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A B S T R A C T   

This paper presents an approach for structural damage quantification using a long short-term memory (LSTM) 
auto-encoder and impulse response functions (IRF). Among time domain responses-based methods for structural 
damage identification, using IRF is advantageous over the original time domain responses, since IRF consists of 
information of system properties and is loading effect independent. In this study, IRFs are extracted from the 
acceleration responses measured from different locations of structures under impact force excitations. The ob
tained IRFs are concatenated. Moving averaging with a suitable window size is performed to reduce random 
variations in the concatenated responses. Further, principal component analysis is performed for dimensionality 
reduction. These selected principal components are then fed to the LSTM auto-encoder for structural damage 
identification. A noise layer is added as an input layer to the LSTM auto-encoder to regularise the model. The 
proposed model consists of two phases: (1) reconstruction of the selected “principal components” to extract the 
features; and (2) damage identification of structural elements. Numerical studies are conducted to verify the 
accuracy of the proposed approach. The results demonstrate that the proposed approach can accurately identify 
and quantify structural damage for both single- and multiple-element damage cases with noisy measurements, as 
well as uncertainties in the stiffness parameters. Furthermore, the performance of the proposed approach is 
evaluated using the limited measurements from a few sensors.   

1. Introduction 

Damage identification and safety evaluation of civil engineering 
structures are essential objectives of structural health monitoring 
(SHM). This is achieved by measuring the responses of structures and the 
loading conditions for further analysis. The as-obtained data are ana
lysed using data interpretation algorithms. When the data obtained from 
various sensors are highly complex and heterogeneous, machine 
learning algorithms can be used for structural condition diagnosis and 
damage prognosis (Smarsly et al., 2013). Such algorithms generate 
knowledge about the structures using the structural data from the sen
sors and numerical data from the simulations (Chencho et al., 2021). 
Recent evidence shows that machine learning methods are more precise 
and superior to traditional methods, especially in the case of vague or 
noise-contaminated data sources (Khan and Yairi, 2018). It can obtain 
knowledge automatically from the available data. 

Vibration-based methods (Rafiei and Adeli, 2018; Wang et al., 2021; 
Wu and Jahanshahi, 2018) have been extensively developed for SHM to 

identify and quantify damage based on vibration responses. These 
methods have been widely used in the health monitoring of machines 
and their components based on the measured vibration responses such 
as displacement, strain and acceleration (Heng et al., 2009; Jardine 
et al., 2006; Kan et al., 2015). Vibration-based methods have also been 
developed for SHM of civil engineering infrastructure, ultimately over
coming the issues with the traditional structural condition monitoring 
and safety evaluation of the monitored structures (Avci et al., 2021; 
Mansouri et al., 2015; Shadan et al., 2016). To examine the ageing and 
degradation of a bridge, Magalhães et al. (2012) installed force balance 
accelerometers within the deck box girders to measure both vertical and 
lateral accelerations. The natural frequency changes over time were 
monitored with the surrounding temperature to observe possible 
changes in the bridge’s condition status. The natural frequency variation 
over time with the RMS value of the vertical acceleration and the 
average day evolution of the modal damping ratios and natural fre
quency changes during working days were also obtained. A method was 
proposed to minimize the effects of environmental and operational 
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factors on the natural frequencies, which helped to identify the struc
tural anomalies in the subsequent stage (Magalhães et al., 2012). 

Machine learning algorithms have been used together with vibration 
responses to monitor the health of structures. It has the capacity to 
explore features in the measurement data and can provide information 
about the structure’s condition. They do not require a high configuration 
computer system for training and are relatively fast. It has been used for 
damage identification and localization with time domain measurements, 
which are mostly the acceleration responses from the structures. It does 
not require extracting parameters, such as the modal information from 
the measurements recorded from the sensors. Autoregressive model 
(AR) and residual error (RE) have been used to extract damage-sensitive 
features for support vector machine (SVM) by Gui et al. (2017) to detect 
damage in frame structures using time series measurements. The 
hyperparameters of SVM were tuned with three different optimization 
techniques. Numerical results demonstrated the improvement in the 
performance over the conventional methods in terms of sensitivity, ac
curacy and effectiveness. Chencho et al. (2021) proposed a random 
forest-based structural damage identification and quantification 
method. The time-domain responses were generated using the Finite 
Element Model (FEM) to train and test the model. Experimental studies 
were carried out on the frame in the laboratory. The proposed method 
has shown good damage identification results for both numerical and 
experimental studies. The study was further extended using an 
extremely randomized tree and extracted impulse response functions 
(IRFs) from time-domain response measurements (Chencho et al., 
2022). 

