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A B S T R A C T

Exceptionally well-preserved fossil specimens in the Fossil Basin of the Green River Formation (GRF) have made
it the subject of extensive paleontological study, but the organic molecular framework that evolved during a key
paleoclimatic and fossil-bearing interval during the early Eocene is poorly understood. Whereas the organic
geochemistry of the larger co-eval GRF basins has been extensively characterized, our molecular understanding
of the fossil-bearing layers in the Fossil Basin and the drivers of the exceptional fossilization therein remain
unresolved. To bridge this gap, sediments from the famous 18″-layer — the fossiliferous horizon that is exten-
sively quarried for exceptional soft-tissue fossils — were sampled for organic and isotopic geochemical char-
acterisation. The results show that the Fossil Basin sedimentary archive is geochemically distinct from other GRF
basins, as exemplified by the absence of the classical biomarker β-carotane and minimal evidence for the large
green algal blooms that predominate in the other GRF lake basins. Photic zone euxinia (PZE), anoxia, and a
freshwater cap enabled development of a productive and diverse ecosystem. Salinity and density stratification
prevented vertical mixing of the water column and supported preservation of decaying carcasses. In contrast to
other GRF basins, the small areal extent and ellipsoid shape of the Fossil Basin focussed terrestrial and freshwater
inputs into the lake, resulting in ideal conditions for preservation of an exceptional fossil record.

1. Introduction

The “Fossil Basin” in the Eocene Green River Formation (GRF) rep-
resents one of the world’s most exceptional lacustrine and fossil de-
posits. Despite representing the thinnest stratigraphic interval of the
GRF (~11 m), the Fossil Butte Member (FBM) represents the greatest
lateral expansion of the paleolake occupying Fossil Basin (Buchheim,
1994; Buchheim et al., 2015). The FBM is one of the world’s most
abundant and diverse fossil deposits, including numerous well-
preserved fossilized fish and plants, along with reptiles, insects, and
mammals (including early Cenozoic ancestors of bats and horses)
(MacGinitie, 1969; Buchheim, 1994; Grande, 2013).

There has been debate around the drivers of exceptional preservation
within the GRF (McGrew, 1975; Grande, 2001; Sullivan et al., 2012;
Hellawell and Orr. 2012). Despite extensive research on these Eocene
lakes, a holistic understanding of the paleoenvironment that resulted in

the death and fossilisation of the organisms that lived in this lake has yet
to be established. This paper utilizes biomarkers and their stable carbon
isotopes from samples of the famous 18″ fossil layer, as well as elemental
parameters indicative of redox conditions, water column stratification,
terrigenous input, and PZE, to disentangle the drivers that enabled
preservation of this remarkable lacustrine lagerstätte.

1.1. Geological context

The GRF was deposited in a network of continental interior lakes
during the early–middle Eocene (~53.5–43 My; Sheliga, 1980; Remy,
1992; Smith et al., 2008; Fig. 1). The Fossil Basin is located within the
Wyoming thrust belt and foreland basin area, and was deposited within
a structurally controlled, wedge top basin. The first expression of the
GRF in Fossil Basin is the fluvial–lacustrine overfilled facies (Bohacs
et al., 2000) of the Hollow Road Member, with minimal fossil
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preservation. The lake depocenter had migrated to the north by the time
of deposition of the FBM and the 18″ layer. The sampling location of this
study represents a basin depocenter location during the 18″ layer
(Buchheim et al., 2015; Figs. 1 and 2). The FBM is defined as a fluc-
tuating–profundal facies and represents the deepest water deposit in the
Fossil Basin, prior to the lake shallowing up during deposition of the
evaporitic uppermost Angelo Member (Buchheim, 1994; Bohacs et al.,
2000; Buchheim et al., 2011).

The most prolific fossil-bearing horizons within the FBM have been
previously defined as a ‘profundal kerogen-rich laminated micrite’
(Buchheim and Eugster, 1998; Buchheim et al., 2011) and were depos-
ited in the basin centre. Towards the shoreline, laminations thicken as
calcium-rich fluvial waters mingled with the high alkalinity,
bicarbonate-rich lacustrine water of the Fossil Basin paleolake, precip-
itating calcium carbonate (Buchheim and Eugster, 1998). The micrite is
comprised of lighter (calcium carbonate-dominated) and darker
(kerogen-dominated) laminae, with occasional siliciclastic and volca-
niclastic material present. Improved geochronological dates from
frequent ash layers of the Challis and Absaroka volcanic fields have
permitted interbasin correlation of the various sedimentary expressions
of the GRF (Smith et al., 2008, 2010; Buchheim et al., 2015), allowing
for a deeper understanding of the Green River paleolake system in a
broader paleoecological and climatic context.

1.2. Early Eocene

The early Eocene (~56–47.8 Ma) represents an interval of prolonged
Cenozoic warmth that culminated in the Early Eocene Climatic Opti-
mum (53.26–49.14 Ma; EECO), where atmospheric CO2 concentrations

reached ~1625 ± 760 parts per million by volume (Zachos et al., 2001,
2008; Jagniecki et al., 2013; Anagnostou et al., 2016; Lunt et al., 2017;
Foster et al., 2017; Westerhold et al., 2018; Schaefer et al., 2022).
Superimposed on this longer warming trend is a series of at least twenty
probable greenhouse gas-induced periods of rapid warming where
temperature spikes exceeded 5 ◦C, known commonly as hyperthermal
events (Thomas et al., 2000; Cramer et al., 2003; Lourens et al., 2005;
Zachos et al., 2008; Zeebe and Lourens, 2019). δ13Corganic analysis of
FBM contemporaneous floodplain and paleosol units from the Uinta
Basin, GRF, identified negative shifts (δ13C 2.5‰—5‰ VPDB) repre-
senting the early Eocene hyperthermal events expressed in the GRF (Gall
et al., 2017; Birgenheier et al., 2019). Hyperthermal events argued to
occur during eccentricity minima have also been identified in a
δ13Ccarbonate and lacustrine lithologic record from the Greater Green
River Basin of Wyoming (Smith et al., 2015); however, these events and
their effects have not been constrained within the Fossil Basin.

During the coeval highstand and extension of Fossil Lake and Lake
Gosiute, a hydrological connection formed between both lakes, to the
south of Oyster Ridge (Fig. 2), which led to the deposition of the FBM in
the Fossil Basin and the Tipton Member in the Greater Green River Basin
(Buchheim et al., 2015).

