been proposed by Gorishniy et al. 
[22] to address the non-sequential nature of tabular data by generating 
multi-dimensional embeddings for each variable. However, the 
self-attention mechanism utilized in Transformer networks establishes 
the dependencies between different variables, which is not appropriate 
for the inference of variables without interdependence. In this section, 
the FT-Transformer model is refined to process tabular data with no 
cross-correlation among variables, which is common in civil engineering 

and is also consistent with the characteristics of the collected data to 
predict the BLEVE-induced support rotations of road tunnels in this 
study. The details of modifications are elaborated in the subsequent 
sections. 

2.1. Feature-Tokenizer Transformer model 

The Feature-Tokenizer Transformer (FT-Transformer) model is an 
extension of the original Transformer architecture developed by Vas-
wani et al. [26]. Designed to accommodate tabular data, the 
FT-Transformer converts variables into multi-dimensional embeddings, 
subsequently processed by a stack of Transformer layers. Three main 
parts, i.e., Feature Tokenizer module, Transformer layers, and Predic-
tion head, are included in the FT-Transformer model. Fig. 1 shows its 
overall architecture and procedures to establish a trainable network for 
the prediction of tunnel support rotations under internal BLEVEs. 

The original data involving the parameters of tunnels and BLEVEs 

Fig. 2. Details of Feature Tokenizer module for feature extraction of original data.  

Fig. 3. The architecture of Transformer layers to process an input instance.  
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are first converted by the Feature Tokenizer module into a three- 
dimensional tensor (the embedding). The generated embedding is then 
augmented with a randomly initialized, learnable token (i.e., the infer-
ence tokens) and processed by the following stacked Transformer layers. 
Next, the Prediction Head module is employed to decode the enriched 
inference token to obtain the predicted support rotations. The losses 
between the labeled (prior) and predicted support rotations are calcu-
lated to update the gradients of weights and biases of the FT- 
Transformer via back-propagation. A reliable network to predict the 
support rotations of tunnels under BLEVEs can be finally established 
through iterative refinement. Detailed explanations of each major 
component of the FT-Transformer model are provided in the subsequent 
sections. 

2.1.1. Feature Tokenizer module 
The objective of the Feature Tokenizer module is to convert each 

scalar feature, including numerical and categorical features, to a tensor 
embedding on which the subsequent Transformer acts. To generate the 
numerical embedding, each numerical feature in any row of the nu-
merical feature transpose matrix multiplies element-wisely with all el-
ements in the corresponding row of the weight matrix W(num) and is then 
added with all elements in the corresponding row of the bias matrix 
B(num), as shown in Fig. 2. The categorical features are converted into a 
categorical embedding by using the word-embedding method and then 
adding it with the bias matrix B(cat). The numerical embedding and 
categorical embedding are finally concatenated into an embedding (i.e., 
T0 tensor) for subsequent processing. 

2.1.2. Transformer layers 
Before feeding to the Transformer layers, the embedding (T0 tensor) 

output from the Feature Tokenizer module is augmented with an 

inference token (i.e., T0
cls) (see Fig. 1), where the sizes of the columns, 

rows, and pages are the dimension of each feature token, the number of 
feature tokens, and the number of instances, respectively. The goal of the 
Transformer layers is to refine the feature token, including the inference 
token, with global contextual information. In particular, the inference 
token will aggregate information from all other features so that it can be 
then used to make the final prediction. 

Fig. 3 presents the overall procedure of Transformer layers encoding 
an instance extracted from the three-dimensional tensor. The feature 
tokens of the instance are firstly normalized using the layer-normaliza-
tion method and are then passed into the multi-head self-attention 
(MHSA) sub-module. To reduce the information degradation caused by 
data propagation in the network, the residual connection is added, i.e., 
the output from the MHSA is added with feature tokens of the extracted 
instance (i.e., unnormalized input) as the input of the next sub-module, 
i.e., the feedforward neural network (FNN) sub-module. Similarly, the 
output from the FNN is added with the unnormalized input for FNN as 
the input of the following Transformer layer, which has the same ar-
chitecture as the first transformer layer. The final encoded tensor is 
obtained by repeating the above process from the second transformer 
layer to the last transformer layer. The FNN in the Transformer layers is 
a well-known multi-layer perceptron, which is not detailed herein. The 
MHSA is the core block of the Transformer layers, which is therefore 
described subsequently in detail. 