Artificial neural networks (ANN) were used along with the feature 
extraction methods for damage identification and localization. A nu
merical study (Mehrjoo et al., 2008) on a simple Louisville bridge truss 
was carried out for damage detection of joints using modal character
istics extracted from acceleration responses. Damage was introduced by 
reducing the truss member’s stiffness, and bending modes were used for 
training the model. The first four modes of truss bridge and five modes of 
Louisville bridge were used to train the model. The results indicated 
good damage identification performance. However, the complete 
training process took 75,000 epochs, which is quite large. An application 
of Bayesian model class selection to select an optimal ANN model class 
was proposed for detecting damage in a four-story, 22-bay steel frame 
with 120 degrees of freedom (Ng, 2014) using modal characteristics of 
the model under several structural damage states. A combined method 
(Betti et al., 2015) consisting of ANN and genetic algorithm was 
developed for structural damage identification of a three-story steel 
structure. Structural damage was introduced by partial cuts of flanges on 
a column. Acceleration measurements from undamaged and damaged 
levels under ambient conditions were recorded to obtain natural fre
quencies and mode shapes. The minimization of modal characteristics 
between the experimental and numerical studies using two fitness 
functions and the damage identification was tested using the genetic 
algorithm. Studies by Cury and Crémona (2012), Goh et al. (2013), Lee 
and Lam (2011), and Zhou et al. (2014) have used modal information 
with machine learning models for damage identification and 
localization. 

A numerical study (Dackermann et al., 2016) using principal 
component analysis (PCA) with ANN and ensembles of ANN was con
ducted for the damage identification and localization of a pin-pin sup
ported steel beam. Modal parameters were extracted from the time 
domain responses, and the modal strain energy-based damage indices 
were derived. PCA was applied to the damage indicators, and significant 
principal components were selected as input to the ANN for damage 
identification and localization. PCA was utilized to reduce the effect of 
noise, and performance was evaluated against different levels of white 
noise. A three-stage ANN method for damage assessment of building 
structures was proposed in the study by Bandara et al. (2013). The first 
stage determined the damaged floor, and a specific damaged element 
was identified in the second stage. The damage severity was identified in 

third stage. The study was carried out on a numerical model of a 10-sto
rey frame structure with the frequency response function obtained from 
the acceleration measurements. The result indicated that the PCA-based 
damage index was suitable for structural damage detection. PCA was 
used with noise filtering for feature extraction. Some researchers 
(Abdeljaber and Avci, 2016) proposed a nonparametric structural 
damage detection method using self-organizing maps to extract damage 
indices from ambient acceleration measurements. The study was con
ducted to identify and locate damage due to stiffness reduction and 
change in boundary conditions of a numerical model of a hot-rolled steel 
grid structure. 

Deep learning models have been extensively used for the damage 
identification and quantification of civil engineering structures. It is a 
subset of machine learning methods, and it can learn from the data in an 
unsupervised manner and extract the optimal input representation from 
the raw data without the intervention of the user. Thus, deep learning 
models can learn not only how to correlate features to the desired 
output, but also how to extract features (Avci et al., 2021) unlike in 
parametric and nonparametric methods discussed above. An ensemble 
classification method for structural damage assessment was proposed 
using FRF generated from a numerical model (Fallahian et al., 2017). A 
deep neural network and a couple of sparse codes are two classifiers used 
for the damage classification, and the decision is made based on the 
majority voting. The input to the classifiers is the features extracted by 
using PCA. The numerical study was carried out on a truss bridge with 
25 elements and validated with data obtained from the I-40 bridge. 
Good damage classification results were provided, considering temper
ature variations. Bai et al. (2023) proposed an image and frequency 
information-based deep learning method for structural health moni
toring and post-earthquake reconnaissance. A cost-effective deep 
learning-based method (Wang and Su, 2023) for detecting and classi
fying the condition of the bearings of a bridge was proposed. The study 
developed two models: one for detecting the bearing (BearDet) using a 
transformer network for feature extraction and a deep learning model 
for accurately classifying (BearCla) the condition of the bearing. A 
method for detecting pavement defects based on convolutional neural 
networks using grey and depth images was proposed by Li et al. (2024). 
Classic U-shape and double-headed structures were developed to 
accommodate the image data characteristics. The detection accuracy of 
the proposed model was enhanced by integrating attention models. The 
use of a two-dimensional convolutional neural network (CNN) for four 
damage states prediction using the acceleration responses recorded 
during the shake table testing of a reinforced concrete highway bridge 
model was proposed by Khodabandehlou et al. (2019). A deep residual 
network for structural damage identification using the modal informa
tion was proposed by Wang et al. (2020). Both the numerical and 
experimental studies provided good structural damage identification 
results. However, the use of modal information requires more sensor 
measurements. Furthermore, the computational demand of 
two-dimensional CNN and deep residual networks is more expensive. 