1.3. Biomarker studies

Previous studies have identified several biomarkers in the GRF,
including perhydro-β-carotane, various steranes and triterpanes and
their aromatic counterparts, as well as gammacerane (Murphy et al.,
1967; Collister et al., 1994; Koopmans et al., 1997). Previous work on
the GRF have identified four dominant categories of lipid biomarkers:

Fig. 1. (A) Overlook from Smith Hollow Quarry, Fossil Basin (B) Wyoming, Utah, and Colorado within the continental U.S.A. (C) GRF basins and the position of the
field site, Smith Hollow Quarry and Fossil Basin, Wyoming.
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terrestrial leaf wax-derived n-alkanes; hopanoids (bacterial);
chlorophyll-derived isoprenoids; and algal-derived steranes (Tissot
et al., 1978; Collister et al., 1994). Higher plants synthesize hydrocar-
bons with a strong predominance of odd-over-even numbered n-alkanes,
which when preserved in the rock record can inform about terrigenous
organic matter input. In particular, n-C27, n-C29, and n-C31 are indicative
of vascular plant material, which when carried into local lacustrine
basins is considered to be minimally transported by fluvial systems and
to represent <2000 years of deposition (Davies-Vollum and Wing,
1998).

Regular isoprenoids, pristane (Pr), and phytane (Ph), are largely
derived from the phytyl side chain of chlorophyll-a, the photoautotro-
phic pigment and precursor molecule involved in oxygenic photosyn-
thesis during the light absorption and transfer into chemical energy
(Eglinton et al., 1978). Ph, unlike Pr, is formed through the dehydrox-
ylation of phytol, and an increased ratio of Pr: Ph has long been used as a
general indicator of redox conditions (Didyk et al., 1978; ten Haven
et al., 1987; Witkowski et al., 2018). Lower molecular weight n-alkanes
(e.g., n-C17) are frequently interpreted as being of aquatic origin, and
comparison with terrestrially-derived material through various indices
(i.e. average chain length, carbon preference index, terrestrial: aquatic
ratio) can be a powerful tool for fingerprinting organic matter sources
(Collister et al., 1994; Bourbonniere and Meyers, 1996; Ficken et al.,
2000; Bi et al., 2005). The presence of gammacerane (derived from
tetrahymanol, synthesised by bactiverous ciliates living at the chemo-
cline) in large amounts suggests the presence of a stratified water col-
umn and potential hypersalinity in the depositional setting (Venkatesan,
1989; ten Haven et al., 1987; Sinninghe Damsté et al., 1995a,b; Grice
et al., 1998c; Peters et al., 2004; Peters et al., 2005).

1.4. Exceptional fossilization

Drivers of exceptional fossilization, such as H2S and bicarbonate
released by sulfate reducing bacteria (SRB), and photic zone euxinia
(PZE), have been identified in several sedimentary systems that host
exceptionally preserved fossils (e.g., Devonian Gogo Formation; Jurassic
Posidonia Shale [Melendez et al., 2013; Plet et al., 2017]). However,
despite the wealth of paleontological research conducted in the Fossil
Basin, the taphonomic mechanisms that operate within this system
remain enigmatic. This is, in part, a consequence of the sparsity of
biomarker data from key fossil layers in the GRF, which can be attrib-
uted to a traditional focus on the evaporitic and oil shale layers in other
GRF basins (Roehler, 1993; Smith et al., 2008; Elson et al., 2022; Walters
et al., 2023). Fossils have been permineralized with calcite-rich minerals

in the pore space, introduced by Ca2+-rich tributaries feeding the Fossil
Basin. This fluvial activity leached largely limestone-formed mountains
proximal to the lake (Buchheim et al., 2015). Subsequent carbonization
(loss of volatiles) and compression resulted in the striking dark brown
and black fossils observed in the FBM (Grande, 1984, 2001). This study
utilizes organic and inorganic geochemical tools to elucidate the
paleoecological, environmental, and diagenetic drivers that enabled
such exceptional soft-tissue preservation.

2. Methods

Fieldwork was undertaken in the Fossil Basin during August 2022.
Multiple sedimentary matrix samples from the 18″ layer were collected
from Smith Hollow Quarry, a commercial GRF fossil quarry (Fig. 1),
south of Fossil Butte National Monument. These samples were freshly
exhumed and immediately wrapped in aluminium foil to protect against
organic contamination and photo-oxidation. Two rock samples were
taken from the carbonate limestone laminations that host exceptionally
preserved fish fossils: GR-SHQ-18″-11 and GR-SHQ-18″-12.

Matrix samples were prepared at the Western Australian- Organic
and Isotope Geochemistry Centre using a tungsten carbide scribe (tips
sonicated three times for 15 min in 9:1 dichloromethane: methanol
(DCM:MeOH)) by removing exactly those laminae at the fish fossil layer.
The sample material was ground to a fine powder using a pre-annealed
(500 ◦C for 7 h) ceramic mortar and pestle, and Soxhlet extracted in glass
wool-composed, pre-extracted thimbles using a mixture of DCM: MeOH
(9:1 v/v, 72 h). Thimbles were twice-annealed and Soxhlet extracted
(twice, 24 h), and screened for any contamination using gas chroma-
tography–mass spectrometry (GC–MS). A blank pre-extracted thimble
was extracted alongside each Soxhlet extraction, and activated copper
was added to the round bottom flasks for the duration of the Soxhlet
extraction to remove elemental sulfur. Small scale column chromatog-
raphy of the weighed total lipid extracts enabled separation into
aliphatic, aromatic, and polar compounds (see Maslen et al., 2011).

2.1. Gas chromatography (GC)–mass spectrometry (MS) and multiple
reaction monitoring (MRM)

GC–MS analysis and biomarker identification was performed using
an Agilent 5977B Mass- Selective Detector (MSD) interfaced to an Agi-
lent 7890B gas chromatograph (GC) equipped with an Agilent 7693
auto-sampler and a DB-1MS UI capillary column (60 m length, 0.25 mm
I.D., 0.25 um film thickness) for saturate analysis, and an Agilent 5975B
Mass- Selective Detector (MSD) interfaced to an Agilent 6890N gas

Fig. 2. Lithofacies map of the Fossil Butte Member, representing the lake highstand of Fossil Basin (Adapted from Buchheim et al., 2015).
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chromatograph (GC) equipped with a 7683B auto-sampler and a DB-
5MS UI capillary column (60 m length, 0.25 mm I.D., 0.25 um film
thickness) for aromatic analysis. The GC-oven was heated from 40 ◦C to
325 ◦C at 3 ◦C/min with initial and final hold times of 1 and 30 min,
respectively.