The self-attention mechanism in the MHSA module can aggregate the 
normalized feature tokens of T0 and T0

cls as the output. Fig. 4 shows the 
whole procedure of the self-attention mechanism to process a normal-
ized instance originating from the stacked tensor of T0 and T0

cls. Three 
matrices i.e., Query (Q) matrix, Key (K) matrix, and Value (V) matrix are 
firstly generated by multiplying the normalized instance with three 
trainable weight matrices (WQ, WK, WV). The correlations between 

Fig. 4. The architecture of self-attention mechanism.  
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different features of the normalized instance are computed as the 
product of the Q matrix and transposed K matrix, which is divided by the 
scaling factor 

̅̅̅̅̅
dk

√
(i.e., the square root of the dimension of the row in the 

K matrix) and is operated by the Softmax function to generate Q-K 
scores, i.e., the weights on the V matrix. The final output is given by 
multiplying the Q-K scores with the V matrix. The expression is given 
below. 

Attention
(

Q,K,V
)

= softmax
(

QKT
̅̅̅̅̅
dk

√

)

V (1) 

The multi-head self-attention sub-module is an extension of the self- 
attention mechanism and allows the normalized instance to represent 
more characteristics in different subspaces. The multi-head self-atten-
tion sub-module employs multiple parallel weight matrices WQ, WK, WV 

to linearly project the normalized instance into multiple groups of 
matrices of Q, K, and V, as shown in Fig. 5. The self-attention process is 
performed on each of these projected groups of Q, K, and V in parallel. 
The tensors generated from all projected groups are concatenated (see 
Eq.MultiHead(Q,K,V) = Concat(Attention(Q1,K1,V1),…,Attention (Qh,

Kh,Vh)) (2) and projected linearly into a final output tensor. 

2.1.3. Prediction head 
The prediction head module is employed to decode the inference 

tokens output from the module of Transformer layers. The inference 
tokens (Tf

cls) are firstly normalized using the layer-normalization method 
and are then activated using the ReLU function, as shown in Fig. 6. The 

final prediction of support rotations is achieved by linearly projecting 
the activated inference tokens with a trainable weight matrix (see Eq. 
ŷ = Linear(ReLU(Layernorm(Tcls

f ))) (3)). The weight matrix is iteratively 
updated by minimizing the loss between the predicted and actual sup-
port rotations, as shown in Fig. 1. The loss is expressed using the func-
tion of Mean Squared Error (MSE) in this study, as given in Eq. 
MSE = 1

n
∑n

i=1(yi − ŷi) (4). 

ŷ = Linear
(

ReLU
(

Layernorm
(

Tcls
f

)))
(3)  

MSE =
1
n
∑n

i=1
(yi − ŷi) (4)  

where n is the total number of instances, yi and ŷiare the actual and 
predicted support rotations of the ith instance, respectively. 

2.2. Modified self-attention mechanism 

As discussed in Section 2.1.2, the output from the MHSA of Trans-
former layers is calculated by the product of the Q-K score matrix (i.e., 
weights on V matrix) and V matrix. That is, any element in each token of 

the output matrix is the dot product of the Q-K scores in the same row as 
the element and the vector in the V matrix in the same column as the 
element. For example, the first element in the inference token (i.e., CLS 
token) of the output matrix (i.e., S1V1 given in Fig. 7) is the sum of the 
products of the scores in the first row of the Q-K score matrix and the 

Fig. 5. The architecture of multi-head self-attention (MHSA) sub-module to process an instance.  

Fig. 6. The flowchart of prediction head module to decode inference tokens.  

MultiHead
(
Q,K,V

)
= Concat

(
Attention

(
Q1,K1,V1),…,Attention

(
Qh,Kh,Vh)) (2)   
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values in the first column of the V matrix. Therefore, all local feature 
tokens of the V matrix contribute to the inference token in the output 
matrix. This mechanism facilitates the aggregation of relevant infor-
mation from all local feature tokens to the inference token, which can 
unbiasedly reflect all features of the normalized instance. In addition, 
this mechanism can associate each feature token with other local feature 
tokens. For example, the element S3V1 in the output matrix given in 
Fig. 7 is the dot product of the score group x and the vector at the first 
column of the V matrix. Each feature in the V matrix has a certain 
contribution to S3V1. In summary, the inference token first aggregates 
the details of all local feature tokens and then shares the global summary 
among local feature tokens by using self-attention mechanism, which 
can be regarded as two procedures, i.e., the aggregation and propagation 
of global information. During the propagation phase, each local feature 
token establishes the correlation with other local feature tokens through 
the action of self-attention mechanism. Since the module of Transformer 
layers stacks multiple Transformer layers as shown in Fig. 3, the corre-
lation information between different local feature tokens, established in 
the preceding Transformer layer, is aggregated into the inference tokens 
in subsequent Transformer layers via the self-attention mechanism. 

