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Abstract

This paper proposes a method to enhance the accuracy of power load forecasting by con-
sidering the variability in the impact of multi-dimensional meteorological information on
power load in diverse regions. The proposed method employs spatio-temporal fusion (SF)
of multi-dimensional meteorological information and applies the Copula theory to ana-
lyze the non-linear coupling of meteorological information from multiple stations with
power load to achieve SF in the spatial dimension. To enhance the accuracy of load fore-
casting in the time dimension, this paper improves the core parameters of the variational
mode decomposition (VMD) using the marine predators algorithm (MPA) and utilizes
the weighted permutation entropy (WPE) to construct the MPA-VMD fitness function
for the adaptive decomposition of the load sequence. Moreover, this paper constructs
input sets for the long short-term memory model and the MPA-LSSVM model by com-
bining each component of the time dimension and each meteorological information of
the spatial dimension to obtain the prediction results of each component. The prediction
model corresponding to each component is selected according to the evaluation index
and reconstructed to obtain the overall prediction results. The analysis results demonstrate
that the proposed forecasting method outperforms the traditional forecasting method and
effectively enhances the accuracy of power load forecasting.

1 INTRODUCTION

Global problems like air pollution and global warming are
receiving more and more attention. Many nations now agree
that reducing greenhouse gas emissions and achieving ‘carbon
neutrality’ and ‘zero emissions’ are important goals. Short-term
power load forecasting is vital for the balance between supply
and demand in the power grid [1, 2]. According to the load fore-
cast values, energy can be planned and dispatched effectively
to decrease energy waste [3, 4]. With the increasing proportion
of renewable energy, stored energy, and electric vehicles in the
power system [5], electrical consumption patterns tend to be
more intricate. The non-linear and non-smooth characteristics
of power load data have intensified, making short-term load
forecasting more demanding. Consequently, novel forecasting
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methods need to be proposed to satisfy the demand for higher
accuracy in short-term load forecasting.

Meteorology as a major influence on electrical load makes it
highly influenced by thermal inertia and the impact varies by
region [6]. In the conventional electrical load forecasting pro-
cess for municipal areas, the forecasting model generally uses
the city-wide meteorological information throughout the day
as influencing factors, such as city-wide rainfall and maximum
temperature [7]. However, meteorological information in dif-
ferent areas within the municipal area has certain different in
effects on the electrical load. Consequently, it is essential to
establish a short-term load forecasting model based on the
correlation characteristics of meteorological information from
different meteorological stations in the region and the electri-
cal load in both time and space dimensions [8]. The commonly
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used correlation analysis methods are Pearson and Kendall algo-
rithms, but both of them are mainly applied to linear analysis,
which is not efficient for non-linear power load data and meteo-
rological data [9]. Copula theory has been applied to the study of
complex problems in many fields in recent years and has many
advantages such as flexible and variable forms, not being limited
by marginal distribution etc. It can analyze non-linear correla-
tions objectively, quantitatively, and accurately, and provide a
methodological basis for the establishment of spatio-temporal
fusion models of multi-dimensional weather information [10].

At present, machine learning techniques are introduced into
load forecasting, which can be divided into two categories
according to the number of forecasting models. One type of
model is the single forecasting model, which first uses corre-
lation analysis to extract the influencing factors with a high
degree of coupling to the electrical load, and constructs the
input feature set of the forecasting model. Then least-squares
support vector machine (LSSVM) [11], long short-term mem-
ory network (LSTM) [12] etc., are used to further extract the
data features and obtain the load forecasting values. LSTM can
solve the long-term dependence problem of recurrent neural
network (RNN), and its long- and short-term memory capabil-
ity can significantly improve prediction accuracy and efficiency.
LSSVM has the advantage of solving non-linear problems
and is widely used in the field of power load prediction. Due
to the non-linear and non-smooth nature of the power load,
the ideal prediction accuracy is difficult to be achieved with a
single prediction model due to structural limitations. Therefore,
the second type of ‘decomposition-prediction-reconstruction’
model, which combines the advantages of signal processing
and multiple prediction methods, has become the focus of
research at this stage [13–17]. Wavelet decomposition, empirical
modal decomposition, and variational modal decomposition
algorithms have received much attention in short-term load
forecasting [14]. Wavelet decomposition for load data process-
ing is related to the number of mother wavelets and components
and is not very adaptive. The empirical modal decomposition
has some adaptiveness, but it has the defect of modal mixing
in the decomposition process. The load data can be broken
down using variable mode decomposition (VMD) into intrinsic
mode functions (IMF) of various frequencies. It can be used
to build models for short-term load forecasting because it is
adaptable and non-recursive. However, parameter tuning in the
VMD decomposition procedure is time-consuming and subjec-
tive, which impacts the decomposition’s accuracy. References
[15, 16] proposed a prediction method using an optimization
algorithm for the automatic optimization of key parameters of
VMD, which achieved good prediction accuracy, but the model
was complex and not adapted to time series. The permutation
entropy (PE) method was suggested in [17] to analyze the
complexity of each modal function of VMD and reorganize the
modal function to obtain subsequences, effectively increasing
the efficiency of VMD in processing time series. However,
the parameter setting is still arbitrary, which affects prediction
accuracy.