Auto-encoders perform hierarchical non-linear mapping to learn 
features that represent datasets (Vincent et al., 2010), and have been 
also used for dimensionality reduction. In studies by Fallahian et al. 
(2017), Fallahian et al. (2018), Pathirage et al. (2019), and Wang et al. 
(2018), autoencoders have been used for damage identification and 
quantification. Recent studies on structural damage identification and 
localization with auto-encoders used the natural frequencies and mode 
shapes as the input, and the stiffness reductions in structural elements as 
the output. A number of sensor measurements were required at several 
locations of the structure to obtain accurate modal information such as 
mode shapes (Chencho et al., 2021; Wang et al., 2021). This can be 
expensive because of the costs incurred on long cables and many sensors 
and data acquisition systems. Using time domain responses can over
come the issue with the use of a large number of measurements to obtain 
modal information for damage identification and localization. Abdel
jaber et al. (2017) proposed a real-time damage detection and 
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localization method using adaptive one-dimensional (1D) CNN and raw 
signal measurements with accelerometers. Wang et al. (2021) used only 
a few sensors and time-domain responses and achieved excellent dam
age identification and quantification results by using densely connected 
neural networks. Chencho et al. (2021) conducted a similar study using 
principal component analysis (PCA) and an ensemble-based machine 
learning algorithm, namely, the random forest. Good damage identifi
cation and quantification results were close to those from the deep 
learning models at a relatively low computational cost. PCA has been 
used to extract information from high dimensional data. Such data can 
be represented using a few principal components that retain most in
formation (Sarbu and Pop, 2005), and the process is faster than 
auto-encoder when used for the dimensionality reduction. 

Further, IRF is one of the dynamic properties of structures and can be 
extracted from time domain responses. IRF is an inherent system prop
erty, therefore it is more advantageous than using the measured time 
domain response. In studies of Li and Law (2008) and Robertson et al. 
(1998), the estimation of IRFs using discrete wavelet transform has been 
discussed. It can be analytically derived from general equation of motion 
(Law and Li, 2007; Li et al., 2015). Li et al. (2015) proposed a structural 
damage identification method that used a sensitivity-based method and 
the impulse response functions (IRFs) extracted from the acceleration 
responses. Lin et al. (2019) proposed a method to estimate IRF from 
structural responses recorded from multiple unknown excitations and 
utilized IRF for structural damage identification and quantification. An 
equivalent single excitation problem was obtained for multiple general 
excitations, and IRFs were estimated using wavelet-based and 
regularization-based method. The performance was measured with and 
without considering noise containment in the measured data for a nu
merical model of a simply supported plane truss. Smith and Hernandez 
(2019) explored the use of impulse response sensitivity and least abso
lute shrinkage and selection operator (LASSO) regularization for sparse 
damage detection in terms of stiffness reductions in a numerical model 
of a non-uniform shear beam with noisy measurements, limited model 
parameters and limited sensor locations. The results demonstrated that 
sparse damage can be detected by using the changes in identified im
pulse responses. 

This paper proposes a structural damage identification approach 
using long short-term memory (LSTM) based auto-encoders and IRFs. 
The proposed approach uses IRFs extracted from the acceleration re
sponses under impact excitations measured at the selected nodes of the 
structure. The extracted IRFs are concatenated, and PCA is performed 
for dimensionality reduction, which helps to reduce the overall 
computational cost of using the LSTM auto-encoder for structural 
damage identification. Numerical studies are conducted on a simply 

supported beam, and datasets are generated using finite element model 
analysis for verifying the performance of the proposed approach. In this 
study, the proposed LSTM auto-encoder is explored for structural dam
age identification by considering input as one sequence and output as 
another sequence. This study: 1) implements a LSTM auto-encoder for 
structural damage identification, and the model does not need to be 
trained and tested for different damage scenarios as in other structural 
elemental damage identification; and 2) explores IRFs extracted from 
time domain acceleration responses using only a few sensors. The 
identification results demonstrate the performance of the proposed 
approach by using only a few sensor measurements. 

2. LSTM auto-encoder 

LSTM has been widely used in sequence prediction problems, such as 
sequence classification and sequence-to-sequence prediction, which 
may differ based on the input and output sequences. LSTM is a type of 
recurrent neural network (RNN). It has recurrent connections that use 
the state of neuron activation from the previous time step to determine 
the output (Brownlee, 2017). RNNs are designed for sequence predic
tion, for example, multi-layer perceptron adding loops. RNNs face the 
challenge of getting trained effectively owing to vanishing gradient 
problems. LSTM is designed to overcome this challenge. Moreover, 
LSTM can learn long-term dependencies better than an RNN (LeCun 
et al., 2015). LSTM uses gates that process the information contained in 
the incoming data sequences. The gates include a forget gate, an input 
gate and an output gate, each of which can be considered a neural 
network (Xu and Yoneda, 2021; Zhang et al., 2020). The output from an 
LSTM cell depends on the long-term memory (referred to as the cell 
state), output from the previous time step, and data of the input 
sequence of the current time step. Fig. 1 shows a typical example of an 
LSTM cell. 

The forget gate determines which information of the cell state is 
useful based on the previous hidden state and the current input data. The 
previous hidden state and the current input data are fed to the forget 
gate, generating a vector between 0 and 1 using sigmoid activation. A 
value of 0 indicates that the input component is irrelevant, whereas 1 
indicates the input component is relevant. In the following equations, W 
and Wh are the input and hidden state weights for the forget gate f, input 
gate i, and output gate o. 

ft = σ
(
xt ×Wf + ht− 1 ×Whf

)
(1)  

where xt, ht-1 and ft denote the data at time instant t, the previous hidden 
state, and the forget gate at t, respectively. σ is the sigmoid activation 

Fig. 1. An example LSTM cell.  
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function. The input and hidden state are multiplied by the weights. The 
weight matrix remains the same and it does not change from one time 
step to another. 

