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Abstract: This review explores fundamental analytical modelling approaches using conventional
composite theory and artificial intelligence (AI) to predict mechanical properties of 3D printed particle-
reinforced resin composites via digital light processing (DLP). Their mechanisms, advancement,
limitations, validity, drawbacks and feasibility are critically investigated. It has been found that
conventional Halpin-Tsai model with a percolation threshold enables the capture of nonlinear effect
of particle reinforcement to effectively predict mechanical properties of DLP-based resin composites
reinforced with various particles. The paper further explores how AI techniques, such as machine
learning and Bayesian neural networks (BNNs), enhance prediction accuracy by extracting patterns
from extensive datasets and providing probabilistic predictions with confidence intervals. This review
aims to advance a better understanding of material behaviour in additive manufacturing (AM). It
demonstrates exciting potential for performance enhancement of 3D printed particle-reinforced resin
composites, employing the optimisation of both material selection and processing parameters. It
also demonstrates the benefit of combining empirical models with AI-driven analytics to optimise
material selection and processing parameters, thereby advancing material behaviour understanding
and performance enhancement in AM applications.

Keywords: digital light processing (DLP); additive manufacturing (AM); particle-reinforced resin
composites; mechanical properties; material optimisation; empirical modelling; artificial
intelligence (AI)

1. Introduction

Vat polymerisation (VP) encompasses several AM techniques, including stereolithog-
raphy (SLA), digital light processing (DLP) and masked stereolithography (MSLA). These
methods use UV light to selectively cure liquid resins, creating precise 3D models layer by
layer [1,2]. While sharing the fundamental principle of light-induced polymerisation, each
technique offers unique advantages in terms of precision, speed and material compatibil-
ity [3]. Such methods produce desired parts with excellent mechanical properties, high-
quality surface finish and high-resolution features [4,5]. VP offers numerous advantages,
including high-precision fabrication, rapid printing speed, as well as the capability to work
with a variety of materials, such as nanocomposites and biobased photopolymers [6–9].

SLA utilises a laser to cure the resin dot by dot, ensuring precise control over the
curing process and resulting in high-resolution prints with fine details [10,11]. On the
other hand, DLP projects the light through an entire layer using a digital micromirror
device (DMD) or a projector for faster printing speed and simplified operation when com-
pared with SLA [12,13]. MSLA printers, also known as daylight polymer printing (DPP),
depend on a screen to polymerise the resin layer by layer, resulting in cost-effective 3D
printing solutions [14]. Mechanical properties of parts produced by these VP techniques
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can vary significantly based on specific methods used and processing parameters [13].
Understanding these variations is crucial for accurately predicting and optimising mechan-
ical properties of 3D printed particle-reinforced resin composites. Figure 1 illustrates key
features, differences, and comparative precision values, build volumes and print rates of
such 3D printing techniques.
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and DLP. On the other hand, material formulation is also quite vital, as evidenced by 
Wada et al. [19] with higher flexural strength, flexural modulus and fracture toughness in 
DLP-printed specimens, as well as superior Vickers hardness and smoother surfaces for 
MSLA-printed counterparts. In addition, special resins used for specific dental and 
surgical applications make a positive contribution to mechanical properties, as evidenced 
by Park et al. [20] and Lai et al. [21]. 
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Figure 1. Comparison of different 3D printing techniques, including SLA, DLP and MSLA, with their
common features and differences [15].

Mechanical properties of parts produced by VP techniques can vary significantly based
on several parameters, including print orientation, post-curing process, printing parameters
(e.g., layer thickness, infill density, etc.) and material formulation. These variations are
particularly essential when predicting the mechanical properties of particle-reinforced resin
composites [11,16–18]. Pop et al. [17,18] reported that such printing parameters affected
both the tensile and flexural properties of resulting parts using SLA and DLP. On the other
hand, material formulation is also quite vital, as evidenced by Wada et al. [19] with higher
flexural strength, flexural modulus and fracture toughness in DLP-printed specimens, as
well as superior Vickers hardness and smoother surfaces for MSLA-printed counterparts.
In addition, special resins used for specific dental and surgical applications make a positive
contribution to mechanical properties, as evidenced by Park et al. [20] and Lai et al. [21].

The selection of 3D printing techniques like SLA, DLP or MSLA depends primarily on
specific application requirements, with each technique offering unique merits with respect
to print speed, print resolution and mechanical properties. For instance, SLA is prone to
producing parts with exceptionally smooth surfaces and intricate details, particularly used
for small-scale and high-detail applications [15]. Semary et al. [22] reported that SLA offers
far higher accuracy than DLP when used to print surgical guides for dental implants. Lee
et al. [15] reported the highest flexural strength of 150.8 ± 7.93 MPa could be achieved
in 3D printing denture models using SLA, which was followed by 133.39 ± 12.66 MPa
with DLP and 133.28 ± 9.39 MPa with LCD. Park et al. [23] indicated that decreasing
layer thickness in SLA increased the glass transition temperature (Tg) due to the effect of
print orientation. DLP printers are revealed to print specimens with significantly high
flexural strength, flexural modulus and fracture toughness when compared with SL and
MSLA printers [19]. It is evident that mechanical performance of 3D printed parts can be
impacted by various printing techniques. DLP can be characterised by good surface quality
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despite pixelated appearance on curved surfaces arising from voxel-based structures [24].
Notwithstanding such minor drawbacks, DLP yields higher mechanical strength and stress
resistance than SLA, which is more feasible for functional prototypes and applications with
good durability [19].

MSLA is a hybrid technique between SLA and DLP, which relies on the use of MSLA
screens to mask UV light in order to selectively cure entire layers at the same time. MSLA
is a balanced approach by considering the combined effect with respect to print speed,
accuracy and resolution [25]. Such a method takes into account high SLA resolution and
DLP efficiency as a versatile printing option for widespread applications [16]. MSLA
yields good mechanical properties in a comparable manner to DLP, which is favoured for
both professional and hobbyist use owing to its cost-effectiveness and easy maintenance.
Among key strengths with respect to VP, it is worthwhile to highlight its high resolution,
good reliability and design flexibility as a preferred option to create complex and stable
architecture with various material formulations such as hydrogels, elastomers, composites
and biological materials [8,26]. This method is instrumental in advanced development
of soft sensors or actuators and bionic adhesive devices, resulting in the versatility of
producing innovative and functional objects [26,27].

VP has also a major application in the medical field to focus on 3D printed biodegrad-
able medical devices using emerging photopolymerisation [28]. It is also well utilised to
assess the impact on mechanical and biological properties of 3D printed denture bases with
an emphasis on dental applications [15]. Other applications can expand to drug delivery
systems and the fabrication of ceramic bodies without warping with great potential in di-
verse fields [29–31]. The ability of VP techniques to work with various materials, including
nanocomposites or nanofibre-reinforced composites [8,26], is crucial for particle-reinforced
resin composites. This versatility allows for incorporating diverse types and sizes of rein-
forcing particles, potentially leading to a wide range of achievable mechanical properties.
When predicting mechanical properties of particle-reinforced composites, it is essential to
consider specific VP techniques used as follows:

• SLA offers high accuracy and smooth surfaces [15,22], which may influence particle
distribution and interface quality in composites.

• DLP provides higher mechanical strength and stress resistance compared to
SLA [19], which is potentially beneficial for particle-reinforced composites with
enhanced durability.

• MSLA balances print speed, accuracy and resolution [25], which could affect overall
quality and consistency of particle-reinforced composites.

Understanding these technique-specific characteristics is crucial for developing accu-
rate predictive models, particularly used for mechanical properties of 3D printed particle-
reinforced resin composites.

As far as material properties are concerned, VP enables the creation of tough and re-
sorbable networks, and further enhances material dispersion like hydroxyapatite whiskers
for better mechanical performance used for orthopaedic applications [32]. Such a method is
also widely used to produce polyurethanes requiring specific viscosities to achieve optimal
print resolution [33]. On the other hand, VP can be integrated into developing advanced
energy solutions like recyclable 3D printed lithium-ion batteries with its major adaptability
to different innovative technologies [34]. When compared with other 3D printing tech-
niques, VP benefits from its high print resolution, quick print time and cost-effectiveness in
manufacturing equipment and materials [35].

The incorporation of particles as reinforcements in resin matrices offers a great oppor-
tunity to enhance mechanical properties of 3D printed parts [36]. However, predicting the
mechanical behaviour of composite materials remains a significant challenge due to com-
plex interactions between reinforcing particles, resin matrices and processing parameters
used in 3D printing [37].

Accurate prediction of mechanical properties is vital for optimising material formu-
lations and printing parameters to achieve desired performance characteristics in final
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products. Conventional approaches to property prediction often rely on empirical models
or finite element analysis (FEA), which may not fully capture the multifaceted nature
of 3D printed particle-reinforced composites [38,39]. However, recent advancements in
modelling techniques, including the integration of artificial intelligence (AI) and machine
learning algorithms, offer a promising means for improving the accuracy and reliability
of mechanical property predictions [40,41]. These approaches can potentially account for
nonlinear effects of particle reinforcement, processing parameters and material-specific
characteristics that significantly influence final properties of 3D printed composites [42].

Material innovation with enhanced mechanical properties is critical to meet such
challenges associated with the widespread adoption of DLP at an industrial level [3,24,43].
Mechanical strength, toughness and overall material performance of 3D printed parts can
be improved when incorporated with different types of particles as additives within resin
matrices in a composite system [44,45].

The fusion of empirical models and AI models facilitates the optimisation of material
formulations for specific applications by providing predictive insights into mechanical per-
formance of particle-reinforced resin composites [46]. Engineers and designers can utilise
these predictive models to iteratively refine material compositions, fine-tune processing
parameters, and optimise structural designs. This iterative optimisation process enables
the tailored engineering of 3D printed parts with predetermined mechanical properties,
thereby accelerating innovation and product development cycles.

This review aims to critically examine fundamental approaches to predicting mechani-
cal properties of 3D printed particle-reinforced resin composites, with a major focus on DLP
technology. In particular, conventional composite theory, empirical modelling techniques,
and the emerging role of AI in enhancing predictive capabilities have been holistically
covered. By investigating mechanisms, advancements, limitations and feasibility of various
predictive methods, it offers clear insights into optimising material selection and process-
ing parameters for improved mechanical performance of 3D printed particle-reinforced
resin composites.

2. Predictive Methods

The existing literature on predicting mechanical properties of 3D printed particle-
reinforced resin composites reveals several inconsistencies, particularly in the scope and
depth of reviews, methodological approaches and integration of advanced technolo-
gies [47,48]. While the field benefits from diverse methodologies, the lack of standardised
testing and critical comparison between methods obstructs the ability to draw comprehen-
sive conclusions [49]. Data quality and sharing issues further complicate this, leading to
the variability in reported results. Moreover, inconsistent applications of AI and machine
learning techniques, as well as limited practical implementation, highlight an evident gap
between theoretical advances and real-world applications [49,50]. Finally, the scalability
and practical relevance of predictive models, as well as their validation and accuracy,
remain significant challenges [51]. Addressing these inconsistencies through more rigorous,
standardised and integrative research approaches can enhance predictive modelling of
mechanical properties in 3D printed composites, thus bridging the gap between academic
research and industrial commercialisation.

