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Network representations of attractors for change
point detection
Eugene Tan 1✉, Shannon D. Algar1, Débora Corrêa2, Thomas Stemler 1 & Michael Small 1,3

A common approach to monitoring the status of physical and biological systems is through

the regular measurement of various system parameters. Changes in a system’s underlying

dynamics manifest as changes in the behaviour of the observed time series. For example, the

transition from healthy cardiac activity to ventricular fibrillation results in erratic dynamics in

measured electrocardiogram (ECG) signals. Identifying these transitions—change point

detection—can be valuable in preparing responses to mitigate the effects of undesirable

system changes. Here, we present a data-driven method of detecting change points using a

phase space approach. Delay embedded trajectories are used to construct an ‘attractor

network’, a discrete Markov-chain representation of the system’s attractor. Once con-

structed, the attractor network is used to assess the level of surprise of future observations

where unusual movements in phase space are assigned high surprise scores. Persistent high

surprise scores indicate deviations from the attractor and are used to infer change points.

Using our approach, we find that the attractor network is effective in automatically detecting

the onset of ventricular fibrillation (VF) from observed ECG data. We also test the flexibility

of our method on artificial data sets and demonstrate its ability to distinguish between normal

and surrogate time series.
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The analysis, prediction and detection of change points in
dynamical systems is an open problem that has been stu-
died extensively in many diverse contexts such as financial

systems1,2, climate dynamics3,4, ecological systems5 and
medicine6,7. The existence of these change points is ubiquitous in
many naturally occurring systems and describes points in time
during which the behaviour of the system is altered. This dif-
ference in behaviour may be attributed to endogenous or exo-
genous perturbations to the system. In some cases, such change
points signal the transition of the system into a different,
potentially undesirable regime of dynamics where the change
point is also described as a ‘tipping point’ in some fields.

A related problem within the context of dynamical systems is
the automatic prediction or detection of imminent change points
from observed time series data. This is particularly useful when
an analytical mathematical model of the system is not readily
available. In medicine, dynamical systems methods are used for
the automated detection of acute pathological problems such as
arrhythmia and ventricular fibrillation from ECG signals8, or
identifying the onset of epileptic seizures in EEG analysis9,10.
Change detection is also present in non-biological problems such
as predicting transitions in paleo-climatic data11–13, and identi-
fying equipment failure14. The generality and universality of this
problem have been long recognised and have given rise to the
broader term of ‘change point detection’ to describe this com-
monly occurring challenge.

Change point detection is a class of problems within the
domain of time series analysis primarily concerned with the
detection of changes in the dynamics of an underlying
system15–17. Typically, the aim is to accurately detect changes in a
system by analysing an incoming stream of observed time
series15. Effective change point detection methods are useful in
automating processes for faster cursory analyses. For systems
where the state of components varies over time, employing a
dynamical approach to detect subtle changes in the underlying
dynamics may even provide a method to preemptively diagnose
the occurrence of system failure.

Change point detection methods can be classified according to
two features: (1) offline vs. online, and (2) supervised vs. unsu-
pervised methods. The first classification concerns the time per-
iod during which the detection algorithm is applied. Offline
detection methods focus on the analysis of observed time series
after the change has occurred (i.e., post-system failure), likened to
a post-mortem of observed time series15 and are useful for
labelling tasks and time-insensitive applications. In contrast,
online methods analyse incoming streams of observations in real-
time and flag changes as they occur. The latter method is most
used for automated detection.

The second classification on supervision describes whether
ground truth labels are known a priori. Supervised methods
construct a reference model based on a pre-defined ground truth
(e.g., user-provided labels of normal vs. abnormal)15. Here, we
use the term ‘model’ loosely to describe any constructed system,
set of statistics or parameters that characterise the ground truth
state. Deviations from the model are then used to infer system
changes.

In contrast, unsupervised methods attempt to circumvent the
requirement of a pre-defined ground truth by comparing new
incoming observations against recently observed data. This is
usually achieved by comparing statistics (mean, probability den-
sity, permutation entropy) of data between two moving windows
(subsequences) in the time series separated by some lag. A change
point is flagged if the statistics of the most recent observed
window greatly differ from prior observations. Some methods
used for change point detection include decision trees18, support
vector machines19–21, and statistical approaches such as Gaussian

mixed models22, Gaussian processes23 and Bayesian methods24.
However, the usage of statistical measures typically relies on the
data adhering to some stationary distribution. This does not
account for temporal dependencies often present in dynamical
systems, which may be useful in uncovering and characterising
changes in the underlying data generating process25. For the
scope of this paper, we will focus specifically on an online
supervised change point detection method.

An alternative method of identifying change points is to
employ a phase space approach to analysing observed time
series26–29. The temporal behaviour of a given system can be
represented as a trajectory moving through phase space where
axes are defined as the observed system variables. When oper-
ating under the normal regime, the trajectory of a system may
settle and move along a well-defined region of space, termed an
‘attractor’. Changes in the underlying system will inevitably result
in changes in the dynamics of the observed time series and the
resulting trajectory25,28,29. Consequently, this may cause trajec-
tories to drift and settle into a different attractor corresponding to
the new system dynamics. Therefore, the problem of change point
detection may be re-framed as detecting changes in the attractor
of the system. This approach evaluates and measures phase space
dissimilarities between two windows of time series and draws
similarities to the kernel change detection (KCD) algorithm19

where changes are flagged when the metric distance between two
descriptors of the data exceeds a threshold. Several algorithms
based on dynamical systems tools such as cross-recurrence
plots30 and empirical mode decomposition31 have also been
implemented by da Costa et al. into the Massive Online Analysis
(MOA) software package25.

In order to employ a phase space approach, the phase space
must first be reconstructed from the observed time series. This
can be achieved via embedding methods such as time delay
embedding. Takens’ theorem and its sequels provide basic
dynamical guarantees for extracting the phase space dynamics of
a deterministic system from scalar univariate time series using an
appropriate time delay embedding32 (see Fig. 1 and “Methods”).
We note that in most cases, signals from a physical system may be
noisy or be driven by stochastic forces. However, time delay
embedding should still provide a reasonable approximation of the
dominant phase space dynamics of the system.