The amount of information sent is based on this value. More infor
mation is sent when the value is closer to 1. The output from this part of 
the forget gate is multiplied pointwise by the previous cell state. The 
output of pointwise multiplication is given by Eq. (2) or Eq. (3) when ft is 
0 or 1, respectively. When it is 1, all previous cell states are sent. 

Ct− 1*ft = 0 for ft = 0 (2)  

Ct− 1*ft =Ct− 1 for ft = 1 (3)  

where Ct-1 denotes the previous cell state. 
The next stage is the input gate. The input gate uses the current input 

and the previous hidden states to quantify the amount of new infor
mation to be retained along with the previous cell state. The equation for 
the input gate can be expressed as 

it = σ(xt ×Wi + ht− 1 ×Whi) (4)  

where it is the input gate at time instant t. 
Using a sigmoid function, the input gate outputs a vector ranging 

from 0 to 1. The new information is a function of the previous hidden 
state and current input data. It uses the “tanh” activation function to 
output the new information ranging from − 1 to 1. The new information 
is determined as: 

IN = tanh(xt ×Wc + ht− 1 ×Whc) (5) 

The new information generated using the input gate can help to 
reduce the previous-state information in the cell state, if necessary. A 
negative value using the activation function “tanh” helps to achieve this. 
However, the necessity of retaining all the new input data is unknown. 
The output from the input gate is multiplied pointwise by the new input 
vector to determine the amount of new input data that can be retained. 
This output is added to the cell state. The current cell state is given as: 

Ct =Ct− 1*ft + IN*it (6) 

The output gate is the last gate, which determines the new hidden 
state. It uses the current input data and previous hidden state, similar to 
the forget and input gates. The equation for the output gate can be 
expressed as: 

ot = σ(xt ×W0 + ht− 1 ×Who) (7) 

The new hidden state is the output of the pointwise multiplication of 
the value of the output gate and new cell state. The “tanh” activation 
function is applied to the current cell state, resulting in a new output 
ranging from − 1 to 1. The new hidden state can be expressed as: 

ht = σ(xt ×Wo + ht− 1 ×Wh0)*tanh (Ct) (8) 

LSTM auto-encoder is an LSTM-based architecture (also referred to 
as encoder–decoder LSTM), as shown in Fig. 2. The encoder reads the 
input sequence and encodes it into a vector (Hochreiter and Schmid
huber, 1997). The decoder decodes this vector and outputs the predicted 
sequence. 

3. Proposed network configuration 

The proposed LSTM auto-encoder consists of two phases. Fig. 3 
shows the proposed network, which is implemented using Keras Func
tional API (Chollet, 2019) for deep learning. The first phase involves 
reconstructing the input sequence to extract the best feature represent
ing the input sequence, and the second phase involves relationship 
learning for structural damage identification. A network may learn 
effectively from a training dataset to train the input samples and the 
corresponding outputs, but it may perform poorly on new datasets, such 
as testing and validation datasets. This results in a generalisation error, 
which can often be improved by adding random noise, resulting in less 
effective network learning of the training dataset (Brownlee, 2019). The 
Keras API enables the addition of white noise to the network via a 
Gaussian layer, as shown in Fig. 3. 

Adding a Gaussian layer adds noise with a mean value of zero. The 
standard deviation of noise can be tuned to obtain the best results for the 
network. A standard deviation of 0.3 is used for the proposed network, 
and the Gaussian layer is added as an input layer to the encoder. The 
encoder outputs internal representations of the input sequences. The 
input to the network for both networks requires 3-dimensional input of 
[samples, timestep, features]. Here, “samples” denotes the observation, 
“timestep” is the sequence length and “features” is the number of fea
tures in the input. Both the encoder and decoder are stacked LSTM 
networks. A stacked LSTM network has multiple hidden layers, each 
with multiple memory cells. The output from the encoder is of 2-dimen
sional output and decoder, which is also a stacked LSTM network 
requiring 3-dimensional input. The repeat Vector layer is used here to 
create 2-dimensional output from the encoder to 3-dimensional data for 
the decoder. The decoder maps the learned internal representation of 
the input sequence to the output sequence. A dense layer is used as the 
output for the network. 

In the first phase, the encoder and decoder are tuned to obtain the 
maximum R-squared value for reconstructing the input sequence. The 
input sequence is the PCA-compressed IRFs. IRFs are extracted from 
acceleration measurements from the structure. IRF extraction is 
described in Section 4. The decoder uses the learned internal represen
tations of the input signal by the encoder as the input to reconstruct the 
input sequence. The encoder and decoder are tuned to obtain a good 
reconstruction of the input sequence from the decoder. The damage 
identification network is developed using the same encoder when the 
maximum R-squared is achieved for reconstructing the input sequence. 

Fig. 2. LSTM auto-encoder.  
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The output is to predict structural elemental stiffness reduction. Using 
the same encoder and a decoder of the damage identification network is 
tuned to obtain good damage identification results. Therefore, in the 
damage identification phase, the learned internal representation of the 
input sequence is mapped to stiffness reduction. Fig. 3(b) shows the 
damage identification network. 

