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A B S T R A C T

Structural health monitoring (SHM) provides real-time data on the condition and performance of infrastructure,
enabling timely and cost-effective maintenance interventions, and hence enhanced safety and extended service
life. The computer vision-based non-contact sensor has emerged as a promising alternative to conventional
contact-type sensors for structural displacement measurement and SHM. Many of the currently reported vision-
based structural displacement measurement systems typically temporarily set up a video camera from a distance
to the structure. The collected images or videos are usually stored locally and post-processed offline to obtain
structural displacement responses, which is cumbersome and limited to short-term SHM applications. The recent
development of technologies empowered by the Internet of Things (IoT) and edge computing has enabled real-
time video processing and analysis at the source, minimizing latency, reducing bandwidth requirements, and
enabling prompt decision-making, thereby enhancing efficiency and responsiveness compared to traditional
offline video recording and processing systems. In this paper, an edge computing vision-based displacement
measurement system (EdgeCVDMS) is developed. Video recording, processing, and displacement response
identification are entirely performed on an edge device integrated with the vision-based displacement tracking
algorithm, thereby greatly reducing the amount of data transmitted to the cloud server. The feasibility and
applicability of the developed sensing system are experimentally validated on a laboratory-scaled transmission
tower structure. The proposed EdgeCVDMS is cost-effective, easily deployable, and of great potential to be
applied for the condition assessment of a larger population of aging civil infrastructure.

1. Introduction

Structural health monitoring (SHM) systems are extensively utilized
to offer real-time condition screening of civil engineering structures
during both the construction and normal service stages [1–3]. The
displacement response of civil engineering structures subjected to
operational loads is an important metric for structural condition and
performance assessment, as it is directly related to the structure’s stiff-
ness [4,5]. For high-rise building structures, the maximum horizontal
displacement amplitude and the dynamic displacement responses can be
adopted to estimate structural lateral stiffness [6]. Regarding bridge
structures, the vertical displacement responses subjected to moving
loads contain valuable information about the structural stiffness and
load-carrying capacity [7,8]. It is reported that bridge transverse dis-
placements play a crucial role in capturing critical changes in the
serviceability of timber railroad bridges [4]. According to a survey of

North American railroad bridge structural engineers, bridge deflection
under live loading is a critical performance-related parameter used to
determine the allocation of the limited maintenance budget to the
bridges most in need [9].

Conventional contact or noncontact displacement sensors, like the
linear variable differential transducer (LVDT) and laser displacement
sensor, face several challenges in the field of SHM implementations [10].
Firstly, they require a stationary reference point, which can be difficult
to find in the field [11,12]. Secondly, the distance between the structure
and the sensor may be far beyond the measurement range of traditional
displacement sensors. Consequently, a temporary scaffold need be set up
underneath the structure to provide a fixed reference point for making
relative displacement measurements [13]. Owning to innovations in
computer vision and the rapid advances in image sensor resolution and
efficiency, computer vision-based noncontact sensing has emerged as a
promising alternative to conventional contact sensors for SHM [14–17].
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Vision systems capture vast amounts of video footage and utilize
advanced video processing techniques to identify both surface-level
cracks and structural displacement responses [18]. Computer
vision-based SHM has significant advantages, including its affordability,
ease of setup and operation, and its ability to extract displacement from
interested points of the structure by setting up the camera at distances
ranging from dozens to hundreds of meters [14].

Typically, the collected images or videos are stored locally for further
in-depth analysis. This becomes infeasible and impracticable when
applied to the long-term monitoring of large-scale structures. In
particular, it can be cumbersome to copy the video and requires
specialized knowledge/skills to post-process the video data to obtain
bridge displacement responses in practical SHM applications. This issue
limits the application of computer vision-based SHMmethods to a wider
range of infrastructure, especially those located in remote areas.
Furthermore, a substantial memory is required to store the video files
generated from continuous recording. The Internet of Things (IoT)
technique can be a common solution that transmits sensor measure-
ments to a cloud server for centralized processing [19]. Cloud archi-
tecture provides access to computation, storage, and even connectivity
with ease of access. In SHM applications, structural dynamic response
time series such as strain [20] and acceleration [21], as well as envi-
ronmental variables like temperature, wind speed, and wind direction
[22], can be effectively transmitted to the cloud server via wireless
networks. However, the wireless network bandwidth may not support
continuous capturing and transferring of high-resolution video streams
to the cloud server.