Consequently, the final inference token output from the module of 
Transformer layers is significantly affected by the cross-correlation of 
local feature tokens. This becomes problematic when predicting struc-
tural responses under blast loads, as the data for these predictions often 
consists of uncorrelated variables. In other words, there is no inherent 
correlation among different local feature tokens. Therefore, using the 
inference token to aggregate data with uncorrelated variables may lead 
to the inclusion of inappropriate global information. This occurs because 
the self-attention mechanism still enforces correlation between different 
local feature tokens that are not intrinsically dependent on each other. 
Such inappropriate aggregation adversely affects the prediction accu-
racy for structural responses under blast loads. 

To overcome the aforementioned issue, a modification is introduced 
to the self-attention mechanism in the MHSA sub-module. The modifi-
cation keeps the process of inference tokens aggregating the information 
of all local feature tokens but discards the propagation process of global 
information. The specific details are shown in Fig. 7(b). The calculation 
of the inference token of the output matrix in each Transform layer re-
mains the same as the non-modified self-attention mechanism to 
aggregate information from all local feature tokens. However, the local 

Fig. 7. Comparison of original and modified self-attention mechanisms.  
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feature tokens of the output matrix in each Transformer layer are 
determined by extracting the elements in V matrix except for the 
inference tokens instead of generating them using the self-attention 
mechanism. The final output is obtained by concatenating the infer-
ence token and the extracted element tokens. This modification pre-
serves the effective aggregation of relevant information from all local 
feature tokens, while eliminating the interference of forced correlations 
between different local feature tokens, thereby mitigating their undue 
influence on the inference tokens. 

2.3. Auto-hyperparameter tuning using TPE approach 

The performance of Transformer-based networks as well as many 
other machine learning approaches depends heavily on the selection of 
hyperparameters, e.g., the number of Transformer layers. In this study, 
the Tree-Structured Parzen Estimator (TPE) approach [27] is employed 
to automatically tune the hyperparameters of the 
self-attention-modified Transformer network. Its details are given 
below. 

The TPE approach is a Bayesian-based optimization algorithm, 
which has achieved outstanding performances in optimizing the 
hyperparameters of various machine learning methods. It firstly assumes 
the prior distributions and search ranges of all hyperparameters to be 
tuned (e.g., the number of Transformer layers), which are stored in the 
tree-structured memory. A certain number of observations, i.e., several 
groups of hyperparameters are randomly picked from the hyper-
parameter space as the prior set D at the first iteration. The TPE defines 
the probability density p(x|y, D) using the following assumption: 

p
(

x|y,D
)

=

{
p
(

x|D(l)
) (

y ≤ yγ
)

p(x|D(g)) (y >yγ)
(5)  

where p(x|D(l)) is the density of x in the better hyperparameter set D(l) 

that the corresponding loss is not greater than yγand p(x|D(g)) is the 
density of the remaining observations in D (i.e., D(g)), in which yγ is the 
top-γ-quantile objective value in the set of observations D. 

Parzen Estimators, i.e., kernel density estimators p(x|D(l)) and p(x| 
D(g)) are estimated via: 

p

(

x|D(l)

)

= ω(l)
0 p0(x)+

∑N(l)

n=1
ωnk

(
x, xn

⃒
⃒
⃒b(l)
)

(6)  

p

(

x|D(g)

)

= ω(g)
0 p0(x)+

∑N

n=N(l)+1

ωnk(x, xn|b(g)) (7)  

where p0 is a non-informative prior, ωn is the weight set, k is the kernel 
function, b(l) and b(g) are the bandwidths of k for p(x|D(l)) and p(x|D(g)). 
The details of the above parameters can refer to Watanabe [27]. It is 
noted that the TPE algorithm utilizes the expected improvement (EI) as 
an acquisition function to update the optimal hyperparameter candi-
dates. EI can be derived as follows: 

EIyγ

(

x|D
)

=

∫ yγ

− ∞
(yγ − y)p(y|x,D)dy

=

∫ yγ

− ∞

(

yγ − y
)

p(x|y,D)p(y|D)
p(x|D)

dy

=
p
(

x|D(l)
)

γp
(

x|D(l)
)
+
(

1 − γ
)

p
(

x|D(g)
)

∫ yγ

− ∞
(yγ − y)p(y|D)dy

(8) 

Subjected to: 

Fig. 8. Numerical models to generate the data of BLEVE-induced support rotations of road tunnel structures [27].  
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p
(

x|D
)

=

∫ +∞

− ∞
p(x|y,D)p(y|D)dy

= p
(

x|D(l)
)∫ yγ

− ∞
p(y|D)dy + p

(

x|D(g)
)∫ +∞

yγ
p(y|D)dy

= γp
(

x|D(l)
)
+
(

1 − γ
)

p
(

x|D(g)
)

(9) 

Based on Eq. (8), EI can be expressed as 

EIyγ

(

x|D

)

∝

(

γ +

(

1 − γ

)
p(x|D(g))

p
(

x|D(l)
)

)− 1

(10) 

Based on Eq. EIyγ (x|D)∝
(

γ + (1 − γ)p(x|D(g) )

p(x|D(l))

)− 1 
(10), it can be found 

that to maximize improvement, the optimal hyperparameter set should 
have high probability under p(x|D(l)) and low probability under p(x| 
D(g)). 