Whilst the transformation from time series to reconstructed
phase space is relatively straightforward (subject to appropriately
selected delay lags), achieving a faithful and parsimonious
representation of the attractor’s structure and dynamics within
phase space (reconstructed or otherwise) is challenging as these
attractors are defined continuously in phase space. St Luce and
Sayama33 proposed a method of achieving a transition network
representation of an attractor by discretising phase space into
voxels. This greatly simplifies the task of dealing with discrete
observations of continuous data. However, such an approach does
not scale well with higher dimensional data as the number of
voxels increases rapidly. This problem becomes apparent when
attempting to extend their approach to analysing high dimen-
sional data such as those resulting from a high dimensional time
delay embedding.

Several methods have been proposed to transform time series
(and by extension dynamical attractors) into a network repre-
sentation with some examples including cycle networks34,
recurrence networks1,35, ordinal partition networks36,37, k-near-
est neighbour network38 and visibility graphs39. Provided there is
sufficient data to estimate state transition probabilities, many of
these transformations extend well to higher dimensional data. But
they preserve differing amounts of the spatial and dynamical
information contained within the time series, both of which can
be crucial in detecting subtle changes in the system’s dynamics.
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The use of a geometrical approach has also inspired the
application of various topological data analysis (TDA) methods
for system characterisation and change point detection. Persistent
homology has previously been found to be useful in character-
ising the state of dynamical systems40, and also experimentally for
classifying breathing signals41 and chatter detection42. More
recently, persistent homology methods have also been adapted for
the purpose of change point detection from temporal data. For a
sequence of point clouds, mappings of Betti sequences43 and
Wasserstein distances between consecutive persistence
diagrams44 have been used as measures for identifying change
points. Building on this, persistence diagram-based change-point
detection (PERCEPT) utilising ℓ2 divergences between persistence
histograms45,46 was proposed as an improvement on previous
methods and was used to analyse solar flare images. However,
whilst sequences of points clouds can be constructed from scalar
time series data (e.g., via sliding windows), systems whose
attractors have highly complex geometry may require large
windows in order for the underlying geometry to be well captured
by persistent homology. This consideration in conjunction with
the the poor computational scaling of persistent homology
algorithms, and the quick detection response time typically
desired in online change point detection tasks can make direct
application of these methods challenging.

We present in this paper a method for constructing a parsi-
monious network representation of attractors in phase space,
termed the “attractor network", that encodes both the spatial and
dynamical information of the observed time series. The attractor
network consists of two components: (1) the spatial network,
which encodes positional information in phase space, and (2) the
dynamics network, which encodes the transition frequencies and
probabilities between points in state space. Functionally, the
attractor network behaves as a Markov chain surrogate model of
the underlying system where the adjacency matrix of the
dynamics network is the transition matrix. However, attractor
networks build upon the Markov chain idea by preserving the
spatial positions of each node. We use the term surrogate in this
case as predictions from the Markov model will always be sto-
chastic, even if the input data is deterministic.

Our proposed attractor network approach is shown to be
effective in tackling the challenges of the phase space approach for
change point detection. Namely, our method remains parsimo-
nious with increasing dimension whilst maintaining the network
approach of discretising continuous phase space. To achieve this,
attractor networks that approximately model the observed sys-
tem’s dynamics are constructed (equivalent to parametric model
training) using observed data of a given system that is known to be
operating within its normal regime. The resulting attractor

network is subsequently used to test future incoming data
observations for change points/abnormal behaviour in real time.
This is done by comparing incoming observed transitions (e.g.,
x!ðtÞ ! x!ðt þ δtÞ) against the expected transition probabilities
of the system in the normal state. A measure of the surprise S(t) of
each observed transition can be calculated using information
theory approaches (see “Methods”). Unexpected transitions such
as those that are infrequently or never previously observed when
constructing the attractor are given high surprise values (see
Fig. 2). A critical threshold S* taken as the 95% quantile of S(t)
from the training data is used to convert the continuous measure
of S(t) into a binary time series ŜðtÞ. We define change points as
the occurrence of successive high suprise values. To detect change
points, exponential smoothing is first applied to ŜðtÞ to calculate a
normalised measure of surprise ES(t). Change points then corre-
spond to times where E(t) > E* where E* is a threshold defined
from E(t) of the training data. A schematic overview of the ana-
lysis method is provided in Fig. 3.

We demonstrate the effectiveness of attractor networks in a
practical context by applying our method to the problem of
automatic detection of ventricular fibrillation (VF) from electro-
cardiogram (ECG) time series. The single-channel ECG data is
taken from the publicly available CU Ventricular Tachyar-
rhythmia data set on PhysioNet47,48. We find that the attractor
networks approach is effective in detecting the onset of VF in 27
of 29 patients within 5 s of the annotated onset of VF. In 9
patients, the surprise measure S(t) was able to preempt the
occurrence of VF (see Supplementary Note 1). We find that this
approach outperforms competing statistical methods such as the
moving average, standard deviation and permutation
entropy16,49.

To further illustrate the flexibility of our approach, we test the
effectiveness of attractor networks in detecting subtle dynamics
changes in artificial time series. Specifically, we investigate if the
surprise measures are able to discriminate between normal and
surrogate data that possess the same statistical distributions. To
do this, we artificially construct a time series consisting of alter-
nating portions of normal and surrogate signals constructed from
the Chua chaotic oscillator in the single scroll regime50. Surrogate
data consists of artificially constructed, randomised data whose
statistics and signal characteristics (e.g., power spectrum, mean,
standard deviation) match those of the real reference data but are
otherwise dynamically unrelated. These data are often used to
perform tests for the existence of nonlinear and or deterministic
dynamics in a given signal. In our analyses, we utilise surrogate
data as a way to assess if our proposed attractor network is able to
distinguish between time series with subtle dynamical differences
but otherwise similar statistical structure. To do this, surrogate

Fig. 1 The Rössler time series. a Two points from the time series separated with a delay lag of τ used to construct the delay vector. b The resulting
reconstructed phase space of the system from plotting the trajectory in lagged coordinates (x(τ), x(t− τ)). (see Supplementary Note 2 for more
information).
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data are generated using the iterated amplitude-adjusted Fourier
transform (AAFT) algorithm51. We find that our approach was
able to reliably detect transitions between normal and surrogate
time series and outperformed moving window approaches using
statistical scores such as moving average, standard deviation and
permutation entropy. We also provide results of additional
change point detection tasks on other artificial time series in
Supplementary Notes 2 and 3. Namely, (1) detecting subtle
changes in phase space (phase coherence), and (2) detecting and
quantifying gradual transitions and changes in system properties.