To tackle the issue of transferring large volumes of video data over a
wireless network, a more viable approach is to perform video and signal
processing at the location where the data is generated, i.e., at the edge
[23,24]. This entails transmitting only the identified displacement re-
sponses and high-level structural condition-related statistical features to
the remote host or cloud server. Edge computing refers to the decen-
tralized processing of data near the source, reducing latency and
bandwidth usage by bringing computational power closer to the devices
generating the data. The integration of edge computing principles into
computer vision techniques has the potential to considerably diminish
bandwidth requirements and data processing latency, leading to a more
practical and cost-effective SHM solution [25]. Edge computing archi-
tectures have been accompanied by compact, low-cost embedded de-
vices like Raspberry Pi and NVIDIA Jetson, enabling a lightweight way
of data collection, signal processing, and decision-making. Raspberry Pi
is a low-cost, single-board computer designed for general-purpose
computing, including web browsing, programming, and media play-
back [26]. It has a relatively low processing power compared to Jetson,
which makes it suitable for basic computing tasks. In contrast, Jetson is a
family of embedded computing devices specifically designed for artifi-
cial intelligence (AI) and machine learning (ML) applications. It is
equipped with a high-performance GPU and specialized hardware for
accelerating AI and ML workloads, making it suitable for computa-
tionally intensive tasks such as object detection/tracking, image classi-
fication, and natural language processing. Therefore, the NVIDIA Jetson
is more suitable for the in-situ deployment of computer vision-based
structural displacement identification and SHM.

In this paper, a computer vision-based real-time structural
displacement measurement system using computer vision techniques
underlined by edge computing and IoT techniques is proposed. The
video recording, computer vision-based structural displacement mea-
surement as well as the signal processing are performed on the devel-
oped edge computing vision-based displacement measurement system
(EdgeCVDMS). The objective is to maximize the potential of computer
vision-based displacement identification techniques and extend the
applicability to the SHM of a wider range of structures on a long-term
basis by leveraging the advantage of a compact, cost-effective yet
computationally powerful edge device. Compared with existing offline
computer vision-based structural displacement measurement

techniques, the main contributions of this work are summarized as
follows:

1. Integration of edge computing and computer vision-based structural
displacement identification algorithm: This paper presents a
comprehensive framework that leverages an edge computing device
to enable real-time processing and analysis of video data for
displacement measurement. Bymoving computational tasks closer to
the data source, the system achieves low-latency, real-time
displacement measurement while reducing the bandwidth re-
quirements and enabling rapid decision-making.

2. The framework optimizes the use of computational resources at the
edge device: several representative computer vision-based displace-
ment tracking algorithms are deployed on the edge device. Sugges-
tions on the appropriate displacement tracking algorithm selection is
made based on the accuracy and efficiency of the candidate
algorithms.

3. The developed EdgeCVDMS incorporates Amazon Web Services
(AWS) for data management and visualization. Structural displace-
ment responses and edge device operating status information are
sent to AWS in real-time. End users can remotely access these data
and schedule a field structural inspection when an abnormal event is
detected.

4. Experimental evaluation and validation: comprehensive experi-
mental validations are conducted to validate the accuracy, effi-
ciency, and continuous operating performance of the developed
sensing system in a laboratory environment.

2. Design of EdgeCVDMS for real-time displacement
measurement

An EdgeCVDMS for real-time displacement measurement is devel-
oped by employing an NVIDIA Jetson Nano edge device, a high-
resolution camera with a zoom lens, a 4 G LTE internet dongle, a
portable power station, as well as the AWS platform that enables data
management and visualization. The general scheme of the developed
EdgeCVDMS with hardware and software configuration is shown in
Fig. 1. Fig. 1 consists of three phases. In phase 1, the developed edge
device will be mounted on a static reference point and targeted to the
region of interest (ROI) of the structure for acquiring the video stream. It
should be noted that the presented approach is target-free, and uses the
natural features as the measurement locations for tracking andmatching
to obtain the dynamic displacement responses. The selection of the
optimal ROI or measurement locations is similar as the optimal sensor
placement problem in SHM. Certain criteria, such as obtaining the
strongest vibration response intensity, achieving the most independent
mode shapes, and minimizing errors in system parameter identification,
can be adopted [7]. For example, deflections at the quarter span,
mid-span and three-quarter span of bridges or the horizontal displace-
ments of building floors can be selected as the measurement locations.
Camera calibration parameters, such as the distance and tilt angle be-
tween camera and target point are measured in phase 1. More detailed
procedures for camera calibration and scale factor determination are
introduced in Section 2.2.1. In phase 2, the computer vision-based
displacement tracking algorithm is deployed at the edge device. In
particular, the NVIDIA Jetson Nano is primarily responsible for
capturing and analyzing the video to identify structural dynamic
displacement and transmitting data to AWS for data management and
visualization. The main advantage of the developed edge
computing-based system over existing computer vision-based displace-
ment measurement studies is that the recorded videos are processed in
real-time on the edge device, thus ensuring immediate analysis.
Consequently, the videos are not stored on board after processing. The
AWS architecture design presented in phase 3 enables the asset owners
to remotely access real-time measurements from bridges equipped with
the proposed system and receive an alert when an abnormal event
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occurs. Wireless transmission is achieved via 4 G signal provided by a
USB internet dongle. The whole system is powered by a portable power
station. In field applications, alternative sustainable power sources, such
as solar panels and rechargeable batteries, can be adopted. As monitored
using the command-line tool JTOP, the average energy consumption of
the developed EdgeCVDMS during normal operation is about 5.76 W.
The key technical issues in the design of the EdgeCVDMS, including
hardware selection, motion tracking algorithm selection, cloud data
management, and visualization, are particularly addressed in this
section.