2.4. Evaluation metrics 

Many metrics, such as the Root Mean Square Error (RMSE), Mean 
Absolute Percentage Error (MAPE), and coefficient of determination 
(R2), can be adopted to evaluate the performance of supervised machine 
learning methods. In this study, RMSE and R2 are employed as the 
evaluation metrics of the self-attention-modified Transformer network, 
as given in Eqs. (11) and (12). RMSE is sensitive to large local errors 
between predicted and labeled data, which can reflect the adaptability 
of the modified Transformer network to different instances. R2 quan-
tifies the historical distribution relation between predicted and labeled 
data, which can measure the overall robustness of the modified Trans-
former network. The trained model is better when the smaller RMSE is 
achieved and the R2 is closer to 1. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(11)  

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ỹ)2 (12)  

where yi and ŷiare the labeled and predicted support rotations of the ith 

instance, respectively, ỹ is the mean support rotations of all labeled 
instances. 

3. Data of BLEVE-induced tunnel support rotations 

Since it is not practicable to carry out massive experimental and field 
tests to obtain sufficient data of BLEVE-induced support rotations of 
road tunnel structures for training the model, validated numerical 
models of road tunnels subjected to internal BLEVEs are established in 
this section to generate the training data. The details are given below. 

3.1. Numerical model and data generation 

The numerical model of box-shaped road tunnels subjected to in-
ternal BLEVEs has been built in the author’s previous study [28]. In this 
section, the numerical model is again employed and parameterized to 
generate the data of BLEVE-induced support rotations of road tunnels. 
The overall view of the numerical model is given in Fig. 8. The tunnel 
structures consist of two traffic cells and a middle escape passageway. 
The thicknesses of tunnel structures are 1.1 m in the top wall, 1.2 m in 
the bottom wall, 0.95 m in the side wall, and 0.6 m in the middle wall. 
The tunnel is set to be 15 m from the left, right and bottom surfaces of 
the model and has a length of 30 m along its longitudinal direction. The 
size of solid elements to mesh tunnel structures and soil mass near the 
tunnel is 100 mm. Other areas of the numerical model are meshed using 
the gradually increased sizes of solid elements. Two-layer of steel cages 

are arranged inside the tunnel structures and meshed by 50 mm beam 
elements. The spacing between adjacent hoop rebars, neighboring lon-
gitudinal rebars, and adjoining shear rebars is 200 mm. The diameters 
and strengths of steel reinforcements as well as the concrete grades of 
tunnel walls are varied to generate the data of BLEVE-induced support 
rotations of road tunnels with different structural configurations. The 
inner widths and heights of the traffic cells and the properties and 
configurations of the soil mass around the tunnel are also changed to 
consider their effects on BLEVE-induced support rotations of road tunnel 
structures. 

In addition, BLEVEs on the left and right lanes of the left traffic cell 
from different volumes of Liquified Petroleum Gas (LPG) tanks with 
varied liquid-filling ratios inside tanks are simulated. Table 1 summa-
rizes varied parameters (i.e., variables) for the simulation to generate 
the data of support rotations. A total of 115 cases are simulated by 
adjusting different variables given in Table 1. It is noted that the support 
rotations of the top wall, side wall, and bottom wall at the first 9 m 
segments along the longitudinal direction of the tunnel in each case are 
measured with an interval of 1 m, resulting in a total of 3450 data 
instances. 

*MAT_72REL3, *MAT_24, and *MAT_147 in LS-DYNA are employed 
as the material models of tunnel concrete, steel rebars inside concrete, 
and soil mass around the tunnel, respectively. To ensure the accuracy of 
the built numerical model in predicting the response of road tunnels 
under internal blast loads, the authors in the previous studies [28,29] 
have calibrated the models to simulate responses of tunnel structures 
and the soil mass around the tunnel by using the test of a reinforced 
concrete (RC) slab subjected to blast loads [30] and the test of soil mass 
subjected to internal blast loads [31], respectively. To avoid repetition, 
the tests [30] and numerical models and the partial calibration results 
are briefly presented in Fig. 9. 