Results
Automated VF detection. ECG data are voltage and current
measurements taken from the heart’s sinoatrial nodes, typically
via externally placed electrodes. In a healthy regime, regular
contraction of the heart to facilitate adequate blood circulation is
driven by electrical impulses from the sinoatrial node. Each beat
within a recorded ECG typically consists of three sections, P-
QRS-T, corresponding to the movement of electrical wavefronts
along the heart52.

ECG recordings contain complex information pertaining to
various physiological dynamics. For example, the presence of
cardiological irregularities and heart malfunction such as
arrhythmia and tachycardia typically manifest as irregularities
in an otherwise relatively regular pseudoperiodic signal (see
Fig. 4). In this case, pseudoperiodicity can be attributed to minor
fluctuations in the approximate frequency and amplitude of
oscillations. More serious conditions such as atrial (AF) and
ventricular fibrillation (VF) often result in the total degradation of
the signal dynamics28. However, interpretation and analysis of
ECG data are difficult and rely on trained medical professionals.
This has led to a large body of methods that aim to automatically
detect, interpret and diagnose physiological conditions from ECG
data. These methods utilise analysis techniques from a wide range
of disciplines such as statistics53,54, frequency analysis55,56, and
machine learning57,58. For brevity, we refer interested readers to
ref. 15 for a more comprehensive discussion of current ECG
analysis methods.

From the perspective of dynamical systems theory, healthy
mode ECG can be equated to one that adheres well to some
attractor (region in state space) that describes the healthy mode
dynamics. The onset of VF causes stark changes in the

characteristics of the ECG signal (see Fig. 4), which result in
deviations from the original attractor. To demonstrate the utility
of attractor networks, we apply the proposed method to the task
of detecting ventricular fibrillation (VF) from an electrocardio-
gram (ECG) time series.

The CU Ventricular Tachyarrhythmia database47,48 consists of
8-min ECG recordings of 35 patients with eventual onset of VF.
Each signal was recorded with a sampling rate of 250 Hz and
filtered with a 70 Hz low-pass filter. The data set also contains
annotations for each beat and the onset of VF. Of the 35 patients,
6 patients were excluded as there was either no clear annotation
provided for the onset of VF, extended irregularities in the
recorded ECG or the onset of VF was too close to the start of the
recording. In most recordings, there were occasional occurrences
of missing values most of which occur towards the end of the
recording. These may be attributed to improper sensor placement
or data logging. Generally, this does not heavily impact the
performance of the detection algorithm as only one-step
transitions are required to evaluate each surprise score. However,
to prevent spurious false positives due to data dropouts, the
surprise for transitions with missing values was set to 0.

A three-dimensional non-uniform delay embedding was used
to reconstruct the phase space of the ECG dynamics. Delays were
individually selected with the SToPS59 method based on the first
20,000 data points corresponding to the healthy dynamics prior
to the onset of VF. The SToPS method works by scoring time
scales based on how well their resulting 2D embeddings result in
maximally circular holes in the resulting attractor. This is
achieved by applying a delay embedding on randomly sampled
short trajectory strands, computing its persistent homology and
scoring each identified hole (1-dimensional homology) according
to its circularity and its efficient use of points.

The attractor network was then constructed using the first half
of the time prior to VF onset as training data. This training data
was split equally between constructing the spatial and dynamics
components of the network. The presence of both large and
small-scale dynamics simultaneously within ECG results in a
small, very high-density region when applying delay embedding,
which can cause computational challenges. Therefore, a size
parameter of ϵ= 0.003 with a maximum of Nmax= 6 nodes per
observation was used to reduce computation time. The
parameters ϵ and Nmax are used to control the density of the

Fig. 2 Attractor network representations in phase space. a Illustration of a constructed attractor network with edges weighted by approximate transition
probabilities. Observed states are given by four red and blue nodes with the resulting trajectories shown as dashed line. Node observations are coloured
according to surprise value S(t) (red is high surprise). Trajectories (dashed) are coloured either red or blue based on the classification of normal or
unhealthy. Red observed states and trajectories (i.e., high S(t) and ES(t)) describe unexpected trajectories that enter into a previously unvisited part of
phase space. Persistent high surprise values are indicative of change points. b Attractor network constructed from a delay embedded ECG with a trajectory
showing the transition from normal to the ventricular fibrillation (VF) regime. The identified change point from ES(t) is indicated by a black cross.
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nodes and edges of the attractor network respectively (see
“Methods”). For VF detection, S(t) and ES(t) of the remainder of
each ECG recording including the VF onset are calculated.
Change points are detected using thresholds S* and E* based on
95% confidence intervals calculated from S(t) and E(t) of the
training data (see “Methods”). Exponential smoothing was
applied with a characteristic time scale of 250 steps corresponding
to 1 s of activity. Varying confidence levels effectively alter the
level of specificity and sensitivity of the test. In our analyses, we
select a confidence level of 95% due to its ubiquity, but this
selection is arbitrary and may be adjusted depending on the needs
of each application.

In order to quantify the method’s VF detection performance,
we define true positives as a detected change point that occurs
within 5 s (1250 timesteps) before or after the first annotated
onset of VF. Due to the nature of VF, the definition of false
positives is not straightforward for subsequent VF episodes as the
occurrence of VF can permanently alter the ECG dynamics even
after recovery resulting in extended periods of detected change
points well after the annotated VF onset. Any comparison against
a threshold from previous ‘healthy’ mode data is no longer

relevant to the detection problem. We note that false positives can
and do occur for times exceeding more than 5 s prior to the
annotated onset of VF. However, from Fig. 5, these flags are
relatively brief and are characteristically different to the persistent
flags corresponding to a true VF episode.

