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A B S T R A C T

Car following model is an important part in traffic modelling and has attracted a lot of
attentions in the literature. As the proposed car following models become more complex
with more components, reliably estimating their parameters becomes crucial to enhance
model predictive performance. While most studies adopt an optimisation-based approach for
parameters estimation, we present a statistically rigorous method that quantifies uncertainty
of the estimates. We present a Bayesian approach to estimate parameters using the popular
Gipps’ car following model as demonstration, which allows proper uncertainty quantification
and propagation. Since the parameters of the car following model enter the statistical model
through the solution of a delay-differential equation, the posterior is analytically intractable so
we implemented an adaptive Markov Chain Monte Carlo algorithm to sample from it. Our results
show that predictive uncertainty using a point estimator versus a full Bayesian approach are
similar with sufficient data. In the absence of adequate data, the former can make over-confident
predictions while such uncertainty is more appropriately incorporated in a Bayesian framework.
Furthermore, we found that the congested flow parameters in the Gipps’ car following model
are strongly correlated in the posterior, which not only causes issues for sampling efficiency
but more so suggests the potential ineffectiveness of a point estimator in an optimisation-based
approach. Lastly, an application of the Bayesian approach to a car following episode in the
NGISM dataset is presented.

1. Introduction

The use of traffic models to make predictions and hence inform decision-making has become ubiquitous. Car following models in
particular have gained a lot of research interests due to their foundational role in traffic flow. The recently proposed car following
models [1–3] have grown in complexity and included more and more components in attempt to produce more realistic behaviours.
Their predictive performance often depend crucially on appropriate parameter values, which raises the importance of parameters
estimation. Such parameter estimation task is more commonly referred to as model calibration and validation in the transport
research community. Although conceptually similar, there are subtle differences between estimating parameters for a model and
calibrating a model.
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Let 𝐷 = (𝑋, 𝑌 ) ∼ 𝑅 = 𝑝(𝑋, 𝑌 ) denote the data which comes from the data generating process 𝑅 that we call reality where 𝑋 and
are the random vectors denoting predictor and prediction respectively. We will inevitably treat 𝑅 as a stochastic process regardless

f whether it is inherently stochastic (aleotoric uncertainty) or we as modellers simply do not have completely knowledge over
t (epistemic uncertainty). Let 𝑌 ∼ 𝐹 (𝑋, 𝜃) denote the model prediction for 𝑌 given 𝑋 made by a model 𝐹 (⋅) parametrised by 𝜃
ith feasible parameter space 𝛩. In statistical inference, parameters estimation usually assumes the data generating process belongs

o the parametric family of the model, i.e. ∃𝜃∗ ∈ 𝛩 ∶ 𝐹 (𝑥, 𝜃∗) = 𝑝(𝑌 |𝑋 = 𝑥) so one can speak of the true parameter values. On
he other hand, model calibration in transport modelling implicitly assumes the structurally imperfect 𝐹 (⋅) and hence aims to find
est-fitting parameter values. Indeed, one can view model calibration as estimating 𝜃∗ ∶= argmin𝜃∈𝛩 E(𝑋,𝑌 )[‖𝐹 (𝑋, 𝜃) − 𝑌 ‖] which is
he parameter values that minimise the generalised error based on some distance metric.

The most common approach in the transport literature for model calibration is then to construct an extremum estimator as the
olution to an optimisation problem [4–12]. Such point estimators often take the form 𝜃̂ = argmin𝜃∈𝛩

1
|𝐷|

∑

(𝑥𝑖 ,𝑦𝑖)∈𝐷 ‖𝐹 (𝑥𝑖, 𝜃) − 𝑦𝑖‖ to
minimise the training error, which is essentially an estimate of 𝜃∗ with finite samples. Under regularity conditions, the weak law of
large number guarantees 𝜃̂ → 𝜃∗ in probability as |𝐷| → ∞. From this perspective, such an optimisation-based approach is sensible.

However, there are several issues associated with point estimators which are often overlooked in existing literature. Firstly,
subsequent model predictions on new data treat the estimate 𝜃̂ as if it was 𝜃∗. This not only neglects the fact that the
training/validation error is only an estimate of the generalised error, but also the Monte Carlo error when numerically solving the
typically intractable optimisation problem. As a result, it ignores the uncertainty in 𝜃̂ when making subsequent predictions and hence
predictive uncertainty is typically underestimated. This can be somewhat addressed with suitable regularisation and cross-validation
to ensure the predictive performance conditioning on 𝜃̂ is still acceptable. The second and more important issue is that for principle-
driven models, the parameters might be assigned physical meanings so their estimated values are used for subsequent inference.
For instance, one might draw further conclusions about driver’s aggressiveness based on their estimated minimum headway to their
preceding vehicle during car following. This is a deeper statistical question which we discussed in detail in a previous work [13].
Strictly speaking, imperfect models by definition do not fully reflect the reality so model parameters are not necessarily informative
about the true data generating process. Even if one assumes 𝐹 (𝑋, 𝜃) is a good approximation of 𝑝(⋅|𝑋) and hence the assigned physical
meaning of 𝜃 is close to its counterpart in reality, inference based on a point estimate without proper uncertainty quantification is
potentially misleading.

In this research, a Bayesian approach is adopted which is a flexible and statistically coherent framework for uncertainty
quantification and propagation. We performed Bayesian inference for a generalisation of the popular Gipps’ car following model
where the integration time step is not necessarily the reaction time. Since the likelihood depends on the car following parameters
through the solution of a delayed differential equation, the posterior is analytically intractable so we implemented an adaptive
Markov chain Monte Carlo algorithm to sample from it. We demonstrate the advantages of a Bayesian approach in handling
uncertainty compared to an optimisation-based approach, at the cost of computations. Furthermore, we found strong correlation
between the congested flow behavioural parameters in the Gipps’ car following model, which not only reduces efficiency of the
sampler but more so suggests the need for inference beyond simple point estimators. Lastly, we applied the methods to real data
using the NGISM dataset. While signs of model mis-specification emerge, the model fit appears satisfactory with reasonable predictive
uncertainty on validation data. The contribution in this paper is two-fold, namely (1) the demonstration of Bayesian inference as a
useful framework for parameters estimation in transport modelling, and (2) its application to estimate parameters for the Gipps’ car
following model which entails implementation of an adaptive Markov chain Monte Carlo algorithm to sample from the posterior.

The paper is structured as follows: Section 2 introduces the Gipps’ car following model and details our implementation of the
corresponding delay-differential equation solver, Section 3 provides some background on model calibration and validation, with
an emphasis on Bayesian inference and its computations, Section 4 details the statistical model and the adaptive MCMC sampler,
Section 5 presents the results and discussions, Section 6 demonstrates an application to real dataset, and Section 7 concludes the
paper.

2. Gipps’ car following model

Car following describes the longitudinal movement of a pair of vehicles called the leader and follower as illustrated in Fig. 1,
where the states of the vehicles are the usual kinematic variables namely displacement 𝑥(𝑡), velocity 𝑣(𝑡) and acceleration 𝑎(𝑡). It
is one of the most important components in traffic micro-simulator. The Gipps’ car following model originally proposed by [14],
belongs to the class of collision avoidance model and is arguably one of the most popular car following models. It assumes the
follower chooses a safe speed should its leader brake abruptly. The model updates the follower’s velocity in one reaction time
according to the following equations:

𝑣𝑓 (𝑡 + 𝜏) = min(𝑣f f (𝑡 + 𝜏), 𝑣cf (𝑡 + 𝜏)) (1)

𝑣f f (𝑡 + 𝜏) = 𝑣𝑓 (𝑡) + 2.5𝑎max𝜏
(

1 −
𝑣𝑓 (𝑡)
𝑉max

)

√

0.025 +
𝑣𝑓 (𝑡)
𝑉max

(2)

𝑣cf (𝑡 + 𝜏) = 𝑏max𝜏 +

√

√

√

√𝑏2max𝜏2 − 𝑏max

[

2(𝑥𝓁(𝑡) − 𝑙𝑐 − 𝑥𝑓 (𝑡)) − 𝑣𝑓 (𝑡)𝜏 −
𝑣2𝑙 (𝑡)

𝑏̂𝓁

]

(3)

where 𝜏 is the reaction time; 𝑎max, 𝑏max(<0) and 𝑉max are the follower’s maximum desired acceleration, deceleration and velocity
respectively; 𝑙 is the clearance length for the leader; 𝑏̂ is the follower’s estimate of the leader’s maximum desired deceleration
2
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Fig. 1. Illustration of car following, red vehicle is the leader.

sually assumed to be the leader’s actual maximum desired deceleration scaled by the sensitivity parameter 𝜓 i.e. 𝑏̂𝓁 = 𝜓𝑏max,𝓁 . The
odel assumes the follower will be either in free flow described by (2) where it is not impeded by the leader, or in congested flow
escribed by (3) where the opposite is true, whichever is more restrictive. Note that the original formulation included an additional
afety term 𝜃 when calculating 𝑣cf (⋅) [14,15]. The formulation in (3) is a specific case of 𝜃 = 𝜏∕2 which is commonly adopted in the
iterature.

.1. Solving Gipps’ model

The general case of the Gipps’ update rules (1)–(3) combined with the usual kinematic relationships 𝑥̇𝑓 (𝑡) = 𝑣𝑓 (𝑡) form a delayed
ifferential equation (DDE) [16] that describes the evolution of the follower’s state (𝑥𝑓 (𝑡), 𝑣𝑓 (𝑡)). In Gipps’ original paper [14] and
ost implementations in the literature, the integration time step 𝛥𝑡 is chosen to be the same as the reaction time 𝜏. In such case,

he solution simplifies to that of a difference equation which performs discrete updates. While this is erroneous for chaotic systems
s it ignores dynamics at a time scale smaller than 𝜏, from a modelling perspective and the definition of 𝜏 it appears to be a sensible
hoice. We implemented a generalisation of the Gipps’ car following model where 𝛥𝑡 can be a submultiple of 𝜏, i.e. 𝜏 =𝑀𝛥𝑡,𝑀 ∈ N.
urthermore, an initial interval {𝑥𝑓 (𝑡), 𝑣𝑓 (𝑡)|0 ≤ 𝑡 < 𝜏} is technically required as opposed to just the initial conditions 𝑥𝑓 (0), 𝑣𝑓 (0) in
olving ordinary differential equation.