2.1. Hardware integration of the EdgeCVDMS

Fig. 2 shows the hardware configuration of the edge device prototype
that is primarily responsible for video stream acquisition, video pro-
cessing, and data transmission to the AWS. Major components include a
video camera module, embedded computing boards (i.e., Nvidia Jetson
Nano), a Micro SD flash memory card, and a USB 4 G LTE dongle.

The Nvidia Jetson Nano edge device is the most important hardware
component of the proposed system, with the role of performing all the
computations related to video recording, computer vision-based
displacement identification, and signal processing. It is equipped with
a quad-core ARM Cortex-A57 CPU running at 1.43 GHz, coupled with a
128-core Nvidia Maxwell GPU. It has 4 GB of LPDDR4 RAM, a microSD
card slot for storage, and multiple I/O ports, including USB 3.0, USB 2.0,
HDMI, Ethernet, and GPIO pins. The most distinct difference between
Nvidia Jetson Nano and other available single-board computers, i.e.,
Raspberry Pi, is its powerful AI capabilities with its GPU architecture
and dedicated hardware accelerators, enabling efficient processing of
complex computation workloads directly at the edge.

The ArduCam IMX477 image sensor employed in this study is

manufactured by Sony company, which has 12.3 Megapixels and sup-
ports video streaming at frame rates of 10 fps@ 12MP, 20 fps@ 4 K, 20
fps@ 2 K, and 60 fps@ 1080 P. The pixel size of the ArduCam IMX477 is
1.55 μm × 1.55 μm. The ArduCam IMX477 camera is compatible with
Nvidia Jetson Nano and is featured by a high resolution and a high

Fig. 1. The high-level workflow of the EdgeCVDMS for SHM.

Fig. 2. Overview of the hardware of the EdgeCVDMS: (a) the developed sys-
tem; (b) the used camera; and (c) the used Nvidia Jetson Nano.
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sensitivity for low-light environments. The camera is mounted in a
customized industrial metal enclosure and comes with a 2 ft USB2.0
cable and a mini tripod stand. An Arducam zoom lens with an 8–50 mm
adjustable focal length and C-mount is assembled with the ArduCam
IMX477 camera for capturing and tracking structure vibration at
different distances.

The component retail prices of the developed EdgeCVDMS are listed
in Table 1. The overall hardware cost is about AU$700. The annual
ongoing cost of AWS service and 4 G data is approximately AU$400 in
the current market.

2.2. Computer vision-based structural displacement measurement
algorithm

The video stream of the structure’s ROI is captured by an associated
camera module and is then processed by the computer vision-based
displacement identification algorithm deployed on the edge device to
obtain the displacement measurement results. The displacement iden-
tification algorithm is composed of four main steps [27]:

Step 1: Source video pre-processing and scale factor determination.
Step 2: Features detection and description in the ROI of the first

frame. In the first frame, an ROI of the target structure with distinct
corners and textures that stand out from the surrounding background is
selected.

Step 3: Features matching and tracking in all subsequent frames. The
feature points extracted from the subsequent frames are matched with
the feature points in the first frame based on the similarity of the
descriptors.

Step 4: Displacement conversion and post-processing. The displace-
ment identification results are converted from subpixel values to phys-
ical displacements using the scale factor determined in Step 1.
Interpolation is used to replace the very few ‘NaN’ values for a better
resolution.

The video processing is performed on a Linux system using the Py-
thon language and the OpenCV library.

2.2.1. Camera calibration and scale factor determination
Before motion tracking, it is essential to perform camera calibration

to remove the radial distortion (especially in the case of a wide-angle
lens in use) and determine the pixel scale factor SF. In this work, the
camera calibration method proposed by Zhang [28] is adopted to obtain
the camera lens distortion matrix γ. This can be conducted in the labo-
ratory by placing a photo of a chessboard at several different angles to
the camera’s optical axis.

Given the fact that the measurement target on the civil structure is
difficult to access in the field, the following two practical pixel scale
factor SF determination methods are adopted:

(1) When the distance D and tilt angle θ between camera and target
point are known, the pixel scale factor can be approximated by:

SF1 =
D

fcos2θ
dpixel (1)

where f and dpixel denote the camera focal length and per pixel
length (e.g., in μm/pixel), respectively. The pixel size of ArduCam

IMX477 adopted in this study is 1.55 μm× 1.55 μm. In the situ-
ation of camera perpendicular to the target point, cos2θ = 1 can
be eliminated from Eq. (1). In field test, the distance D and tilt
angle θ can be measured from laser rangefinder. This method is
suitable for the camera equipped with a fixed focal length.

(2) When the vibration of the target on the structure is dominated by
in-plane motion and there is pattern on structural surface with
known dimension, a homography transformation can be adopted
to establish a mapping between the image plane and the target
plane. The homography transformation matrix H can be esti-
mated with a minimum of 4 pairs of points on both planes. Then,
the pixel scale factor can be approximated by:

SF2 =
dknown
Iknown

(2)

where dknown and Iknown represent the actual physical length of the
pattern on structural surface and the corresponding pixel length at the
image plane after homography transformation. This method is appli-
cable for camera equipped with adjustable zoom lens [29].