For our analyses, we define two main metrics of performance
for VF detection: (1) p∈ [0, 1] that measures the classification
accuracy (healthy or VF) of the method near the onset of VF, and
(2) pH∈ [0, 1] that is defined similarly to p but is weighted by the
number of consecutive identical classifications (i.e., a string of
classifications of VF will have a higher score than intermittent
classifications) (see “Methods” for mathematical formulations).
We also provide two additional performance metrics (see
“Methods” section) that aim to quantify the performance of each
method in preempting the onset of VF. This is accompanied by
further discussion on the difficulties of quantifying VF detection
performance in ECG data.

In both cases (p and pH), performance is measured across a
time period 5 s before and after the first annotated onset of VF.
Normalising over a time span of 10 s (5 s before and after VF), a
score of p= 0.5 (or pH) generally corresponds to a perfect

Time Delay
Embedding

Training Test

Attractor
Network

Surprise
Calculation
S(t)

Detection
E S
(t
)

t

Change Points

Spatial

Dynamics

Fig. 3 An overview of the proposed method. Following arrows: input training data representative of the ‘normal’ dynamics is used to reconstruct the
underlying phase space via a delay embedding (delayed components given by xi(t)). The constructed attractor network consists of a spatial and dynamics
component, which discretises the dynamics of the system into a Markov chain. Hyperparameters ϵ, δ, Nmax and K determine the density of nodes and edges
in the network (see “Methods”). Future incoming observations (test data) are compared against the expected transition probabilities in the attractor
network and the level or surprise S(t) is calculated. This is subsequently used to calculate a normalised score ES(t), which determines the occurrence of
change points.
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detection typically after the onset of VF. Scores larger than 1
generally correspond to detections occurring up to 5 s before the
annotated onset of VF (i.e., preemptive detection).

A summary of detection performance for the four tested
methods (moving average, moving standard deviation, moving
permutation entropy and attractor network surprise) is given in
Table 1. Moving statistics were calculated over sliding windows of
100 timesteps. The permutation entropy was calculated by
converting the time series into a symbolic sequence with each
sequence corresponding to an ordered sequence of observations
ranked by magnitude16,49. This conversion utilised 7 uniform lags
of size equal to the first lag calculated from SToPS59 in the delay
embedding.

The final performance scores for each method are averaged
over all 29 analysed patients. In our analyses, performance is
assessed based on the successful detection of the first occurrence

of VF. This is because following VF episodes, heart dynamics may
persist for an extended period of time in a regime characterised
by stress, which can alter the definition of the ‘healthy’ mode. A
more detailed breakdown of scores and comparison with other
methods is given in Supplementary Note 4.

Overall, the attractor network surprise approach was able to
more reliably detect and preempt the onset of VF compared to
other methods based on moving statistics averaged across a
sliding window. This is reflected in higher mean and median
scores for p and pH as well. Focusing on individual cases, 25 out of
the 29 patients’ VF was detected within 5 s of the annotated onset
(see Table 1, Fig. 5 and Supplementary Figs. S1 and S2 in
Supplementary Note 1). Of the remaining four, three cases (cu05,
cu08, cu28) of VF were not detected. The VF in the last case
(cu25) was detected but was outside the 5-s window analysed.
Surprisingly, 9 cases yielded detection scores greater than 1 and
corresponded to the attractor network being able to preempt a
plausible onset of VF. For 2 of these cases (cu13, cu15), the
detections were made up to 3 min before the annotated onset of
VF (see Fig. 5). This may suggest that for some cases, subtle
changes in ECG dynamics precede the onset of VF. For both cases
where this was observed, these early detections corresponded to
the increasing number and frequency of observed irregularities in
the ECG relative to the healthy mode used for training. In almost
all cases, false detections were found both within the training and
testing portions of the ECG data. This is possibly due to
dynamical irregularities in the time series such as cardiac
arrhythmia or abnormal voltage amplitudes. However, most of
these cases return a detection signal intermittently and are not
persistent. This is in contrast to the onset of VF where the
method persistently returns a positive result for detected change
points.

Similar qualitative results were found for the other statistics-
based detection methods. However, these methods slightly
outperformed the attractor network approach in 9 of 29 patients.
Of these, 3 patients (cu05, cu08, cu28) saw failures of almost all
tested methods with the exception of the moving standard
deviation and moving average performing slightly better for cu08
and cu28 respectively.

Amplitude-adjusted Fourier surrogates. The attractor network
approach differs from those that track changes in moving sta-
tistics (e.g., CUSUM, Page-Hinkley Test, moving average
test)25,60 in that detections are made based on observed differ-
ences in the dynamics of the system rather than the moving
statistics of the observed time series. To investigate the effec-
tiveness of the attractor network approach, we apply it to the task
of distinguishing between changes in dynamical behaviour that
partially preserve the stationary and non-stationary statistics of
the data. This test can be formulated by artificially constructing a
signal using conjoined portions of normal and amplitude-
adjusted Fourier transform (AAFT) surrogate time series51. The
result is an artificial data set that preserves the mean, standard
deviation and power spectrum of the original data but lacks the

Table 1 Summary of detection performance scores for the four tested methods.

Method p pH
Moving average (0.164, 0.001, 0.252) (0.140, 0.001, 0.218)
Moving standard dev. (0.367, 0.389, 0.254) (0.325, 0.342, 0.234)
Moving permutation entropy (0.371, 0.426, 0.316) (0.320, 0.381, 0.280)
Attractor network S (0.476, 0.483, 0.330) (0.435, 0.436, 0.320)

Methods are moving average, moving standard deviation, moving permutation entropy and attractor network surprise. Scores given are the prediction accuracy p and accuracy normalised according to
consecutive true positive pH (see “Methods” for formulation). Scores are averaged across data from 29 patients. Each entry lists in order the mean, median and standard deviation.
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Fig. 4 Time series and phase space reconstruction representations of
ECG time series. Healthy trajectories (blue) and ventricular fibrillation (VF)
(red) shown. a Phase space reconstruction showing the trajectory of the
healthy (blue) dynamics lying close to a stable orbit (the attractor). In
contrast, the onset of VF (red) results in a structural collapse of the
attractor. b An extract of the corresponding scalar ECG time series with the
onset of VF labelled by a dashed vertical red line. The onset of VF is
characterised by a change from regular oscillatory motions (blue) into
erratic dynamics (red).
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original system’s dynamical features. However, AAFT surrogates
are unable to preserve the moving statistics of the signal. In our
analyses, we select the Chua system operating in the single scroll
regime that exhibits oscillatory dynamics that are relatively
regular.