4. Data generation and pre-processing 

Numerical studies are conducted on a supported beam to validate the 
accuracy and performance of the proposed approach. Young’s modulus 
of 3.3 × 104 MPa is considered initially for finite element modelling. The 
beam is 20 m long, 0.6 m wide, and 1 m high. The mass density is 2500 
kg/m3. There are 11 nodes, and only the vertical acceleration responses 
from the selected nodes are used. Impact forces are applied at node 3 to 

generate the study’s required acceleration responses. Fig. 4 shows the 
beam structure and the selected sensor locations. 

The datasets used in this study are generated by finite element 
analysis. The acceleration responses are measured at the sampling rate 
of 100 Hz when an impact force with a duration of 0.1s is applied at node 
3. The acceleration response with a duration of 1s from the randomly 
selected sensor locations is used for the study. The dataset is generated 
for both damaged and undamaged cases. The damage is defined in terms 
of the percentage stiffness reduction in structural elements and intro
duced by reducing the stiffness parameter, namely, Young’s modulus. 
For the damaged case, data are generated considering single-element, 
two-element, and three-element damage cases. A maximum stiffness 
reduction of 20% in steps of 0.5% for the single-element damage case 
and 15% in steps of 1.5% for all two-element damage cases are 
considered. For every three-element damage case, the minimum and 

Fig. 3. The proposed network.  
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maximum stiffness reductions of 1.5% and 15% are considered in steps 
of 4.5%. Every sample has “n’”outputs, where “n” is the number of el
ements. The output indicates the percentage of stiffness reduction for 
each element. Initially, the responses are measured from the five 
selected nodes under random impact forces generated by a Gaussian 
distribution with a mean of 8 kN and a standard deviation of 0.05 kN. 

The IRF is extracted using Eq. (9) based on the existing studies (Li 
et al., 2015) as follows 

H =X ×
(
FT × F

)− 1
× FT (9)  

where H denotes the IRF vector, F denotes the excitation force matrix, 
and X denotes the acceleration response vector. It should be noted that 
the pseudo-inverse is used to extract the impulse response function. 
Normally, the condition number for the excitation force matrix is not an 
extremely large value since the columns are basically independent. 
However, when the matrix is badly ill-conditioned, the truncated Sin
gular Value Decomposition (TSVD) can be employed to eliminate those 
very small singular values and the corresponding vectors for a better and 
more stable solution for the pseudo-inverse. The error in the IRF is 
reduced by averaging the results obtained using 50 ensembles. The IRFs 
extracted from the five sensor locations are concatenated, resulting in a 
sequence length of 500 sample points. Moving averaging is performed 
with a suitable window size to remove random variations. However, the 
sequence length (500) is considerably high for LSTM, which can increase 
the computational cost of the LSTM network. Therefore, PCA is per
formed on the concatenated input sequence to reduce the sample length 
to minimise the overall computational cost. Nineteen principal compo
nents are selected, with the minimum total variance of 98.71% of the 
data preserved when selecting the number of principal components. 
These 19 principal components are used as the input sequence to the 
LSTM auto-encoder network. Therefore, the input to the LSTM auto- 
encoder comprises 19 time steps, which are the 19 principal compo
nents. The entire dataset is reshaped into [samples, timesteps, features]. 

This study considers noisy measurements and uncertainties in system 
modelling. Damage in the structural elements is defined as stiffness 
reduction, that is, a reduction in the stiffness parameter, i.e., Young’s 
modulus. All ten elements would not have the same Young’s modulus 
values because of unavoidable uncertainties in the material properties 
and manufacturing quality. Accordingly, four scenarios are considered 
for investigating the performance of the proposed approach. 

Scenario 1: Acceleration responses measured from selected sensor 
locations are used without considering noise or uncertainty. The IRFs 
are extracted from these measured responses. 

Scenario 2: White noise is added to acceleration responses recorded 
in Scenario 1. The IRFs are extracted from the acceleration responses 
along with noisy measurements. Two different levels of white noise, 5% 
and 10%, are considered to determine the effect of the noise level on the 

performance. 
Scenario 3: Acceleration responses measured with uncertainty. Un

certainty ranging from ±1%–3% is included randomly in the stiffness 
parameters in the FEM. The IRFs are extracted from the acceleration 
responses. No noise measurements are considered herein. 

Scenario 4: Acceleration responses are measured considering the 
uncertainty and noise measurements. Acceleration responses are 
measured, including uncertainties ranging from ±1%–3%. 5% and 10% 
noise are added to the measured acceleration responses, and the IRFs are 
extracted. 

Only the IRFs extracted from Scenarios 1 and 3 are used for training 
and testing the framework. For Scenario 1, 11,300 single- and multiple- 
element damage cases are simulated. Three samples are generated for 
each damage case under a different impact force. For the same damage 
cases, uncertainty (ranging ±1%–3%) is included in the stiffness 
parameter, and the acceleration responses are measured, from which the 
IRFs are extracted and considered as Scenario 3. Scenarios 1 and 3 had 
the same damage cases (11,300). Both scenarios are combined to yield 
22,600 damage cases, and with three samples for each damage case, 
67,800 samples are generated. Four undamaged samples are added to 
the dataset, forming the final dataset with shape [67804, 19, 1] for the 
study. 