GC-MRM analysis and biomarker identification was performed using
an Agilent 8890 GC interfaced to an Agilent 7010C Triple Quadrupole
equipped with an Agilent 7693A auto-sampler and a DB-5MS UI capil-
lary column (60 m length, 0.25 mm I.D., 0.25 um film thickness (122-
5562UI). The GC-oven was heated from 60 ◦C to 220 ◦C at 8/min, then to
320 ◦C at 2/min with initial and final hold times of 2 and 28 min,
respectively (inlet temperature 300 ◦C, 1.5 mL min− 1 He carrier gas
flow). Ions monitored in saturate fractions: steranes (M•+ → 217);
hopanes (M•+ → 191). Ions monitored in aromatic fractions: iso-
renieratane (544.5 → 134); aryl isoprenoids (134 → 119).

2.2. Gas chromatography–isotope ratio–mass spectrometry (GC–IR–MS)

The δ13C signature of pH and molecular weight n-alkanes, was
measured using a Thermo Delta V Advantage irMS, coupled to a Thermo
Trace GC Ultra via a GC Isolink and Conflo IV. Ions measured for CO2 on
the irMS were m/z 44, 45 and 46. Values were corrected to the Vienna
Pee Dee Belemnite carbon isotope scale using an in-house standard
containing a mixture of n-alkanes (n-C11, n-C13, n-C14, n-C17, n-C18, n-C19
and n-C25; with a known isotopic composition (from − 25.3 to − 32.2‰).
Samples were measured in triplicate with 1 μL injections, and standard
deviations for δ13C were < 0.5‰ (1σ).

2.3. X-ray diffraction (XRD)

XRD analysis for the composition of the crystalline mineral phases
was undertaken with a Bruker D8A, Bragg-Brentano geometry X-ray
Diffractometer, containing a copper X-ray source. Phase pattern iden-
tification was completed with Eva and Topaz software.

3. Results

3.1. Gas chromatography (GC)–mass spectrometry (MS) and multiple
reaction monitoring (MRM)

3.1.1. Aliphatic fraction
Pr/Ph values are very low (0.19 and 0.20), along with low Pr/C17

(0.81) and high Ph/C18 (4.05), indicating a relative preference for
phytane (Didyk et al., 1978; ten Haven et al., 1987). Several n-alkane
ratios have been developed for characterizing the n-alkane distribution
and organic matter sources of a sample, including the odd-over-even
predominance (OEP), carbon preference index (CPI), average chain
length (ACL), terrestrial: aquatic ratio (TAR), and the C29/C17 ratio
(Scalan and Smith, 1970; Marzi et al., 1993; Bourbonniere and Meyers,
1996; Ficken et al., 2000). The OEP for GR-SHQ-18″-11 and GR-SHQ-
18″-12 (hereafter referred to as 18″-11 and 18″-12) is 2.31 and 2.91, and
TAR values are 59.9 and 25.02. The n-alkane distribution ratios CPI and
ACL demonstrate an average higher carbon number, and for 18″-11 and
18″-12 are 4.42 and 5.73 (CPI), and 28.18 and 27.71 (ACL), respectively.
The ratio between C29 and C17 n-alkanes can indicate the predominance
of organic matter sources between higher plants and algal derivatives,
and is 41.8 and 17.30, for 18″-11 and 18″-12. A representative distri-
bution of acyclic and cyclic aliphatic hydrocarbons is presented in Fig. 3.

Fig. 3. (A) Total ion chromatogram (TIC) of the saturates fraction of GR-SHQ-18″-12. (B) TIC of the aromatic fraction of GR-SHQ-18″-12.

A.L. Elson et al.
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A suite of triterpenoid biomarkers is present in the 18″ layer samples,
and common hopane occurrences and ratios are detailed hereafter.
Notably, Ts/(Ts+ Tm) values are identical in both samples (0.02), as are
the βα/(βα + αβ) C30 hopane ratios (0.15). The gammacerane index (GI)
is 0.28 and 0.31, in 18″-11 and 18″-12, and both samples contain
extended hop(17,21)enes up to C35 (decreasing in abundance with
increasing chain length).

The predictable thermodynamic behaviour between S (geologically
favoured) and R (biologically favoured) epimers in C27-C29 steranes and
C31-C35 hopanes allows inferences of the thermal maturity of samples
(Köster et al., 1997). Low C29 20S/20R sterane values are observed for
both 18″-11 (0.11) and 18″-12 (0.12) matrixes. The total 20S/20R ster-
ane and the C31 hopane 22S/(22S+ 22R) values mirror this behavior for
18″-11 (0.20; 0.07) and 18″-12 (0.18 and 0.09). A high predominance of
the 20R isomer for the C27,28,29 ααα steranes in both samples is also
noted.

C29 steranes constitute the majority of steranes preserved at 18″-11
(45.7 %) and 18″-12 (43.7 %), followed by C27 steranes (37.1 and 35.5
%, respectively). C28 steranes are still well represented (17.3 and 16.5%,
respectively) whereas C30 steranes contribute minimally (18.5 and 4.3
%) to the total sterane abundance. The hopane/sterane (total C27-C30
hopanes/total C27-C29 steranes) values for 18″-11 and 18″-12 are 3.62
and 2.71, and diasteranes are present in negligible amounts within the
samples.

3.1.2. Aromatic fraction
A suite of methyl-, dimethyl-, and trimethyl methyltrimethyl-

tridecylchromans (MTTCs) were identified at m/z 121; 135, and 149,
respectively. This allowed for the calculation of the chroman ratio
(5,7,8-trimethyl-MTTC/total MTTCs; Sinninghe Damsté et al., 1993;
Tulipani et al., 2015) determined as 0.70 for 18″-11, and 0.56 for 18″-12.
A dominant peak in the aromatic fraction is isorenieratane, found
alongside a suite of carotenoid biomarkers including okenane, chlor-
obactane, β-isorenieratane, and renieratane identified via GC–MRM–MS
comparison with carotenoid standards (Fig. 4). Also identified is per-
ylene, a product of quinone pigments present in lignin-degrading fungi
and formed from diagenetic processes (Jiang et al., 2000; Grice et al.,
2009; Suzuki et al., 2010).