3.2. Validation of data correlation 

The data quality of support rotations generated by using the vali-
dated numerical models of road tunnels subjected to internal BLEVEs is 
further evaluated in this section by calculating linear relations of the 
data corresponding to different variables. The Pearson correlation co-
efficient is selected as the indicator to illustrate the relationships be-
tween different variables including 15 input variables given in Table 1 
and the output variable (i.e., the support rotation). It is defined as: 

ρX,Y =
E[XY] − E[X]E[Y]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[
X2
]
− (E[X])2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[
Y2
]
− (E[Y])2

√ (13) 

Table 1 
Summary of varied parameters for the simulation to generate the data of support 
rotations.  

Variable (feature) Notation Ranges 

Tank volume Vtank 20 m3− 40 m3 

Liquid filling ratio Rlf 50 %–80 % 
BLEVE location LB Left and right lanes 
Inner height of tunnel TH 4.9 m− 5.4 m 
Inner width of tunnel TW 10.4 m− 14 m 
Structural component of 

tunnel 
LC Roof, side wall, and floor 

Tunnel structural thickness CT 0.95 m (Side), 1.1 m (Top), 1.2 m 
(Bottom) 

Concrete grades CS C30-C60 
Diameter of steel 

reinforcement 
Rd 20 mm− 40 mm 

Strength of steel 
reinforcement 

Rs 400 MPa-600 MPa 

Soil cover depth Sd 0.5 m− 10 m 
Soil shear modulus Ss 16 MPa-96 MPa 
Soil-cement ratio Scr 0 %–7 % 
Grouted soil thickness Sct 0− 1.5 m 
Distance from BLEVE center DB 0− 9 m  
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where ρX,Y is the Pearson correlation coefficient, X and Y are data vectors 
corresponding to the variables selected from 16 variables (i.e., 15 input 
variables and one output variable); E[ • ]is the symbol to calculate the 
expectation of the data given in the bracket. 

Fig. 10 shows the matrix of Pearson correlation coefficients between 
the data of all variables. It is noted that the variables given in this study 
are first normalized and then their Pearson coefficients are calculated. 
That is, the Pearson coefficients of normalized variables are calculated in 
this study to identify the correlation among different variables. It can be 
found that the values of Pearson correlation coefficients between the 
same variable are equal to 1, while the ones between different input 
variables vary between − 0.5 and 0.5, indicating no high correlation 
between the data of different input variables in the prepared dataset. 
That is, the selected variables are independent of each other and are not 
redundant to express the data features, which further validates the 
reliability of the given data. In addition, it can be seen that the most 
correlated input parameters with the output variable, i.e., support 
rotation are the liquid-filled ratios of LPG tank, BLEVE locations, and 
standoff distances. However, their Pearson correlation coefficients are 
not greater than 0.5, which indicates the support rotation is not gov-
erned by any individual input variable, but by their combination. 

Fig. 9. Model calibration and the corresponding results for (a) tunnel structures [29] and (b) soil mass around the tunnel [28].  

Fig. 10. Pearson correlation coefficients between different variables in 
given data. 

Fig. 11. Division of normalized data of support rotations versus different variables.  
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4. Prediction of support rotation of tunnel structure using SAMT 

The simulated data in Section 3 are divided into training dataset, 
validation dataset, and test dataset to build the self-attention-modified 
Transformer (SAMT) model and evaluate its performance. Three com-
mon neural network models, i.e., Multi-layer perceptron (MLP), Resid-
ual Network (ResNet) and the non-modified FT-Transformer network 
are also applied to compare their prediction performance with SAMT. In 
addition, the datasets with different numbers of variables and instances 
are generated to evaluate the robustness and capacities of the SAMT in 
processing different characteristics of datasets. The details are given 
below. 

4.1. Implementation details 

To clearly demonstrate the procedure of building trainable machine 
learning models to predict the support rotations of road tunnels sub-
jected to internal BLEVEs, the detailed implementation of the above- 
mentioned four deep learning models and their final prediction perfor-
mance for one run on the collected data are given in this section. 

4.1.1. Data division and pre-processing 
A total of 115 cases and 3450 instances are simulated using the nu-

merical models described in Section 3.1. The instances are randomly 
divided, with 60 % for the training dataset, 20 % for the validation 
dataset, and another 20 % for the test dataset. To minimize the effects of 
dimensional differences between the data of different variables in all 
instances on the model performance, all instances are standardized 
along the variable dimension by subtracting their mean values and 
dividing their standard deviations. Fig. 11 visualizes the normalized 
data by showing the distribution of normalized support rotations versus 
the normalized variable ranges. It can be seen that all normalized var-
iables compactly distribute within certain ranges (i.e., between − 4 and 
10), which indicates that the data pre-processing technique using the 
normalization method can eliminate the dimensional difference be-
tween the data of different variables. 