For change point detection, the attractor network was trained
on 20,000 time steps in the regular single scroll Chua oscillator50,
with an additional 20,000 time steps used to calculate threshold
values for identifying change points. The test data consists of 7
concatenated portions of time series each of length 2000 steps
alternating between the normal and surrogate data. Time series
was generated by integrating the Chua equations with the RK4
algorithm and time step dt= 0.02. The equations are given by:

_x ¼� ðy � x þ zÞ;
_y ¼� α x � y � f ðyÞ�

;

_z ¼ βx þ γz;

f ðyÞ ¼ ay3 þ by; where (β, γ, a, b)= (53.612186, −0.75087096,
0.03755, −0.84154) and α= 17. Surrogates were generated using
an iterated algorithm applied to a simulated Chua time series. The
concatenations between normal and surrogate data ensured that
endpoints were matched with no discontinuities. Direct observa-
tion of the scalar time series shows that differences between the
surrogate and original data are not easily distinguishable (see
Fig. 6). Permutation entropy was calculated with up to 7 lags,
each a size equal to the first delay lag calculated using SToPS.

From Fig. 7, we find that the attractor network approach
outperformed the moving statistics and permutation entropy.
With the exception of the moving standard deviation, the
remaining measures of moving average and permutation entropy
fail (as expected) to detect changes in the time series.

Sampling frequency effects. The attractor network effectively
discretises the phase space dynamics into a Markov chain.
Therefore, it is expected that the accuracy of the resulting
attractor representation will be affected by the sampling fre-
quency of the data. High sampling frequencies should not

adversely affect the reconstruction as the attractor network con-
struction algorithm iteratively simplifies dense cluster of points in
phase space. The extent of this simplification is controlled by the
size scale hyperparameter ϵ and δ (see “Methods: Spatial net-
work”). However, input data points that are too sparse can limit
the resolution of the attractor network and corresponding tran-
sitions. To test the effects of sampling, we construct attractor
networks using input time series with varying sampling fre-
quencies, which are then used to identify alternating transitions
between the original and AAFT surrogate data. For this test, the
analysed time series consisted of 20 alternations between normal
and surrogate data with each segment lasting approximately 40
oscillations (2000 time steps). Performance is measured by the
correct classification of each observed data point as either normal
or abnormal. The F1 and Matthew’s correlation coefficient
(MCC) were used to identify the classification accuracy (normal
vs. surrogate) in each case.

The attractor network approach was found to perform well for
sampling frequencies as low as 7 points per period (see Fig. 8).
However, there is a decrease in performance for further decreases
in sampling frequency. This is expected as time series with very
low sampling frequencies effectively decrease the resolution of the
phase space discretisation. Additionally, the observed transitions
must be inferred across larger jumps in phase space, which can

Fig. 6 Extract of the artificial Chua time series with surrogates. Signal
extract contains a single concatenation of the original Chua signal (blue)
and an AAFT surrogate (red). The differences in the dynamics are not
clearly visible.

Fig. 5 VF detection results using attractor networks with surprise metrics. Results are given for individual patients (IDs given by “cu..."). Annotated
onsets for VF are given black crosses, and flagged detection of VF is given by a red dot. Blue regions represent the length of time series used for training
and constructing the attractor network. The onset of VF is characterised by a persistent detection result (red).
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make the detection of abnormal dynamics difficult. This is
particularly true for chaotic dynamics where the uncertainty of
the future states exponentially increases in time with respect to
small uncertainties in the initial conditions.

Conclusion
We present a network-based change point detection method that
aims to quantify deviations from the underlying attractor mani-
fold of the target system. Significant deviations from the under-
lying attractor are used to infer the presence of a change point in
the time series. To achieve this, input time series recorded from
the healthy regime is delay embedded to represent the system
dynamics in reconstructed phase space. These observed transi-
tions are then used to construct an attractor network consisting of
two components: the spatial network and the dynamics network.
The resulting attractor network effectively acts as a Markov-chain
representation of the dynamics along the system’s attractor.
Change point detection is achieved by calculating the measures of
surprise S(t) and E(t) for each new observation respective to the
learned attractor network. Unexpected observations caused by
changes in the underlying system’s dynamics result in large
persistent values of surprise measures, which are used to flag
change points.

The proposed approach was used to automatically detect the
onset of ventricular fibrillation (VF) from recorded patient ECG
data. Data was taken from the CU Ventricular Tachyarrhythmia
data set that is publicly available on PhysioNet. The attractor
network method was found to be sensitive in detecting the onset
of VF for 25 out of 29 patients. In two cases, our approach was
able to detect the occurrence of irregularities in the ECG well
before the annotated onset VF provided in the data set.

To further illustrate the flexibility of our method, we apply the
attractor network approach to the task of identifying subtle
changes in the dynamics of the time series. This is done by
constructing an artificial time series consisting of alternating
portions of normal and abnormal behaviour. Specifically, we test
the ability of the attractor network to detect transitions between

Fig. 7 Results of all change point algorithms for detecting transitions into AAFT surrogates for the Chua system. From top to bottom: a Original time
series, b moving average (MA), c moving standard deviation (MSTD), d moving permutation entropy (MPE), and e surprise scores S(t). Sliding window
lengths of 100 steps were used for calculating moving averages. Detections (red) are made based on the exponential smoothed quantity E(t). Real change
points are given by vertical orange lines. All comparison methods except MSTD struggle to reveal distinct changes in behaviour for the AAFT surrogates. In
contrast, the attractor network approach is able to capture transitions well.

Fig. 8 Boxplot of upper and lower quartile of change point prediction
accuracy scores. F1 recall score and Matthew’s correlation coefficient
(MCC) are given for the attractor network approach with varying sampling
frequencies (points per period). Scores show a large decrease in
performance for sampling frequencies below 7 points per period. Outliers
are given by 1.5 times the interquartile range.
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normal and AAFT surrogate data. The attractor network and
relevant metrics S(t) and E(t) were sensitive in distinguishing
between normal and surrogate time series. We also find that this
performance is maintained even for moderately low sampling
frequencies. We provide in Supplementary Note 3 section results
of additional change point detection tests and comparisons of the
performance of the attractor network approach against moving
windows approaches using statistical scores such as moving
average, overall standard deviation and permutation entropy.