3.2. Compound specific carbon isotopes

Compound-specific δ13Cn-alkane values from n-C23–C31 are consis-
tently depleted relative to δ13Cphytane. δ13Cphytane values are − 30.9‰
and − 29.5‰ for 18″-11 and 18″-12. The mid-chain n-alkane isotope
values (n-C23, n-C25; Table 1) are depleted relative to phytane and
potentially reflect submerged or floating aquatic macrophytes. A po-
tential contribution from limnic algae photosynthesizing in the paleo-
lake might also contribute to the mid-chain n-alkanes δ13C values
(Cranwell, 1984) as they have also been shown to biosynthesize these
(Cranwell, 1984; Robinson et al., 1989; Spaak et al., 2017; He et al.,
2022), and consequently, isotope values might not preferentially derive
from macrophytes but also from limnic algae.

δ13C n-C23 values for both samples are –33.1‰ and –32.5‰, and δ13C
n-C25 values are –32.6‰ and –32.5‰. The longer chain n-alkanes (n-C27,
n-C29, n-C31) represent a leaf wax terrestrial contribution and might give
insight into the local terrestrial carbon cycle. These values are similar for
18″-11 and 18″-12 for the n-C27 and n-C29 δ13C measurements (n-C27:
–33.9‰ for both samples; n-C29: − 31.9‰ for both; n-C31: –33.9‰ and
− 35.4‰), and are depleted relative to δ13Cphytane (as seen in the mid-
chain length n-alkanes).

3.3. XRD analysis

The major crystalline phase present is calcium carbonate (CaCO3;
87.9%; 85.1%), along with a secondary component of ankerite (6.1%;
9.1%; an iron-rich magnesium carbonate), and minor amounts of dolo-
mite (2.8%; 3.3%), and quartz (3.2%; 2.6%). Model uncertainty error
was calculated from the Topaz analysis software (Table 2).

3.4. Rock-Eval

Rock-Eval analysis measured total organic content (TOC), S1, S2,
and temperature of maximum pyrolysis yield (Tmax). Hydrogen index
values are quite high, at 816 mgHC/gTOC and 750 mgHC/gTOC for 18″-
11 and 18″-12, compared to reasonable oxygen index values of 21
mgCO2/gTOC and 27 mgCO2/gTOC, and TOC values of 4.9 and 2.46 wt
%, respectively. Tmax for both samples is under the threshold for hy-
drocarbon generation (430 ◦C for 18″-11 and 419 ◦C for 18″-12). The
volatile hydrocarbon content (S1; mgHC/g rock) is low for 18″-11 (0.15)
and 18″-12 (0.14), and the remaining hydrocarbon generative potential

Fig. 4. MRM trace of the aromatic fraction monitored at 134.1 → 119.1, for (A) carotenoid standard and (B) GR-SHQ-18″-12. Comparison with the carotenoid
standard with study samples allowed for identification of a suite of carotenoids, alongside a very prominent isorenieratane peak.

A.L. Elson et al.
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of the samples (S2; mgHC/g rock) much higher for both (40.3 and 18.44,
correspondingly).

4. Discussion

4.1. Thermal maturity

Both samples share very similar hopane and sterane ratios that are

considered indicators of thermal maturity (Table 1), suggesting
conformable conditions during diagenesis in the 18″ layer. A high
amount of the C27 22, 29, 30-trisnor-17β-hopane coincident with very
low Ts/Tm values indicate that the 18″ layer did not experience suffi-
cient burial to generate any hydrocarbons. An abundance of extended
hopenes also supports a relatively low thermal maturity and has been
observed in a variety of hypersaline environments (Boon et al., 1983; ten
Haven et al., 1985, 1988; Schwark et al., 1998; Jiang et al., 2018).
Elevated values of the R (thermally unstable biological) over S (stable
geological) epimer in the hopane and sterane ratios support an inter-
pretation of low thermal maturities (Table 1), and a predominance of
ααα 20R isomerization in the C27,28,29 steranes is also congruent with
this.

Interestingly, when observing the isomerization of extended hope-
nes, the S epimer is dominant over the R epimer, suggesting the hopene
isomers have reached equilibrium during minor thermal maturation
and/or sulfurization of the R epimer (Köster et al., 1997). The organic
geochemistry maturity ratios are harmonious with Rock-Eval data (low
Tmax and S1 values; Table 2), which also indicate relatively low levels of
thermal maturation during the diagenetic history of the fossil layers.
Variations in values between the two samples may be due to different
vertical positions within the 18″ layer.

These results from Fossil Basin are harmonious with organic
geochemical studies of coeval basins from the GRF and suggest minimal
thermal maturation for the FBM and coincident lakes of the GRF
(Collister et al., 1992; Horsfield et al., 1994; Elson et al., 2022).

4.2. Sources of organic matter

Vascular plants synthesise hydrocarbons with a strong predominance
of odd-over-even numbered n-alkanes, and long chain C25-33 n-alkanes
are indicative of leaf wax material transported in from the shallow shore
and terrestrial realm (Scalan and Smith, 1970; Marzi et al., 1993;
Bourbonniere and Meyers, 1996; Ficken et al., 2000). The n-alkane
derived OEP, ACL, CPI, and TAR values all support an increased amount
of terrigenous lipids (long chain n-alkanes) preserved over aquatic lipids
(short chain n-alkanes; <C20), likely transported from the surrounding
highlands to the Fossil Basin paleolake. Leaf waxes are robust bio-
molecules that survive fluvial transport, and due to natural buoyancy,
can float to the center of lakes before sinking (Davies-Vollum and Wing,
1998).

High predominance of the C25 n-alkane and long-chain n-alkanes,
usually derived from terrestrial leaf waxes, has in some instances been
reported to reflect aquatic macrophyte or freshwater algal input
(Cranwell, 1984; He et al., 2022).