2.2.2. Feature points detection and tracking
For in-situ civil structures under operational conditions, the target’s

movement remains relatively small in comparison to the extensive field
of view (FOV). As a result, ensuring the precision of the computer vision-
based displacement identification algorithm is crucial. Table 2 lists some
of the representative feature point detection algorithms included in
Python OpenCV 4.6.0. In Table 2, Scale-Invariant Feature Transform
(SIFT), Speeded-Up Robust Features (SURF), Accelerated-Kaze
(AKAZE), and Binary Robust Invariant Scalable Keypoints (BRISK) al-
gorithms can output sub-pixel level feature points detection accuracy.
The Features from Accelerated Segment Test (FAST), Oriented FAST and
Rotated BRIEF (ORB), Harris, and Shi-Tomas algorithms output pixel-
level feature points or corners detection accuracy. In this study, the
first four sub-pixel level algorithms are implemented to evaluate the
accuracy and efficiency. For consistent and fair comparison, the Brute-
Force (BF) matcher is employed to match the feature points detected
from the first and subsequent video frames. It is noted that the accuracy
of these pixel-level algorithms can be further refined by calculating the
centroids of a bunch of pixels around the detected feature point. Some
feature point detection algorithms, including SIFT, AKAZE and BRISK
are not GPU-supported in OpenCV 4.6.0 and are not evaluated in this
study. In the first frame, the detected feature points are sorted in the
descending order according to the corresponding response value, and
the highest quality feature point is selected to match with the feature
points detected from subsequent frames.

2.2.3. displacement conversion
The displacement identification results are converted from subpixel

image coordinates to physical displacements using the scale factor
determined in Section 2.2.1. Interpolation is used to replace the very few
NaN values for better resolution. The exception ’NaN’ occurs when the
computer vision algorithm cannot match the feature points in a specific

Table 1
Price breakdown of the developed EdgeCVDMS in 2023.

Item One-off expenses Ongoing expenses

Nvidia
Jetson
Nano

Video
camera
module

4 G
transmission
module

Estimated
AWS service

Data
plan

Cost
(AU
$)

354 312 30 200 /year 200
/year

Table 2
Summary of feature point detection algorithms included in python OpenCV
4.6.0.

Feature point detection algorithms CPU-support GPU-support Accuracy

SIFT yes no Sub-pixel
SURF yes yes Sub-pixel
AKAZE yes no Sub-pixel
BRISK yes no Sub-pixel
FAST yes yes pixel
ORB yes yes pixel
Harris yes yes pixel
Shi-Tomas yes yes Pixel
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frame with the highest-quality feature point detected from the first
frame. The root mean square error (RMSE) and normalized root mean
square error (NRMSE) defined in Eqs. (3–4) are employed to quantify the
accuracy of the computer vision-based displacement identification
method [30]. RMSE and NRMSE are calculated as follows,

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

1
(dvision − dlaser)2

N

√
√
√
√
√

(3)

NRMSE =
RMSE

dmaxlaser − dminlaser

(4)

RMSE is a quantitative measure of the average magnitude of error,
with the same unit of the displacement measurement. The NRMSE is
normalized by the difference between maximum and minimum
displacement value.

2.3. AWS for data management and visualization

A large portion of infrastructures, i.e., bridges are located in remote
area, which require wireless signal transmission to connect the data to
the internet for remote access. AWS for edge computing provides scal-
able cloud resources, cost-effectiveness and global reach, complement-
ing edge devices and enabling efficient data processing and analysis at
the edge. It offers robust security features and seamless integration be-
tween edge devices and the cloud, enhancing performance and enabling
sophisticated edge applications. Based on the above-mentioned advan-
tage, AWS is employed in this study for data management and visuali-
zation. As indicated in Fig. 1, 4 G wireless communication is adopted to
transmit the data from the edge device to the cloud server. There are
other well-established wireless communication technologies, such as
Wi-Fi, Bluetooth, ZigBee, and LoRa. However, considering the trans-
mission range and distribution density of the base station, 4 G is the

optimal solution among them.
In AWS, the Timestream service is utilized to create and configure a

cloud database. The displacement identification results, along with the
edge device’s CPU usage, GPU usage, device temperature, and video
processing speed information, are transmitted to the Timestream data-
base via the Boto 3 software development kit. A 3D scene of the moni-
tored structure is established in AWS IoT TwinMaker, where the Lambda
function reads values from the Timestream database to the AWS IoT
TwinMaker workspace. For data visualization, an Amazon Managed
Grafana dashboard is created to provide real-time visualization of the 3D
scene and data. The end user can remotely access the dashboard using
the link provided in the page at the Amazon Managed Grafana work-
space URL. Additionally, the end user can access and download data to a
CSV file for further in-depth analysis via an Amazon S3 bucket. The web-
based AmazonManaged Grafana dashboard is presented in Fig. 3, where
the left side displays the 3D model of the transmission tower, and the
blue icons along each floor represent the displacement output points.
Thresholds, such as the maximum lateral displacement threshold, can be
defined and attributed to each icon. When the measured displacement
exceeds the pre-defined threshold, the icon color changes and sends a
warning alarm to the end user. Apart from the displacement time series,
the dashboard also visualizes device temperature, video processing FPS,
CPU, and GPU usage information to monitor the work status of the edge
device.