4.1.2. Hyperparameter tuning and model training 
To build a reliable SAMT model, the optimal hyperparameter set for 

the model needs to be determined based on the given normalized data. 
In this section, the TPE approach given in Section 2.3 is employed to 
automatically tune the hyperparameters of the model. The search space 
of all hyperparameters of the model is given in Table 2. Different 
hyperparameter sets can be generated by extracting different values 
from the search space of each hyperparameter. The loss between the 
labeled and predicted support rotations is calculated as the objective 

Table 2 
Search space of hyperparameters for all models and corresponding optimal 
values.  

Model Hyperparameter Search 
space 

Distribution Optimal 
value 

SAMT Learning rate [1e–5, 
1e–2] 

Log 
uniform 

1e− 4 

Weight decay [1e–6, 
1e–3] 

Log 
uniform 

6.87e− 6 

Dropout rate [0.1, 
0.5] 

Uniform 0.16 

Token dimensions [64, 
512] 

Int uniform 296 

Number of 
Transformer layers 

[1, 10] Int uniform 5 

Dimension of FFN 
hidden layer 

[1, 32] Int uniform 9 

Non-modified 
Transformer 

Learning rate [1e–5, 
1e–2] 

Log 
uniform 

2e− 3 

Weight decay [1e–6, 
1e–3] 

Log 
uniform 

2e− 4 

Dropout rate [0.1, 
0.5] 

Uniform 0.26 

Token dimensions [64, 
512] 

Int uniform 256 

Number of 
Transformer layers 

[1, 10] Int uniform 2 

Dimension of FFN 
hidden layer 

[1, 32] Int uniform 3 

ResNet Learning rate [1e–5, 
1e–2] 

Log 
uniform 

1.24e− 5 

Weight decay [1e–6, 
1e–3] 

Log 
uniform 

1.24e− 5 

Dropout rate [0.1, 
0.5] 

Uniform 0.25 

Dimension of main 
block 

[1, 10] Int uniform 1 

Number of ResNet 
block 

[1, 5] Int uniform 3 

Dimension of hidden 
layer in each block 

[1, 32] Int uniform 9 

MLP Learning rate [1e–5, 
1e–2] 

Log 
uniform 

3e− 3 

Weight decay [1e–6, 
1e–3] 

Log 
uniform 

4.1e− 5 

Dropout rate [0.1, 
0.5] 

Uniform 0.42 

Number of MLP 
blocks 

[1, 5] Int uniform 3 

Dimension of hidden 
layer in each block 

[1, 32] Int uniform 10  

Fig. 12. Variations of RMSE and R2 with the increased epochs in the process of model training and validation.  
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function for each hyperparameter set. 100 trials are conducted to 
determine the hyperparameter set, giving the best result on the valida-
tion dataset. It is noted that the search space and optimal hyper-
parameter sets for the other three networks (i.e., non-modified 
Transformer, ResNet, and MLP) are also summarized in Table 2. 

With the determined optimal hyperparameter set, the training 
dataset with 60 % of all instances is inputted into the SAMT model to 
continuously adjust the model parameters with a maximum epoch of 
2000. It is noted that the early-stopping technique is adopted in the 
training process by setting early-stopping patience of 100 epochs. That 
is, the training is stopped when the performance of the model is not 

improved in the continuous 100 epochs. The trainable model parameters 
are picked at the 100th epoch before stopping to generate the final SAMT 
model for the prediction of BLEVE-induced support rotations of road 
tunnels. Fig. 12 shows the variation of two indicators (i.e., RMSE and R2) 
to evaluate the model performance with the increased epochs. It can be 
found that variation rates of the values of two indicators on the training 
dataset and validation dataset significantly reduce at the early stage of 
the training and gradually become stable with the increased epochs. The 
optimal epoch is at the 1236th epoch, i.e., the iteration corresponding to 
the minimum RMRE and the largest R2. Therefore, the SAMT is built by 
fixing the weights and biases at the 1236th epoch as the final parameter 

Fig. 13. Comparison of simulated and SAMT-predicted support rotations of different tunnel structures at varied distances from the BLEVE center in a given case.  

Fig. 14. The scatter plots of simulated support rotations on full test set and predicted support rotations based on (a) SAMT, (b) FT-Transformer, (c) ResNet, and 
(d) MLP. 
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values. The training of the other three models (i.e., Non-modified 
Transformer, ResNet, and MLP) is processed with the same procedure 
and the same datasets as the SAMT and thus is not given herein to avoid 
repetition. 