Aquatic macrophytes include vascular plants (rooted, floating, and
emerging), macro-algae, liverworts, and mosses (Miller and White,
2007). Emergent macrophytes have been found to contain n-alkane
distributions characteristic of terrestrial higher plants i.e., >n-C27
(Cranwell, 1984; Feakins et al., 2007), however, the n-alkane distribu-
tion of submerged/ floating macrophytes maximize at n-C25. Mid-chain
n-alkane δ13C values tentatively suggest a floating macrophyte or macro-
algae source over rooted (Table 1; Chikaraishi et al., 2004b) and a lack
of rooting structures preserved within basin center facies suggest that
rooting/emergent macrophytes were not a large contributor to the n-
alkane distribution in the samples (Grande, 1994). However, the large
coastline-to-lake surface area ratio of the paleolake compared to the
other basins (Fig. 1) could have allowed for a large contribution of
aquatic macrophyte wax lipids transported ex situ to the basin center,
and the abnormally elevated pCO2 of the EECO may also have contrib-
uted to depleted δ13C values. These additional factors highlight a need
for caution when considering the sources of long-chained n-alkanes
(Nichols et al., 1988; Volkman, 1988; Lichtfouse et al., 1994; Gong and
Hollander, 1997; McKirdy et al., 2010; Summons et al., 2013; Lowe
et al., 2022).

Rock-Eval data indicates an algal derived, Type I organic matter

Table 1
Common biomarker and geochemical ratios reported for GR-SHQ-18″-11, and
GR-SHQ-18″-12 matrix samples. Carbon isotope values represent the average of
triplicate analysis.

GR-SHQ-
18″-12

GR-SHQ-
18″-11

Pr/Ph 0.19 0.20
Gammacerane Index: (Gammacerane/C30αβ Hopane) 0.28 0.31
Chroman ratio: (5,7,8 trimethyl-MTTC/total MTTC’s) 0.70 0.56
Ts/(Ts + Tm): (Ts = 17α-22, 29, 30-trinorhopane;
Tm = 18a-22, 29, 20-trisnorneohopane)

0.02 0.02

20S/20R ratio for total C27 to C29 steranes 0.20 0.18
C29 steranes 20S/20R 0.11 0.12
C30 hopanes βα/(βα + αβ) 0.15 0.15
C31 hopanes 22S/(22S + 22R) 0.07 0.09
Odd-over-Even Predominance (OEP): (C27+(6xC29)
+ C31)/(4xC28+(4xC30))

2.31 2.91

Average Chain Length (ACL):
((25 × C25)+(27 × C27)+(29 × C29)+(31 × C31)+
(33 × C33))/(C25 + C27 + C29 + C31 + C33)

28.2 27.7

Carbon Preference Index (CPI):
(2×(C23 + C25 + C27 + C29))/(C22 + 2×(C24 + C26

+ C28) + C30)

4.42 5.73

Terrestrial: Aquatic Ratio (TAR): (C27 + C29 + C31)/
(C15 + C17 + C19)

59.95 25.02

C29/C17 41.8 17.3
Hopanes/steranes 3.62 2.71
C27:C28:C29 steranes (%) 37: 17: 46 36: 17: 44

Compound specific carbon isotope analysis (‰; n = 3)
Phytane − 30.9

(±0.19)
− 29.5
(±0.39)

n- C23alkane –33.1
(±0.49)

–32.5
(±0.31)

n- C25alkane –32.6
(±0.13)

–32.5
(±0.11)

n- C27 alkane –33.9
(±0.19)

–33.9
(±0.16)

n- C29 alkane − 31.9
(±0.14)

− 31.9
(±0.18)

n C31-alkane –33.9
(±0.31)

− 35.4
(±0.16)

Table 2
X-ray diffraction and Rock-Eval data for GR-SHQ-18″-11 and GR-SHQ-18″-12.
XRD analysis of crystalline phases present in
matrix (%)

GR-SHQ-18″-
11

GR-SHQ-18″-
12

Calcium carbonate 87.9 (±4.6) 85.1 (±2.9)
Ankerite 6.1 (±0.3) 9.1 (±0.8)
Quartz 3.2 (±0.2) 2.6 (±0.1)
Dolomite 2.8 (±0.2) 3.3 (±0.2)

Rock-Eval data (triplicate analysis)
TOC (wt.%) 4.9 (SD: 0.16) 2.45 (SD <

0.01)
Tmax (◦C) 430 (SD: 0) 419 (SD <

0.01)
S1 (mgHC/g rock) 0.15 (SD: 0) 0.16 (SD: 0.03)
S2 (mgHC/g rock) 40.3 (SD: 1.5) 18.5 (SD: 0.41)
Hydrogen Index (mgHC/gTOC) 816 (SD: 7) 754 (SD: 18)
Oxygen Index
(mgCO2/gTOC)

21 (SD: 3) 27 (SD: 1)
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character with high TOC values comparable to optimal source rock
values. Intriguingly, two common biomarkers associated with GRF oil-
shale facies — β-carotane and biomarkers of Botryococcus braunii (e.g.,
botryococcane, lycopane, macrocyclic alkanes; McKirdy et al., 1986;
Grice et al., 1998a; Grice et al., 2001; Audino et al., 2001) — were not
observed.

This suggests minor input from green algal blooms, unlike the
prominent algal input observed in other GFR paleolakes (Moldowan and
Seifert, 1980; Collister et al., 1992; Horsfield et al., 1994). Alternatively,
dilution of TOC values by rapid carbonate precipitation, and higher
plant wax input, might contribute to the differences observed between
the Fossil Basin and other GRF basins. A higher predominance of plant
wax preserved may be the result of lower thermal maturities preventing
transformation of short-chain (C14-C18) algal lipids to corresponding n-
alkanes, favoring higher molecular weight n-alkanes. A high leaf wax
predominance coupled with the presence of a salinity stratification
biomarker, gammacerane, may also indicate preferential decay of short
chain hydrocarbons by halophilic bacterial heterotrophs (Al-Mailem
et al., 2010). Cyanobacterial blooms might have existed in the place of
green-algal blooms; however, a lack of high amounts of n-C17 and a
moderate amount of mid-chained n-alkanes suggest cyanobacteria
blooms might not have been not abundant in Fossil Basin. Moderate
hopane: sterane ratio values suggest a mixed bacterial vs. algal input of
organic matter.