Several studies have utilised different mathematical models to investigate mechanical
properties of 3D printed composites. Kang et al. [52] employed microscopic models by
varying diameters and dispersity of hydroxyapatite (HA) particles to estimate mechanical
properties via FEA in 3D printed polyether ether ketone (PEEK)/HA composite filaments
using fused deposition modelling (FDM). It has been found that the Halpin–Tsai model is
very useful for accurately predicting the relationship between elastic modulus and volume
fraction of the fillers using an empirical parameter, as seen in Figure 2 [52]. Furthermore,
Hetrick et al. [53] used micromechanical models to predict mechanical properties of ad-
ditively manufactured composites reinforced with continuous carbon fibres (CFs), which
concentrated on significant impact of fibre content in these models. Voigt model [53,54]
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has been shown to accurately predict longitudinal tensile strength, but reasonably esti-
mate longitudinal modulus at different fibre contents. It is worth mentioning that Ruess
model [53,54] may fail to capture estimated transverse modulus for transverse properties
of composites, as opposed to Halpin-Tsai model, offering a better fit with the incorpora-
tion of more experimental parameters. The addition of fibres in 3D printed composite
materials could decrease transverse strength, which is similar to conventional composites.
Additionally, transverse strength could diminish with increasing fibre volume fraction.

Nonetheless, the change in shear modulus with the variation of fibre content cannot
be adequately modelled simply by using either Halpin-Tsai model or Reuss model. Halpin-
Tsai model, while flexible, often requires the calibration against experimental data to
provide accurate predictions for specific composite systems. This calibration process can
be time-consuming and may not generalise well across varied materials and printing
parameters. Reuss model tends to underestimate the transverse modulus of composites,
particularly for 3D printed materials with complex fibre orientations and distributions.
Both models assume idealised fibre arrangements and perfect bonding between fibres and
matrices, which may not reflect the reality of 3D printed composites.
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Figure 2. (a) The minimum and maximum elastic moduli for different material formulations of PEEK
composites; (b) the coefficient of anisotropy compared to different composite formulations; (c) data
comparison with respect to elastic modulus between experimental data and numerical results for
different composite formulations and (d) Halpin–Tsai model for effective elastic moduli of composite
materials [52].

The interface between resin matrices and filler particles is very important in determin-
ing overall mechanical properties of 3D printed resin composites [55]. Strong chemical
bonding at the interface is essential for effective stress transfer from the matrices to reinforc-
ing particles, ultimately enhancing the strength, stiffness and toughness of composites [56].
The acid–base theory developed by Fowkes [57] is useful to better understand filler–matrix
interactions in composites, and evaluating acid–base characteristics of different resins
and fillers can guide the selection of compatible materials for optimal composite prop-
erties. Such interactions are significant in adhesion, surface chemistry and interfacial
bonding [55,58]. Custom coupling agents enable to be developed or selected based on
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specific acid–base characteristics of the resin and fillers to maximise interfacial adhesion,
such as silane coupling agents that mediate the interface between organic polymers and
inorganic fillers, along with the formation of covalent bonds for both phases [55]. Strong
chemical bonding at the interface can improve long-term durability and environmental
resistance of 3D printed composite parts, and thus the strength of adhesive bonds is directly
related to the change in exothermic interfacial energy, which can be enhanced by acid–base
bonding [56]. Chemical coupling agents and surfactants significantly affect interphase
dielectric constant of polymer/ceramic composites [59]. These concepts are associated with
diverse applications, as exemplified by dental polymers, where their acid–base properties
influence adhesive interactions with tooth tissues [60].

Several well-established models have been developed to predict the behaviours of 3D
printed composites, which are based on well-known classical composite theory discussed
in the forthcoming sections.

2.1. Mori–Tanaka Model

Mori–Tanaka model is a micromechanical model often used to predict effective me-
chanical properties of composite materials. This model is used to analyse 3D printed resin
composites via DLP [61,62]. Theoretical equations of Mori–Tanaka model depend primarily
on different composite types such as fibre-reinforced composites, particulate composites,
laminate composites, etc.

In particular, Mori–Tanaka model is quite beneficial to homogenising materials with
complex microstructures in composite materials. With the inclusion of recycled particulates
into 3D printed resin matrices, Mori–Tanaka model assists in effectively homogenising such
materials for a reasonable prediction of their overall mechanical properties of resulting
composite materials [63]. This model takes into consideration specific microstructures
of reinforcements and matrices, including a series of parameters such as reinforcement
shape and size, as well as orientation distribution [64]. The downside aspect of using
Mori–Tanaka model lies in the assumption of simplified reinforcement geometry relative
to more irregular shapes of milled resins in practice [65]. More importantly, interfacial
adhesion has not been thoroughly considered between reinforcements and matrices, which
is crucial in the analysis of 3D printed composites in terms of reinforcement efficiency.
This model is limited only to a linearly elastic behaviour. As such, it may not capture full
complexity of composite material characteristics when reinforced with irregular particles.

The mathematical formula with respect to Mori–Tanaka model represents effective
stiffness tensor of composites, as shown in Equation (1)

C* = Cm + f
(
Cp − Cm

)
A[(1 − f )I + f A]−1 (1)

where Cm and Cp refer to stiffness tensors of the matrix and particles respectively. f is the vol-
ume fraction of particles, I is the fourth-order identity tensor, and A is strain concentration
tensor of a single particle in an infinite matrix. A is given by Equation (2) below

A =
[

I + S(Cm)
−1(Cp − Cm

)]−1
(2)

where S is Eshelby tensor, depending on particle shape and matrix properties.
Key assumptions of Mori–Tanaka model include uniform particle distribution through-

out the matrix, linear elastic behaviour of both the matrix and particles, perfect particle–
matrix bonding, and relatively low particle concentrations [66]. The model also assumes
ellipsoidal inclusions within typically an isotropic matrix material. While such assumptions
enable Mori–Tanaka model to provide accurate predictions for many composite systems,
they may limit its applicability in high particle concentrations, irregular particle shapes, or
significant interfacial effects. Despite these disadvantages, Mori–Tanaka model remains
a valuable theoretical modelling tool for initial property prediction and material design
optimisation in particle-reinforced composites, including those produced via DLP.
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2.2. Eshelby Model

Eshelby model applies to predicting the stress and strain fields within a heterogeneous
material containing inclusions such as particles, fibres or voids embedded within a ma-
trix [61,62]. This model assumes that inclusions and the matrix possess different mechanical
properties. When used in conjunction with Mori–Tanaka model, it analyses composite
materials by considering milled resin particles as the inclusions within the resin matrix.
It predicts the effective elastic properties of resulting composites based on constituent
properties and their volume fractions.

Eshelby model can handle more complex inclusion shapes than Mori–Tanaka model
based on simplified geometries, potentially better representing irregular milled resin par-
ticles [61]. It inherently accounts for the interaction between the inclusion and the sur-
rounding matrix using Eshelby tensor, which provides a more rigorous process of stress
transfer [61,62].

However, this model depends primarily on idealised inclusion shapes, which might
only partially capture actual particle morphology. It primarily focuses on linearly elastic
material behaviour, thus potentially limiting its applicability to such materials with non-
linear responses or structural damage due to the recycling process. While Eshelby model
offers a more sophisticated approach than Mori–Tanaka model for certain aspects, like
handling complex inclusion shapes and stress interactions, its limitations and inherent
challenges for modelling recycled resin composites necessitate careful consideration and
potential adaptation.

Eshelby model is useful for advancing our understanding and optimising 3D printed
resin composites, especially those modified with additives [61]. This analytical approach
is pivotal for dissecting stress distribution within heterogeneous materials, which further
promotes a deeper understanding of how stress is effectively transferred and distributed
throughout a composite structure by examining the filler–matrix interaction [62,67]. This
mechanism is fundamental to predicting failure mechanisms and assessing overall mechan-
ical performance of composite materials. These factors are crucial as they directly influence
the mechanical properties of composites, including stiffness, strength and ductility. By
applying Eshelby model, researchers and engineers can evaluate how the variations in these
geometric parameters impact mechanical performance of resulting composite materials.

Additionally, the volume fraction of inclusions emerges as a critical parameter within
this analytical framework [67]. The inclusion of additives alters the volume fraction of
reinforcements within the matrix, thus significantly influencing the properties of composite
materials. With the aid of Eshelby model, it is much easier to understand and predict
how changes in the volume fraction of inclusions influence the mechanical behaviour of
composite materials. This predictive capability is invaluable for developing and refining
composite materials used in 3D printing, which further enables to create specific resin
composites with well-tailored properties for widespread applications.

2.3. Halpin–Tsai Model

Halpin–Tsai model is well recognised as a theoretical framework designed to estimate
mechanical properties of composite materials, with a specific focus on fibre-reinforced
composites according to Luo et al. [68] and Martinez-Garcia et al. [66]. Halpin–Tsai model
establishes a correlation between mechanical properties of composite materials (e.g., elastic
modulus and strength) and the characteristics of corresponding constituents such as re-
inforcing fibres and the matrix. The major application of Halpin–Tsai model lies in their
utilisation to determine elastic modulus (known as stiffness) of composite materials. This
determination is useful to analyse volume fraction and inhere properties of reinforcing
fibres and matrix [66,69]. Furthermore, Halpin–Tsai model can be modified to account
for various material conditions, including isotropic and anisotropic states, as well as to
accommodate different loading conditions, according to Fuchs et al. [70]. This versatility
makes Halpin–Tsai model an invaluable analytical framework in predictive analysis and
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design of composite materials, enabling engineers and researchers to tailor composite
materials for optimal material performance used in 3D printing.

This model incorporates a comprehensive assessment of orientation, aspect ratio and
mechanical characteristics of reinforcing fibres, along with the dynamics of their interaction
with the matrix [70]. It facilitates a quantitative evaluation of the impact of incorporating
reinforcing fibres on mechanical properties of composite materials. Within the scope of 3D
printed epoxy composites, Halpin–Tsai model emerges as a predictive tool to characterise
the reinforcement effect of fillers or fibres such as carbon and glass fibres or nanoparticles
on mechanical performance of 3D printed parts according to Martinez-Garcia et al. [66].
By varying volume fractions and properties of reinforcing fillers, mechanical properties of
3D printed parts can be customarily tailored in order to meet end-user applications. This
customisation enables composite materials to meet desired performance criteria such as
higher stiffness and strength, and further enhanced impact resistance in order to optimise
3D printed parts for specific applications.

Halpin–Tsai model emerges as a pivotal analytical tool with the consideration of the
orientation of reinforcing fibres or particles in a composite material, which is essential for
3D printing of resin composites. This method is particularly utilised for understanding the
impact that the orientation of recycled particulates has on overall mechanical behaviour
of resulting composites [70]. Similar to other analytical approaches, Halpin–Tsai model
offers an effective approach to account for volume fraction of reinforcing phase within
composites. The variation of volume fraction allows for investigating the influence of
recycled milled powder resin content on mechanical properties of composite materials, such
as stiffness, strength and toughness [66]. Furthermore, Halpin–Tsai model incorporates
special considerations for aspect ratio of reinforcing phase, which is crucial to better
understand how the shape and size of recycled milled resin particles affect mechanical
properties [68]. In general, aspect ratio influences the efficiency of reinforcements, which
also plays a significant role in determining the performance of composite materials. As such,
this approach facilitates a nuanced understanding of how orientation, volume fraction and
aspect ratio of reinforcing phase impact mechanical performance of composite materials,
which is vital in the development and optimisation of 3D printed resin composites.

Empirical Halpin–Tsai model is primarily derived from experimental data, which is
opposed to Mori–Tanaka model and Eshelby model based on theoretical principles from
mechanics of materials [70]. Halpin–Tsai model is particularly applicable to fibre-reinforced
composites, while Mori–Tanaka model and Eshelby model expand to various types of
composite materials and microstructures [61,62]. Eshelby model typically involves complex
mathematical formulations and calculations when compared with more straightforward
Halpin–Tsai model and Mori–Tanaka model.