4.1.3. Prediction results on test dataset 
To evaluate the performance of the trained SAMT model, the data of 

a case of box-shaped road tunnel subjected to an internal BLEVE 
extracted from the test dataset is first employed to examine the accuracy 
of the model. The road tunnel in this case has an inner width of 10.4 m 
and an inner height of 4.9 m. The tunnel structures consist of a 1.1 m 
thick roof slab, a 1.2 m thick floor slab, a 0.95 m thick side wall, and a 
0.6 m thick mid-wall. The tunnel components in this case are composed 
of C40 concrete (i.e., the concrete with a compressive strength of 
40 MPa) and HRB400 steel reinforcement (i.e., steel with a yield 
strength of 400 MPa) inside the concrete. A BLEVE due to the rupture of 
a 40 m3 liquified petroleum gas tank with a liquid filling ratio of 50 % is 
assumed to occur on the right lane of the left cell of the box-shaped road 
tunnel. The simulated support rotations of the roof slab, side wall, and 
floor slab at the first 8 m segments along the longitudinal direction of the 
tunnel are compared with the predicted ones using the SAMT, as shown 
in Fig. 13. It can be found that the maximum difference between the 
predicted and simulated support rotations is not greater than 0.3 de-
grees, which indicates that the predicted support rotations match well 
with the simulated ones. 

To further demonstrate the performance of the SAMT, all instances 
on the test dataset are predicted using the SAMT, and the results are 
compared with the simulated support rotations. The other three models 
are also employed to predict support rotations of all instances on the test 
dataset. Fig. 14 shows the prediction results of the four models on the 
test dataset and the corresponding RMSE and R2 between the predicted 
and simulated support rotations. It can be found that R2 of the SAMT and 
non-modified Transformer are respectively 0.95 and 0.9, which are 
obviously higher than those of MLP and ResNet. The results show that 
Transformer-based networks are more accurate in predicting the tabular 
data due to the action of the self-attention mechanism in aggregating 
variable features to the final inference. It is noted that R2 of the SAMT is 
closer to 1 than that of the non-modified Transformer. The RMSE of the 
SAMT is smaller than that of the non-modified Transformer. The results 
indicate that the modified self-attention mechanism in the SAMT model 
is better than the original self-attention mechanism in the FT- 
Transformer to predict the support rotations of road tunnel structures 
subjected to internal BLEVEs based on the tabular data. 

The proposed model with modified self-attention is developed to 
predict structural responses based on tabular data consisting of uncor-
related variables. It may be less appropriate to process the data with 
correlated variables since the modified self-attention mechanism does 
not capture the cross-correlations of inter-dependent variables. In 
addition, the computational cost of the Transformer-based neural net-
works is usually higher than some typical deep learning models, such as 
Multi-layer Perceptron (MLP) and Residual Network (ResNet), despite 
the higher prediction accuracy of Transformer-based neural networks. It 
is worth mentioning that the modification in SAMT is tailored for sce-
narios with uncorrelated variables, which are commonly encountered in 
civil and structural engineering data. Therefore, SAMT is expected to be 
applicable for predicting the response of various civil infrastructures 
under specific loads. In this study, SAMT is used for predicting tunnel 
response under BLEVE loads. It can be similarly applied to other types of 
structures, except that it needs more data and large computer power for 
application to different large-scale real-world structures. 

4.2. Performance evaluation on different characteristics of datasets 

To evaluate the adaptability of the SAMT in analyzing tabular data 
with different characteristics, the model is employed to process the 
datasets with different numbers of variables and instances. Three other 

models (i.e., FT-Transformer, MLP, and ResNet) are also utilized on 
these datasets and their results are compared with those of the SAMT. 
The details are given below. 

4.2.1. Performance on datasets with reduced variables 
The original dataset used in the above discussion has a total of 15 

variables as illustrated in Section 3.2. In practice, the data with different 
numbers of variables might be obtained based on various site conditions 
and explosion scenarios. To test the adaptability of the SAMT model in 
processing the datasets with different numbers of variables, the datasets 
with the reduction of 0 %, 20 %, 40 %, and 60 % in the number of 
original variables are obtained by randomly removing variables from 
the original dataset. It is noted that in the case of each reduction ratio, 10 
trials are conducted to generate 10 datasets, which are obtained by 
randomly removing the corresponding ratio of variables in each trial. 
The SAMT is used to process these datasets to generate respective pre-
dictions. In addition, the other three models, i.e., non-modified Trans-
former, MLP, and ResNet are employed to process the datasets with 
different variable numbers for comparative analysis with the SAMT. 