We implemented a simplified DDE solver as shown in algorithm 1. Let 𝑓Gipps(⋅) denote the aforementioned follower velocity
pdate rule (1) with calibration parameter 𝛾. The leader’s displacement 𝑥𝓁(𝑡) and velocity 𝑣𝓁(𝑡) are viewed as stimulus to the system
hat describes the follower’s state. For simplicity, instead of estimating the entire initial interval, we assumed it is determined by
he initial condition and interpolated the initial interval assuming constant acceleration. Subsequent integration in time is simply
erformed with the method of steps.

Algorithm 1 Gipps’ car following model solver
1: Input: follower velocity update rules 𝑓Gipps(⋅) as per Gipps’ car following model, initial conditions 𝑥𝑓 (0), 𝑣𝑓 (0), integration time

step 𝛥𝑡, simulation period 𝑇 , leader’s trajectory as stimulus {𝑥𝓁(𝑡), 𝑣𝓁(𝑡)|0 ≤ 𝑡 ≤ 𝑇 }, calibration parameters 𝛾
2: Output: The follower’s trajectory as system response {𝑥𝑓 (𝑡), 𝑣𝑓 (𝑡)|0 ≤ 𝑡 ≤ 𝑇 }
3: Calculate 𝑣𝑓 (𝜏) = 𝑓Gipps(𝑥𝑓 (0), 𝑣𝑓 (0); 𝑥𝓁(0), 𝑣𝓁(0), 𝛾)
4: Interpolate the initial interval assuming constant acceleration:
5: 𝑎 = 𝑣𝑓 (𝜏)−𝑣𝑓 (0)

𝜏
6: 𝑣𝑓 (𝑡) = 𝑣𝑓 (𝑡 − 𝛥𝑡) + 𝑎𝛥𝑡, 𝑥𝑓 (𝑡) = 𝑥𝑓 (𝑡 − 𝛥𝑡) +

𝛥𝑡
2 (𝑣𝑓 (𝑡) + 𝑣𝑓 (𝑡 − 𝛥𝑡)) for 𝑡 ∈ (0, 𝜏]

7: Numerically integrate forward in time using method of steps:
8: for 𝑡 > 𝜏 do
9: 𝑣𝑓 (𝑡 + 𝛥𝑡) = 𝑓Gipps(𝑥𝑓 (𝑡 + 𝛥𝑡 − 𝜏), 𝑣𝑓 (𝑡 + 𝛥𝑡 − 𝜏); 𝑥𝓁(𝑡 + 𝛥𝑡 − 𝜏), 𝑣𝓁(𝑡 + 𝛥𝑡 − 𝜏), 𝛾)

10: 𝑥𝑓 (𝑡 + 𝛥𝑡) = 𝑥𝑓 (𝑡) +
𝛥𝑡
2 (𝑣𝑓 (𝑡) + 𝑣𝑓 (𝑡 + 𝛥𝑡))

11: 𝑎𝑓 (𝑡) =
𝑣𝑓 (𝑡+𝛥𝑡)−𝑣𝑓 (𝑡)

𝛥𝑡 ⊳ assumes constant acceleration during 𝛥𝑡

In synthetic data generation, we assumed the leader also follows the Gipps’ free flow component, with random perturbations
mposed in the form of forced acceleration/deceleration. Otherwise, the leader and follower will simply approach a steady state
n the absence of perturbations. A sample trajectory simulated with Gipps’ car following model is shown in Fig. 2. In the case of
𝑡 = 𝜏, we recover the usual implementation of Gipps’ model as a discrete update equation. A comparison between the two is given
3
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Fig. 2. A sample trajectory simulated with Gipps’ car following model using the DDE solver described in algorithm 1. The dashed lines describe the corresponding
latent state variables, the solid line in the top panel is the noisy displacement time series which is the only observable quantity. The fourth row describes the
gap between the vehicles 𝑔(𝑡) = 𝛥𝑥(𝑡)− 𝑙𝑐 . The fifth row describes the follower regime as either in congested flow (cf) or free flow (ff). The shaded panels indicate
random perturbations imposed on the leader’s acceleration/deceleration.

2.2. Parameters to be estimated

In the Gipps’ model, the follower’s response (𝑥𝑓 (𝑡), 𝑣𝑓 (𝑡))𝑇 is fully deterministic given the stimulus (𝑥𝑙(𝑡), 𝑣𝑙(𝑡))𝑇 , the calibration
parameters 𝛾 and the initial conditions. Uncertainty arises in the observation process where the follower’s response is observed
with noise. We assumed the follower’s displacement time series is observed with additive Gaussian noise with mean 𝜇𝑥 and
variance 𝜎2𝑥, which is conditionally i.i.d. given latent follower’s displacement 𝑥𝑓 (𝑡). The parameters to be estimated are the
main driver behavioural parameters 𝑎max, 𝑉max and 𝑏max, the initial conditions 𝑥𝑓 (0) and 𝑣𝑓 (0), and the noise parameters 𝜇𝑥
and 𝜎2𝑥. For notational convenience, we will refer to 𝛾 = (𝑎max, 𝑉max, 𝑏max, 𝑥𝑓 (0), 𝑣𝑓 (0)) as the calibration parameters, and 𝜃 =
𝑎max, 𝑉max, 𝑏max, 𝑥𝑓 (0), 𝑣𝑓 (0), 𝜇𝑥, 𝜎2𝑥) as the full parameters to be estimated. Other unobservable quantities such as 𝜏 and 𝜓 are
echnically also parameters to be estimated. We omitted 𝜏 because it introduces further complication in the numerical integration
cheme. While the sampler described in Section 4.2 can be easily extended to incorporate 𝜓 and still converge asymptotically, we
ound that the mixing of the chains is slow so convergence of the sampler might take many more iterations. This issue and potential
olutions are discussed more extensively in Section 5.3. Hence we restrict ourselves to only a subset of the parameters. While this
s a limitation of our study, we believe it still serves the purpose of demonstrating the applicability of a Bayesian approach.

. Model calibration and validation

.1. Optimisation-based approach

The most common approach in the literature to estimate the parameters in car following model is to formulate it as an
ptimisation problem [4,7,10,11,17–20]. Most notably, the estimator 𝜃̂ is the minimiser of some error metric ‖ ⋅ ‖ between model

output and observed output, i.e.

𝜃̂ = argmin
𝜃

‖𝐹 (𝑥, 𝜃) − 𝑦‖ (4)

where (𝑥, 𝑦) is the data realisation and 𝐹 (⋅) is the statistical model. Strictly speaking, 𝐹 (⋅) should model the data generating process
and hence should include both the underlying dynamics described by car following model and the observation process. However
most literature seems to treat 𝐹 (⋅) as only the car following model, with some exception such as [18] who showed that neglecting
observation noise can induce bias in the estimate. This is however not the most apparent weakness of an optimisation-based
approach, as one could easily include an observation noise model by replacing the objective function in (4) with the likelihood
which gives the maximum likelihood estimator (MLE).

Instead, a major weakness of an optimisation-based approach is that it only constructs a point estimator, and it is usually not
̂

4

obvious how one can obtain statistically coherent uncertainty quantification. In such approach, 𝜃 is effectively treated as known
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and used for all subsequent predictions. Although one might conduct cross-validation to assess whether 𝜃̂ generalises to new data
set, such training-validation pipeline successfully applied in machine learning is however not fully transferable to traffic models for
several reasons. Firstly, traffic models are not universal approximators. One usually does not know what the minimum achievable
error is, and hence what an acceptable error threshold should be. It is quite possible that for a given error threshold, there are
no parameter values where both training error and validation error fall below this threshold. In addition, the parameters in traffic
models usually have physical meanings. Aside from only monitoring the training and validation error as in machine learning, in
model calibration one is usually also interested in monitoring whether the estimated parameter values converge to plausible values.

Even if cross-validation shows that 𝜃̂ as a point estimate is useful for prediction, one has to be careful before drawing further
inferences based on 𝜃̂ about reality. Such interpretability is fundamentally why one might choose a principle-driven traffic model
over a machine learning model to begin with. However, the validity of any subsequent inference depends on how reliable the
estimates are. Hence, there is often a need for proper uncertainty quantification about the estimated parameter values.

3.2. Bayesian inference

Statistical inference, and Bayesian inference in particular, provides a flexible and statistically coherent framework for uncertainty
quantification. Bayesian statistics differ from classical statistics in their interpretation of probability as degree of belief, so uncertainty
is associated with a lack of information. Bayesian inference treats parameters as random variables, and describes uncertainty about
them with probability distributions. For an excellent and detailed account of Bayesian statistics, see [21].

Let 𝜃 denote the parameters and 𝐷 denote the data, the driving principle is the Bayes’ rule:

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)𝑝(𝜃)
𝑝(𝐷)

(5)

∝ 𝑝(𝐷|𝜃)𝑝(𝜃) (6)

where 𝑝(𝜃) is the prior which represents the uncertainty about the parameters before one observes the data; 𝑝(𝐷|𝜃) is the likelihood
hich is the statistical model of the data generating process and describes the relative plausibility of observing the data given
ifferent values of 𝜃; and 𝑝(𝜃|𝐷) is the posterior which represents the remaining uncertainty about the parameters after one has
bserved the data. The intuition is that observing 𝐷 hopefully provides information and allows us to update our uncertainty about
.