Researchers have investigated the use of modified Halpin–Tsai model to predict me-
chanical performance in polymer nanocomposites reinforced with spherical fillers [66,68].
The mathematical model proposed by Martinez-Garcia et al. [66] considered combining a
three-phase framework and fundamental percolation concepts, glassy layer and colloidal
glass transition into a cohesive analytical tool. Such a model represents the evolution of
a three-phase series-parallel model initially developed by Ji et al. [71], which was further
refined by the percolation theory aforementioned by Schilling et al. [69]. Such advances
shed light on the prediction of mechanical properties of polymer nanocomposites reinforced
with spherical nanoparticles.

Martinez-Garcia et al. [66] created a more complex equation to estimate tensile modu-
lus with the inclusion of spherical nanoparticles. In particular, Equations (3)–(5) consider
moduli of composites and polymer matrix, volume fraction of particles, as well as critical
percolation threshold. It can combine particle interaction and percolating network very
well as an advanced approach to predict tensile properties of polymer nanocomposites.

Ec = Em

(1 − δ) +
δ − γ

(1 − δ) +
(

k−1
ln(k)

)
γ +

((
k +

√
2

2 (k − 1)
)
(δ − γ)

) +
γ

(1 − δ) + (δ−γ)(k+1)
2 + γ

E f
Em

 (3)
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δ =

0 : 0 ≤ ϕ ≤ ϕp√(
1 + r

R
)
ϕg

(
ϕ−ϕp
ϕg−ϕp

) α
2 : ϕp < ϕ ≤ ϕg

(4)

γ =

0 : 0 ≤ ϕ ≤ ϕp[√
ϕg

(
ϕ−ϕp
ϕg−ϕp

)] α
2 : ϕp < ϕ ≤ ϕg

(5)

where Ec denotes the tensile modulus of composite materials, which is a primary output of
the model. It also represents the stiffness of composite materials, which is influenced by
the distribution of nanoparticle fillers within polymer matrices. Em is tensile modulus of
polymer matrices to denote inherent stiffness of neat polymer without any reinforcements.
δ is a dimensionless parameter with respect to volume fraction of particles within composite
materials. It can be defined in terms of particle radius R, interphase thickness r, volume
fraction of glassy phase φg, as well as percolation threshold φp.

The model can be modified by such a parameter to account for an effective particle
contribution to the stiffness of composites, particularly above their percolation threshold,
shown in Figure 3 with a variety of composites. γ is another dimensionless parameter in
relation to volume fraction of particles to focus on particle contribution to volume fraction of
glassy phase transition within the specific range of percolation threshold. Tensile modulus
of fillers Ef represents the stiffness of nanoparticles, which is essential to understand
intrinsic properties of fillers with the impact on overall composite stiffness. φ, φp and φg
denote volume fraction of particles, percolation threshold and glassy phase volume fraction
respectively. φ represents nanoparticle concentration in composite materials. Additionally,
φp is the critical concentration in which a significant increase in mechanical properties
takes place due to the formation of a percolating network. On the other hand, φg is the
concentration at which the system transitions into a glassy state, which is deemed the
maximum effective filler concentration for mechanical reinforcement. Percolation exponent
α influences the prediction of mechanical reinforcement based on particle aggregation
dynamics and the formation of interphase glassy state. As such, it offers great insight into
close filler–matrix interaction and sophisticated development of percolating networks.

Interface modulus ratio, also known as k-parameter, represents relative stiffness of
interphase area when compared with that of polymer matrices. It is a key factor for the
measurement of reinforcement effectiveness induced by interphase areas surrounding
nanoparticles. Chemical interactions, particularly those facilitated by coupling agents like
γ-aminopropyltriethoxysilane (γ-APS), significantly influence this parameter, and thereby
overall reinforcement effectiveness [72]. γ-APS improves the interfacial adhesion between
the matrices and reinforcing particles or fibres, particularly as evidenced by covalent bonds
with both glass fibres and polymer matrices to create a strong interphase region [72,73].
This enhanced adhesion is reflected in a higher k-parameter value. Silane groups in γ-APS
can form covalent bonds between inorganic filler surfaces and organic polymer matrices,
leading to a strong chemical linkage at the interface. Higher k-parameter values can also be
substantiated due to stress transfer efficiency, modification of interphase region and surface
energy and reduction of interfacial defects [74–76].
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Figure 3. Young’s modulus versus theoretical prediction of (a) polyolefin/carbon black composites,
(b) polyolefin/fumed silica composites, (c) PEEK/Al2O3 composites, (d) PEEK/SiO2 composites,
(e) PTMHMTA/TiO2 composites and (f) P(MMA-MTC)/SiO2 composites. Red squares denote
experimental results. Equation (1), (solid blue line), Ji model (brown dashed line), Guth–Smallwood–
Einstein model (pink dashed line), Kerner model (green dashed line) and Halpin– Tsai model (black
dashed line) [66].

Different coupling agents can be used to tailor the properties of interphase region. For
instance, γ-APS might create a different interphase than other silanes [77]. This tailoring
ability allows fine-tuning of k-parameter to optimise specific mechanical properties. Chemi-
cal interactions facilitated by coupling agents can influence dynamic mechanical response
of composites [78]. This response can be reflected in factor-dependent k-parameter in rela-
tion to strain rate or temperature for a complex viscoelastic behaviour at the interface [75].
Coupling agents improve environmental resistance of the interface, and further maintain
reinforcement effectiveness over time under various conditions [75].

The model developed by Martinez-Garcia et al. [66] comprises several pivotal elements
used in mechanical reinforcement of polymer composites, which mainly focuses on certain
aspects to contribute to a better understanding towards material behaviour of composites.
First of all, it enables to identify percolation volume fraction φp above which reinforcing
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particles within composite materials generate a percolating network for the stepwise
improvement of mechanical properties. This network can be affected by a variety of factors,
including particle size, shape and orientation, along with the interphase of these particles.

In addition, this model integrates the concept of colloidal glass transition into its
framework, which indicates a particular state where particle movements within compos-
ites may decelerate significantly and virtually halt. This depends primarily on particle
concentration within composite materials. Glass transition plays a vital role in accurately
characterising mechanical performance of composite materials, which is considered as
critical phase behaviour for overall material characteristics. Furthermore, critical perco-
lation exponent was developed by Martinez-Garcia et al. [66] as a key parameter in this
model to explore aggregation dynamics of particles and the rapidity with which interphase
glass state induces. This exponent can directly benefit the establishment of an intricate rela-
tionship between particle interaction and their joint impact on mechanical reinforcement
of composite materials. Such model components all together provide a comprehensive
approach to holistically assess mechanical performance of polymer composites, thus eluci-
dating a complicated relationship between microstructures of composites and mechanical
properties on the macroscale. This comprehensive approach is validated with experimental
data from six polymer nanocomposites, including nanofillers in size of 15–30 nm, Al2O3
and SiO2, reinforcing PEEK composites, which demonstrates a good agreement between
theoretical prediction and experimental data for their enhanced mechanical properties.
The modelling ability to accurately evaluate mechanical reinforcement of nanocomposites
highlights exciting potential for material design with optimal mechanical performance for
diverse technological applications.

On the other hand, Luo et al. [68] proposed the combination of the rule of mixtures
(ROM) [79] and Halpin–Tsai model to precisely estimate tensile strength and Young’s
modulus of epoxy composites reinforced with microsized CFs, rubber nanoparticles (RNPs)
and carbon nanotubes (CNTs) via fused filament fabrication (FFF). A reduction factor has
been incorporated to address the nonlinear behaviour of tensile strength with respect to
fibre volume fraction based on modified ROM. Halpin–Tsai model has also been modified to
achieve more accurate predictions of mechanical properties with multiscale reinforcements.
Such a variation in analytical and empirical modelling approaches considers a distinct
contribution made by each type of reinforcements to the overall modulus of composite
materials. The robustness and reliability of such modified models can be further proven by
experimental validation with synergetic effect induced by the incorporation of multiscale
reinforcements. Such synergetic effect is vital to significantly improve mechanical strength
and toughness of composite materials, which highlights the applicability of such models
in the optimisation of composite materials via FFF. Luo et al. [68] developed an effective
modelling approach to deal with complex micro/nanostructures of composite materials,
as well as interactions between the matrix and multiscale reinforcements. Equation (6)
represents Young’s modulus Ec of a composite material, considering the volume fraction
φRNP and the modulus of RNPs ERNP, along with an interphase effect where φint and Eint
refer to volume fraction and Young’s modulus for the interphase respectively. This accounts
for unique interfacial properties between the matrix and surrounding nanoparticles. This
equation is especially useful to understand how micro/nanoscale modification impacts
mechanical properties of resulting composite materials at a macroscopic level.

Ec

Em2

=
1 + 2ηRNP φRNP + 2ηint φint

1 − ηRNP φRNP − ηint φint
(6)

Equation (7) defines a parameter ηRNP, which can be used to correlate elastic modulus
of RNPs ERNP and elastic modulus of the matrix Em2. This equation elaborates how
reinforcement effect of nanoparticle impact overall stiffness of composite materials.

ηRNP =
ERNP/Em2 − 1
ERNP/Em2 + 1

(7)
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Equation (8) defines a parameter hint, used to correlate interphase modulus Eint to
matrix modulus Em2, which reveals the significance of interphase properties to tailor
mechanical behaviour of composite materials.

ηint =
Eint/Em2 − 1
Eint/Em2 + 1

(8)

Equation (9) defines interphase volume fraction φint by incorporating nanoparticle ra-
dius R and interphase thickness Ri in order to quantify important filler–matrix interactions.

φint =

[(
R + Ri

R

)3
− 1

]
φRNP (9)

Finally, Equation (10) based on modified Halpin–Tsai model is used to predict elas-
tic modulus of multiscale composite materials reinforced with CFs and CNTs with the
consideration of effect of RNPs and interphase. In particular, the subscript L represents
the longitudinal direction in alignment with the fibre orientation to significantly affect the
stiffness of composite material. Whereas, the subscript T denotes the transverse direction
(i.e., perpendicular to the fibre direction).

Ec = Em0 ×
[

3
8

( 1+ξCFηCFL ·φCF
1−ηCFL ·φCF

)
+ 5

8

(
1+2ηCFT

·φCF
1−ηCFT ·φCF

)]
×

[
3
8

( 1+ξCNTηCNTL ·φCNT
1−ηCNTL ·φCNT

)
+ 5

8

(
1+2ηCNTT

·φCNT
1−ηCNTT ·φCNT

)]
×

1+2ηRNP ·φRNP+2ηint ·φint
1−ηRNP ·φRNP−ηint ·φint

(10)

Based on this modelling approach, Luo et al. [68] shows in Figure 4 that with constant
CFs (10 phr) and RNPs (4 phr), the relative error between experimental and theoretical
values is over 10% at the CNT contents of 0 and 0.25 phr. However, as CNT content
increases to 0.5, 0.75 and 1 phr, these errors decrease to 5% or less, resulting in better model
accuracy. The higher initial errors suggest that at a low CNT content, the bonding between
reinforcements and resin matrices is imperfect. The interfacial bonding is enhanced with
increasing CNT content. However, at the CNT content of 1 phr, the relative error appears
to increase again due to filler reaggregation at higher CNT contents.
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Yang et al. [45] introduced a mathematical model to correlate the degree of cure
with tensile strength and hardness of materials fabricated via SLA. This model effectively
quantifies the solidification stages of both initial green parts and those under UV post-curing
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process, thereby facilitating a high degree of predictive accuracy with respect to mechanical
properties of photosensitive liquid resins. The model can accurately estimate tensile
strength and hardness by integrating a range of parameters, including layer thickness,
stratification angle and curing duration, as supported by an explicit solution algorithm [45].
Predictive precision is exemplified by average accuracies of 88% and 90% for tensile
strength, as well as 98% and 95% for hardness with respect to green and UV post-cured parts
respectively. UV post-curing process is identified as a significant enhancer of mechanical
performance, with a key emphasis on valuable applications of the model in the refinement
of AM processes.