Methods
Time delay embedding. One of the most commonly employed
methods of reconstructing the phase space of a system from
observed scalar time series is via the method of time delay

embedding. Consider a multivariate dynamical system _x!ðtÞ ¼
F
!ð x!Þ in state space X where only the first component x1(t) is
observed. Takens’ theorem guarantees generically that a delay
embedding reconstruction y!ðtÞ ¼ ðx1ðtÞ; x1ðt � τ1Þ; ¼ ; x1ðt �
τnÞÞ defined in space Y with appropriately chosen delays
(τ1,…, τn) will have dynamics that are homeomorphic to the true
system dynamics in X. That is, there exists a homeomorphism Φ
such that,

_y!¼ Φ � F
!�Φ�1

� �
y!ðtÞ: ð1Þ

Attractor networks are constructed with respect to some
ambient phase space. Hence, the first step for analysing observed
time series is constructing an embedding to augment the
dimension of the input data. In our analyses, we use a non-
uniform delay embedding,

x!ðtÞ ¼ ðxðtÞ; xðt � τ1Þ; ¼ ; xðt � τnÞÞ; ð2Þ
where x(t), x!ðtÞ are the original time series and reconstructed
delay vector respectively and (τ1, . . . , τn) are selected time lags.

The non-uniform delay embedding method is a generalisation
of the uniform delay embedding often used for phase space
reconstruction59. The latter method is simpler in its formulation
and only requires the selection of two hyperparameters, the delay
lag τ and embedding dimension m. The resulting delay vector is
then constructed as:

x!ðtÞ ¼ ðxðtÞ; xðt � τÞ; xðt � 2τÞ; ¼ ; xðt � ðm� 1ÞτÞÞ; ð3Þ
The lag τ is typically selected using a mutual information

criterion61, followed by the selection of m using a false nearest
neighbour criterion62. However, reconstruction with a single lag
is not adequate for systems with multiple disparate time and
spatial scales63. This may be remedied by selecting a small τ and
large m at the expense of creating an overly high-dimensional
phase space, which may computationally hinder later analyses. In
contrast, non-uniform embedding allows the selection of multiple
time scales without unnecessarily increasing the embedding
dimension m. However, this requires solving the non-trivial
problem of selecting relevant embedding delays τ1,…, τm.

There are multiple proposed algorithms for the selection of
non-uniform embedding delays such as MDOP64, PECUZAL65

and the method by Garcia and Almeida66. However, the resultant
lags do not usually agree between algorithms due to their differing
notions of optimal delays. Additionally, the calculated lags
typically do not bear a clear explainable relationship to the time
scales within the observed time series.

To address this, we use the SToPS algorithm, a persistent
homology-based algorithm proposed by Tan et al.59, that
identifies dynamically relevant time scales from the recurrence
behaviour of chaotic and non-stationary time series. Instead of

outputting a collection of time lags, SToPS calculates the
significance of each potential time lag in constructing a spectrum
of time scales from which individual lag values may be selected to
construct a delay vector. This provides a more accurate,
explainable and robust method for analysing time series that
may contain multiple disparate time scales and magnitudes, such
as ECG, by allowing for the construction of well-unfolded
attractors that more accurately capture the underlying dynamics
in phase space.

Such an approach is reminiscent of a Fourier power spectrum,
with the added benefit of being applicable to data with chaotic
behaviour or non-stationary statistics.

Phase space reconstruction to attractor networks. Following the
time delay embedding of time series to reconstruct the system’s
attractor in phase space, the next step requires the construction of
attractor networks by discretising phase space. This step involves
the construction of two components: the spatial and dynamics
network.

Spatial network. One of the drawbacks of the network-based
method for identifying attractors presented by St Luce et al.33 is
the potentially poor computational scaling for increasing
phase space dimension. This is due to the grid-based voxel
scheme used to discretise the entire phase space, where each voxel
is represented by a single node33. This results in a prohibitively
large network for even modest phase space dimensions that
require extensive pruning before any further computation can
be done.

To address this, we propose instead to use the original
positions of the input data to guide the discretisation of phase
space. Randomly sampled points from the embedded training
data are selected as kernels in phase space and used to construct a
sparse point cloud representation of the attractor. Additional
sampled points are then progressively added in cycles until the
desired density or number of points in the attractor is reached.
However, depending on the density distribution of the attractor
and sampling of points, the simple addition of more points may
not always increase the detail of the attractor structure captured
by the point cloud. This results from the presence of redundant
points that are near neighbours in high-density regions of the
attractor. To address this, the point cloud is trimmed by replacing
a high-density cluster of points in the attractor with a single
‘centre-of-mass’ point. The algorithm for iteratively constructing
the spatial network is given as follows:

● Let A be the collection of points in the spatial network and
ϵ be a predefined size scale.

● Sample a set of points S from the training input data set
and add it to A: ðS∪AÞ ! A

● Calculate the pairwise distance δij for all point pairs
ð x!i; x

!
jÞ 2 A. Define a neighbour adjacency matrix D with

entries:

Dij ¼
1; 0< δij < ϵ

0; δij > ϵ

(
ð4Þ

● For every node i in the network represented by D, calculate
the local clustering coefficient ci,

ci ¼
2 nΔi

kiðki � 1Þ ; ð5Þ

where ki and nΔi are the degree and number of triangles
passing through node i respectively.

● Let C be the collection of nodes whose clustering coefficient
ci > 0.5, and kmax be the highest degree amongst all the
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nodes in C. Identify Ckmax
corresponding to the set of all

nodes with degree kmax.
● For each x!i 2 Ckmax

with kmax neighbours, calculate the
average location across its kmax neighbours x!j given by,

x!�
i ¼

1
kmax

∑
kmax

j¼1
x!j; ð6Þ

● Replace the cluster of points C0 in A with the average point,
ðA n Ckmax

Þ∪ f x!�
i g ! A, where ⧹ corresponds to the set

difference operator.
● Repeat steps 3 and 7 until kmax < 3 (i.e., no triangle clusters

exist).
● Repeat steps 2 to 6 until all the input training data has been

processed.