The posterior distribution 𝑝(𝜃|𝐷), which is central in Bayesian inference, contains all the information for almost every question
ne can ask about 𝜃 given 𝐷. One might then be interested in computing various summaries of the posterior such as:

• Point estimators such as the posterior mean: E[𝜃|𝐷] = ∫𝜃∈𝛩 𝜃𝑝(𝜃|𝐷)𝑑𝜃
• Interval estimators1 such as a 100𝛼% credible interval: [𝑎, 𝑏] s.t. ∫ 𝑏𝑎 𝑝(𝜃|𝐷)𝑑𝜃 = 𝛼
• or equivalently, posterior probability 𝑃 (𝑎 ≤ 𝜃 ≤ 𝑏) = ∫ 𝑏𝑎 𝑝(𝜃|𝐷)𝑑𝜃.

urthermore, the uncertainty in 𝜃 can be propagated into the observation space via the posterior predictive distribution

𝑝(𝑦̃|𝐷) = ∫𝛩
𝑝(𝑦̃|𝜃)𝑝(𝜃|𝐷)𝑑𝜃 (7)

hen making prediction for a new observation 𝑦̃. It can be interpreted as using all possible values of 𝜃 weighted by its posterior
ensity. An optimisation-based approach that constructs a point estimator 𝜃̂ essentially approximates 𝑝(𝜃|𝐷) with a point mass 𝛿𝜃̂ .

In Bayesian inference, the full posterior distribution 𝑝(𝜃|𝐷) is the only estimator of 𝜃, unlike the numerous possible combinations
f distance metric in an optimisation-based approach. The assumptions made in a Bayesian model are explicit in the choice of prior
nd likelihood, from which the posterior must be a logical consequence.

.2.1. Bayesian computation and MCMC
In likelihood based inference where the likelihood 𝑝(𝐷|𝜃) can still be evaluated pointwise, the posterior 𝑝(𝜃|𝐷) is often only

vailable up to a normalising constant. This is because the denominator 𝑝(𝐷) = ∫𝛩 𝑝(𝐷|𝜃)𝑝(𝜃)𝑑𝜃 in (5), also called the evidence, is
ften expensive if not impossible to compute. Furthermore, most quantities of interest take the form

𝐽 = E𝜋(𝜃)[ℎ(𝜃)] (8)

= ∫𝜃∈𝛩
ℎ(𝜃)𝜋(𝜃)𝑑𝜃 (9)

here 𝜋(𝜃) is usually the posterior in Bayesian inference. For example: ℎ(𝜃) = 𝜃 for posterior mean; ℎ(𝜃) = 𝐼(𝑎 ≤ 𝜃 ≤ 𝑏) for credible
nterval and posterior probability where 𝐼(⋅) is the indicator function; and ℎ(𝜃) = 𝑝(𝑦̃|𝜃) for the posterior predictive distribution.
uch integrals are often analytically intractable and numerical integration using quadrature rules quickly becomes infeasible as
he computational cost scales exponentially with the dimension of 𝜃. Instead, most Bayesian computational methods are usually
oncerned with constructing a Monte Carlo estimator 𝐽𝑛 = 1

𝑛
∑𝑛
𝑖=1 ℎ(𝜃𝑖) where 𝜃𝑖

iid∼ 𝜋(𝜃), which converges to 𝐽 in probability as

1 For multivariate 𝜃, this would be a credible region. However, the more common and simpler practice is to estimate the marginal credible interval for each
5

univariate component.
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𝑛→ ∞ by the (weak) law of large number (LLN). More importantly, such convergence is not explicitly dependent on the dimension
of 𝜃 so the Monte Carlo method usually scales better. Hence, it turns a question of how to integrate into one of how to sample from
a target distribution 𝜋(𝑥).

This motivates Markov chain Monte Carlo (MCMC), which comprises a broad class of algorithms to sample from an arbitrary
distribution, with only a fairly non-restrictive assumption of being able to evaluate an unnormalised target density. Recall that this
is particularly attractive for Bayesian inference because the posterior 𝑝(𝜃|𝐷) given by (5) is often only known up to a normalising
onstant. The general idea of MCMC is to implicitly construct a Markov chain with 𝜋(𝑥) as its limiting distribution so one simply
terates the Markov chain forward to eventually obtain samples from 𝜋(𝑥). By definition the samples will be correlated but the
arkov chain LLN and central limit theorem still provide theoretical guarantees on the validity of using them for 𝐽𝑛.

The literature on Markov chain theory and state-of-the-art MCMC algorithm is vast and far beyond the scope of this paper. We will
nly describe the two simplest and foundational MCMC algorithms namely the Metropolis–Hastings algorithm and the Gibbs sampler
ue to their relevance to this research. Readers are referred to more specialised sources such as [22–24] for a more thorough review
n MCMC. The Metropolis–Hastings (MH) algorithm [25,26] given in algorithm 2 is used when one cannot sample directly from
(𝜃) but can still evaluate its unnormalised density pointwise. A separate proposal distribution 𝑞(𝜃∗|𝜃[𝑗]) that depends on the current
tate of the chain 𝜃[𝑗] is used to generate a candidate 𝜃∗, which is accepted with probability 𝛼(𝜃∗, 𝜃[𝑗]). The Gibbs sampler [27] given
n algorithm 3 is used when 𝜃 is multivariate and it is easier to sample from the full conditional than the joint distribution.2 For
𝑝-dimensional 𝜃, the full conditional for the 𝑖th component 𝜃𝑖 is 𝜋(𝜃𝑖|𝜃−𝑖) where 𝜃−𝑖 = (𝜃1, ... , 𝜃𝑖−1, 𝜃𝑖+1, ... , 𝜃𝑝). In essence, Gibbs

ampling decomposes the difficult problem of sampling from the joint distribution into easier sub-components of sampling from
ower dimensional conditional distributions. During a Gibbs cycle, a MH step can be applied to sample from a full conditional if it
annot be sampled directly.

Algorithm 2 Metropolis–Hastings Algorithm

1: Input: (unnormalised) target density 𝜋(𝜃), a proposal distribution 𝑞(𝜃∗|𝜃[𝑗]), number of proposals 𝑁
2: Output: samples from 𝜋(𝜃)
3: Initialise 𝜃[0] randomly in the support of 𝜋(𝜃)
4: for 𝑗 = 0 to 𝑁 − 1 do
5: Draw a candidate 𝜃∗ ∼ 𝑞(𝜃∗|𝜃[𝑗])
6: Calculate 𝛼(𝜃∗, 𝜃[𝑗]) = min(1, 𝜋(𝜃

∗)𝑞(𝜃[𝑗]|𝜃∗)
𝜋(𝜃[𝑗])𝑞(𝜃∗|𝜃[𝑗]) )

7: Draw 𝑢 ∼ Unif(0, 1)
8: if 𝑢 < 𝛼(𝜃∗, 𝜃[𝑗]) do
9: 𝜃[𝑗+1] = 𝜃∗

10: else do
11: 𝜃[𝑗+1] = 𝜃[𝑗]

Algorithm 3 Gibbs sampling

1: Input: target distribution 𝜋(𝜃) where 𝜃 = (𝜃1, 𝜃2, ..., 𝜃𝑝)𝑇 is a 𝑝-dimensional parameter vector, the full conditionals 𝜋(𝜃𝑖|𝜃−𝑖),
number of iterations 𝑁

2: Output: samples from 𝜋(𝜃)
3: Initialise 𝜃[0] randomly in the support of 𝜋(𝜃)
4: for 𝑗 = 0 to 𝑁 − 1 do
5: Sample 𝜃[𝑗+1]1 ∼ 𝜋(⋅|𝜃[𝑗]2 , 𝜃[𝑗]3 , ..., 𝜃[𝑗]𝑝−1, 𝜃

[𝑗]
𝑝 )

6: Sample 𝜃[𝑗+1]2 ∼ 𝜋(⋅|𝜃[𝑗+1]1 , 𝜃[𝑗]3 , ..., 𝜃[𝑗]𝑝−1, 𝜃
[𝑗]
𝑝 )

7: ...
8: Sample 𝜃[𝑗+1]𝑝−1 ∼ 𝜋(⋅|𝜃[𝑗+1]1 , 𝜃[𝑗+1]2 , ..., 𝜃[𝑗+1]𝑝−2 , 𝜃[𝑗]𝑝 )

9: Sample 𝜃[𝑗+1]𝑝 ∼ 𝜋(⋅|𝜃[𝑗+1]1 , 𝜃[𝑗+1]2 , ..., 𝜃[𝑗+1]𝑝−2 , 𝜃[𝑗+1]𝑝−1 )

3.2.2. MCMC diagnostics
Although Markov chain theory guarantees that the constructed chain approaches 𝜋(𝑥) asymptotically, in practice one can only

erform a finite number of iterations. Hence several diagnostic tools have been proposed to assess the (lack of) convergence of the
hain to its limiting distribution. Some common diagnostic tools are:

• Visual checks
This includes: (1) trace plot which simply plots the state of the chain 𝜃[𝑗] against the iteration number and should show no
obvious pattern, (2) running mean plot which plots the cumulative mean 1

𝑗
∑

𝑖<𝑗 𝜃
[𝑖] against iteration 𝑗 and should stabilise as

2 𝜃 need not be decomposed into univariate components but rather can be blocked in whatever ways. Furthermore, Gibbs sampling need not cycles through
6

very component in fixed order, and can even do so probabilistically which is referred to as random scan Gibbs sampling.
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a consequence of LLN, and (3) auto-correlation function (acf) which plots the auto-correlation of the chain at each lag and
should ideally drop to zero relatively quickly.