The accuracies of Mori–Tanaka model, Eshelby model and Halpin–Tsai model vary
to a different extent, depending on specific composite systems and predicted properties.
Mori–Tanaka model provides good accuracy for a wide range of particle volume fractions.
For instance, Gupta et al. [61] reported an excellent agreement with experimental data for
fibre-reinforced polycarbonate composites up to moderate volume fractions (≤10 vol%).
Eshelby model is highly accurate for dilute concentrations of inclusions but may lose the
accuracy at higher volume fractions [61,62]. Wong et al. [62] demonstrated that Eshelby
model is particularly precise for predicting effective stiffness of composites with spherical
inclusions at low concentrations. Halpin–Tsai model with its simplicity offers reasonable
accuracy, especially for fibre-reinforced composites. Paspali et al. [80] showed that Halpin–
Tsai model induced good predictions for tensile and flexural moduli of PLA/organoclay
composites with the inclusion of 1 and 5 wt% organoclays.

The above-mentioned three models exhibit diverse levels of computational complexity.
Mori–Tanaka model yields moderate complexity with the requirement of tensor calculations
despite being generally less computationally intensive than full numerical simulations [62].
Eshelby model, on the other hand, has higher complexity due to the requirement to
calculate Eshelby tensor, which appears to be challenging for non-ellipsoidal inclusions [62].
Halpin–Tsai model has low complexity instead with its semi-empirical nature to make it
computationally efficient and easy to implement [68].

Each model has its specific strengths regarding the applicability to different composite
types and loading conditions. Mori–Tanaka model is well-suited for particulate composites
and short-fibre composites, enabling it to handle multiple phases and orientations, which
is effective for both elastic and thermoelastic properties [61]. Eshelby model is ideal
for ellipsoidal inclusions in an infinite matrix, which can be further extended to handle
multiple inclusions and orientations despite its complexity [67]. It is primarily used for
elastic properties. Halpin–Tsai model, originally developed for fibre-reinforced composites,
has been adapted for particulate composites as well [81]. It is best suited for unidirectional
loading conditions, which can be inadequate in complex 3D stress states.

Model selection for 3D printed particle-reinforced resin composites depends on specific
characteristics of diverse composite systems. Halpin–Tsai model may provide a good
balance of accuracy and computational efficiency for particular composite systems with
low to moderate particle concentrations and simple geometries. Mori–Tanaka model might
offer better accuracy, notwithstanding increased computational cost for composites in
possession of higher particle concentrations or more complex particle shapes. Eshelby
model could be particularly useful in the case that a detailed analysis of stress concentration
around individual particles is required. However, it may be overly complex for routine
property predictions.

2.4. Other Models

Moghadasi et al. [82] developed a computational fluid dynamics (CFD) model for
top-down DLP to predict the DLP-based resin behaviour in 3D printing. This model helped
to analyse the effects of various process parameters, including fluid viscosity, travelling
speed, travelling speed ratio, printed layer thickness, and travel distance on the stability
time of the resin. The stability time is critical since it indicates the duration necessary
for the resin to stabilise after each layer is printed, which impacts overall print quality
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and efficiency. The model utilised mass and momentum conservation equations for an
incompressible Newtonian fluid. These equations help calculate the fluid dynamics for
DLP, in which the resin flow should be precisely controlled. A 2D simulation environment
using FLOW-3D software v12 update 3 was then employed, which was known for its
capability to handle complex fluid dynamics simulations. The equations can be solved
using a second-order accurate scheme for space and an implicit method for time, thus
ensuring numerical stability and accuracy. Through this modelling, the following key
points can be summed up:

• Higher viscosity leads to longer stability time, indicating that the resin takes longer
time to stabilise, which can slow down 3D printing processes.

• Increasing travelling speed reduces stability time with the potential for faster print-
ing cycles.

• The variations in travelling speed ratio have less impact on stability time than
other parameters.

• Thicker layers result in shorter stability time, which could give rise to faster printing,
but may compromise fine details and accuracy in 3D printing.

• Larger travel distance increases stability time, which suggests that the resin requires
more time to stabilise, potentially slowing down 3D printing processes as well.

Setter et al. [83] effectively evaluated, selected and advanced kinetic modelling pro-
cedures for UV-curable acrylates in multiphoton lithography and fusion jetting based on
Kamal-Sourour equation. Initially, various models were analysed using UV-DSC measure-
ments through single and clustered measurements. The analysis of single measurements
showed that most selected models could achieve acceptable fit accuracy, while Kamal–
Sourour and Avrami methods yielded the best results [83,84]. Kamal–Sourour method,
in particular, accurately captured the sigmoidal aspect of curing reaction in support of
the theory of a combined autocatalytic and n-th order reaction. This method demon-
strates that reaction orders are proportional to UV intensity, but can be independent of
isothermal temperature.

Conversely, Avrami method shows that reaction orders increased with UV intensity,
thus approximately leading to a limited growth function. Kamal–Sourour method was
selected for subsequent modelling based on its higher coefficients of determination and
greater chemical plausibility, as seen in Figure 5. Two clustering strategies, namely UV-
intensity-based and temperature-based strategies, were analysed to support temperature
independence of reaction orders. The clustered analysis demonstrated the exponential
decay of reaction orders with increasing UV intensity, which is consistent with single
measurement analysis results. Overall, the model achieved higher mathematical deter-
mination for all kinetic parameters, allowing for isothermal predictions at unmeasured
UV intensities. The calculated progression matched those measured UV-DSC data, with
kinetic parameters showing near-linear changes with increasing the temperature. The
model involves reaction rate constants and reaction orders, which depend on the reaction
conditions like temperature T and UV intensity I. Equation (11) represents this model as
given below:

dα

dt
= k1·(1 − α)ngen + kcat.gen·k2·αmgen ·(1 − α)ngen (11)

where α is the degree of cure, k1 and k2 are the reaction rate constants for the n-th order
and autocatalytic reactions respectively, and nn and mm are the reaction orders associated
with these processes.
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Figure 5. The relationship between UV intensity, temperature, and curing kinetics of acrylate A. (A) a
chemical structure of dimethacrylates and diacrylates used as key building blocks in acrylate A and
acrylate B, and (B) curve-fitting results of various kinetic models used to describe the curing reaction
of acrylate A under a UV intensity of 7.5 mW/cm2 at the constant temperature of 30 ◦C (Fit quality
is indicated by the coefficient of determination), and (C) kinetic predictions for acrylate A at 90 ◦C
under UV intensities of 40 and 90 mW/cm2, based on the enhanced Kamal–Sourour equation in
comparison with those predictions with actual UV-DSC measurements [83].

Redmann and Osswald [85] introduced a phenomenological model to track and pre-
dict modulus development of dual-cure resin systems under thermal processing. Dual-cure
systems, which involve both UV and thermal curing processes, exhibit unique behaviours
when compared with conventional thermosetting resins due to their two-stage curing reac-
tion. This model is significantly important because it addresses the nonlinear development
of elastic modulus in such systems. It particularly focuses on the observable softening
effect and high potential for large structural deformation when the processing temperature
exceeds Tg of intermediately cured material. The model defines the modulus as a function
of temperature difference relative to Tg, which is expressed in Equation (12) as follows:

E =
EG − ER

1 + ek[T−λ(
c(Tg1−Tg0)

1−(1−λ)c )+Tg0]
+ ER (12)

where EG and ER are the moduli at the upper glassy and lower rubbery plateaus respectively.
k is a parameter controlling the shape of the modulus transition curve. ∆T is the difference
between the processing temperature and Tg.
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The model incorporates an empirically derived relationship between Tg and the degree
of cure c. In this way, it facilitates a comprehensive understanding of the variation of Tg with
the curing progress. The relationship is further established using Equation (13) as follows:

Tg = λ

(
c(Tg1 − Tg0)

1 − (1 − λ)c

)
+ Tg0 (13)

where λ is a parameter indicative of the ratio of heat capacities between fully cured and
uncured states. Tg1 and Tg0 represent the glass transition temperatures of fully cured and
initial states, respectively.

This model was validated through experiments measuring the modulus at various
stages of thermal curing and processing temperatures. The use of this model allows for a
refined understanding of material behaviour in dual cure resin systems under different pro-
cessing conditions. It provides a valuable tool for engineers and researchers to predict and
control mechanical properties of materials subjected to complex curing reactions, thereby
optimising manufacturing processes, and further enhancing the quality and reliability of
final products.

Yang et al. [45] presented a mathematical model for predicting mechanical properties
of photosensitive liquid resins via SLA. The study addresses a typical gap in existing
research by linking the degree of cure of the resin to its resulting mechanical properties,
such as tensile strength and hardness. The model is developed to estimate the degree of
cure for freshly printed (green) and UV post-cured parts. Such a model incorporates layer
thickness and stratification angle, influencing how the light interacts with the resin during
curing processes. The model is established to predict tensile strength and hardness of
fabricated parts by using the degree of cure as a essential parameter. It enables accurate
predictions based on the solidification level achieved during and after 3D printing processes.
The following lists key points given by

• The study provides a significant tool for manufacturers to predict and optimise me-
chanical properties of SLA parts by adjusting processing parameters effectively.

• By establishing a direct correlation between the degree of cure and key mechanical
properties, the research enhances the structural integrity and functional performance
of 3D printed parts.

This research not only fills a crucial research gap by providing a mathematical mod-
elling approach for predicting mechanical properties from the degree of cure, but also
supports enhanced industrial applications of SLA for critical material performance.

3. Limitations and Gaps

Integrating these methodologies and findings from various AM techniques and mod-
elling approaches can significantly contribute to developing a comprehensive mathematical
model used for various particle-reinforced resin composites via DLP. This model would
accurately predict mechanical properties and yield 3D printing optimal parameters for
enhanced material performance.

The limitations and gaps in current models for 3D printing of epoxy resins using DLP
take into account the complexity of 3D printing processes, material behaviour, as well as
outcome predictability. Empirical models often struggle with complex chemistry of epoxy
resins and dynamic changes during the curing process. Typical variables such as tempera-
ture, UV exposure time and resin composition can significantly affect final properties of
3D printed parts [86]. An effective way to overcome this limitation is to develop multi-
scale models that integrate chemical kinetics with mechanical properties to better predict
the behaviour of epoxy resins during and after curing processes. Integrating rheological
studies into the model can assist in understanding the flow and curing behaviour under
different conditions. By employing advanced material characterisation techniques, such as
dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), to gather
comprehensive data on material properties under various conditions, captured data can be
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collected to refine empirical models to more accurately reflect actual material behaviour of
epoxy resins. DLP involves intricate processing parameters like light intensity, exposure
time and layer thickness that interact in a nonlinear manner. Empirical models may not
fully capture these interactions or their impact on mechanical properties and dimensional
accuracy of 3D printed objects. Design of experiments (DoEs) is proven to be effective in
systematically studying the effects of various printing parameters on the properties of final
parts [87]. This method can identify critical parameters and their interactions, along with
the provision of a robust dataset for model calibration. Integrated sensors and real-time
monitoring systems can capture in-process data, such as temperature gradients and UV
exposure levels. Such real-time data can dynamically update the models with improved
accuracy and predictive capabilities.