It is important to note that the AWS data management and visuali-
zation architecture detailed in Phase 3 of Fig. 1 is highly scalable. This
scalability is achieved by deploying the developed EdgeCVDMS to a
population of infrastructure, and the data sourced from different struc-
tures can be grouped into the AWS Timestream database for storage and
visualization.

Fig. 3. Dashboard created to visualize displacement and edge device status data.
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3. Experiment validation of the EdgeCVDMS

3.1. Experiment setup

In this section, a laboratory experiment is conducted to evaluate the
accuracy and computation efficiency of the feature point detection al-
gorithms listed in Table 2. The overall experiment setup is presented in
Fig. 4, where a six-storey scaled transmission tower model is fixed on a
shake table. The tower’s overall height is 3.6 m with an even storey
height of 0.6 m. Two Keyence IL-600 laser displacement sensors
(#1~#2) are placed on the left side to measure the first and second floor
horizontal displacement responses of the transmission tower as the
ground truth. The resolution of the Keyence IL-600 laser displacement
sensor is provided as 50 µm in the product specifications. Additionally,
six accelerometers are attached to each floor of the structure. The
sampling rate of the laser displacement sensors and accelerometers is set
as 200 Hz.

The video camera of the developed EdgeCVDMS is fixed on a tripod,
approximately perpendicular to the structure at a distance of about
3.5 m. The camera’s FOV is adjusted to cover the entire transmission
tower. The region between the second and third floors of the structure,
where the displacement ground truth is measured from the laser
displacement sensor, is selected as the ROI. To excite the structure,
ground motion with peak ground accelerations of 0.1 g and 0.2 g is
respectively generated by the shake table. Videos with a resolution of
1920 × 1080 are captured and processed by the motion tracking algo-
rithm deployed on the edge device. Since the dimension of the trans-
mission tower is available, the pixel scale factor can be conveniently
obtained from Eq. (2). The pixel scale factor of this camera setup is
1.9710 mm/pixel.

3.2. Video processing efficiency evaluation

To evaluate the computation efficiency, the video is cropped into five
square ROIs with side lengths of 200, 300, 400, 500, and 600 pixels,
respectively. The average video processing FPS of different motion
tracking algorithms is presented in Fig. 5. It is found that SURF-CPU is
the most efficient with respect to other video processing algorithms
when the ROI size is 200 × 200. The efficiency of the SURF algorithm
implemented on the GPU (SURF-GPU) of Nvidia Jetson Nano is slightly

superior to the SURF-CPU and other three candidate algorithms when
the ROI size is larger than 200 × 200. It is interesting to find out that the
video processing speed of SURF-GPU does not substantially outperform
SURF-CPU. One reason is that the system takes time to download the
detected keypoint and motion tracking results from GPU to CPU during
each iteration. Overall, it can be concluded that the video processing
efficiency of the SURF algorithm substantially outperforms the other
three candidate algorithms. It can process the video stream to obtain
structural displacement responses with a rate higher than 25 Hz when
the ROI size is 200 × 200 pixels.

3.3. Displacement measurement accuracy evaluation

The RMSE and correlation coefficient between the displacement
measured from the laser displacement sensor #2 (ground truth) and
different motion tracking algorithms are presented in Fig. 6 to quantify
the accuracy. Overall, using SIFT shows the most accurate results among
the other candidate algorithms. The displacement identification results
of SURF-CPU and SURF-GPU are exactly the same. The performances of
SIFT, SURF, and AKAZE algorithms are comparable and substantially
better than the BRISK algorithm. The comparison results suggest that
SURF-CPU and SURF-GPU are suitable to be deployed on the edge device
with consideration of accuracy and efficiency. The video processing
speed is above 25 FPS when the ROI is set to 200 × 200, which means

Fig. 4. (a) overall view of experiment setup; (b) laser displacement sensors and accelerometers placement.

Fig. 5. Comparison of the video processing FPS of different
tracking algorithms.

Z. Peng et al. Engineering Structures 319 (2024) 118809 

6 



that the structural static displacement and dynamic displacement in-
formation within 12.5 Hz can be captured by the edge device.