• Gelman–Rubin 𝑅̂ [28]
The 𝑅̂ statistic, also called the potential scale reduction factor, is largely similar to the analysis of variance. A number of
chains with different initialisation are run in parallel and some burn-in period is removed. The within-chain variance 𝑊 and
the combined chain variance 𝑉 are computed and 𝑅̂ =

√

𝑉 ∕𝑊 . The idea is that the chains are initialised over-dispersed
relative to the posterior so 𝑊 < 𝑉 and 𝑅̂ > 1. However once all chains have converged to the limiting distribution, 𝑊 is
comparable to 𝑉 so 𝑅̂ should be close to 1.

• Effective sample size 𝑛eff
The correlated samples produced in MCMC effectively incurs a loss of information. The effective sample size can be interpreted
as the equivalent number of i.i.d. samples that hold the same amount of information, and is formally defined as

𝑛eff ∶=
𝑁

1 + 2
∑∞
𝑘=1 𝜌𝑘

(10)

where 𝑁 is the number of MCMC samples and 𝜌𝑘 is the auto-correlation at lag 𝑘.
• Monte Carlo standard error (MCSE)

Since the posterior mean E[𝜃|𝐷] = ∫𝛩 𝜃𝑝(𝜃|𝐷)𝑑𝜃 is estimated by the empirical mean of MCMC samples, the MCSE (of the
posterior mean) is a measure of accuracy defined as the standard deviation of such Monte Carlo estimator. Markov chain
central limit theorem implies MCSE = 𝜎∕

√

𝑛eff where 𝜎 is the standard deviation of the posterior. The method of batch means
is commonly used to estimate the MCSE.

he exact implementation details for the various diagnostic statistics are given in Appendix B. However it should be noted that all
iagnostic statistics provide only necessary but not sufficient conditions for convergence.

. Methodology

.1. Synthetic data and statistical model

Let 𝐹 (𝑥, 𝛾) denote the solution to Gipps’ car following model which predicts the entire follower’s displacement time se-
ies, where 𝑥 is the predictor that consists of the leader’s trajectory and all other arguments to 𝐹 (⋅) aside from 𝛾, and 𝛾 =
(𝑎max, 𝑉max, 𝑏max, 𝑥𝑓 (0), 𝑣𝑓 (0)) is the calibration parameters. The prediction denoted by 𝑦 is the observed follower’s displacement time
series. The parameters to be estimated are 𝜃 = (𝑎max, 𝑉max, 𝑏max, 𝑥𝑓 (0), 𝑣𝑓 (0), 𝜇𝑥, 𝜎2𝑥).

Synthetic data is generated by adding i.i.d. Gaussian noise to the follower’s displacement time series predicted by Gipps’ model.
Fig. 3 illustrates the training data and an instance of validation data respectively, both generated with the same parameter values
which serve as ground truth, but with different leader and hence different predictor. Both consist of 𝑇 = 100 s data, with 𝜏 = 0.5 s;
𝑙𝑐 = 7.5 m; 𝜓 = 1.05; and integration time step 𝛥𝑡 = observation time step = 0.1 s. The true values of the parameters to be estimated
are listed in Section 5.1.

The full statistical model including the priors is given below:

𝑎max ∼ Unif(𝑎𝐿, 𝑎𝑈 ) (11)

𝑏max ∼ Unif(𝑏𝐿, 𝑏𝑈 ) (12)

𝑉max ∼ Unif(𝑉𝐿, 𝑉𝑈 ) (13)

𝑥𝑓 (0) ∼ Unif(𝑥𝐿, 𝑥𝑈 ) (14)

𝑣𝑓 (0) ∼ Unif(𝑣𝐿, 𝑣𝑈 ) (15)

𝜇𝑥 ∼  (𝜇0, 𝜎20 ) (16)

𝜎2𝑥 ∼ Inv-Gamma(𝛼0, 𝛽0) (17)

𝑥𝑓 |𝑥, 𝛾 = 𝐹 (𝑥, 𝛾) (18)

𝜖 ∼  (𝜇𝑥𝟏𝐾+1, 𝜎
2
𝑥𝐈𝐾+1) (19)

𝑦 = 𝑥𝑓 + 𝜖 (20)

where 𝑥𝑓 = (𝑥𝑓 (0), 𝑥𝑓 (𝛥𝑡), 𝑥𝑓 (2𝛥𝑡),… , 𝑥𝑓 (𝐾𝛥𝑡))𝑇 is the follower displacement time series observed at interval 𝛥𝑡 with 𝑇 = 𝐾𝛥𝑡, 𝟏𝐾+1
s the all ones vector of dimension 𝐾 +1, and 𝐈𝐾+1 is the identity matrix of size 𝐾 +1. All calibration parameters are in SI units and
iven a weakly informative uniform prior over their physically plausible range of values. A diffused normal prior and inverse-gamma
rior are used for 𝜇𝑥 and 𝜎2𝑥 respectively because they are the conjugate prior for the likelihood so direct sampling is possible, see

Section 4.2. For the statistical model concerned, the implemented sampler does not depend on the mathematical form of the car
following model so it is also applicable to other deterministic car following models. Appendix C demonstrates an application to the
7

intelligent driver model.
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Fig. 3. Synthetic data generated. The dashed and solid lines in the top panels are the unobserved relative displacement and its observed noisy counterpart
respectively. The bottom panels show the latent follower’s velocity when responding to its leader.

Let 𝐷 = (𝑥, 𝑦) denote the data. The likelihood for the model is hence

𝑝(𝐷|𝜃) =
exp[− 1

2 (𝑦 − (𝑥𝑓 + 𝜇𝑥𝟏𝐾+1))𝑇 (𝜎2𝑥𝐈𝐾+1)−1(𝑦 − (𝑥𝑓 + 𝜇𝑥𝟏𝐾+1))]
√

(2𝜋)𝐾+1
|𝜎2𝑥𝐈𝐾+1|

(21)

where the dependence on 𝛾 is through 𝑥𝑓 . Since all computations are performed on the log scale for numerical stability, the
log-likelihood (up to some additive constant 𝐶) can be simplified to

log 𝑝(𝐷|𝜃) = − 1
2𝜎2𝑥

‖𝑦 − 𝑥𝑓 − 𝜇𝑥𝟏𝐾+1‖
2
2 −

𝐾 + 1
2

log(𝜎2𝑥) + 𝐶 (22)

where ‖ ⋅ ‖2 is the 𝓁2 norm.
We will compare the predictive performance between the two common point estimators namely

• Maximum likelihood estimator (MLE)

𝜃̂MLE = argmax
𝜃

log 𝑝(𝐷|𝜃) (23)

• Maximum a posterior estimator (MAP)

𝜃̂MAP = argmax
𝜃

log 𝑝(𝐷|𝜃) + log 𝑝(𝜃) (24)

with the full Bayesian approach. It is easy to see that both the MLE and MAP are specific cases of an optimisation-based approach
where the error metrics are the negative log-likelihood and negative log-posterior respectively.

4.2. Sampler description

The posterior is only known up to a normalising constant so MCMC algorithms are used to sample from it. The specific
implementation of the sampler is detailed below. In each Gibbs cycle:

1. Sample the calibration parameter 𝛾 from its full conditional. Since 𝛾 enters the statistical model through the solution of a
delay-differential equation, its full conditional will not be a standard distribution so a MH step is used. In particular, a single
component MH step is performed for each component 𝛾𝑖 ∈ {𝑎max, 𝑉max, 𝑏max, 𝑥𝑓 (0), 𝑣𝑓 (0)} in turn. The logarithm of the target
density 𝜋(⋅) is hence the unnormalised full conditional which is simply given by

log 𝑝(𝛾𝑖|𝐷, 𝛾−𝑖, 𝜇𝑥, 𝜎2𝑥) ∝ − 1
2
‖𝑦 − 𝑥𝑓 − 𝜇𝑥𝟏𝐾+1‖

2
2 + log 𝑝(𝛾𝑖). (25)
8

2𝜎𝑥
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2. Sample the systematic noise component 𝜇𝑥 directly from its full conditional. By choice of normal conjugate prior, the full
conditional posterior will also be a normal distribution

𝜇𝑥|𝐷, 𝛾, 𝜎
2
𝑥 ∼  (𝜇𝑝, 𝜎2𝑝 ) (26)

where 𝜇𝑝 = 𝜎2𝑝

(

𝜇0
𝜎20

+ (𝑦−𝑥𝑓 )𝑇 𝟏𝐾+1
𝜎2𝑥

)

and 𝜎2𝑝 =
(

1
𝜎20

+ 𝐾+1
𝜎2𝑥

)−1
.

3. Sample the random noise component 𝜎2𝑥 directly from its full conditional. By choice of inverse gamma conjugate prior, the
full conditional posterior will also be an inverse gamma distribution

𝜎2𝑥|𝐷, 𝛾, 𝜇𝑥 ∼ Inv-Gamma(𝛼𝑝, 𝛽𝑝) (27)

where 𝛼𝑝 = 𝛼0 +
𝐾+1
2 and 𝛽𝑝 = 𝛽0 +

1
2‖𝑦 − 𝑥𝑓 − 𝜇𝑥𝟏𝐾+1‖

2
2.