The layer-by-layer fabrication method inherent to DLP yields anisotropy and potential
heterogeneities within 3D printed parts. Empirical models often assume homogeneity and
isotropy, leading to inaccuracies in material property prediction. Mathematical models can
be more accurately formulated by utilising anisotropic material models that account for
directional properties of 3D printed parts. These models can be derived from experimental
testing of 3D printed samples in different orientations to capture an anisotropic behaviour
accurately. By employing microscale modelling techniques, such as FEA at a layer or
particle level, we can better understand and predict the effect of heterogeneity within 3D
printed parts. These approaches can help identify an optimal print strategy in order to
minimise undesired anisotropy.

The microscale features achieved with DLP challenge empirical models, particularly
for such parts with intricate geometries or those with the inclusion of nanoparticle reinforce-
ments. The acquisition of these fine details requires high-resolution modelling approaches
that can significantly increase computational demands. More accurate models can be
formed by adopting a high-resolution modelling technique, such as voxel-based modelling
that accurately represents microscale features of DLP-based parts. This approach requires
significant computational resources but also offers a more detailed prediction of mechanical
properties and surface finish. Moreover, developing a multiscale modelling framework,
enabling the connection of high-resolution models at the microscale with coarser models at
the macroscale level, can efficiently capture detailed features while providing great insights
into overall behaviours of 3D printed parts.

4. Theoretical Integration of AI in Mathematical Models

AI tools have significantly enhanced mathematical models in polymer composites,
revolutionising this field by enabling more accurate predictions and efficient analyses. One
key advancement in this area is the Materials Simulation Toolkit for Machine Learning
(MAST-ML), as highlighted by Jacobs et al. [41]. This open-source software package is
designed to accelerate data-driven materials research by leveraging machine learning
techniques, thereby enhancing the development and optimisation of mathematical models
for polymer composites [41]. Moreover, Sharma et al. [46] investigate the advances in
computational intelligence specifically tailored for polymer composites. The research
discusses critical challenges, such as the curse of dimensionality, overfitting, noise and
mixed variable problems, while exploring the latest machine learning algorithms that
can be integrated into polymer composites. Recommendations on using various machine
learning algorithms to address critical issues in polymer composites offers great insights
into potential directions for future research.

Furthermore, Tomás et al. [87] developed a deep neural network for calibrating electri-
cal resistance of self-sensing polymer/CF composites, which is compatible with advanced
microprocessor electronics primarily dealing with AI tasks. This innovative approach not
only showcases the application of AI in enhancing the sensitivity and calibration of polymer
composites but also underscores the importance of nonlinear mathematics in evaluating
composite materials, which paves the way for novel methodologies in material science
and engineering [87,88]. Additionally, Folorunso et al. [89] emphasised the deployment of
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flexible and versatile mathematical models for predicting electrical conductivity of polymer
composites. By considering the simplicity and adaptability of these models, the research
advocates for their optimal utilisation in characterising and simulating electrical properties
of polymer composites, which is considered for the pivotal role of AI-driven mathemat-
ical models in advancing the understanding and design of polymer composites. They
could confirm the weight fraction of fillers with direct impact on electrical conductivity
of polymer composites. The incorporation of AI tools in polymer composites has signifi-
cantly promoted the development and application of mathematical models, which offers
researchers innovative avenues to optimise material properties, predict material behaviour,
and drive advancements in polymer composites.

Machine learning models have been developed to predict mechanical behaviour
of additively manufactured particulate composites, showing excellent agreement with
experimental data [90]. The machine learning model developed by Malley et al. [90] was
able to accurately predict mechanical behaviour of additively manufactured samples that
were physically evaluated with near-unity correlation coefficients. Machine learning model
also performed well in predicting the mechanical response of untested, newly formulated
material compositions.

The integration of AI and AM has shown the potential to improving efficiency and
processability of biocomposites [91]. Verma et al. [91] showed how biodegradable and
biocompatible materials could be used as the alternatives to conventional synthetic poly-
mers in composite applications to address environmental concerns. Their use of machine
learning and deep learning improved the efficiency and processability of AM methods for
biocomposite development.

Hyperparameter tuning is critical in optimising machine learning models for pre-
dicting mechanical properties of 3D printed composites [92]. It involves systematically
adjusting configuration settings of algorithms to improve their performance and generalisa-
tion capabilities [92]. In 3D printed composites, hyperparameters can significantly influence
modelling capability to capture complex relationships between printing parameters, mate-
rial compositions and resulting mechanical properties. Common hyperparameters include
learning rate, number of hidden layers in neural networks, number of trees in random
forests and regularisation strength. Specific techniques such as grid search [92], random
search [93] and Bayesian optimisation [92] are frequently employed to explore hyperpa-
rameter space efficiently. For instance, Gu et al. [94] established a deep neural network
to predict mechanical properties of carbon fibre-reinforced composites, resulting in a 20%
improvement in prediction accuracy when compared with conventional empirical models.
This work highlights the potential of advanced machine learning techniques in enhancing
predictive capabilities of composite materials. The importance of hyperparameter tuning
in this field originates from complex and nonlinear relationships between processing pa-
rameters and material properties in AM, in which minor changes in model configurations
can yield significant improvements in predictive accuracy.

The optimisation of hyperparameters for machine learning models can be applied
to other 3D printed composites as well. For instance, Liu et al. [93] employed a random
forest model to predict mechanical properties of additively manufactured parts. They were
able to reduce the time to predict mechanical properties of their composite laminates using
this technique. Qi et al. [95] utilised a neural network to predict the tensile strength of 3D
printed PLA composites by optimising hyperparameters such as learning rate, number
of hidden layers, neurons per layer and dropout rate. Their results demonstrated that
a two-layer network with 64 neurons per layer and a learning rate of 0.01 yielded an
optimal performance. These studies together underscore a critical role of hyperparameter
tuning in enhancing predictive accuracy of machine learning models, particularly for 3D
printed composites.
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4.1. AI Enhancements and Limitations

AI has enormous potential to significantly enhance existing models in 3D printing
using VP by improving various aspects such as data handling, prediction accuracy and
real-time data integration. Integrating AI with conventional physical models can optimise
the prediction of mechanical properties and provide reliable and robust estimates. However,
the use of AI in this field may encounter several limitations worth mentioning to maximise
its efficacy.

AI significantly improves data handling by automating data preprocessing, cleaning,
and normalising datasets [89]. Specific techniques such as advanced feature engineering
and synthetic data generation through generative adversarial networks (GANs) ensure
that data inputs are high-quality and consistent [96]. These capabilities enable models
to process vast and complex datasets effectively, leading to more accurate and reliable
predictions. In addition, with the use of advanced regression models, neural networks and
deep learning techniques, AI can capture far more complex relationships within data when
compared with conventional models [97]. This capability is anticipated to significantly
enhance prediction accuracy [97,98]. Additionally, transfer learning allows models to
leverage existing knowledge, thus further improving the performance even with limited
datasets [97].

AI models can integrate with real-time monitoring systems, enabling continuous data
updates and dynamic adjustments to predictions during the manufacturing process [99].
This real-time data integration ensures that the models remain accurate and responsive
to changes. Moreover, adaptive learning capabilities allow AI models to evolve with new
data, maintaining high prediction accuracy over time and ensuring consistent performance
in dynamic environments [99]. As such, combining AI with conventionally physical models
leads to hybrid approaches that leverage the merits of both methods. AI can optimise
processing parameters and provide more accurate predictions by quantifying uncertainties
in order to achieve robust and reliable estimates of mechanical properties. This integration
eventually gives rise to a more comprehensive and precise modelling process.

Despite significant advantages of AI in enhancing existing models, several limitations
must be addressed. AI models, particularly machine learning algorithms, require large
datasets for training and validation [100]. The variability in epoxy resin formulations
and DLP-based printing parameters makes compiling comprehensive datasets quite chal-
lenging [43]. Practical solutions include implementing data augmentation techniques to
artificially expand datasets and encouraging close collaboration between research institu-
tions, industry and 3D printing communities to share and compile more comprehensive
datasets. Conversely, AI models trained on specific datasets may be required to generalise
better to unseen conditions or epoxy resin formulations, thus limiting their applicability
across different DLP-based printing setups. Specific solutions include employing transfer
learning and domain adaptation strategies to enhance model generalisation, as well as
establishing robust validation protocols to test models under unseen conditions [100,101].
Another aspect to consider with AI models, especially deep learning networks, is that
they are often described as “black boxes” due to their complex internal mechanisms,
which hinders a better understanding as to how various factors influence 3D printing
outcomes [102]. Practical solutions include utilising explainable AI (XAI) methods to in-
crease model transparency and developing hybrid models combining AI with conventional
modelling techniques, thereby resulting in predictive power and interpretability.

DLP-based 3D printing of epoxy resins is a dynamic process with evolving properties
during curing processes, in which AI models might require necessary assistance to capture
if training data do not adequately represent the entire cycle. Combating this limitation
requires integrating time-series analysis and dynamic modelling approaches to capture
temporal aspects and incorporating real-time monitoring data from sensors embedded in
DLP-based printing setup [103,104].

AI has the potential to revolutionise VP printing by improving data handling, predic-
tion accuracy, real-time integration, as well as hybrid modelling. Current AI techniques,
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enabling the assistance in predicting mechanical properties of 3D printed resin composites,
can be found in Table 1. Addressing the limitations, such as data dependency, interpretabil-
ity, generalisation and dynamic process modelling through specific strategies, can further
enhance the effectiveness of AI technologies. By overcoming these challenges, AI pro-
vides robust, accurate and reliable models for predicting mechanical properties in resin
composites in AM advanced field.

Table 1. AI techniques used for predicting the mechanical behaviour of 3D printed resin composites.

AI Technique Description References

Improved Data Handling

Data Preprocessing and
Cleaning

AI algorithms automate data preprocessing tasks, ensuring high-quality data
inputs for predictive models. They correct outliers, fill missing values and
standardise data formats.

[89,105,106]

Data Augmentation GANs are used to create realistic synthetic data that mimics the distribution of
original data, thereby expanding the training set and improving model robustness. [96,107,108]

Enhanced Prediction Accuracy

Advanced Regression
Models

Advanced regression models like support vector machines (SVM), decision trees
and ensemble methods provide accurate predictions by combining
multiple algorithms.

[109,110]

Neural Networks and
Deep Learning

Neural networks, including convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), capture complex nonlinear relationships in data, thus
improving prediction accuracy.

[97,98,111]

Transfer Learning
Transfer learning pre-trains models on large datasets and fine-tunes them on
specific smaller datasets, leveraging existing knowledge to improve
model performance.

[112,113]

Real-Time Data Integration and Adaptive Learning
Real-Time Monitoring and
Feedback

AI models integrated with real-time monitoring systems continuously update
predictions based on live data for the optimisation of 3D printing processes. [114–116]

Adaptive Learning
Systems

AI systems that continuously learn from new printing results and material
properties automatically update predictive models to reflect the latest information
and trends.

[99,117]

Integration with Physical Models
Hybrid Modelling
Approaches

The combination of AI with conventional physical models creates hybrid models
that enhance prediction accuracy and applicability to various materials. [81,118,119]

Uncertainty
Quantification

Bayesian neural networks (BNNs) can help quantify uncertainties in predictions,
providing more robust and reliable estimates of mechanical properties. They
facilitate probabilistic predictions with confidence intervals, helping understand
the uncertainty and reliability of model outputs.

[120–124]

Optimisation Techniques

Genetic Algorithms
Techniques like genetic algorithms (GAs) and particle swarm optimisation (PSO)
optimise filler configurations and 3D printing parameters to improve
mechanical properties.