Relatively low TOC values compared to other GRF basins (such as the
Uinta and Piceance basins, exceeding 40 wt% TOC; Collister et al., 1992;
Horsfield et al., 1994; Elson et al., 2022), are attributed to severe car-
bonate dilution. Organic productivity in the paleolake, though, might
have been driven by a combination of high terrestrial nutrient input and
photosynthetic primary productivity in the surface waters. This terres-
trial input could have been episodic or potentially seasonally driven,
during the high energy precipitation regime of the EECO in the region
(Tulipani et al., 2014; Gall et al., 2017; Birgenheier et al., 2019).

A predominance of C29 steranes (Table 1), over C27 steranes and C28
steranes suggests that a major sterol contributor to the Fossil Basin
paleolake derived from common sources of C29 sterols, which include
higher plants, eustigmatophytes, chrysophytes, and green algae (Volk-
man, 2003). C27 steranes also comprise a lesser, but still very substantial
component and are abundant in animals and red algae (Grice et al.,
1998b; Peters et al., 2004; Peters et al., 2005). A high abundance of
hopanoids alongside the presence of perylene suggests microbial and
fungal organic matter degradation (Huang and Meinschein, 1979;
Moldowan et al., 1985).

4.3. Distribution of stable isotopes

To evaluate the relationship of these exceptional fossil-bearing layers
and primary productivity, paleolake productivity in Fossil Basin was
reconstructed using the δ13C of Ph. The δ13Cphytane values, if proven to be
derived from aquatic organic matter instead of terrestrial sources,
represent an integrated δ13C value of the whole chlorophyll-producing
community in the lake. During intervals of increased primary produc-
tivity in lake environments, the growth rates of phytoplankton will be
more rapid, resulting in a decreased carbon isotope fractionation rate
(Pancost and Pagani, 2005; Witkowski et al., 2018). This may be a factor
affecting isotope values in the Fossil Paleolake. Enriched δ13Cphytane,
relative to δ13Cn-alkane values in the 18″ layer could be indicative of a
predominantly algal source of the phytane, and different biosynthetic
pathways (Schouten et al., 1998; Grice et al., 2005). Such differences
might have resulted in varying isotopic fractionation from different
biosynthetic pathways, between the terrestrial-sourced higher plants,
and photoautotrophs residing within the water column (Schouten et al.,
1998). Submerged aquatic macrophytes can be slightly 13C-enriched
relative to long chain n-alkanes due to the utilization of isotopically
heavy HCO3

– in a highly alkaline lake system. However, n-C23 and n-C25
are depleted relative to n-C29 in the Fossil Basin paleolake, suggesting

either these alkanes were, in part, produced by lacustrine algae, or that
the bicarbonate equilibrium is perturbed by increased photosynthetic
activity and biologically induced pH changes (Mook et al., 1974; Shar-
key and Berry, 1985; Falkowski, 1991).

Carbon isotope values for the n-C27, C29, and C31 alkanes are slightly
depleted w.r.t other GRF basins (Collister et al., 1994) in both of the
sedimentary matrix sample indicating a slightly different plant source
(s). The presence of isorenieratane, alongside a suite of other caroten-
oids (okenane, chlorobactane, β-isorenieratane, renieratane) in both 18″
layer matrix samples indicate bacterial sulfate reduction in the paleo-
lake, and euxinic conditions within the photic zone. Leaf wax values are
depleted in 13C compared to n-C29 in the coeval GRF Piceance basin
(− 28.8 to − 31.7‰, average of − 29.9‰; Collister et al., 1994). This
might suggest higher levels of primary productivity in the catchment
area, or perhaps differing local conditions (Fig. 1).

4.4. Paleoenvironment

Pr/Ph is very low for both samples, indicating highly reducing con-
ditions. These values may be perturbed by processes such as mass
transport deposits and other sources of phytol (Didyk et al., 1978; ten
Haven et al., 1987). However, other geochemical data support the redox
assessment, such as a moderate GI, which indicates ciliates living at the
chemocline and the presence of stratified water layers (Sinninghe
Damsté et al., 1995a,b). Isorenieratane can be derived from the carot-
enoid pigment isorenieratene biosynthesised by Chlorobi, and is poten-
tial evidence for photic zone euxinia (PZE) conditions (Summons and
Powell, 1986; Grice et al., 2005). Detailed MRM analysis (Fig. 4) showed
the presence of okenane, chlorobactane and isorenieratane indicative of
purple, green-green and green–brown sulfur bacteria, respectively.
Although it has been observed that isorenieratane may also derive from
cyanobacterial carotenoids (Graham and Bryant, 2008; Cui et al., 2020)
or ß-carotene (Koopmans et al., 1997), the presence of PZE- related ca-
rotenoids within the aromatic fraction of the sedimentary matrix sam-
ples, and evidence of an already anoxic and stratified water column (e.g.
low Pr/Ph, gammacerane), support the likelihood of PZE conditions
during the FBM. Furthermore, coarser grains (indicative of fluvial ac-
tivity) are minimally present in the sediment mineralogy; most of the
sedimentation originates from calcium carbonate precipitation induced
from primary productivity (Table 1).

The lack of diasteranes and negligible values of clay from XRD data
in both matrix samples suggest a minor input from clay-rich source
rocks. XRD peaks are fully symmetric and gaussian in appearance,
suggesting a relative lack of amorphous material. The absence of broad
low intensity peaks, which when present indicate an amorphous
component to the matrix, also supports this interpretation. Amorphous
phases might be present; however, they are likely under the limit of
detection (<1%; Vyverberg et al., 2018). The platelet nature of clay
minerals results in ready identification in XRD analysis, and so these
minerals are usually well represented in XRD spectra if present.

A co-occurrence of moderate GI values and Chlorobi biomarkers in
both samples support the presence of a chemocline, whereby salinity
stratification and PZE conditions prevailed (Murphy et al., 1967; Sin-
ninghe Damsté et al., 1995b; Tulipani et al., 2015). The MTTC index is
proposed to reflect conditions above the chemocline, and the ratio be-
tween different chroman isomers has been established as a proxy for
paleosalinity or freshwater incursions (Sinninghe Damsté et al., 1993;
Sinninghe Damsté and de Leeuw, 1995; Tulipani et al., 2015) depending
on the chroman index and the relationship with Pr/Ph. The high chro-
man ratio, and low Pr/Ph values of these samples, suggest a productive
freshwater cap was present on the Fossil Basin paleolake during depo-
sition of the 18″ layer.