Since the support of the uniform prior for 𝛾 is bounded, its posterior will also have bounded support. This is perhaps a
reasonable approximation for parameters with physical interpretations as in the case for the car following model. Although this
does not raise issue on the correctness of the asymptotic properties of the chain, it concerns the efficiency of the algorithm. In
other words, the chain will still converge to the correct stationary distribution as long as it is initialised in the support of the
posterior, but if there is significant posterior mass near the boundary, many MH proposals will step outside the support and hence
be rejected. We reparametrised each component of 𝛾 with a logit transform and perform random walk in an unbounded space. Recall
logit(𝑥) = log 𝑥

1−𝑥 , which is a monotonic transformation and hence its inverse exists. Let 𝛾𝑖 ∈ (𝐿𝑖, 𝑈𝑖) denote the original bounded
variable, we perform the change of variable 𝑢 = 𝑔(𝛾𝑖) = logit 𝛾𝑖−𝐿𝑖𝑈𝑖−𝐿𝑖

∈ R. Let |𝐽 (𝑢′)| denote the absolute value of the determinant of
the Jacobian of 𝑔−1(𝑢) evaluated at 𝑢′ and 𝑞(𝑢∗|𝑢[𝑗]) denote the random walk proposal in the 𝑢-space. The slight change to the MH
step is that the acceptance probability

𝛼(𝑢∗, 𝑢[𝑗]) = min
(

1,
𝜋(𝑔−1(𝑢∗))𝑞(𝑢[𝑗]|𝑢∗)|𝐽 (𝑢∗)|
𝜋(𝑔−1(𝑢[𝑗]))𝑞(𝑢∗|𝑢[𝑗])|𝐽 (𝑢[𝑗])|

)

(28)

now includes the Jacobian term, and is computationally equivalent to using an asymmetric proposal in the 𝛾𝑖-space.
The more important step in improving the efficiency of the sampler is to choose appropriate hyperparameter values in the

proposal distribution. For a random walk proposal 𝑞𝜆(𝑢∗|𝑢[𝑗]) =  (𝑢[𝑗], 𝜆2), the hyperparameter 𝜆 controls the proposal step size. If
the step size is too small, the sampler frequently accepts but crawls around the posterior; if the step size is too large, the sampler
rejects frequently and stays at the same state for long period. In both cases the sampler will explore the posterior slowly. Although
the theory guarantees all resulting chains converge asymptotically to the correct stationary distribution, the rate of convergence
can differ drastically. Manual trial and error searching for appropriate hyperparameter value proves difficult and time consuming,
which calls for the need of an adaptive MCMC algorithm that automatically tunes the proposal distribution. We briefly state the
subtle issue of adaptive MCMC as a cautionary reminder.

The adaptation implies the chain no longer satisfies the Markov property because the distribution 𝑝(𝜃[𝑗+1]|𝜃[𝑗], 𝜃[𝑗−1],… , 𝜃[0])
ow depends on the entire history as opposed to just 𝜃[𝑗], which means it can converge to the wrong stationary distribution. More
ormally, let 𝛩 denote the state space with 𝜎-algebra  and 𝑞𝛾 denote a proposal distribution with hyperparameters indexed by 𝛾.

It is well-known in Markov chain theory that if 𝜋 is the stationary distribution of 𝑞𝛾 and the chain is irreducible and aperiodic, then
he Markov chain generated by iterating 𝑞𝛾 will be ergodic to 𝜋, namely

lim
𝑛→∞

‖𝑞𝑛𝛾 (𝜃, 𝐴) − 𝜋(𝐴)‖ = 0 ∀𝜃 ∈ 𝛩, 𝐴 ∈  (29)

here ‖ ⋅‖ is the total variation distance. Adaptive MCMC replaces 𝛾 with a random variable 𝛤𝑛. Suppose  is a family of adaptation
ndex where all 𝛾 ∈  induces 𝜋-ergodic Markov chains. Even if 𝛤𝑛 ∈  ∀𝑛, this does not guarantee 𝑞𝛤𝑛 will be ergodic to 𝜋.

We refer readers to more specialised text such as [29,30] for sufficient conditions on the ergodicity of adaptive MCMC. Our
mplementation as shown in algorithm 4 utilises parallel chains similar to [31], and is based on finite adaptation which is the
implest yet safest adaptation scheme. The hyperparameters are updated only during an initial adaptation phase and are fixed in
he subsequent sampling phase. In particular, 𝜆 is updated by monitoring the difference between the empirical acceptance rate 𝛼̂
nd the optimal acceptance rate 𝛼∗ ≈ 0.44, where the latter was derived under certain assumption [32] and served as a rule of
humb.

. Results and discussions

.1. Inference results

Without loss of generality, we set 𝑥𝓁(0) = 0. The parameters for the prior are chosen as: 𝑎𝐿 = 0.5, 𝑎𝑈 = 3.5, 𝑉𝐿 = 15, 𝑉𝑈 =
5, 𝑏𝐿 = −6.0, 𝑏𝑈 = −1.0, 𝑥𝐿 = −60, 𝑥𝑈 = −10, 𝑣𝐿 = 5, 𝑣𝑈 = 25, 𝜇0 = 0, 𝜎20 = 9, 𝛼0 = 1 and 𝛽0 = 3, which are weakly informative.
he hyperparameters of the adaptive sampler are 𝑀 = 4, 𝐵 = 50, 𝑅 = 20 and 𝛼∗ = 0.4 and determined by trial and error. Fig. 4
9

llustrates the inference result after running MCMC for the statistical model with only the first 30 s of training data presented in
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Algorithm 4 Finite Interchain Batch Adaptation

1: Input: (unnormalised) target density 𝜋(𝜃), random walk proposal  (𝜃∗|𝜃[𝑗], (𝜆[𝑟])2), number of parallel chains 𝑀 , batch size 𝐵,
adaptation rounds 𝑅, initial hyperparameters 𝜆[0], optimal acceptance rate 𝛼∗

2: Output: suitable hyperparameters value 𝜆[𝑅]
3: Initialise 𝜃[0] randomly in the support of 𝜋(𝜃) for each of the 𝑀 chain
4: for 𝑟 = 0 to 𝑅 − 1 do
5: Perform 𝐵 iterations from 𝑀 chains with proposal 𝑞𝜆[𝑟] (⋅) separately
6: Update the hyperparameters with

log(𝜆[𝑟+1]) = log(𝜆[𝑟]) + 1
log(𝑟 + 1)

sign(𝛼̂ − 𝛼∗)

where

𝛼̂ =

∑𝑀
𝑚=1

∑𝐵(𝑟+1)
𝑗=𝐵𝑟+1 𝐼(𝜃

[𝑗],𝑚 is accepted)
𝑀𝐵

Table 1
Estimates and MCMC diagnostic statistics for 30 s synthetic data.

True MLE MAP E[⋅|𝐷] MCSE 𝑞0.025 𝑞0.5 𝑞0.975 𝑅̂ 𝑛eff
𝑎max 1.797 3.106 3.120 2.522 0.0149 1.488 2.548 3.445 1.0023 654.3
𝑉max 28.000 25.262 25.155 26.453 0.0429 24.516 26.000 30.801 1.0038 597.7
𝑏max −3.566 −3.548 −3.551 −3.550 0.0003 −3.575 −3.550 −3.525 1.0052 873.6
𝑥𝑓 (0) −22.521 −22.570 −22.528 −22.756 0.0090 −23.492 −22.744 −22.098 1.0017 634.1
𝑣𝑓 (0) 10.148 9.170 9.191 9.850 0.0210 8.746 9.746 11.815 1.0004 620.3
𝜇𝑥 0.800 1.062 1.028 1.038 0.0037 0.740 1.039 1.335 1.0050 899.7
𝜎2𝑥 0.250 0.257 0.275 0.281 0.0001 0.239 0.280 0.331 1.0000 55 591.4

Section 4.1. Four chains are run in parallel marked by the four different colours, for a total of 50 000 iterations. Throughout this
paper, we adopted the rule of thumb of discarding the first half as burn-in.

The first column in Fig. 4 shows the marginal prior and posterior density for each parameter. The prior density is easily available
nd a kernel density estimate is performed for the posterior using the MCMC samples. Compared to the diffuse prior, the posterior
enerally concentrates onto a smaller region and the true parameter values marked by the black vertical lines are contained in the
ulk of the posterior mass with the notable exception of 𝑎max and 𝑉max. The posterior for them is still rather diffused, this is because
he 30 s trajectory data does not contain enough information to reliably estimate them. Furthermore, 𝑏max and the noise parameters
re somewhat overestimated. The next three columns in Fig. 4 illustrate the trace plot, running mean plot and the auto-correlation
unction respectively. The chains appear to be mixing reasonably well as there is no obvious pattern or strong sign of stickiness in
he trace plot. The running mean all converged and although there does exist noticeable auto-correlation for most of the parameters,
t drops off sufficiently fast and does not raise any major concern.

Let 𝜃̄[𝑗]𝑖,𝑚 denote the running mean for the 𝑖th component of 𝜃 at 𝑗th iteration for chain 𝑚, with across chain mean 𝜃̄[𝑗]𝑖,⋅ = 1
𝑚
∑

𝑚 𝜃̄
[𝑗]
𝑖,𝑚

nd standard deviation 𝑠[𝑗]𝑖 =
√

1
𝑚
∑

𝑚(𝜃̄
[𝑗]
𝑖,𝑚 − 𝜃̄[𝑗]𝑖,⋅ )2 estimated with the usual sample statistics. The coefficient of variation 𝑠[𝑗]𝑖 ∕|𝜃̄[𝑗]𝑖,⋅ | for

all components stabilised below 0.05 at iteration ≈26 989. The sampling algorithm took ∼1.5 h on an Intel Xeon processor 3.10 GHz
running Windows Server 2019, with multiprocessing implemented to sample the four chains in parallel.

Convergence of running mean however, is guaranteed by the weak law of large number and the more important assessment
is the convergence of the Markov chain to the posterior. Table 1 lists the various point estimates such as the MLE, MAP and the
posterior mean E[⋅|𝐷], and MCMC diagnostic statistics to formally investigate any potential issues of mixing. The 𝑅̂ statistic falls
below 1.1 for all parameters, indicating that further iterating the chain is unlikely to improve the mixing of the chains. The effective
sample size 𝑛eff for all parameters is greater than 100, hence inference is deemed acceptable at least for the posterior mean. The
effect of auto-correlation is clear as the effective sample size for some parameters is roughly two orders of magnitude lower than the
number of proposals. The MLE and MAP in this case are noticeably different for 𝑎max and 𝑉max due to the insufficiently informative
data reason mentioned above.