Scenarios 1 and 3 are combined to train and test the proposed 
framework. The network is trained using 85% of the entire dataset. The 
remaining 15% is used as one set for testing the proposed model. Fifteen 
per cent of the training dataset was used to validate the proposed 
method. Three sets of test data are used to test the performance of the 
proposed method.  

i. Random 15% of the dataset to test Scenarios 1 and 3  
ii. Scenario 2 dataset  

iii. Scenario 4 dataset 

5. Results and discussions 

During the reconstruction phase, the first 19 principal components 
are used as the input sequence to the LSTM auto-encoder, and the same 
sequence is used as the output for the reconstruction. The first and 
second principal components are considered as the values for the first- 
and second-time steps, respectively. The numbers of LSTM cells and 
layers in the encoder and decoder are tuned to obtain the maximum R- 
squared for the validation dataset. The reconstruction network is 
compiled using the Adam optimiser by considering mean square error 
(MSE) as the loss function. An R-squared of 0.996 is achieved with the 
reconstruction network configuration. Table 1 presents the results of the 
reconstruction of two random samples, and the reconstructed sequence 
is almost the same as the input sequence. 

Fig. 4. Simply supported beam and sensor locations.  
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The learning plot for the reconstruction network over 100 epochs is 
shown in Fig. 5. The plot provides information on the network perfor
mance of the training and validation datasets and can be used to 
determine whether the network underfits, overfits, or learns well. The 
training curve (obtained from the training datasets) provides 

information on the learning performance of the proposed network. In 
contrast, the validation curve (calculated for 15% of the total datasets) 
provides information on the generalisation performance of the trained 
network. The plot shows that training and validation losses decrease up 
to their respective stability points; a small gap exists between the 
training and validation loss curves. These results indicate a good fit. 

After achieving an R-squared value of 0.996, the decoder of the 
reconstruction network is replaced with another stacked LSTM network. 
The decoder is tuned further to map the features extracted by the 
encoder to stiffness reduction. However, the same decoder, which 
comprised a layer less than that in the reconstruction network, yields 
good results. The performance of the LSTM auto-encoder in damage 
identification is measured using the MSE and R-square for the scenarios. 
For Scenario 2, 5% and 10% noises are considered to investigate the 
effect of the measurement noise. Table 2 lists the MSE and R-squared for 
Scenarios 1 and 2. Table 3 shows the results for Scenarios 3 and 4. The 
proposed method exhibits good damage-identification performance. The 
performance is slightly affected when noise is present in the acceleration 
response. The performance further degrades with the increasing noise 
level. The learning curve for damage identification is shown in Fig. 6, 
which indicates a good fit. 

The R-squared decreases by 0.2% and 1.3% at 5% and 10% noise 
levels, respectively. When uncertainty is considered without noise 
measurement in the acceleration responses, as in Scenario 3, the R- 
squared decreases by 2.4%. With both noisy measurement and uncer
tainty effect, the performance degrades further, depending on the noise 
level. Decreases of 2.7% and 4.6% in R-squared values are observed at 
5% and 10% noise levels, respectively. Some negative stiffness re
ductions are observed in the non-damaged elements but are nearly zero. 
This behaviour has been observed in other deep-learning models 
(Pathirage et al., 2018; Wang et al., 2018, 2020) used for structural 
element damage identification with modal information and time-series 
data. 

The damage identification results for the single- and multiple- 
element cases for all considered scenarios are presented below. Dam
ages with smaller and greater than 10% stiffness reductions are defined 
herein as minor and major damages, respectively. Fig. 7 shows the 
damage identification results for the single-element damage case with a 
7% decrease in the stiffness reduction in the 4th element. The predicted 
damage is 6.75% when no noise measurement is considered. Using the 
data smeared with 5% and 10% noise, the predicted damage identifi
cation results are 6.03% and 5.87%, respectively. In Scenario 3, the 
predicted result is 8.8%. The performance degrades when both the un
certainty and noisy measurements are considered. With uncertainty and 
5% and 10% noise levels in measured data, the predicted results are 
9.09% and 9.24%, respectively. Some false positive damage identifica
tion results are observed in the undamaged elements, but the values are 
less than 0.5%. 

Table 1 
Input sequence and reconstructed sequences.  

Time steps Sample 1 Sample 2 

Input seq. Reconstructed seq. Input seq. Reconstructed seq. 

1 − 9.05 − 9.07 − 11.31 − 11.24 
2 1.70 1.69 − 10.72 − 10.72 
3 − 0.68 − 0.68 6.77 6.89 
4 − 1.49 − 1.52 5.00 5.07 
5 0.89 0.84 0.99 0.89 
6 0.10 0.11 1.16 1.26 
7 − 1.24 − 1.24 − 1.83 − 1.88 
8 − 1.97 − 1.98 2.27 2.25 
9 0.87 0.83 − 1.62 − 1.65 
10 − 0.28 − 0.29 − 1.26 − 1.31 
11 0.05 0.02 − 1.19 − 1.19 
12 0.32 0.35 − 0.59 − 0.57 
13 0.06 0.10 0.37 0.29 
14 − 0.09 − 0.10 − 0.17 − 0.24 
15 0.21 0.19 0.38 0.41 
16 − 0.72 − 0.69 0.02 0.03 
17 0.11 0.10 − 0.69 − 0.66 
18 − 0.22 − 0.19 0.39 0.33 
19 − 0.12 − 0.12 − 0.07 − 0.03  

Fig. 5. Loss curve for reconstruction network.  