In the above formulation, the density parameter ϵ prescribes a
minimum allowable distance between point pairs in the attractor.
This limits the amount of redundant points in high-density
regions, which alleviates the computational burden in later steps.
The cutoff threshold for the maximum clustering may also be
adjusted to control the aggressiveness of the trimming procedure.
The algorithm is also self-terminating as the number of nodes
added in each iteration will always be less than or equal to the
number of nodes removed in Step 7.

Dynamics network. The dynamics network aims to describe the
vector field dynamics of the system within phase space. However,
this first requires a discretisation of continuous phase space. To do
this, the points in A are used as kernels to discretise the continuous
phase space into a finite collection of bounded cells with char-
acteristic spatial scale δ. Because A only contains points that are
relevant to the attractor of the system, the resulting discretisation
automatically excludes regions which are greater than a notional
distance of δ from the attractor. This removes the need to trim off
irrelevant regions of the discretised phase space, previously required
in the grid-based voxel approach by St Luce et al.33.

In order to encode vector fields and dynamics of trajectories
into the attractor network representation, pairs of observed
transitions between successive points in phase space are used to
create a transition matrix.

● Let M be an ∣A∣ × ∣A∣ matrix, B is the set of input training
points for learning the dynamics network and A is the
collection of points in the spatial network.

● Consider a point x!iðtÞ 2 B and its observed next position
x!iðt þ dtÞ. The pair of points ð x!iðtÞ; x!iðt þ dtÞÞ corre-
spond to a transition between two regions of the discretised
state space.

● Identify up to Nmax each of attractor points a!; b
!2 A that

are within a distance δ from ð x!iðtÞ; x!iðt þ dtÞÞ respec-
tively. The hyperparameter Nmax controls the edge density
of the resultant attractor network. Calculate the corre-
sponding distances δa, δb
where,δa ¼k x!iðtÞ � a!k; δb ¼k x!iðt þ dtÞ � b

!k :
● Calculate a scaling value α given by the following

expression,

α ¼ f ðδÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δa
δ

� �2
þ δb

δ

� �2
r

; δa; δb < δ

0; otherwise

8<
: ð7Þ

● Add a corresponding weight to the element Mab corre-
sponding the transition between attractor points

a!; b
!2 A,Mab þ e�αK ! Mab; where K is a shape

parameter.
● Repeat steps 2–5 for all points x!iðtÞ 2 B.

Observed transitions in the training data are used to record the
frequency of transitions between any two points in discretised
phase space. The characteristic spatial scale δ is taken to be the
99% quantile of all closest neighbour distances from points
included in the spatial network. The value α captures the
goodness of fit between the endpoints of an observed transition
and the available possible attractor points in the discretised space.
Lower values of α result in a contribution closer to 1 to the tally of
transitions. For α > 0, inaccuracies in the fit are scaled by K, which
governs the penalty applied when calculating the contribution of
the observed transition.

Finally, the matrix M may be converted into a stochastic
transition matrix Mf, which we label the flow matrix. Combined,
flow matrix Mf and attractor points A work together to form a
discretised network representation of system dynamics in phase
space where Mf is likened to the Perron-Frobenius operator
acting on a domain A.

One additional consideration is that the directed matrix M will
likely have nodes with no outdegree. These correspond to points
in A that are infrequently visited or are strong sinks or stable
nodes. Therefore, calculating Mf requires the iterative removal of
all nodes with 0 outdegree until none remain.

Surprise!. The phase space approach to change point detection
relies on the argument that changes in the underlying dynamics
of the data-generating process correspond to trajectories in phase
space that deviate from the original attractor of the system when
operating in its normal state. In terms of the discretised phase
space, this would correspond to the observation of transitions that
are either unlikely or not previously encountered within the
training set. The attractor network approach to change point
detection uses the calculation of a metric S(t), named the ‘sur-
prise’, which aims to quantify the level of surprise observed in a
given transition.

Consider an observed transition at time t between two nodes
i→ j in the constructed attractor network. Let ki be the outdegree
of node i, and pij be the calculated probability of transition from
the stochastic flow matrix Mf. Let N be the number of data points
used to train the attractor network. If a transition between nodes
i→ j was not observed within N observations, pij is assigned a
value of 1/2N to avoid singularities,

pij ¼
1=2N; Mf ;ij ¼ 0

Mf ;ij; Mf ;ij ≠ 0:

(
ð8Þ

Let Hmax(i) be the maximum possible entropy for a given node
i in the attractor network based on its outdegree kmax. This
corresponds to the case where all outdegree transitions are
equally probable,

HmaxðiÞ ¼ log
1
ki

� �
: ð9Þ

Similarly, H(i) is defined as the actual entropy calculated based
on the probability distribution of all ki outdegrees for node i,

HðiÞ ¼ 1
ki
∑
ki

l¼1
logðpilÞ:

The quantification of surprise requires a normalisation with
respect to the maximum possible entropy for each source node i
to account for variations in the outdegree across different nodes
in the attractor network. Observed uncommon transitions in
uniformly distributed, high outdegree nodes are less informative
as each outcome is equally unlikely. Therefore, we define a
weighting value, η, to quantify the meaningfulness of an
observation with respect to the expected potential transitions in
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the attractor network,

ηi ¼
1; HðiÞ ¼ HmaxðiÞ ¼ 0
HmaxðiÞ
HðiÞ ; otherwise

(
:

The value of surprise S(t)= S(i, j) corresponding to an
observed transition between two nodes i, j at time t in the
constructed attractor network is then given by the normalised
expression,

SðtÞ ¼ Sði; jÞ ¼ �ηi logðpijÞ: ð10Þ

Change point detection. One common approach to change point
detection is to identify deviation in a statistical measure between a
known healthy mode and incoming observations. Significant
deviations in this measure can be used to infer the presence of a
change point. For example, the attractor network approach for
change point detection corresponds to identifying consecutive
transitions with persistently high values of surprise (i.e., trajec-
tories are more frequently deviating away from the attractor of
the normal state).