The relatively high MTTC index could be a result of increased fluvial
and plant input transported into the lake during episodic high energy
precipitation, driven by the humid and hothouse EECO (~53–49 Ma)
climate regime (Gall et al., 2017; Birgenheier et al., 2019; Cramwinckel
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et al., 2023). This could have resulted in the development of freshwater
incursions during the FBM, providing an optimal habitat for the diverse
flora and fauna in the catchment of the Fossil Basin (Zachos et al., 2008;
Tulipani et al., 2014; Westerhold et al., 2018). An alternate formation of
MTTCs is via early diagenetic condensation reactions forming these
compounds from phytol, by cyclisation with higher plant-derived
alkylphenols (Li et al., 1995; Tulipani et al., 2014; Barakat and
Rullkötter, 1997). The correlation with Pr/Ph and other paleoecological
indicators suggests a freshwater origin for the MTTCs, and the presence
of lower salinity in the upper water column (Fig. 5; Schwark et al., 1998;
Didyk et al., 1978; Tulipani et al., 2015), demonstrating the separate
vertical positions of ecological niches for the organisms, on which the GI
and the MTTC indices are based. Density variations from saline and
freshwater input baffled vertical mixing of the water column and
precipitated a sharp chemo- and halocline in the Fossil Basin paleolake
(Sinninghe Damsté et al., 1993; Tulipani et al., 2015).

The presence of perylene is often viewed as an indicator of terrige-
nous input (Orr and Grady, 1967; Aizenshtat, 1973; Jiang et al., 2000;
Guilick et al., 2019) however, it can be produced by other organisms,
including crinoids and some insects (Grice et al., 2009; Suzuki et al.,
2010). The lack of crinoids in the Fossil Basin paleontological record
excludes this source, and insect fossils are more commonly associated
with lake margin facies in the FBM, rather than the depocenter (Fig. 2;
Grande, 1984,2001). Terrigenous nutrient input was likely intensified
seasonally, with an influx of freshwater enhancing primary productivity,
and concomitantly providing a source of cations for carbonate precipi-
tation. The FBM and deposition of the 18″ layer is coincident with the
early phases of the EECO (K Spar tuff is dated at ~51.97 Ma; EECO ~
53–49 Ma; Smith et al., 2008, 2010; Zachos et al., 2008; Tulipani et al.,
2015; Westerhold et al., 2018). The Uinta Basin of the GRF records thick
ephemeral sandstone sheets during the early Eocene hyperthermals,
driven by high energy precipitation. Sediments comprising these sand-
stone sections were transported as far south as Arizona, indicating well-
developed and high energy ephemeral systems controlling sedimenta-
tion in neighbouring GRF basins (Gall et al., 2017; Birgenheier et al.,
2019). Fossil Basin was surrounded by hinterlands of the Rocky,
Wasatch, and Uinta Mountains, and so more protected from the large-

scale fluvial systems that developed in the south. The lack of coarser
grains at the 18″ layer, evident from XRD and visual analysis, support a
low energy environment, and distal to larger-clast sources.

4.5. Implications for exceptional preservation in the GRF

Taphonomic experiments on fish have identified that the high pH
(alkaline) and high salinity characteristics of the GRF were potential key
factors in early fossilisation (Briggs and Wilby, 1996; Gäb et al., 2020;
Gerschermann et al., 2021; Clements et al., 2022). While anoxia might
be important to deterring scavenging, it does not prevent the onset of
decomposition (Allison, 1988). When considering the preservation of
fish, other crucial factors include: sufficiently high hydrostatic pressure
within the water column to ensure sinking of the carcass; and a suffi-
ciently deep water body to overcome the buoyancy of the swim bladder
(Gäb et al., 2020). Cooler lake waters also promote the sinking of fish
carcasses, by contrast with warmer waters that favour carcass bloating,
which generally results in rapid decay (Allison, 1986; Gäb et al., 2020).

The FBM has an exceptionally high percentage of vertebrates
fossilized as well-articulated specimens: 68% of 385 samples from the
18″ layer were identified as perfect samples in one study (McGrew,
1975), and another more recent study returned 70% perfect samples
from 1133 fish fossils (Sullivan et al., 2012). This excellent fossilization
is not replicated across other GRF lake basins. Consequently, multiple
explanations have been proposed as the key drivers of fossilization in the
Fossil Basin, including: storm-driven overturning of the water column;
H2S poisoning; microbial mats; and algal blooms (McGrew, 1975;
Grande, 2001; Sullivan et al., 2012; Hellawell and Orr, 2012). Algal
blooms and microbial mats are present in other GRF basins, although
during deposition of the FBM, southern basins of the GRF had very high
sedimentation rates that would have obstructed high primary produc-
tivity and filled accommodation space required for a thriving lacustrine
ecosystem (Gall et al., 2017; Birgenheier et al., 2019).

High molecular weight n-alkanes, primarily sourced from leaf waxes
shedding off terrestrial higher plants and transported into the Fossil
Basin catchment area, are present in very high amounts. Although this is
a feature coincident with other GRF lakes, terrigenous material within

Fig. 5. Basin model of the Fossil Basin during deposition of the 18″ layer Lagerstätte in the Fossil Butte Member, and important paleoenvironmental markers
identified in the 18″ layer samples (adapted from Tulipani et al., 2015; Buchheim et al., 2015; Elson, 2021).
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the most distal confines of the lake basin is very high in the Fossil Basin
(Collister et al., 1992; Elson et al., 2022).