Table 2 
Performance measurements of the proposed method using five sensor 
measurements.  

Performance metrics Scenario 1 Scenario 2 

5% noise 10% noise 

MSE 3.21 × 10− 6 6.15 ×10− 6 2.5 × 10− 5 

R-squared 0.998 0.996 0.985  

Table 3 
Performance measurements using five sensor measurements for Scenarios 3 and 
4.  

Performance metrics Scenario 3 Scenario 4 

5% noise 10% noise 

MSE 4.16 × 10–5 4.9 × 10–5 7.08 × 10–5 

R-squared 0.974 0.971 0.953  

Fig. 6. Loss curves of the damage identification network.  
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Fig. 8 shows the single-element damage identification results with a 
20% stiffness reduction in the first element under different scenarios. In 
all the scenarios, the introduced damage can be reliably identified. The 
performance degrades with an increase in the noise level and degrades 
further when uncertainty is considered. 

Two and three element damages are considered for the multiple- 
element damage cases. In Fig. 9, stiffness reductions are observed in 
elements No. 1 and 5. True damages of 6% and 9% stiffness reductions 
are considered for elements 1 and 5, respectively. Fig. 9 shows the 

damage identification results in another two-element damage case. The 
stiffness reductions are 13.5% for element 1 and 12% for element 6. 
These figures show that the proposed approach obtains good damage 
identification results. The identification results are good even when the 
measurement noise and uncertainty in the stiffness parameter are 
considered. Very few and small false positive stiffness reductions are 
observed in Fig. 10. 

For a three-element minor damage case, stiffness reductions of 6%, 
10.5%, and 6% are introduced in elements 2, 4, and 7, respectively. For a 

Fig. 7. Damage identification results of a single-element minor damage case in four scenarios.  

Fig. 8. Damage identification results of a single element with large damage.  

Fig. 9. Damage identification results of a two-element minor damage case.  
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major damage case, the stiffness reductions are 10.5%, 15%, and 15% 
for elements No. 2, 4, and 9, respectively. The identification results for 
minor and major damage cases are consistent with those in the single- 
and two-element damage cases. Fig. 11 and 12 show the identification 
results for the minor and major three-element damage cases. The pre
diction results for both single- and multiple-element damage cases are 
quite close to those of the true damages, even when the measurement 
noise and uncertainties in the stiffness parameter of the elements are 
considered. 

Next, the number of sensors is reduced from five to three. The ver
tical acceleration responses are measured from three sensors at nodes 2, 
8 and 9, and these responses are processed similarly to the above cases of 
using five sensors. The same damage cases are used in the training, 
validation and testing datasets of the above case with five sensors. The 
19 principal components selected from the concatenated IRFs are used 
as inputs to the network with the same architecture, and the perfor
mance is measured. The variance retained for the case using five sensors 
is 98.71% with 19 principal components. When the sensor number is 

Fig. 10. Damage identification results of a two-element damage case with more than 10% stiffness reductions.  

Fig. 11. Damage identification results of a three-element minor damage case.  

Fig. 12. Damage identification results of a three-element major damage case.  
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reduced to three, with 19 principal components, 96.68% variance is 
preserved. The proposed approach is trained and tested using 19 prin
cipal components. It is observed that the proposed approach can still 
give good damage identification as those using five sensor datasets. 
However, as presented in Fig. 13 and 40 principal components must be 
considered if the number of principal components is selected to retain 
98.71% using three sensors. This will increase the training time of the 
proposed model since the sequence length is more than twice the length 
using five sensors. 

Tables 4 and 5 present the performance measurements of using the 
proposed approach with three sensor measurements only. R-squared and 
MSE values are calculated for all scenarios considered in the five-sensor 
measurement case. Both the MSE and R-squared values indicate good 
damage identification results. The results are close to those obtained 
using the five-sensor measurements. 

Figs. 14–16 show the comparative damage identification results for 
Scenario 1 using five- and three-sensor measurements. The introduced 
stiffness reduction in the element 5 is 9.5%. The predicted stiffness re
ductions are 9.18% and 9.07% when using data from five and three 
sensors, respectively. For a randomly selected two-element damage 
case, the actual stiffness reductions are 13.5% for element 2 and 6% for 
element 8. The predicted stiffness reductions are 13.3% for element 2 
and 5.91% for element 8 (five sensors), 13.4% for element 2 and 5.17% 
for element 8 (three sensors), respectively. 