The displacement time history measured from the laser displacement
sensor, and the SURF-CPU method is presented in Fig. 7. Since both
systems work independently, a time-shift exists. In this study, cross-
correlation analysis is used to determine and synchronize the time-
shift between both signals. The results show a small variation between
computer vision-based method and laser displacement sensor mea-
surement. In particular, the correlation coefficient and RMSE between
both time history is 0.9833 and 0.3846 mm, respectively; and the
NRMSE is about 3.493 %. Thus, it can be concluded that the SURF-based
displacement identification algorithm can be employed for accurately

identifying the structural displacement. As mentioned in Section 3.1, the
pixel scale factor of this camera setup is 1.9710 mm/pixel, which means
that the RMSE of SURF algorithm employed in this study is within 0.2
(0.38426/1.9710 ≈0.1950) pixel. The accuracy of the developed
EdgeCVDMS can be further improved by adjusting the zoom lens to limit
the FOV from the whole structure to a smaller region, which will be
further demonstrated in Section 3.4.

One limitation of computer vision-based displacement measurement
methods compared to the laser displacement sensor is the sampling rate.
Due to the limited computation and data read and write capacity of the
edge device, the real-time video recording and processing speed is about
30 FPS when the ROI size is 200 × 200 pixels. To demonstrate that 30

(a)                                      (b)

Fig. 6. Comparison of (a) the RMSE and (b) the correlation coefficient of different tracking algorithms.

(a)

(b)                                                         (c)

Fig. 7. (a) Displacement time history measured from the laser displacement sensor and the SURF-CPU method and (b-c) zoom-in view.
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FPS is sufficient to capture the dynamic displacement of civil structures,
Fig. 8 presents the power spectrum of computer vision-based displace-
ment measurement, laser-based displacement measurement, and accel-
eration response subjected to earthquake excitation with a PGA of 0.2 g.
It is observed that the power spectrum of computer vision-based
displacement measurement aligns well with the power spectrum of
laser-based displacement measurement. It is noted that the energy of
displacement response is mainly distributed in the low-frequency range
(0–4 Hz). In comparison, the energy of acceleration responses is mainly
distributed in the relatively high-frequency range. This is because the
transfer function between acceleration and displacement in the fre-
quency domain is FFT(u, ω)/FFT(a, ω) = − 1/ω2, where ω represents
angular frequency. As a result, the amplitude of the high-frequency
displacement component is very small. Considering that the energy of
the displacement response mainly distributes in the low-frequency re-
gion, it can be concluded that the video processing speed of the devel-
oped EdgeCVDMS is able to capture the dynamic displacement of civil
structures up to 15 Hz. The Jetson Nano can be replaced by higher-
performance edge devices, such as the Jetson AGX Orin, to achieve
faster video recording and processing speeds.

It should be noted that the above evaluation is performed in a
controlled laboratory condition. The video processing speed of Nvidia
Jetson Nano can be affected by the device temperature. Therefore, the
practicability of the developed EdgeCVDMS should be further verified in
the field on a long-term basis.

3.4. Influential factors analysis

In this section, additional tests are performed to evaluate the effects
of lighting condition, shooting angle, and distance between the camera
and target on the reliability and accuracy of the developed EdgeCVDMS.
In Sections 3.2–3.3, it has been demonstrated that the SURF algorithm is
appropriate in terms of accuracy and efficiency. Therefore, the SURF-
CPU is employed to further evaluate the reliability of the influential
factors. The RMSE and NRMSE are used to evaluate the computer vision-
based displacement measurement accuracy. The plan view of the
experimental setup is presented in Fig. 9. For camera setup 1, the camera
is perpendicular to the target installed on the shake table, with a

distance of about 4.2 m. In this test, the shake table is used to generate
20 cycles of sinusoidal excitations with an amplitude of 5 mm and a
vibration frequency of 2 Hz. Considering that the lighting condition
changes over time during field applications, three different lighting
conditions, as shown in Fig. 10, are simulated by adjusting the lights in
the laboratory environment.

In practical implementation, it may be difficult to ensure that the
camera’s optical axis is perpendicular to the target objective. For
example, the camera can only be set up on the riverbank for a bridge that
crosses the river. Therefore, it is necessary to evaluate the effect of the
shooting angle on the displacement measurement accuracy. For camera
setups 2 and 3, shooting angles of 30◦ and 45◦ are considered, respec-
tively. The excitation in camera setup 2 is the same as camera setup 1.

In camera setup 4, the distance between the camera and target is
changed to 15.3 m, which is the maximum allowable distance of the
laboratory site condition. In this test, the amplitude of sinusoidal exci-
tation is set to 5 mm, 4 mm, 3 mm, 2 mm, and 1 mm, respectively. The
excitation cycles and frequency are the same as camera setups 1 and 2.

3.4.1. Effect of lighting condition on the displacement measurement
accuracy

Fig. 11 presents the displacement time histories and the corre-
sponding frequency spectrum measured from the laser displacement
sensor, as well as those obtained using the SURF-CPU method, under
three different lighting conditions. It can be observed that the dis-
placements measured under different lighting conditions match well
with the displacements captured by the laser displacement sensor in
time and frequency domains, validating the accuracy of the proposed
EdgeCVDMS. The RMSE values of the vibration displacement measure-
ments corresponding to good, moderate, and bad lighting conditions are
0.3894 mm, 0.3782 mm, and 0.4923 mm, respectively. The NRMSE
values of the vibration displacement measurements corresponding to
good, moderate, and bad lighting conditions are 3.89 %, 3.78 %, and
4.92 %, respectively. The quantitative results indicate that the devel-
oped EdgeCVDMS can provide reliable results under different lighting
conditions.