The benefit of the computationally more intensive Bayesian approach lies in its ability to properly quantify uncertainty. Table 1
also lists the posterior quantiles 𝑞𝛼 such that 𝑝(𝜃𝑖 ≤ 𝑞𝛼|𝐷) = 𝛼 for 𝛼 = 0.025, 0.5, 0.975. The true values are contained in the central
95% credible interval for all parameters. The credible intervals help to summarise the shape of the posterior and are convenient in
reporting different level of uncertainty. Indeed, one advantage of a Bayesian approach is that the meaning of credible (as opposed
to confidence) interval, agrees with common intuition. Namely there is probability 𝛼 that the true parameter value falls in a 100𝛼%
credible interval.

We then performed inference with the full 100 s training data. The coefficient of variation stabilised around iteration 27 287
and the algorithm took ∼4 h, as expected because the car following model integration period is roughly three times longer. The

CMC results are shown in Fig. 5. With a longer trajectory data which is more informative, the posterior mass concentrates more
10
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Fig. 4. MCMC results for 30 s synthetic data. Column 1 shows the marginal prior and posterior density for each parameter. The vertical black solid line in the
column 1 and the horizontal black solid line in the column 2 mark the true parameter values used to generate the data. Column 2, 3 and 4 show the trace
plot, running mean plot and the auto-correlation function respectively. Each colour corresponds to one of the four chains which were run in parallel. The trace
plot and the running mean plot are plotted against the sampler iterations after burn in. The auto-correlation function is plotted against different lag.

Table 2
Estimates and MCMC diagnostic statistics for 100 s synthetic data.

True MLE MAP E[⋅|𝐷] MCSE 𝑞0.025 𝑞0.5 𝑞0.975 𝑅̂ 𝑛eff
𝑎max 1.797 1.818 1.816 1.817 0.0004 1.792 1.817 1.842 1.0018 421.6
𝑉max 28.000 27.967 27.968 27.968 0.0006 27.931 27.968 28.005 1.0018 437.5
𝑏max −3.566 −3.557 −3.557 −3.559 0.0002 −3.569 −3.559 −3.548 1.0001 416.5
𝑥𝑓 (0) −22.521 −22.685 −22.628 −22.780 0.0069 −23.398 −22.752 −22.273 1.0020 930.9
𝑣𝑓 (0) 10.148 10.109 10.041 10.359 0.0139 9.794 10.198 11.931 1.0026 810.2
𝜇𝑥 0.800 0.960 0.958 0.934 0.0028 0.759 0.933 1.112 1.0001 439.1
𝜎2𝑥 0.250 0.240 0.242 0.246 0.0000 0.225 0.246 0.269 1.0001 87 554.0
11
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Fig. 5. MCMC results for the full 100 s synthetic data.

and the majority of the posterior mass is close to the true parameter values. Table 2 shows the estimates, the diagnostic statistics
and the posterior quantiles. The MLE and MAP returned very similar results compared to the posterior mean, and all are quite close
to the true parameter values. In this case, the data is sufficient and quite informative about the parameters. There is noticeably less
uncertainty about the parameter values so using point estimators in this case is perhaps sufficient.

5.2. Predictive uncertainty

We then investigate the effect of propagating the uncertainty in the parameter estimates to predictions, in particular we consider
the following predictive distributions:

MLE ∶ ∫𝛩
𝑝(𝑦̃|𝑥̃, 𝜃)𝛿𝜃̂MLE

𝑑𝜃 (30)

MAP ∶ ∫𝛩
𝑝(𝑦̃|𝑥̃, 𝜃)𝛿𝜃̂MAP

𝑑𝜃 (31)

posterior predictive ∶ ∫𝛩
𝑝(𝑦̃|𝑥̃, 𝜃)𝑝(𝜃|𝐷)𝑑𝜃 (32)

where MLE and MAP are the common point estimators described in Section 4.1. The notation 𝛿𝜃̂ denotes an atom with a probability
mass of one at 𝜃̂.

The full Bayesian approach to making prediction integrates over the posterior distribution of the unknown parameter 𝜃, resulting
in the posterior predictive distribution. On the contrary, point estimators effectively put all posterior mass at a point when making
prediction. Since the statistical model is relatively simple, the predictive distribution is available in closed form conditioning on
point estimators and can be computed exactly. Let 𝜃̂ = (𝛾̂ , 𝜇̂ , 𝜎̂2) denote a parameters point estimate, then the central 100(1 − 𝛼)%
12
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t

Fig. 6. The central 95% pointwise predictive intervals on training data, for MLE, MAP and posterior predictive, and for 30 s and 100 s training data.

pointwise predictive interval is given by [𝐹 (𝑥̃, 𝛾̂) + 𝜇̂𝑥 + 𝑧𝛼∕2𝜎̂𝑥, 𝐹 (𝑥̃, 𝛾̂) + 𝜇̂𝑥 + 𝑧1−𝛼∕2𝜎̂𝑥] where 𝑧𝛼∕2 is the 𝛼∕2 quantile of a standard
normal. The posterior predictive distribution is estimated using 5000 random posterior samples.

Fig. 6 illustrates the central 95% pointwise predictive distributions on the 30 s and 100 s training data, for the MLE, MAP and
posterior predictive. In both cases, the MLE, MAP and posterior predictive intervals are visually similar and contain the training
data roughly 95% of the times. Since the data was used to fit the model, the close agreement between the predictive intervals and
the observed data is unsurprising.

Fig. 7 illustrates the predictive distributions on an instance of validation data described in Section 4.1, based on parameters
estimated from the training data. For the 100 s training data case, the estimated parameters were close to the true parameter values
so the predictive distributions match the new data well. In this case of sufficient data, a full Bayesian approach and optimisation
approaches return similar results, so it is acceptable to approximate the posterior by a point estimator. For the 30 s training data case,
the data is not as informative so the point estimates were not as reliable. As a result the MLE and MAP predictive do not match the
validation data. The predictive intervals are too narrow, which implies the model conditioned on point estimators is over-confident
in its prediction. The posterior predictive incorporates the parameter uncertainty, and results in much wider predictive intervals
which contain the validation data.

In order to assess the accuracy of the uncertainty quantification, we generated 100 instances of validation data and calculated
the coverage. Let 𝐷̃𝑖 = (𝑥̃𝑖, 𝑦̃𝑖) denote the 𝑖th validation data, then the coverage probability 𝑝̂ is calculated as the relative frequency
hat the predictive intervals contain the validation data

𝑝̂ = 1
𝐾 + 1

𝐾
∑

𝑘=0
𝐼
(

𝑦̃𝑖(𝑘𝛥𝑡) ∈ 100(1 − 𝛼)% predictive interval
)

(33)

where 𝐾𝛥𝑡 = 𝑇 is the duration of the validation data, for a given 𝛼. Although the Bayesian credible intervals will depend on the
prior and generally do not need to have the correct frequentist coverage, we use this as a metric to assess how well the uncertainty
is calibrated. The results for central 95% predictive intervals are shown in Fig. 8. In the case of the 30 s training data, the MLE
and MAP noticeably underestimates the predictive uncertainty. The observed coverage is less than the nominal 95%, and varies
noticeably over different validation data. The full Bayesian approach however, tends to overestimate the predictive uncertainty
and the observed coverage is more than the nominal. In the case of 100 s training data, the posterior concentrates sufficiently to
the true parameters so the observed coverage are all quite in line with the nominal coverage. The full Bayesian approach using
13
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Fig. 7. The central 95% pointwise predictive intervals on validation data, for MLE, MAP and posterior predictive, and for 30 s and 100 s training data.

the posterior predictive distribution exhibits less variability and is more centred around the nominal coverage, indicating a more
accurate uncertainty quantification.

5.3. Correlated parameters

We also attempted to perform estimation for other quantities in Gipps’ car following model that could be considered parameters.
or instance, one might be interested in estimating the sensitivity 𝜓 that also governs the congested flow behaviour along with
𝑏max. For illustration purpose, the parameters of interest in this section is restricted to 𝜃 = (𝑏max, 𝜓, 𝜇𝑥, 𝜎2𝑥) and all the remaining
parameters are set to their true values.

The corresponding MCMC results are shown in Fig. 9. The implemented adaptive sampler does not perform as well in this case.
Even with four times more iterations than the previous case, the chains for 𝑏max and 𝜓 appear sticky with clear patterns in the
race plot. The auto-correlation remains high even for a large lag, which confirms the stickiness of the chains. The coefficient of
ariation stabilised at iteration ≈100 016, and sampling took ∼10 h. We tested with different hyperparameter values of 𝐵,𝑅 and 𝛼∗
or the sampler. We also attempted a blocked MH step where a multivariate normal distribution is used to generate proposal for
he vector (𝑏max, 𝜓), and adaptation proceeds by estimating the covariance of the proposal with sample covariance. Neither of these
ignificantly improve the performance of the sampler.

Similarly, Table 3 illustrates the point estimates and MCMC diagnostic statistics. The MLE and MAP are again quite similar to
he posterior mean. The effect of high auto-correlation is clear since the effective sample size is now much lower compared to the
umber of proposals. Nevertheless, the diagnostics suggest the inference result is perhaps still somewhat acceptable when estimating
he posterior mean with 𝑛eff > 100. Indeed, the posterior means for all parameters are close to their true values.

We performed a grid search on the log-posterior to identify the causes of the inefficient sampler and the result is shown in Fig. 10.
he left hand figures illustrate the log-posterior for (𝑎max, 𝑏max) holding all the remaining parameters at their true values. The bottom
ub figure is a zoomed in version of the black box in the top sub figure. Similarly, the right hand figures illustrate the log-posterior
or (𝑏max, 𝜓). The posterior for 𝑎max and 𝑏max is uni-modal and resembles a multivariate normal distribution. There is only weak
orrelation between them, which is expected because the two parameters govern different aspects of the car-following model. On
he other hand, the strong posterior correlation between 𝑏max and 𝜓 becomes evident, which one might expect apriori since they
oth govern the congested flow behaviour. Most posterior mass is located along a narrow ridge, so for a random walk sampler to
14

aintain a sufficiently high acceptance rate, it is forced to take very small steps which results in the high auto-correlation.
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Fig. 8. Coverage probability of predictive distributions for 100 instances of validation data. The dashed line denotes the nominal 95% coverage.