Fig. 15 shows the coefficients of determination (R2) between the 
simulated support rotations and the ones predicted based on the four 
models for the cases with different variable reduction ratios. It can be 
found that R2 of the four models all gradually reduces with the reduced 
variable numbers. The results indicate that more non-redundant 

Fig. 15. Coefficients of determination between the simulated support rotations 
and the support rotations predicted based on the four models obtained from 10 
predictions for each number of variables. 

Fig. 16. Coefficients of determination (R2) between the simulated support ro-
tations and the support rotations predicted by the four models for datasets with 
reduced number of instances. 
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variables included in datasets are advantageous to enhance the accu-
racies of the four models in predicting the BLEVE-induced support ro-
tations of road tunnels. In addition, as the number of variables reduces, 
the SAMT and non-modified Transformer (i.e., FT-Transformer) always 
have larger R2 values than the other two models, i.e., MLP and ResNet. It 
is also found that the range of R2 (i.e., the maximum difference of R2 for 
10 datasets) of the SAMT is smaller than that of the non-modified 
Transformer model in the case of each reduction ratio. Therefore, it 
can be concluded that the SAMT model among the four models can 
achieve the best prediction accuracy of BLEVE-induced support rota-
tions of road tunnels by using the same datasets with different variable 
numbers. 

4.2.2. Performance on datasets with reduced instances 
The original dataset with a total of 3450 instances is used in the 

above discussion. To evaluate the robustness of the SAMT model when 
faced with varying numbers of instances, additional datasets are 
generated with reduced instance counts. Specifically, the instance 
numbers are reduced by 0 %, 20 %, 40 %, and 60 % relative to the full 
set of 3450 instances, which are achieved by randomly selecting the 
corresponding ratios of instances from the full dataset. 60 % of each 
additional dataset is then randomly selected to generate the corre-
sponding training datasets for different reduced instance cases. To 
ensure statistical validity, 10 trials for each level of instance reduction 
are conducted, resulting in 10 datasets for each case that have the same 
number of removed instances but differ in the specific instances that are 
omitted. The other three models (i.e., non-modified Transformer, MLP, 
and ResNet) are also employed to process these datasets. The predicted 
support rotations based on the four models are compared with the 
simulated support rotations. 

Fig. 16 shows the coefficients of determination (R2) for four models 
across varying levels of instance reduction, ranging from 0 % to 60 %. It 
can be found that the SAMT consistently achieves the highest R2 across 
all four cases with different reduction ratios, highlighting its superior 
accuracy in predicting BLEVE-induced support rotations of road tunnel 
structures compared to the other three models. In addition, 
Transformer-based models (i.e., SAMT and Non-modified Transformer) 
maintain a stable prediction performance, yielding R2 values between 
0.9 and 0.98 even as the ratio of instance reduction increases from 0 % 
to 60 %. In contrast, the MLP and ResNet models experience significant 
declines in R2 when the reduction ratios of instances reach or exceed 
40 %. Therefore, it can be concluded that SAMT not only offers higher 
prediction accuracy but also demonstrates greater robustness to re-
ductions in the dataset size when compared to the other models. 

5. Conclusion 

The present study proposes a self-attention-modified Transformer 
(SAMT) model designed to predict the support rotations of box-shaped 
road tunnels subjected to internal BLEVEs. The SAMT model success-
fully mitigates the issue of forced correlations among uncorrelated 
variables commonly presented in tabular data, while retaining the 
beneficial aspects of Transformer-based networks in aggregating 

relevant information across all variables. The model’s effectiveness is 
validated through 115 cases comprising a total of 3450 instances, 
generated from numerical simulations of box-shaped road tunnels 
exposed to internal BLEVEs. The main conclusions are summarized in  
Table 3 and as follows.  

(1) The proposed SAMT can accurately predict the support rotations 
of box-shaped road tunnels subjected to internal BLEVEs by 
yielding a coefficient of determination no less than 0.95 in 10 
trials for all instances given in this study.  

(2) By comparing the coefficients of determination obtained by the 
SAMT and three other deep-learning models (i.e., FT- 
Transformer, Multi-layer perceptron (MLP), and Residual 
network (ResNet)), the SAMT model has higher accuracy in 
predicting BLEVE-induced support rotations of road tunnels 
based on the datasets with different numbers of variables.  

(3) The SAMT model exhibits exceptional robustness in processing 
datasets with varying numbers of instances for the prediction of 
BLEVE-induced support rotations of road tunnels, which further 
underlines its capability to handle tabular data with uncorrelated 
variables. 
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