In fact, the lighting conditions mainly affect the number of feature
points that can be detected. For example, the feature points detected

Fig. 8. Power spectrum of computer vision-based displacement measurement, laser-based displacmeent measreuemnt and acceleration response.
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from the three frames of Fig. 10 are 119, 75, and 19, respectively. As
mentioned in Section 2.2.2, the feature points are sorted in the
descending order according to the quality (response value). Only the
best quality feature point is selected during the motion tracking process.
Typically, the best quality feature point is more robust to the light
changes, and consequently, the developed EdgeCVDMS can achieve
reliable identification results under different lighting conditions.

3.4.2. Effect of shooting angle on the displacement measurement accuracy
Fig. 12 presents the displacement time histories measured from the

laser displacement sensor and the SURF-CPU method corresponding to
the three different shooting angles. As shown in Fig. 12, the displace-
ment responses measured from different shooting angles agree well with
those measured from laser displacement sensor in time and frequency
domains. The RMSE of measurements corresponding to 0◦, 30◦, and 45◦
shooting angles are 0.3894 mm, 0.4999 mm, and 0.4250 mm,

respectively. The NRMSE of measurements corresponding to 0◦, 30◦ and
45◦ shooting angles are 4.99 %, 3.78 % and 4.25 %, respectively. The
results indicate that the effect of shooting angle on the displacement
measurement accuracy is not significant.

3.4.3. Effect of target distance on the displacement measurement accuracy
In the field application, the edge device is installed at a fixed point

from a distance to the target on the structural surface. As reported in
Ref. [4,29], the displacement responses of bridge structures under
operational conditions are at the millimeter level. Therefore, in camera
setup 4, the excitation amplitude is respectively set to 5 mm, 4 mm,
3 mm, 2 mm and 1 mm to evaluate the limit of accuracy of the devel-
oped EdgeCVDMS. The comparison between the laser displacement
sensor and the computer vision-based displacement measurement cor-
responding to different excitation amplitudes is presented in Fig. 13. It is
found that the RMSE corresponding to different excitation amplitude

Fig. 9. Plan view of the experiment setup with different angles and distances.

Fig. 10. Pictures of camera FOV under: (a) good; (b) moderate; and (c) bad lighting condition. The numer of feature points are 119, 75 and 19, respectively.

(a)                                                                          (b)

Fig. 11. Displacement (a) time histories and (b) frequency spectrum measured from the laser displacement sensor and the proposed EdgeCVDMS subjected to three
different lighting condtion.
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levels is between 0.2–0.7 mm. The NRMSE is within 5.6 % when the
to-be-measured displacement amplitude is greater than 2 mm.

Table 3 summarizes the error results for displacement measurement
corresponding to five different excitation amplitudes using the devel-
oped EdgeCVDMS. Overall, a focal length of 50 mm with the present
hardware and software configuration allows submillimetre accuracy to
be achieved at 15.3 m from the target ROI on the structure. It is noted
that the accuracy of computer vision-based displacement measurement
is related to the motion tracking algorithm, image sensor performance,

zoom lens, and other environmental effects. To further improve the
accuracy of the developed EdgeCVDMS, a straightforward way is to
change the current 50 mm zoom lens to another lens with a longer focal
length. There is a wide range of commercial-grade lenses available with
focal length options ranging from several millimetres to several hundred
millimetres [31].

Besides the aforementioned influential factors, in field applications,
wind-induced camera motions may significantly affect the accuracy of
computer vision-based displacement tracking. When the camera is
subjected to wind-induced motions, the captured images can be blurry
or distorted, making it challenging to track object displacement accu-
rately. The following suggestions are given to alleviate the wind-induced
camera motions and displacement measurement errors: (i) using a
relatively heavy and solid camera tripod, (ii) using a camera case to
cover the video camera, thereby avoiding the effects of wind, and (iii)
developing signal processing techniques to remove the displacement
identification errors by wind-induced camera motions.

(a)                                                                          (b)

Fig. 12. Displacement (a) time histories and (b) frequency spectrum measured from the laser displacement sensor and the proposed EdgeCVDMS subjected to
different shooting angle.

Fig. 13. Displacement time histories measured from the laser displacement sensor and the proposed EdgeCVDMS corresponding to different excitation amplitudes.

Table 3
Summary of the errors for displacement measurement using the developed
EdgeCVDMS.