Table 3
Estimates and MCMC diagnostic statistics for 𝜃 = (𝑏max , 𝜓, 𝜇𝑥 , 𝜎2𝑥).

True MLE MAP E[⋅|𝐷] MCSE 𝑞0.025 𝑞0.5 𝑞0.975 𝑅̂ 𝑛eff
𝑏max −3.566 −3.540 −3.539 −3.538 0.0005 −3.567 −3.538 −3.511 1.0026 151.3
𝜓 1.051 1.044 1.044 1.044 0.0002 1.035 1.044 1.052 1.0026 152.1
𝜇𝑥 0.800 0.858 0.856 0.859 0.0004 0.760 0.859 0.957 1.0001 11 554.7
𝜎2𝑥 0.250 0.239 0.244 0.245 0.0000 0.225 0.245 0.268 1.0000 384 324.7

Although the huge drop of computational efficiency is clear, the MCMC result is still acceptable for point estimator such as
he posterior mean. However one should be more cautious when interpreting the full posterior distribution and the associated
ncertainty. We believe such strong posterior correlation is common for parameters of a dynamic model such as the car following
odel, which poses notable challenges for the sampler to fully explore the posterior. More iterations can be performed if one
ishes to increase the effective sample size and hence the accuracy of inference. However a more promising solution is to adopt
ore advanced samplers such as Hamiltonian Monte Carlo methods [33,34] which require the gradient of log-posterior w.r.t. the
arameters. This usually means the car following model should be implemented in a framework such as JAX [35] that supports
utomatic differentiation.

More importantly, the narrow ridge in the bottom right sub figure in Fig. 10 will have an even more adverse impact on model
alibration approaches based on optimisation. There is a region in the parameter space where the log-posterior is effectively the
ame given the finite amount of data, which implies potential identifiability issue as many combinations of parameters result in
eemingly equally good fit. This means reporting only a point estimator as in the case for an optimisation-based approach is often
nappropriate and potentially strongly biased. Since a Bayesian approach explores the full posterior distribution as opposed to just
inding a local optimum, one can be more aware of such issues as alarmed by the diagnostic statistics.

. Application to NGSIM dataset

In this section, we applied Bayesian inference to real data with the NGSIM dataset [36]. Inference for real data is subjected to
odel imperfection error, contrary to the case of synthetic data. In this case, the data generating process is most likely different from

he statistical model so there is no ground truth 𝜃∗ to assess how well each method can recover the parameters. If the parameters
15



Physica A: Statistical Mechanics and its Applications 639 (2024) 129671S. Ting et al.

e
c

I
i
a
m

i
d
a
t
s
a

Fig. 9. MCMC results for 𝜃 = (𝑏max , 𝜓, 𝜇𝑥 , 𝜎2𝑥) using all 100 s training data.

stimates with real data are used to make further inference, the coherent uncertainty quantification enabled by a Bayesian approach
ompared to a point estimator is of particular relevance.

We focused on a specific car following episode in the NGSIM dataset at the I-80 freeway, where the leader and follower vehicle
Ds are 1260 and 1267 respectively, as shown in Fig. 11. The car following episode lasted for 92.5 s and is collected at 0.1 s
nterval. The acceleration is noticeably more sporadic than the synthetic data. We adopted the same statistical model in Section 4.1
nd the same sampler setup to estimate the parameters based on the first 50 s trajectory data. Since parameters such as the leader’s
aximum desired deceleration is also unknown, we assumed a sensible estimate of 𝜏 = 0.5 s, 𝑙𝑐 = 7.5 m and 𝑏̂𝓁 = −3.4 m∕s2 based

on the parameters’ physical meaning. We adopted the same weakly informative prior as that for inference with synthetic data in
Section 5.1, with the exception that 𝑉𝐿 = 40 instead. This is because the inference result exhibited significant posterior mass for
𝑉max near the upper bound, which we suspected might be due to the prior support being too narrow. The upper bound is changed to
𝑉𝐿 = 40 m∕s to more accurately reflect the prior knowledge of possible values of 𝑉max. We believe the careful trajectory extraction
process for NGSIM dataset means the initial conditions are relatively well known so we also fixed the initial conditions (𝑥𝑓 (0), 𝑣𝑓 (0))
to their observed values.

The inference results are shown in Fig. 12 and Table 4. Both visual inspection and diagnostic statistics did not indicate any notable
issues with mixing. There is still noticeable posterior mass for 𝑉max close to the boundary of the support. Based on the physical
meaning of 𝑉max which we believe is apriori unlikely to exceed 40 m∕s, this is more likely a potential sign of model mis-specification
nstead. Furthermore, the observational noise variance 𝜎2𝑥 is much higher than expected which also suggests the statistical model
oes not match the data particularly well so the unexplained variations are assigned to high observational noise. The MLE and MAP
re numerically very similar. However since 𝑉max is not reliably estimated, these point estimates can be misleading so inspecting
he whole posterior distribution in this case might be more appropriate. A more thorough analysis can be performed to improve the
tatistical model to better match the data generating process, our aim was solely to demonstrate the applicability of the Bayesian
16

pproach to real data and highlight the subtle issues associated with model imperfections. Fig. 13 illustrates the posterior predictive
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Fig. 10. Grid search on the log-posterior, with all the remaining parameters set to their true values. The cross marks the true values. The sub figures in the
bottom row are the zoomed in version of the black box in the top row respectively.

Fig. 11. A car following episode from the NGSIM dataset at the I-80 freeway, with leader ID = 1260 and follower ID = 1267.

distribution on the first 50 s of training data and the future data held out for validation. The model fit is satisfactory and appears
to capture the predictive uncertainty on validation data reasonably well so is perhaps still somewhat useful for the purpose of
prediction.
17



Physica A: Statistical Mechanics and its Applications 639 (2024) 129671S. Ting et al.

s

Fig. 12. MCMC results for NGSIM data.

Table 4
Estimates and MCMC diagnostic statistics for NGSIM data.

MLE MAP E[⋅|𝐷] MCSE 𝑞0.025 𝑞0.5 𝑞0.975 𝑅̂ 𝑛eff
𝑎max 1.144 1.144 1.066 0.0014 0.909 1.070 1.224 1.0005 1769.2
𝑉max 38.317 38.317 29.095 0.1178 16.205 29.678 39.471 1.0005 1701.5
𝑏max −1.608 −1.608 −1.611 0.0006 −1.715 −1.610 −1.513 1.0002 5266.9
𝜇𝑥 −3.771 −3.771 −3.779 0.0027 −4.317 −3.779 −3.236 1.0000 6459.2
𝜎2𝑥 9.762 9.762 9.870 0.0016 8.717 9.840 11.172 1.0000 96 174.5

7. Conclusions and future research

The optimisation-based approach adopted in most traffic model calibration and validation literature can be justified as a finite
ample approximation of the parameter values that minimise the generalised error 𝜃∗ ∶= argmin𝜃∈𝛩 E(𝑋,𝑌 )[‖𝐹 (𝑋, 𝜃) − 𝑌 ‖]. Although

such approach resembles the successful training and validation pipeline in machine learning, there exists differences between the
two contexts so its effectiveness in machine learning might not be transferable to traffic model calibration. Traffic models are often
structurally rigid with physically meaningful parameters. Aside from predictions, further inferences are often drawn based on the
estimated parameter values, so it is crucial to quantify how reliable such estimates are.

Bayesian inference provides a flexible and coherent framework for uncertainty quantification and propagation. In this research,
we investigated the application of Bayesian inference to conduct parameter estimation, using the Gipps’ car following model as
example. We showed how the posterior 𝑝(𝜃|𝐷) quantifies the uncertainty of the parameter estimates and hence provides a basis for
assessing the reliability of inferences drawn based on the estimated parameter values.

Furthermore, we investigated the effect of incorporating parameter uncertainty in subsequent predictions. We found that for our
18

statistical model, applying a full Bayesian approach with the posterior predictive 𝑝(𝑦̃|𝐷) which integrates over the uncertainty in
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Fig. 13. The central 95% pointwise predictive intervals for the NGSIM data, based on the posterior predictive distribution. The dashed line denotes the 50 s
ark that separated the training and validation data.

he parameters, and conditioning on a point estimator 𝑝(𝑦̃|𝐷, 𝜃̂), result in fairly similar predictive uncertainty when given sufficient
training data. However, if we reduced the data used to fit the model, the parameters cannot be estimated reliably. Hence conditioning
on an unreliable point estimator can result in wrong prediction that is over-confident. In this case, a full Bayesian approach can
incorporate parameter uncertainty when making predictions to avoid underestimation of predictive uncertainty, although this does
not generally guarantee the correct coverage. Despite the advantages in handling parameter uncertainty, the lack of wide adoption of
a Bayesian framework to traffic model calibration is arguably due to both its computationally intensive nature and the requirement
of a stronger statistical background. For instance, unlike adaptive optimisers with little restriction on their implementation, an
adaptive sampler requires more caution to have the correct ergodic properties.

In addition, we found that the congested flow behavioural parameters in the Gipps’ car following model, such as 𝑏max and 𝜓 which
both control the congested flow behaviour, are strongly correlated in the posterior. Aside from severely impeding the efficiency of
the sampler, the more pressing issue is that such correlation results in a narrow ridge of local optima in the posterior which are all
equally good fit, so simply reporting a point estimator can be misleading.