More generally, given some measured statistic S(t) (such as the
attractor network surprise), it is possible to convert S(t) into a
binary measure of normal vs. abnormal by filtering according to
some interval [Smin, Smax]. Therefore, we can define a new binary
measure ŜðtÞ,

ŜðtÞ ¼ 0; Smin < S < Smax;

1; otherwise ;

�
ð11Þ

where ŜðtÞ ¼ 1 corresponds to an observation that is abnormal.
The values of Smin and Smax can be selected as quantiles of the
distribution of observed S(t) from data that is known to be in the
healthy regime (i.e., from the training data set). In the case of
attractor network surprise, (Smin, Smax)= (0, S*) where S* is
selected to be the 95% upper quantile of the data because
surprise is always positive.

Depending on the statistic, temporary and benign fluctuations
in the tracked measure S(t) may result in brief, intermittent
classifications of observations as abnormal (i.e., ŜðtÞ ¼ 1). To
ensure that an observed change is indeed a genuine change point,
incoming observations must be consistently classified as abnor-
mal for an extended period of time τE to be flagged as potential
change points. This can be done by applying exponential
smoothing to the binary series ŜðtÞ,

EðtÞ ¼ ð1� βÞŜðt � dtÞ þ βŜðtÞ; ð12Þ
where β= 1/τE is a smoothing parameter. For automatic change
point detection, change points are defined when E(t) exceeds
some threshold k ⋅ E*, where E* is the 95-percentile of observed
E(t) in the input training data set and k is a multiplier term that
determines the strength of the threshold. Because E(t) can be
calculated with respect to an arbitrary measure S(t), we use the
following notation EMA(t), EMSTD(t), EMPE(t) and ES(t) for the
exponential smoothed series resulting from the moving average,
moving standard deviation, moving permutation entropy and
attractor network surprise scores respectively.

Performance quantification
Detection scores p and pH. To quantify the accuracy of detecting
VF onset, we propose two measures of the true positive rate given
p and pH. A true positive detection is defined as the classification
of an observation as abnormal for a time period [ts, te] before or
after the annotated onset of VF with a total length T timesteps.

The first measure of performance p is calculated as the
proportion of timesteps within the abovementioned time period

that are correctly classified as abnormal.

p ¼ ∑t2½ts;te�IðEðtÞ> kE�Þ
T=2

: ð13Þ

The second measure of performance pH is a modified form of p
that accounts for both the proportion of true positive classifica-
tions and the persistence of the classification. In this measure, a
string of identical classifications would be weighted higher than
those with intermittent true positives. The score for pH is
calculated as,

pH ¼ pð1�HÞ; ð14Þ
where H is the normalised entropy of the distribution of the
ordered observations given by,

H ¼ ∑k
n¼1 pn log pn

1
T log

1
T

: ð15Þ

The probability pn is calculated by partitioning the observed
string of classifications into groups of successively identical
classifications. For example, consider an observed time period with
10 timesteps with a string of classifications given by 0001101111
where a value of 1 corresponds to an observation that is classified as
abnormal. This set of observations may be partitioned into 4 groups
resulting in the sets of probabilities (p1, p2, p3, p4)=
(0.3, 0.2, 0.1, 0.4). Therefore, the quantity H is a measure of the
fragmentation of an observed string of classifications where larger
values of H indicate more fragmented and intermittent classification
of observations of either normal or abnormal.

Quantifying preemptive detection performance. One of the desir-
able qualities of online change point detection is to predict the
occurrence of a change point for some period of time before an
event. This can be particularly useful in mission critical systems,
such as VF detection, where early or preemptive detection can
inform appropriate intervention measures. In the context of VF
detection, it is common for arrhythmias to occur prior to the
onset of VF. This occurrence potentially suggests gradual changes
in the heart dynamics prior to VF, which may otherwise be dif-
ficult to detect by visual inspection of the ECG. The detection of
this dynamical change may be used to inform the early warning
detection of VF.

For our VF detection analyses, we propose two different
measures to quantify and compare the ability of each change
point detection method in preempting the onset of VF. For both
measures, we consider a time interval [tVF− τp, tVF] of increasing
length τp prior to the annotated onset of VF. For every given τp,
we calculate two measures across the time interval: (1) the length
of the longest uninterrupted streak of positive detections leading
up to the onset of VF, and (2) the proportion of positive
detections across the entire time interval. The first measure aims
to measure the degree of persistence in the positive detection rate
where longer positive detection streaks suggest a more confident
preemptive detection of an incoming VF episode, whereas the
second measure is a naïve measure of the positive detection rate.

Due to the nature of the data and lack of information regarding
the real physiological condition of each patient, it is not possible
to determine if early detections from each method are true or
false positives. Therefore in both cases, we assume that all
positives are true positive and limit our analyses to only a
relatively short maximum window length τp= 1250 prior to the
annotated onset of VF. Only detection relating to the first
annotated VF onset in each patient is used to calculate the results
as physiological changes to the heart following VF may result in
permanent changes to ECG dynamics, which may yield an
artificially increased number of positive detections.
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Scores are calculated for each individual patient. A final
performance score for each detection method is then taken as the
average scores across all 29 analysed patient ECGs (see Fig. 9a, b).
The attractor network surprise approach was found to provide a
longer and more persistent streak of positive detection leading up to
the onset of VF compared to the moving average, standard deviation
and permutation entropy methods. Positive detection rates were also
slightly higher for the attractor network surprise method.

In Fig. 9b, it is expected that increasing window lengths will
cause gradual decreases in the positive rate as the window length
begins to include periods of normal healthy behaviour. However,
we find that for the attractor network surprise and moving
standard deviation methods, there is a peak in the performance
rate partway through the profile. Further inspection into the
failure modes of each patient reveals that this is the result of the
method detecting the occurrence of irregular ECG behaviour for
some period before the annotated onset of VF (see Fig. 10). At the
onset, some of these signals collapse into high-frequency
oscillatory dynamics. This can correspond to a trajectory that
lingers in a high-density region of the attractor network resulting
in artificially low suprise values.

Data availability
Instructions on how to generate the artificial data in this paper have been provided. All
experimental data are publicly available on PhysioNet47,48.

Code availability
All code pertaining to the above analyses are publicly available on the online GitHub
repository at https://github.com/eugenetkj98/AttractorNetworksPublic.
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