[123–126]

Data Mining and Pattern Recognition

Clustering Algorithms
Clustering algorithms and principal component analysis (PCA) reveal patterns
and key variables in data in order to optimise composite formulations and
improve model accuracy.

[127–129]

4.2. Improved Data Handling
4.2.1. Data Preprocessing and Cleaning

AI algorithms can automate data preprocessing tasks, such as cleaning, normalising,
and transforming raw data into usable formats. These algorithms can ensure high-quality
data inputs for predictive models. The use of AI-driven tools to identify and correct out-
liers, fill missing values and standardise data formats, thus enhancing the consistency and
reliability of the dataset. For example, Goyle et al. [105] discussed how AI can automate
data cleaning and preparation tasks, improving the quality of datasets for machine learning
models. It uses machine learning algorithms to highlight methods like missing value impu-
tation, outlier detection and data normalisation [105]. Hosseinzadeh et al. [106] covered
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various data cleansing mechanisms and approaches for big data analytics, emphasising
the role of AI in improving data quality through automated preprocessing tasks [106].
They also presented an automated preprocessing pipeline that leverages AI to handle
data transformation, normalisation and feature engineering, significantly enhancing the
efficiency of data preparation for machine learning [106].

AI-driven tools can identify and correct errors, handle missing values, remove dupli-
cates and detect outliers [105,106]. These tools use statistical methods and machine learning
algorithms to identify patterns and anomalies in the data, ensuring that the cleaned dataset
is accurate and reliable [105,106]. For example, DataAssist employs machine learning
techniques to handle various data preprocessing tasks, including detecting and correcting
duplicates and inconsistencies [105]. Additionally, AI algorithms can automatically nor-
malise data, ensuring that numerical features are scaled to a common range, such as 0 to 1,
or standardised using techniques like Z-score normalisation [105]. This step is crucial for
improving the performance of machine learning models because it ensures that all features
contribute equally to the model predictions. Specific techniques like min–max scaling
and Z-score standardisation are commonly used to prepare data for machine learning
tasks [105,106].

AI can assist in feature engineering by creating new features from existing data
in order to better represent the underlying problem to machine learning models. This
feature engineering includes encoding categorical variables, creating interaction terms
and extracting meaningful features using particular techniques like principal component
analysis (PCA) or autoencoders [105,106]. Machine learning techniques, such as feature
selection and extraction, can identify the most relevant features affecting mechanical
properties. These techniques can reduce dimensionality and improve model efficiency. For
example, PCA or autoencoders automatically extract key features from complex datasets
for model simplification without losing critical information [105,106].

4.2.2. Data Augmentation

AI techniques generate synthetic data to augment small datasets for addressing the
issue of limited data availability and enhancing model training and validation [96]. GANs
are used to create realistic synthetic data that mimics the distribution of original data,
thereby expanding the training set and improving model robustness and performance.
Ramzan et al. [107] discuss how GANs can generate synthetic datasets that replicate
statistical properties of original financial data, in focus of data scarcity and privacy issues,
as seen in Figure 6. The synthetic data generated can mimic the distribution of stock
prices, trading volumes, and market trends to enhance the robustness and generalisation of
machine learning models [107].
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Chakraborty et al. [96] highlight the versatility of GANs in various applications, in-
cluding data augmentation for video and text generation and medical image synthesis.
It discusses the challenges and advancements in GAN training, such as improving sta-



J. Compos. Sci. 2024, 8, 416 22 of 40

bility and performance. Chakraborty et al. [96] also explored using GANs to generate
synthetic numerical datasets. It describes the architecture and parameters of GANs used
and evaluates the quality of synthetic data in terms of its ability to improve the performance
of machine learning models on small and imbalanced datasets [96]. Biswas et al. [108]
discussed the use of GANs for augmenting training data in various domains, including
medical imaging and fraud detection. It emphasises how GANs can alleviate class imbal-
ance by generating synthetic data samples that resemble real data, thus improving model
training outcomes [108]. AI techniques, particularly GANs, can generate synthetic data to
augment small datasets, addressing the issue of limited data availability. This technique
can significantly enhance model training and validation by providing more diverse and
comprehensive datasets.

4.3. Enhanced Prediction Accuracy
4.3.1. Advanced Regression Models

Machine learning algorithms, such as SVM, decision trees, and ensemble methods like
random forests and gradient boosting, can offer more accurate predictions than conven-
tional linear models [109]. Implementing ensemble methods to combine multiple predictive
models enables to improve the accuracy by reducing the variance and bias of individual
models. Such advanced regression models leverage the strengths of multiple algorithms
to improve prediction accuracy and robustness. Ensemble methods to combine multiple
predictive models are proven to enhance the accuracy with the reduction of variance and
bias for individual models [110]. For example, using random forests, which is combined
with the predictions of multiple decision trees, can significantly improve model perfor-
mance, as opposed to using a single decision tree [109]. Liang et al. [130] found that using
machine learning techniques successfully predicted thermal conductivity of polymer com-
posites. Such techniques reduced the requirement for substantial amounts of testing and
improved the generalisation ability and accuracy of models according to Figure 7. Addi-
tionally, Gao et al. [131] also reduced experimentation time through the use of a data-driven
process–quality–property (PQP) framework for FFF-based conductive composites.
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Gupta et al. [109] compared the performance of various machine learning algorithms,
including SVM, decision trees and ensemble methods, which highlight their effectiveness
in the provision of accurate predictions. It demonstrates that ensemble methods, such as
random forests and gradient boosting, outperform conventional models in various applica-
tions. This review also discusses current advancements in ensemble methods, explaining
how these techniques are combined with the predictions of multiple models to improve
accuracy and robustness. Ardabili et al. [110] explored the applications of SVM and decision
trees by demonstrating their capabilities in handling high-dimensional data and complex re-
lationships. Special examples used were the applications for hybrid and ensemble methods
that included signal processing and wave height prediction respectively. It also discussed
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the advantages of using ensemble methods to combine such algorithms, resulting in more
accurate and dependable predictions. By incorporating these AI technologies, researchers
can effectively reveal how advanced regression models and ensemble methods enable to
improve prediction accuracy and robustness in 3D printed resin composites.

4.3.2. Neural Networks and Deep Learning

Neural networks, including deep learning models like convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), can capture complex and nonlinear re-
lationships in the data [97,98]. Using CNNs to model spatial relationships in composite
materials or RNNs to predict time series data on the aging and degradation of materials
leads to more precise predictions [111]. Neural networks are highly effective in capturing
complex and nonlinear relationships in data. These models are particularly useful for
specific tasks involving spatial and temporal data. CNNs are adept at recognising patterns
and spatial hierarchies within data, while RNNs are suitable for sequential data due to
their ability to maintain the memory of previous inputs [97,98]. For instance, Babichev
et al. [97] emphasised the proficiency of CNNs and RNNs in capturing nonlinear relation-
ships in high-dimensional gene expression data. It is clearly shown how these models can
autonomously learn feature representations from raw data for improving classification
accuracy and reducing bias incorporation during the process of manual feature extraction.

4.3.3. Transfer Learning

Transfer learning involves pre-training models on large datasets and fine-tuning them
on specific and smaller datasets [112]. This approach leverages existing knowledge to
improve model performance. It comprises the pre-training of a neural network on a
large dataset of mechanical properties for various materials, then fine-tuning it for specific
particle-reinforced resin composites, and finally enhancing prediction accuracy with limited
data [113]. This approach leverages existing knowledge to improve model performance
by transferring information learned from one domain to another. It is particularly useful
when limited data are available for a target task [112].

Hosna et al. [112] gave a comprehensive overview of transfer learning, along with
detailed discussions regarding various strategies and scenarios where transfer learning
can be effectively applied. Figure 8 shows the comparison between conventional machine
learning and transfer machine learning. It highlights the benefits of pre-training models on
large datasets and fine-tuning them on smaller and task-specific datasets, thereby signifi-
cantly improving model performance. Meanwhile, Ye [132] discussed different pre-training
strategies and their effectiveness in various applications. It emphasised the importance of
selecting appropriate sources and target domains to avoid negative transfer and improve
learning performance. This work provides good examples of successful transfer learning
implementations, such as using pre-trained models in computer vision tasks.

Furthermore, Rafiq and Albert [113] explored the mechanics of transfer learning,
including how pre-trained models can be adapted to new tasks with smaller datasets. It
discussed the concept of domain adaptation and the techniques used for fine-tuning models
for specific applications, thereby enhancing their accuracy and efficiency. Equally important
is the study carried out by Wang and Chen [133], which detailed the process of pre-training
models on large-scale datasets to capture general features and subsequently fine-tune them
for specific tasks. This research discussed the benefits of this approach in improving model
generalisation and performance, particularly in scenarios with limited data availability
for a target task. Transfer learning can be used to enhance predictive modelling in 3D
printed resin composites. The use of pre-trained models and their fine-tuning for specific
materials offers potential benefits of this approach in improving prediction accuracy and
model robustness.
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4.4. Real-Time Data Integration and Adaptive Learning
4.4.1. Real-Time Monitoring and Feedback

AI models can be integrated with real-time monitoring systems to continuously update
predictions based on live data from the manufacturing process [114,115]. Sensors can collect
real-time data on printing parameters and mechanical properties, feeding this data into
AI models to dynamically adjust predictions and optimise printing processes during the
production [116]. This integration allows for dynamic adjustment and optimisation of the
printing process on the fly, enhancing efficiency and accuracy. Keleko et al. [114] mentioned
using AI for predictive maintenance in Industry 4.0 in focus of the importance of real-time
data integration for improving productivity and reducing downtime. The study highlighted
how AI-driven real-time monitoring systems enabled to provide continuous feedback, thus
allowing immediate adjustment and optimisation.

Furthermore, Cakir et al. [116] detailed the implementation of real-time big data solu-
tions in manufacturing, including AI for monitoring and analysing sensor data. The study
highlighted direct benefits of real-time data processing for making immediate decisions
and optimising production processes. By using sensors to collect and process live data and
dynamic adjustment enabled by AI models, efficiency and accuracy tend to be improved
for 3D printed resin composites.

4.4.2. Adaptive Learning Systems

Implementing adaptive learning algorithms allows models to evolve and improve
as new data become available towards high prediction accuracy over time [99]. The
application of adaptive learning algorithms allows the models to evolve and improve
upon the availability of new data to achieve high prediction accuracy. These systems
continuously learn from new inputs, such as printing results and material properties,
updating the predictive model to reflect the latest information and trends [117]. For
example, Ezzaim et al. [99] reviewed state-of-the-art AI-based adaptive learning, focusing
on how these systems can dynamically adjust to new data to enhance learning outcomes.
It stressed the importance of continuous learning and model updating in maintaining
high prediction accuracy. They also systematically mapped AI-enabled adaptive learning
systems, discussing how they leveraged continuous data input to refine and improve their
predictive capabilities. The study showcased various adaptive learning applications in
education and industry, highlighting direct benefits of dynamic model adjustments. The
use of adaptive algorithms to learn from real-time data and update models accordingly
will lead to an enormous potential of these AI systems to enhance the performance and
reliability of 3D printed resin composites.
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4.5. Integration with Physical Models
4.5.1. Hybrid Modelling Approaches

The combination of AI models and conventional physical models, such as Halpin–Tsai
model, can create hybrid models that leverage reciprocal strengths [81]. This means us-
ing AI to optimise the related parameters in Halpin–Tsai model based on empirical data,
thus enhancing its accuracy and applicability to a wider range of materials and condi-
tions [81,118]. Hassanzadeh-Aghdam and Jamali [81] presented a modified Halpin–Tsai
model for characterising mechanical properties of CNT-reinforced polymer nanocompos-
ites. It highlights the integration of AI techniques to modify model parameters, which
improves the accuracy of predictions relative to conventional models. In contrast, Alfonso
et al. [118] used FEA combined with modified Halpin–Tsai models to estimate elastic prop-
erties of particulate-reinforced composites. This hybrid approach enhances its ability to
predict material behaviour under various conditions.