A reason for this variance could be the different basin shape and
small size compared to the other GRF basins (Fig. 1). The Fossil Basin
paleolake contains the majority of the exceptional fossil specimens
found, and was the smallest and the deepest of the three Green River
paleolakes (Grande, 1984) with a maximum extent of 60 km by 30 km
(Buchheim, 1994). The narrow ellipsoidal lake shape (i.e., a high
shoreline development index; Hutchinson, 1957) could result in an
overrepresentation of terrestrial material relative to the other GRF ba-
sins, with a larger surface area (resulting in an increase of n-alkane
dilution over a larger basin area;>20 times the size of Fossil Basin). This
might have increased the potential for a partial decoupling of biomarker
proxies where plant material is incorporated, as excessive terrestrial
material transported into the lake would dilute algal biomarker signals.
An elliptical shape and high shoreline development index might have
supported the development of littoral ecosystems and high biological
productivity (Wetzel and Likens, 2000; Wetzel, 2001). The narrow lake
shape, and greater lake depth of the Fossil Basin compared to the other
GRF basins, would have supported development of stronger water col-
umn stratification (Valero-Garcés and Kelts, 1995) during the deposition
of the 18″ layer. The morphometric properties of the Fossil Basin pale-
olake also resulted in cooler water column temperature — this is key to
mitigating against the bloat-and-float, and promoting the sinking and
burial, of carcasses (Gäb et al., 2020). This contrasts with the adjacent
and much larger Greater Green River Basin, which is much topograph-
ically flatter and shallower in water depth. This resulted in weaker water
column stratification and therefore higher scavenging and degradation
of carcasses (Smith et al., 2008, 2010; Smith and Carroll, 2015; Buch-
heim et al., 2015).

Carbonate laminae are thought to result from calcite precipitation in
response to episodic inflow of calcium-rich inflows, into the over-
saturated bicarbonate and alkaline lake waters of Fossil Basin (Buch-
heim and Eugster, 1998). These laminations thin towards the basin
center and were estimated at approximately 100 mm ka− 1 for the main
fish bearing units of the Fossil Basin paleolake (Grande, 1984; Smith
et al., 2008), suggesting rapid carbonate precipitation and resultant
burial of organic material. Carbonate precipitation is considered mostly
chemical in origin (Eugster and Kelts, 1983) with the warmer EECO
climate resulting in increased lake surface evaporation and concentra-
tion of bicarbonate material (Buchheim and Eugster, 1998; Zachos et al.,
2001; Cramwinckel et al., 2023). During higher productivity in summer
months, temperature-dependent photosynthetic activity of microbes
and macrophytic plants in the upper water column caused precipitation
of calcium carbonate in ‘whiting’ events (Kelts and Hsü, 1978; Schult-
ze-Lam et al., 1997). It is likely that the Fossil Basin had multiple car-
bonate precipitation events annually, similar to other GRF basins (Elson
et al., 2022), because of the reduced temperature gradients between
seasons during the EECO (Lunt et al., 2020).

Tectonics and climate are critical controls of the distribution of
carbonates in lake environments, primarily by driving: morphological
change of the lake; input and output of ions through surface and ground
water, wind, and rainfall processes; and the seasonality and temperature
of the lake climate (Bohacs et al., 2000; Buchheim et al., 2015). The
EECO climate and superimposed Eocene hyperthermal regime, driving
an intensified hydrological cycle, might have led to increased terrestrial
material and nutrient input to the lake, supporting stratification of
freshwater and denser saline water and enhancing primary productivity
(Zachos et al., 2001; Birgenheier et al., 2019; Cramwinckel et al., 2023).
These conditions within a smaller, more isolated (from massive
ephemeral sediment input; Gall et al., 2017) lacustrine basin might have
created perfect conditions for fossil preservation, in stark contrast to
other GRF basins. A freshwater cap developed within the smaller lake
basin and enabled diverse and complex ecosystems to exist within the
photic zone of the Fossil Basin paleolake, and stratification alongside
anoxic and euxinic conditions inhibited rapid degradation of fossil

specimens. The other GRF basins lacked the fossilization potential of
Fossil Basin, as carcasses could not sink to a sufficient depth to be pro-
tected from scavenging, or high siliciclastic input clouded the water
column and lowered primary productivity. This is not to say that diverse
ecosystems did not exist in the neighboring Green River basins; it is
simply more likely that their preservation potential might have been
much lower compared to conditions in the Fossil Basin paleolake.

The eponymous fossil record of Fossil Basin sets it apart from other
GRF basins. It is possible, even likely, that ecosystems across the entire
region were complex and diverse; and yet, none of the other basins
preserve them in such detail. The unique morphometric parameters of
the Fossil Basin paleolake appear to have created a paleoenvironment
that was periodically optimal for most organisms as a habitat during the
warm and wet EECO climate (Zachos et al., 2001; Birgenheier et al.,
2019; Cramwinckel et al., 2023). However, these parameters also
enabled their carcasses to be rapidly buried (by high carbonate precip-
itation) and mineralized such that they were exceptionally preserved as
fossils.

5. Conclusions

The Fossil Basin fossil record formed from the smallest and shortest-
lived of the Green River paleolakes. It was deposited during the hot,
humid conditions of the EECO, and contains a lacustrine lagerstätte
unmatched in the other GRF basins. Exceptional preservation within
Fossil Basin has made it a focus of paleontological research, but a
paucity of organic geochemical studies has resulted in uncertainty over
the geochemical conditions that enabled the generation of its diverse
ecosystem and the exceptional preservation of soft tissue-containing
fossils.

This study shows the Fossil Basin paleolake was geochemically
distinct from other GRF paleolakes, lacking the large algal blooms that
characterize the oil-shale deposition in paleolakes Uinta and Gosiute.
MTTCs, Pr/Ph, gammacerane, and isorenieratane biomarkers all indi-
cate the development of a salinity and density-driven stratification of the
Fossil Lake at the 18″ layer. Anoxia and PZE were present at this interval,
inhibiting degradation of fossil soft tissues. Additionally, a freshwater
cap developed at the surface of the lake, which likely enabled habitat
space for diverse and complex ecosystems within the paleolake of the
Fossil Basin. The morphometric properties of the Fossil Basin paleolake,
i.e., a deep, narrow basin with a high shoreline index, distinguish it from
the other Green River basins. The above properties and processes may
have simultaneously enhanced the nutrient supply and freshwater
ecological space, which allowed for a complex ecosystem to develop
alongside conditions that promoted robust stratification, high carbonate
precipitation, and potentially lethal PZE. These factors ensured optimal
conditions for burial and fossilization.

The Fossil Basin of the Green River Formation is well suited for
further detailed geochemical studies. The present study provides a
framework for future research directed at a more complete reconstruc-
tion of the ecological, paleoenvironmental, and diagenetic history of the
Fossil Basin during deposition of the FBM.
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Koopmans, M.P., De Leeuw, J.W., Damsté, J.S.S., 1997. Novel cyclised and aromatised
diagenetic products of β-carotene in the Green River Shale. Organic Geochemistry 26
(7-8), 451–466.
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