Excitation amplitude 5 mm 4 mm 3 mm 2 mm 1 mm

RMSE (mm) 0.4301 0.5569 0.3735 0.2238 0.6594
NRMSE 4.30 % 6.96 % 6.22 % 5.60 % 32.97 %
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3.5. Continuous operating performance evaluation

In field applications, the edge device will be installed on a fixed point
to continuously capture and process video streams to obtain the struc-
tural displacement responses. During long periods of continuous oper-
ation, prolonged high temperatures can lead to thermal throttling,
which may reduce the prescribed video processing frame rate and the
working life of the edge device [32]. In this section, the edge device’s
temperature and average video processing FPS are continuously
collected per minute to evaluate the system performance. Fig. 14 and
Fig. 15 show the long-term behavior of the edge device in an indoor
environment. When the SURF-CPU video processing algorithm is
employed, the edge device temperature reaches to 50 ◦C after 10 min of
workload and eventually stabilizes at approximately 52 ◦C. The video
processing speed remains constant at 30 fps almost all the time. When
the SURF-GPU video processing algorithm is employed, the edge device
temperature reaches to a peak of 53 ◦C after about 30 min of workload
and then stabilizes at about 50 ◦C. The video processing speed varies
between 29–30 fps during the evaluation. During the overall 14 h of
operation, the edge device consistently performs without any degrada-
tion in performance. The structural displacement corresponding to each
video frame has been successfully identified and transmitted to AWS in
real-time. The results reveal that the edge device has the potential to be
applied for continuous displacement measurement and condition
assessment of civil infrastructures.

4. Discussions

The major contribution of this paper is the development of
EdgeCVDMS and experimental verifications on the accuracy, efficiency,
and stability of this proposed system for structural dynamic displace-
ment measurement and data visualization. There are several issues that
should be further investigated before the practical implementations of
the proposed EdgeCVDMS.

Firstly, the current version of EdgeCVDMS is applicable to structural
single-point or multiple-point displacement measurement within a small
area of ROI. For large-scale civil structures, it is desired to simulta-
neously measure the displacement responses at several different loca-
tions. Therefore, a more powerful edge computing sensing system that
integrates multiple synchronized cameras can be further developed. For
example, higher performance hardware, such as Jetson AGX Orin, that
supports six synchronized full HD camera modules along with 65 fps can
be adopted.

Secondly, due to the difficulty in setting up the laser displacement
sensor in the field test to obtain the displacement ground truth, the
performance of the developed EdgeCVDMS is only evaluated in a
laboratory-controlled environment. The in-situ applicability should be
further validated in future studies.

Thirdly, there are few in-situ deployment technical details, including
active cooling strategies, sustainable power supply, sleep, and automatic

restart of the EdgeCVDMS in the night and daytime, that should be
further developed before field application. In addition, owing to the
bandwidth limit, it is challenging and time-consuming to transmit the
original videos to the cloud server. A more feasible solution is to
continuously store the videos on the edge device. When the storage
space is full, the latest video overwrites the oldest one.

Furthermore, this study and most of the existing work focus on the
identification of structural dynamic displacement from the computer
vision-based method. Given the fact that massive long-term structural
displacement measurement is available, how to extract reliable features
from the data to support and optimize structural condition assessment
and maintenance decision-making should be researched and incorpo-
rated into the developed EdgeCVDMS. For example, the displacement
measurement can be further used in global level structural system
identification [33,34], bridge vibration serviceability evaluation [29],
model updating [35] and damage detection [27]. For applications to
bridges, the camera should be installed on a fixed reference point, e.g., a
bridge abutment or solid ground, to minimize the effect of camera vi-
brations on displacement measurements.

5. Conclusions

This paper proposes a smart EdgeCVDMS for real-time vibration
displacement measurement. The high-definition video camera is inte-
grated with an edge computing device (Nvidia Jetson Nano) to contin-
uously capture, process, and record structural dynamic displacement
data. AWS-based data management and visualization are developed to
facilitate the scalability of the developed EdgeCVDMS. The key technical
issues in the design of the developed EdgeCVDMS, including hardware
selection, motion tracking algorithm selection, cloud data storage and
visualization, are addressed. A series of experimental studies are con-
ducted to validate the performance and accuracy of the developed
EdgeCVDMS. In particular, the accuracy is analysed and compared with
results from laser displacement sensors. The video processing efficiency
of several candidate computer vision-based displacement tracking al-
gorithms is evaluated. The influential factors, including lighting condi-
tion, shooting angle, and target distance on the displacement
identification accuracy, are comprehensively analysed. The continuous
operating stability and reliability of the developed EdgeCVDMS are
evaluated by monitoring the relationship between device temperature
and video processing speed. Experimental results demonstrate the
promising potential of using the proposed system to perform long-term
structural displacement monitoring under operational conditions.

Overall, a focal length of 50 mm with the present hardware and
software configuration allows real-time displacement measurement at
submillimeter accuracy and 30 FPS when the target ROI on the structure
is 15.3 m away from the camera. Compared with existing studies, the
significance of this work lies in its capacity to expand the applicability of
the computer vision-based displacement measurement technique from
short-term and offline modes to long-term and continuous operations.

Fig. 14. The variation of edge device temperature and video processing FPS over time when SURF-CPU algorithm is implemented.

Z. Peng et al. Engineering Structures 319 (2024) 118809 

11 



The developed EdgeCVDMS is low-cost, easy-deployable, and thus has
the potential to be applied in the health monitoring of a population of
civil engineering structures.
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