Lastly, we performed Bayesian inference for real data set using a car following episode in the NGISM dataset. In such imperfect
model case, there is no ground truth parameters. The full Bayesian approach provides a more informative description of the inference
results compared to point estimators, which allows an assessment of the reliability of the parameters estimates. Although the results
exhibit some signs of potential model mis-specifications, the model fit appears satisfactory with reasonable predictive performance.

This research emphasises the connection of model calibration and validation to statistical inference, and demonstrates the
potential usefulness of a Bayesian approach. For transport researchers unfamiliar with Bayesian inference, this paper is intended
to also serve as an introduction to its philosophy and computations. Future work includes investigating the use of more efficient
and state-of-the-art samplers which are less impeded by the geometry of the posterior. Another interesting direction is to conduct
more extensive investigation on the issue of model mis-specification when fitting to real trajectory, as human driving behaviour is
complex and might not be fully described by any existing car following models.
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Fig. A.14. Sample trajectory when implemented as a delayed differential equation.

Fig. A.15. Sample trajectory when implemented as a difference equation.

Appendix A. Comparison between Gipps’s car following model solver

This appendix compares the two numerical integration schemes for solving the Gipps’ car following model, namely the
implementation of Gipps’ model as a DDE or a difference equation. In the case of 𝛥𝑡 = 𝜏, the DDE implementation recovers the usual
implementation of Gipps’ model as a discrete update equation. Figs. A.14 and A.15 compare the two integration schemes which
returned fairly similar results. The shaded panels indicate random perturbations imposed on the leader’s acceleration/deceleration.
In both cases, the reaction time is 𝜏 = 0.5 s, with 𝛥𝑡 = 0.1 s for DDE and 𝛥𝑡 = 𝜏 = 0.5 s for difference equation.

Appendix B. MCMC diagnostics

Estimating 𝑅̂ statistic. Our implementation is motivated by [28] but we also found several slight variations in the literature. Assuming
there are 𝑀 parallel chains each of length 𝑁 after burn-in, 𝑅̂ is then estimated as follows:

1. Compute the empirical mean 𝜃̄𝑚 and variance 𝑠2𝑚 for each chain 𝑚 = 1,… ,𝑀

𝜃̄𝑚 = 1
𝑁
∑

𝜃𝑚,𝑛 (B.1)
20

𝑁 𝑛=1



Physica A: Statistical Mechanics and its Applications 639 (2024) 129671S. Ting et al.

E
𝜃
t
o

𝑠2𝑚 = 1
𝑁 − 1

𝑁
∑

𝑛=1
(𝜃𝑚,𝑛 − 𝜃̄𝑚)2 (B.2)

2. Compute the overall mean 𝜃̄

𝜃̄ = 1
𝑀

𝑀
∑

𝑚=1
𝜃̄𝑚 (B.3)

3. Compute the within-chain variance 𝑊 , the between-chain variance 𝐵 and the pooled variance 𝑉

𝑊 = 1
𝑀

𝑀
∑

𝑚=1
𝑠2𝑚 (B.4)

𝐵 = 𝑁
𝑀 − 1

𝑀
∑

𝑚=1
(𝜃̄𝑚 − 𝜃̄)2 (B.5)

𝑉 = 𝑁 − 1
𝑁

𝑊 + 1
𝑁
𝐵 (B.6)

4. 𝑅̂ is then given by

𝑅̂ =
√

𝑉
𝑊

(B.7)

Estimating the effective sample size 𝑛eff. Likewise, there exists several variations in the literature. Our implementation closely
follows [23]:

1. Compute the variogram 𝑣̂𝑘 at lag 𝑘

𝑣̂𝑘 =
1

𝑀(𝑁 − 𝑘)

𝑀
∑

𝑚=1

𝑁
∑

𝑛=𝑘+1
(𝜃𝑚,𝑛 − 𝜃𝑚,𝑛−𝑘)2 (B.8)

2. Estimate the lag 𝑘 auto-correlation by

𝜌̂𝑘 = 1 −
𝑣̂𝑘
2𝑉

(B.9)

where 𝑉 is the pooled variance in step 3 for estimating 𝑅̂.
3. Estimate the effective sample size by

𝑛̂eff =
𝑀𝑁

1 + 2
∑𝐾
𝑘=1 𝜌̂𝑘

(B.10)

where 𝐾 is the first odd positive integer such that 𝜌̂𝐾+1 + 𝜌̂𝐾+2 < 0.

stimating the Monte Carlo standard error (MCSE). The interest is in estimating the MCSE for the posterior mean 𝜇 = E[𝜃[𝑖]] where
[𝑖] ∼ 𝑝(𝜃[𝑖]|𝐷) using the method of batch means. A batch is simply a subsequence of the iterates from a Markov chain. Let 𝑏 denote
he batch length and suppose there is a total of 𝑁 = 𝑎𝑏 iterations which can hence be divided into 𝑎 non-overlapping batches each
f length 𝑏. The method of batch means is as follows:

1. Compute the usual Monte Carlo estimate of 𝜇 for each batch, 𝑘 = 1, ... , 𝑎

𝜇̂𝑘 =
1
𝑏

𝑏𝑘
∑

𝑗=𝑏(𝑘−1)+1
𝜃[𝑖] (B.11)

2. Compute the empirical variance of the batch means

𝑠2𝑏 =
1
𝑎

𝑎
∑

𝑘=1
(𝜇̂𝑘 − 𝜇̂)2 (B.12)

where 𝜇̂ = 1
𝑁

∑𝑁
𝑗=1 𝜃

[𝑖]
𝑗 is the overall mean. By Markov chain CLT, this is can be used to estimate 𝜎2∕𝑏 where 𝜎2 is the variance

of 𝑝(𝜃[𝑖]|𝐷).
3. Compute the batch means estimate of the MCSE

𝜎̂2 = 𝑏 × 𝑠2𝑏 (B.13)

MCSE(𝜇) = 𝜎̂
√

𝑁
(B.14)

The batch length 𝑏 should be large enough such that each batch estimator is approximately independent considering auto-correlation
in the samples, while maintaining a suitably large number of batches for an accurate estimate of the variance of batch means. We

√

𝑁 .
21

simply followed the heuristics of choosing an integer 𝑏 ≈
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p
d
t

Fig. C.16. Trajectory data simulated with the intelligent driver model, with i.i.d. observational noise. The leader adopts the Gipps’ free flow model in the absence
of disturbances and the follower adopts the IDM model. The shaded panels indicate random perturbations imposed on the leader’s acceleration/deceleration.

Table C.5
Estimates and MCMC diagnostic statistics for IDM.

True MLE MAP E[⋅|𝐷] MCSE 𝑞0.025 𝑞0.5 𝑞0.975 𝑅̂ 𝑛eff
𝑎max 1.721 1.710 1.711 1.717 0.0011 1.654 1.716 1.784 1.0114 274.0
𝑏max 3.235 3.189 3.206 3.215 0.0019 3.022 3.213 3.423 1.0040 1460.2
𝑠0 3.136 3.093 3.086 3.109 0.0057 2.771 3.109 3.437 1.0091 260.1
𝜇𝑥 0.800 0.750 0.742 0.749 0.0035 0.497 0.750 1.000 1.0042 428.8
𝜎2𝑥 0.250 0.253 0.279 0.289 0.0001 0.237 0.287 0.352 1.0000 52 435.1

Appendix C. Inference for intelligent driver model

The inference result for the intelligent driver model (IDM) is provided in this appendix, demonstrating the modularity of the
roposed method. The IDM proposed by [37] is another popular car following model in the literature, described by ordinary
ifferential equations. Let 𝛥𝑣(𝑡) ∶= 𝑣𝑓 (𝑡) − 𝑣𝑙(𝑡) denote the velocity difference, 𝑔(𝑡) ∶= 𝑥𝑙(𝑡) − 𝑥𝑓 (𝑡) − 𝑙𝑝 denote the gap between
he vehicles with 𝑙𝑝 representing the physical length of the leader, then the IDM is given by

𝑑𝑥𝑓 (𝑡)
𝑑𝑡

= 𝑣𝑓 (𝑡) (C.1)

𝑑𝑣𝑓 (𝑡)
𝑑𝑡

= 𝑎max

[

1 −
(𝑣𝑓 (𝑡)
𝑉max

)𝛿

−
( 𝑠∗(𝑣𝑓 (𝑡), 𝛥𝑣(𝑡))

𝑔(𝑡)

)

]

(C.2)

with 𝑠∗(𝑣𝑓 (𝑡), 𝛥𝑣(𝑡)) = 𝑠0+𝑣𝑓 (𝑡)𝑇min+
𝑣𝑓 (𝑡)𝛥𝑣(𝑡)

2
√

𝑎max𝑏max
. The model parameters can be interpreted as follows: 𝑉max is the free flow velocity, 𝑠0

is the minimum gap, 𝑇min is the minimum time headway, 𝑎max is the maximum acceleration, 𝑏max(>0) is the comfortable braking rate
and the exponent 𝛿 is usually taken as 4. Fig. C.16 illustrates a simulated data with random perturbations imposed on the leader,
and with generated parameter values 𝑉max = 28.0, 𝑠0 = 3.136, 𝑇min = 1.507, 𝑎max = 1.721, 𝑏max = 3.235. We also introduced reaction
time 𝜏 = 0.5 and solved the IDM similar to Algorithm 1. The observation model is the same as Section 2.2.

We performed similar Bayesian inference with the IDM, using this 20 s trajectory data with the same adaptive sampler in
Section 4.2. For demonstration, we considered only the calibration parameters 𝛾 = (𝑎max, 𝑏max, 𝑠0) and noise parameters 𝜇𝑥 and
𝜎2𝑥. The MCMC inference results are shown in Fig. C.17 and Table C.5. The MCMC diagnostic statistics did not indicate any issues
with mixing and the parameters are recovered well with reasonable uncertainty estimates.
22
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Fig. C.17. MCMC results for IDM model.
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