Additionally, Zhu et al. [119] explored the use of hybrid models combining conven-
tional micromechanical approaches with AI-based optimisation techniques. This method
allows for more precise modification of model parameters, leading to better accordance
with experimental results and improved predictive performance. Integrating AI techniques
with Halpin–Tsai model shows promising potential to improving the accuracy of mechan-
ical property predictions for 3D printed resin composites reinforced with particles. By
leveraging machine learning algorithms to optimise k-parameter and other empirical factors
in Halpin–Tsai model, researchers can better account for complex interactions between
resin matrices, reinforcing particles and unique microstructures created by DLP process.
This hybrid approach allows for more precise estimations of elastic modulus and strength
across a wider range of particle types, sizes, and volume fractions, as typically used in 3D
printed resin composites.

4.5.2. Uncertainty Quantification

AI can help quantify uncertainties in predictions, providing more robust and reliable
estimates of mechanical properties [120] and implementing Bayesian neural networks
(BNNs) to yield probabilistic predictions with confidence intervals, which helps to under-
stand uncertainty and reliability of model outputs [120]. BNNs incorporate uncertainty
by treating model weights as distributions rather than fixed values, allowing the model
to provide predictions with a measure of confidence [120]. Mosser and Naeini [120] dis-
cussed the application of BNNs for uncertainty quantification in data-driven models. It
highlights the importance of incorporating uncertainty estimates to enhance robustness
and reliability of predictions, particularly in safety-critical applications. They explored
using Bayesian convolutional neural networks (BCNNs) to provide calibrated probabilistic
predictions. It demonstrates how BCNNs can quantify epistemic (model) and aleatoric
(data) uncertainties, thereby improving a good understanding of model predictions in
geophysical applications. BNNs offer a significant advantage in predicting mechanical
properties of 3D printed resin composites by providing probabilistic predictions with confi-
dence intervals [120]. This capability is particularly valuable when dealing with inherent
variability in DLP process, such as some variations in resin curing, particle dispersion
and interfacial adhesion. BNNs enable engineers to make more informed decisions about
material formulations and printing parameters by quantifying the uncertainty in predicting
elastic modulus, tensile strength and fracture toughness. For instance, when optimising the
volume fraction of reinforcing particles in a DLP-based composite, confidence intervals pro-
vided by BNNs can help to identify the range of particle concentrations in order to achieve
desired mechanical properties with the consideration of process-induced uncertainties.

4.6. Optimisation Techniques
4.6.1. Genetic Algorithms (GAs)

Genetic algorithms (GAs) can explore a vast search space of possible filler configura-
tions and processing parameters to identify optimal solutions that might not be evident
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through conventional methods [134]. GAs can be employed to optimise the selection
and distribution of fillers within resin matrices to improve mechanical properties of com-
posites. The exploration process involves crossover, mutation and selection operations,
which allow GAs to navigate complex optimisation landscapes and then find high-quality
solutions [134,135]. These algorithms simulate the process of natural selection by gener-
ating, evaluating and evolving potential solutions iteratively until an optimal solution is
found [125]. To demonstrate this, Kumpati et al. [125] revealed the use of multi-objective
genetic algorithms to optimise the stacking sequence of composite laminates, as illustrated
in Figure 9. The genetic algorithm effectively handled multiple design constraints and
objectives, indicating its ability to find optimal configurations for improved mechanical
properties. Likewise, Bommegowda et al. [134] highlighted various methods to enhance
mechanical properties of polymer composites, including optimising filler distribution using
advanced algorithms like GAs. It emphasises the effectiveness of GAs in exploring and
identifying the best filler configurations to achieve desired property enhancements. The
ability of GAs to explore complex search spaces and find optimal solutions will promote
their potential benefits in improving mechanical properties through innovative computa-
tional techniques.
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Genetic algorithms (GAs) offer several advantages for optimising filler configurations
in 3D printed composites, particularly due to their robustness in handling discrete variables
and the ability to explore complex solution space through specific operations like crossover
and mutation [136]. Such characteristics make GAs well-suited for typical problems with
numerous constraints and interacting variables, such as those encountered in composite
material design [125]. However, as opposed to PSO, GAs may require more computational
resources and iterations for convergence with potentially less efficiency [137,138]. PSO is
generally simpler to implement, with fewer parameters to tune, and often converges faster
for continuous variable problems. The choice between GAs and PSO ultimately depends
on a specific nature of optimisation problems encountered, including the one whether it
involves predominantly discrete or continuous variables [138].

4.6.2. Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) can be used to optimise printing parameters (e.g.,
layer height, print speed, curing time) to enhance mechanical properties of 3D printed
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composites [124]. PSO can efficiently navigate complex optimisation landscapes by pro-
viding solutions that balance competing objectives such as strength, durability and print
time [126]. Ali and Hussein [124] explored the use of PSO to optimise mechanical prop-
erties of materials. By integrating PSO with CNNs, the research demonstrates significant
improvements in material performance, highlighting the ability of PSO to explore and
optimise complex parameter spaces efficiently. Additionally, Murat et al. [139] discussed
how PSO was used to optimise processing parameters of selective laser melting (SLM). The
study has shown that PSO can effectively identify optimal settings that enhance mechanical
properties while balancing production speed and material usage.

Furthermore, Seyedzavvar [126] combined artificial neural networks (ANNs) with PSO
to optimise material composition and processing parameters in 3D printing. The hybrid
approach demonstrated improved mechanical properties of printed samples, indicating
the effectiveness of PSO in multi-objective optimisation scenarios. Finally, Shirmohammadi
et al. [140] demonstrated using PSO in conjunction with neural networks to optimise
3D printing parameters, achieving significant surface roughness reductions along with
improved print quality. This study reveals practical applicability of PSO in promoting the
precision and quality of 3D printed parts. PSO possesses significant potential to optimising
mechanical properties of 3D printed resin composites by simultaneously balancing multiple
objectives such as tensile strength, elastic modulus and fracture toughness [126]. When
applied to DLP process, PSO can efficiently explore the complex landscape of printing
parameters, including layer thickness, curing time and light intensity, along with material
formulation variables like filler type, size and concentration. This capability allows for
fine-tuning processing parameters and material composition to achieve optimal mechanical
performance in 3D printed resin composites. This potentially leads to very competitively
designed parts with enhanced strength-to-weight ratios, higher impact resistance and
well-tailored flexibility for specific applications.

4.7. Data Mining and Pattern Recognition
4.7.1. Clustering Algorithms

Using clustering algorithms (e.g., k-means, hierarchical clustering) can help identify
patterns and group similar filler–resin combinations based on their mechanical perfor-
mance [127,128]. Clustering can reveal underlying trends and relationships in the data
that are not apparent through conventional analysis, leading to great insights into effective
composite formulations [127,141]. By grouping similar data points, clustering algorithms
help better understand the distribution and impact of various fillers within resin matrices,
which presents a clearer picture of how different combinations affect resulting mechani-
cal properties [141]. For instance, Chaudhry et al. [127] covered clustering algorithms in
data mining to achieve data segmentation into meaningful groups. Figure 10 shows the
categorisation of data mining techniques. It emphasises how clustering can uncover valu-
able information by grouping data points based on statistical similarities, which is crucial
to identify effective composite formulations in 3D printed resins. Rodriguez et al. [128]
also provided a comparative analysis of various clustering algorithms, including k-means
and hierarchical clustering. It discusses the performance of these algorithms in different
contexts and their ability to identify patterns and trends in complex datasets, such as
those used in material science for the optimisation of composite formulations. The ability
of clustering to reveal hidden patterns and optimise composite formulations highlights
practical benefits of using such techniques in analysing 3D printed resin composites.
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4.7.2. Principal Component Analysis (PCA)

The most significant variables influencing mechanical properties can be identified by ap-
plying principal component analysis (PCA) to reduce data dimensionality [129]. PCA enables to
simplify complex datasets by projecting high-dimensional data onto a lower-dimensional space,
which captures the maximum variance in the data [142]. This process enhances interpretability
and accuracy of predictive models because it helps isolate the most impactful variables and
reduce noise from less significant ones. To demonstrate this, Migenda et al. [129] explored the
application of PCA for reducing data dimensionality in real-time settings. It demonstrates how
PCA can transform high-dimensional data into a set of orthogonal components to preserve the
variance and simplify the data structure. This approach benefits specific applications where
continuous data streams must be analysed efficiently.

Moreover, Bisong [142] discussed the fundamentals of PCA, including its ability to
project data onto orthogonal axes and reduce the number of dimensions. It highlights
how PCA is used to identify the most significant variables in datasets, which is crucial
for improving the accuracy and interpretability of predictive models in various fields like
material science. A comprehensive overview of PCA is also considered as an effective
method for reducing the dimensionality of large datasets. It explains how PCA can simplify
the data by capturing essential features that account for the most variance, which makes
it easier to analyse and interpret complex datasets effectively. The ability of PCA to
reduce dimensionality and identify key variables underscores its importance in improving
interpretability and accuracy of predictive models.

4.8. Bayesian Inference and Probabilistic Models
4.8.1. Bayesian Networks

Bayesian networks can model probabilistic relationships between variables with the
incorporation of uncertainty and variability in the predictions [122]. They are graphical
models representing variables and their conditional dependencies through directed acyclic
graphs, which are particularly effective for handling uncertainty [122]. Bayesian networks
offer a robust framework for handling uncertainty by integrating prior knowledge and
observed data to provide more reliable predictions [121]. This integration allows for a
comprehensive understanding of probabilistic relationships among variables, making
Bayesian networks a powerful tool for decision-making under uncertainty [122]. Tosun
et al. [122] emphasised the robustness of Bayesian networks in integrating prior knowledge
with observed data to improve prediction accuracy and reliability. In comparison, Du
and Swamy [121] illustrated how Bayesian networks could efficiently manage uncertainty
by representing conditional dependencies among variables. Furthermore, Su et al. [143]
explored using Bayesian networks in genetic research to uncover special relationships be-
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tween genes, environmental factors and diseases. It demonstrates how Bayesian networks
can decompose complex systems into smaller and manageable components for detailed
probabilistic analysis and a better understanding of underlying relationships.