The results for a three-element damage case are also shown here. The 
simulated stiffness reductions in the three elements, namely, 2, 5 and 9, 
are 10.5%, 15%, and 15%, respectively. Using data from five-sensor 
measurements identifies the stiffness reductions of 10.44%, 14.91%, 
and 14.90% for elements 2, 5, and 9, respectively, whereas using data 
from three-sensor measurements identifies the stiffness reductions of 
10.46%, 14.97%, and 14.96% for elements 2, 5, and 9, respectively. 
Some false positive damages are resulted in both single- and multiple- 
element damage cases. However, the results show that the proposed 
approach enables good damage identification using a small number of 
sensors. 

Figs. 17–19 show the damage identification results for Scenario 2 
with a 10% noise level. The damage prediction results are similar to 
those of true stiffness reductions. Some false positives with higher values 
than those in Scenario 1 are observed. The true damage in element 6 is 
5%. The prediction results demonstrate using five sensors can provide a 
stiffness reduction close to the true damage. It is observed that using 
three sensors can also give quite accurate stiffness reduction, but very 
few false identification results are also obtained. 

Figs. 20–22 show the damage identification results for both single- 
and multiple-element damage cases in Scenario 3. As in the case of five 
sensors, the prediction results show a similar pattern, and the results are 
pretty close to those of true damages with some false positive damage 
identifications in the undamaged elements. Fig. 20 shows the stiffness 
reduction in the elements for the single-element damage case. The 
prediction results in element 4 using three sensors look closer to the true 
damage than those using five sensors. Still, it is observed that using three 
sensors gives a higher value of false positives in undamaged elements. 
The damage identification result for multi-element damage cases shows 
good results using a few sensors. It can be observed in both Figs. 21 and 
22 that the damage prediction results are close to actual damage using 
both five and three sensors. 

Fig. 13. Variance plot.  

Table 4 
Performance measurements using three sensor measurements for Scenarios 1 
and 2.  

Performance metrics Scenario 1 Scenario 2 

5% noise 10% noise 

MSE 5.7 × 10− 6 8.5 × 10− 6 2.7 × 10− 5 

R-squared 0.996 0.994 0.984  

Table 5 
Performance measurements using three sensor measurements for Scenarios 3 
and 4.  

Performance metrics Scenario 3 Scenario 4 

5% noise 10% noise 

MSE 5.3 × 10− 5 6.21 × 10− 5 8.69 × 10− 5 

R-squared 0.967 0.961 0.945  

Fig. 14. Damage identification results for a single-element damage case (Scenario 1).  
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Fig. 15. Damage identification results for a two-element damage case (Scenario 1).  

Fig. 16. Damage identification results for a three-element damage case (Scenario 1).  

Fig. 17. Damage identification results for a single-element damage case (Scenario 2).  
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Fig. 18. Damage identification results for a two-element damage case (Scenario 2).  

Fig. 19. Damage identification results for a three-element damage case (Scenario 2).  

Fig. 20. Damage identification results for a single-element damage case (Scenario 3).  
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Fig. 21. Damage identification results for a two-element damage case (Scenario 3).  

Fig. 22. Damage identification results for a three-element damage case (Scenario 3).  

Fig. 23. Damage identification results for a single-element damage case (Scenario 4).  
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Figs. 23–25 show the damage identification results for Scenario 4 
with 10% noise for single-, two-, and three-element damage cases. As 
observed in previous scenarios, the damage prediction results are close 
to the true damage results obtained using five sensors. Some false pos
itive damages are observed in the undamaged elements, but the values 
are less than 1%, which is negligible. 

The model implements the same network architecture and pre- 
processing data methods using five sensors. The damage identification 
results indicated that the developed model could provide good structural 
elements identification using a few sensors. The identification results 
show that even with a reduced number of sensors, the performance of 
the proposed approach is not significantly affected when the measure
ment noise and uncertainty in the stiffness parameter are considered. 
Further, the model is tested with one sensor, but the performance is not 
good. Therefore, the number of sensors in a practical application can be 
decided by conducting a numerical study. The measurements from the 
FEM analysis can be used to train and test the model using a different 
number of sensors. 

6. Conclusions 

This paper presents a structural damage identification approach 
using IRFs and LSTM auto-encoders. The principal components obtained 
from the concatenated IRFs of the selected sensor locations are used as 
input sequences. Initially, the LSTM auto-encoder is trained and tuned to 
reconstruct the input signal. After tuning, the reconstruction network 
provides a good reconstruction result. The decoder is further tuned for 
structural damage identification. The proposed approach achieves 

excellent damage identification performance for all the considered 
scenarios, and the identification results for both single- and multiple- 
element damage cases are close to those of the true damage. This 
study considers noisy measurement and uncertainty in the stiffness pa
rameters. The performance of the proposed approach is further inves
tigated by reducing the number of sensors from five to three. The 
damage identification results demonstrate that even using three sensors, 
sufficient information can be obtained using the proposed approach, 
thereby offering excellent damage identification results. Numerical 
studies demonstrate good damage identification results. However, 
experimentation validation will be conducted to validate the results in 
future. 
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Fig. 24. Damage identification results for a two-element damage case (Scenario 4).  

Fig. 25. Damage identification results for a three-element damage case (Scenario 4).  
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