In a similar manner, Yamawaki et al. [144] enabled the prediction of the decomposition
degree using Bayesian optimisation for biobased polymers. This model shows a good
correlation with experimental results. Integrating prior knowledge with observed data
underscores the reliability and robustness of Bayesian networks in enhancing predictive
models for 3D printed resin composites. Liu et al. [44] used statistical learning and op-
timisation within a nonparametric Bayesian framework to discover required processing
parameters in nanocomposite design and part fabrication. Their framework was able to
identify optimal parameters within five iterations. It was identified that this process could
be used for other nanocomposites. In addition, Albuquerque et al. [145] created novel
biobased epoxy resin systems using Bayesian optimisation and active learning techniques.
Their study used epoxy resins as the matrices for fibre-reinforced composites with a high
Tg. They were then able to create epoxy-based resins also with a higher Tg, depending on
only five samples via Bayesian optimisation shown in Figure 11.
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4.8.2. Gaussian Processes

Gaussian processes (GPs) can be implemented for non-linear regression and uncer-
tainty quantification in predicting mechanical properties [146]. GPs provide a flexible and
probabilistic approach to regression, effectively modelling complex relationships within
the data [146]. They capture uncertainty in predictions by defining a distribution over
functions for data fitting, which offers great insights into confidence levels of model out-
puts [146]. This capability makes GPs particularly suitable for applications requiring a
crucial understanding of the reliability of predictions. Kobayashi et al. [146] explored how
Gaussian processes could be used for non-linear regression and uncertainty quantification.
It highlights the advantages of GPs in expressing uncertainty for predictions and their
effectiveness in various scientific fields. This study illustrates the application of Gaussian
processes in digital twin models for accident-tolerant fuel, revealing the flexibility of GPs in
handling uncertainty and providing reliable predictions in engineering contexts. Marrivada
et al. [147] used Gaussian Process Regression (GPR) with machine learning techniques to
successfully build predictive models for their research involving composites with graphene
nanoplatelets. Their model could estimate stress–strain curves from experimental results
with good correlation. In addition, Park et al. [148] also used GPR to model platelet arrays.
Their findings indicate that GPRs can use a limited number of computational simulations
or experiments for material optimisation problems. GPs offer a significant advantage in
predicting mechanical properties of 3D printed resin composites by capturing and quantify-
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ing uncertainties associated with material variability and processing parameters [146]. This
capability is particularly valuable for DLP-based composites, where factors such as resin
curing kinetics, particle dispersion and layer adhesion can induce significant variability
in mechanical performance. By providing probabilistic predictions of elastic modulus,
tensile strength and fracture toughness, GPs enable engineers to assess the reliability of
their predictions and identify potential sources of variability in 3D printing processes.

5. Comparative Analysis of Fillers

A detailed comparative analysis of different fillers demonstrates that their combined
use can significantly enhance mechanical properties. For instance, ceramic fillers are
known for their excellent hardness and thermal stability, while rubber fillers contribute
to the improvements in flexibility and impact resistance [149,150]. On the other hand,
recycled resin fillers offer a sustainable option by reusing material waste, which can also
enhance specific mechanical properties, depending on material characteristics of original
resins [151]. This integrated approach allows for identifying optimal filler combinations
that can achieve desired mechanical outcomes more effectively instead of just relying on
a single type of fillers. The combination of ceramic fillers and rubber fillers results in a
combined hard and flexible material, leading to a balanced performance profile suitable
for high-stress applications [149,150]. This synergistic approach has a significant impact
in various specialised fields. In biomedical devices, for instance, the combination of
fillers can be tailored to achieve specific properties such as biocompatibility, flexibility
and strength, which are critical for implants and prosthetics [152]. High-performance
engineering components, such as those used in aerospace and automotive industries, can
benefit from fillers with better thermal stability, higher strength and durability to improve
overall performance and life expectancy.

The synergistic effects of combining multiple fillers can be attributed to several key
mechanisms in terms of size effects, interfacial interactions and the formation of intercon-
nected networks within composite materials, as seen in Table 2:

Table 2. Summary of synergistic effects of combining multiple fillers.

Synergistic
Effects Role Evidence

Complimentary size
effects

• Smaller particles can fill the gaps
between larger ones, leading to a more
efficient packing structure

• Enhanced packing
• Improves stress transfer
• Reduces void content

• Use of nanoparticles [152,153]
• Improvement of mechanical properties [154]
• Scattering effects of fillers to alter cure depth [155]

Interfacial
interactions

• Between filler and polymer matrix

• Improving dispersion and strengthening the
matrix–filler interface [156].

• Enhancing crosslinking and reducing
inhomogeneity in printed layers [157].

• Formation of interfaces before or after curing [158].
• Surface chemistry and wettability of fillers [159].
• Interfacial interactions to improve mechanical

properties [160].
• Rheological properties [161].
• Rheological percolation occurring at different filler

concentrations [162]

Interconnected
networks

• Fillers with different aspect ratios, can
lead to enhanced mechanical
reinforcement, improved electrical or
thermal conductivity and increased
resistance to crack propagation

• Significant enhancement of properties [163–165]
• Fillers with different aspect ratios [166]
• Percolation thresholds and conductivity with filler

network alignment [167]
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From a cost-performance perspective, synergistic effects can allow for using low-cost
fillers combined with more expensive counterparts in order to achieve similar or better
properties when compared with single high-performance fillers [168]. This combination
opens up enormous opportunities for cost reduction in high-performance composites
and improved material sustainability through biobased or recycled fillers. More impor-
tantly, leveraging synergistic effects enables the manufacture of multifunctional composites,
where multiple enhanced functionalities, such as mechanical reinforcement combined
with self-healing capabilities or improved flame retardancy alongside enhanced electrical
conductivity, can be achieved simultaneously for global optimisation of material properties.

A holistic analysis provides a framework for systematically exploring new filler com-
binations and their effects on mechanical properties. This analysis can develop advanced
composite materials with customised properties for specific applications. By understand-
ing the interactions between different fillers and resin matrices, researchers can optimise
material formulations in order to meet stringent requirements of various industries.

6. Theoretical Predictions for Practical Applications

Theoretical models presented offer strong indication of their practical applications.
They provide a holistic framework that can be used to guide experimental investigation and
practical use in various industries. By predicting mechanical properties of resin composites
with high accuracy, these models serve as an essential tool for practical applications. The
insights gained from these models can help understand the underlying mechanisms of
material behaviour, thereby demonstrating the development of more effective 3D print-
ing processes.

Theoretical predictions outlined in this study offer a roadmap for optimising 3D
printing processes and material selections to achieve desired mechanical properties. By
providing a detailed understanding of how different variables affect mechanical properties
of resin composites, such models enable researchers and engineers to make reasonable
decisions about processing parameters and material formulations. For instance, the detailed
knowledge regarding how specific fillers interact with resin matrices allows for precise
tuning of material formulations to enhance strength, flexibility or other desired properties.
Specific parameters such as layer height, print speed and curing methods can be adjusted
based on the insights offered by the models to improve both quality and performance of 3D
printed parts. This approach reduces the demand for extensive “trial and errors” methods,
saving time and resources while increasing the efficiency of development processes. A
good alignment of theoretical predictions with practical applications can significantly
benefit industries that rely on high-performance composite materials. Such models can
help select optimal composite formulations that meet specific mechanical requirements in
aerospace and automotive sectors for critical material performance. Similarly, in biomedical
applications where biocompatibility and mechanical integrity are paramount, the models
are able to guide the development of materials to warrant safety and efficacy.

The choice between theoretical micromechanical models and AI techniques depends
on specific requirements of end users. For rapid and physically interpretable predictions,
micromechanical models might be preferred for mechanical property prediction in a timely
manner. For more accurate predictions across a wide range of materials and parameters in
complex situations, AI techniques could be a better option. A hybrid approach combining
both methods might offer the best balance for many applications in DLP-based resin
composites. A comparison of micromechanical models and AI techniques can be found in
Table 3.
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Table 3. A comparison of micromechanical models and AI techniques for predicting mechanical
properties of DLP-based resin composites.

Micromechanical Models AI Techniques

Accuracy
• Accurate for specific scenarios, but often with

calibration against experimental data
• Higher accuracy by capturing complex and

non-linear relationships, as well as patterns
in large datasets

Complexity • Generally less complex based on established
composite theory

• More complex in terms of implementation
and interpretation

Advantages

• Well-established and understood in the field
• Less computational power
• Clear physical insights into

material behaviour

• Handling complex and non-linear
relationships

• Potentially more accurate for diverse material
compositions and printing parameters

• Ability to improve predictions with
more data

Disadvantages

• Required calibration for specific materials
• Unable to capture all complexities of 3D

printed composites
• Limited in predicting properties beyond their

underlying assumptions

• Required large datasets for training
• Use of “black box” models with less

physical insight
• Unable to generalise well outside their

training data range

Context for end user
requirements

• Preferred use of AI for more accurate predictions across a wide range of materials and parameters
• Easier implementation of micromechanical models for end users to understand and apply
• More AI adaptability to different material compositions and printing parameters
• Faster predictions once calibrated for micromechanical models
• Clearer physical insights based on micromechanical models for valuable for material design

7. Summary

This study has given significant theoretical insights into the enhancement of predic-
tive models for mechanical properties of 3D printed resin composites. The integration of
micromechanical models and AI techniques has been shown to offer a robust framework
for accurately predicting mechanical properties. These theoretical findings lay out a solid
foundation for optimising 3D printing processes and material formulations, bridging the
gap between theory and practical applications. By combining conventional mathemati-
cal models with modern AI capabilities, the study reveals a novel approach to material
modelling that significantly improves prediction accuracy with a better understanding of
essential filler–matrix interaction.

The enhanced predictive models can guide the optimisation of 3D printing processes,
improving material performance and efficiency. For instance, the insights gained from the
comparative analysis of fillers provide optimal selection and a combination of materials
in aerospace, automotive and biomedical industries, in which high-precision and high-
performance materials are critical. Such applications demonstrate immediate practical use
based on the review in this study so that a roadmap can be created for future experimental
work and industrial applications.

Halpin–Tsai model is deemed a fundamental theoretical modelling tool in predicting
mechanical properties of composite materials. However, specific assumptions about filler
properties and distribution often limit its conventional applications. AI can significantly
enhance this model by optimising filler characteristics and their distribution within resin
matrices. With the aid of machine learning algorithms and real-time data analytics, AI can
dynamically adjust the parameters of Halpin–Tsai model to reflect actual conditions during
3D printing processes. This optimisation results in a more accurate prediction of mechanical
properties of composite materials, along with less requirement for extensive empirical
testing and rapidly increasing development of new composite material formulations.

The effects of 3D printing parameters, such as layer height, print speed and curing
methods, are critical determinants of mechanical properties of 3D printed resins. Layer
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height influences the resolution and surface finish of 3D printed parts, with thinner layers
typically resulting in better mechanical properties due to enhanced interlayer bonding.
Print speed affects exposure time and the degree of polymerisation, with optimal speeds
balancing both production efficiency and material performance. Curing methods, including
light and thermal sources, are crucial in achieving the desired degree of polymerisation
and crosslinking density. AI models can continuously integrate real-time data from these
printing parameters, enabling dynamic adjustments to optimise printing processes and
improve the consistency and quality of ultimate 3D printed parts.

Integrating AI into modelling and predicting mechanical properties of 3D printed resin
composites significant advancement in AM technologies. Researchers can achieve more
accurate and reliable predictions by addressing the limitations of conventional models
and leveraging advanced AI techniques. This discussion underscores the potential of
AI to revolutionise material science, which paves the way for innovative applications in
various high-performance fields. The continued exploration and validation of AI-enhanced
models and new materials will further drive the evolution of 3D printing technologies,
contributing to developing superior composite materials with well-tailored properties for
specific applications.

This study has provided valuable theoretical insights and practical recommendations
for enhancing mechanical properties of 3D printed resin composites. A combination of both
conventional and modern techniques, such as classical composite theory and AI, offers a
novel approach to material modelling with a promising AM prospect. Future studies can
build upon these findings by addressing identified research gaps and focusing on both
theoretical refinement and practical applications to achieve even greater advancements in
AM field.

Future research should focus on several key areas to further enhance the integration
of AI in 3D printing resin composites. Firstly, there is a high demand for extensive experi-
mental validation of AI-enhanced models in order to warrant their accuracy and reliability
in real-world applications. Collaborative efforts between academic institutions and indus-
try can facilitate the sharing of comprehensive datasets, improving the robustness and
generalisability of predictive models. Secondly, exploring new filler materials, including
biocomposites and nanofillers, may provide great insights into novel applications and also
improve environmental sustainability of 3D printing processes. Additionally, developing
hybrid models that combine AI with conventional physical models offers a more compre-
hensive understanding of filler–matrix interaction, thus leading to better optimisation of
material properties.
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