The marine predators algorithm (MPA) chooses between
the Lévy flight and Brownian motion as the optimum forag-

ing strategy by simulating the evolution of predators and prey
in the ocean [18]. MPA has the advantages of minimal model
parameters, difficulty in falling into local optimums, and great
optimization efficiency when compared to other techniques
such as particle swarm optimization (PSO).

Based on the above-described investigation, this paper pro-
poses a short-term load combination prediction model based
on the spatial-temporal fusion of multi-dimensional meteoro-
logical information and MPA to optimize the key parameters
of VMD. In the spatial dimension, meteorological informa-
tion from multiple meteorological stations such as wind speed,
wind direction, temperature, and sunshine intensity is fused with
power load information in time and space dimensions. The
non-linear coupling between power load and multi-dimensional
meteorological information is correlated by using the Copula
theory to filter out the important features, reduce the feature
dimension, and improve forecasting efficiency. In the temporal
dimension, firstly, MPA was used to find the optimum for the
key VMD parameters. To take into account the change magni-
tude of different components and to adapt to short-term load
prediction, the sum of weighted permutation entropy (WPE)
of modal functions with different frequencies is minimized as
the objective function to decompose the original load data into
components with different frequency characteristics. Moreover,
to improve prediction accuracy by combining the prediction
advantages of different prediction models for different fre-
quency components, the LSTM model and the MPA-LSSVM
model were used to obtain the prediction results of each
component, and the corresponding prediction model for each
component was selected according to the prediction evalua-
tion index. Finally, reconstruction is used to obtain the overall
prediction results. Based on actual load data, a multi-group com-
parison study is carried out to validate the generalization and
superiority of the prediction method proposed in this paper.

The novel perspectives of the proposed model are summa-
rized as follows: (1) To investigate the non-linear coupling of
meteorological data from various meteorological stations with
the power load and to accomplish spatio-temporal fusion, the
Copula theory is utilized in the spatial dimension. (2) The
MPA enhances the fundamental VMD features in the temporal
dimension. The WPE is used to construct the MPA-VMD fit-
ness function for adaptive decomposition of load sequences. (3)
The combined forecasting method of LSTM and MPA-LSSVM
is used to validate the prediction accuracy and generalization
ability of the proposed model by comparing it with traditional
forecasting methods, and by analyzing the working days and
holidays in spring, summer, autumn, and winter, respectively.

The remainder of this paper is organized as follows: Section 2
provides an overview of the Copula theory, performs spatio-
temporal fusion analysis of multi-dimensional meteorological
data, and creates the matrix of influencing factors. Section 3 pro-
vides a VMD optimization technique to test the convergence
of the suggested method and introduces the fundamentals of
VMD and MPA. The SF-MPA-VMD combined forecasting
model is established in Section 4, and the performance evalu-
ation indicators of this paper are provided. Section 5 validates
the prediction approach put out in this work, discusses the
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model’s superiority and effectiveness, and thoroughly analyzes
the findings. The complete text is summarized in Section 6.

2 RELATED ALGORITHM BASIS

2.1 Correlation analysis based on Copula
theory

Copula theory can conduct non-linear coupling analysis on
numerous variables and does not require any linear or Gaus-
sian assumptions. Therefore, the Copula theory is applied to
perform a quantitative correlation analysis on the power load
and multi-dimensional meteorological data [19].

Assume that the electrical load sequence is u and the tem-
perature sequence is v in the example of power load and
temperature. If H(u,v) is defined as the joint distribution func-
tion of both, and the edge distribution function corresponds to
Fu(u) and Fv(v), then a Copula function C(⋅) exists that asso-
ciates the joint distribution and the edge distribution with two
functions

H (u, v) = C
[
Fu (u),Fv (v)

]
(1)

For the correlation analysis between the two in this paper,
the Kendall rank correlation coefficient method with high
applicability is chosen, and the expression is as follows:

𝜏 = 4

1

∫
0

1

∫
0

C (u, v)dC (u, v) − 1 (2)

where τ is the outcome of Kendall correlation analysis. The
closer the value of |τ| is to 1, the stronger the correlation
between the variables.

There are some common Copula functions such as t-Copula,
Gumbel Copula, Clayton Copula, Frank Copula, and Normal
Copula. The correlation analysis of various sequences can be
performed by using each different Copula function, so it is
essential to choose the appropriate Copula function for accurate
analysis. In this study, the best Copula function for the non-
linear coupling analysis of meteorological information series
and load series is chosen using the minimal Euclidean distance
approach [20].

2.2 Spatial-temporal fusion of
multi-dimensional meteorological information

To comprehensively assess the meteorological data of various
locations during different seasons, this paper employs a spatio-
temporal fusion method of multi-dimensional meteorological
data based on the Copula theory. It consists of three phases
specifically: (1) For the 12 meteorological information shown
in Figure 1, the optimal Copula function is selected for the
non-linear coupling analysis based on the minimum Euclidean
distance method. The primary meteorological data that influ-

FIGURE 1 Meteorological information and load characteristics.

FIGURE 2 Spatio-temporal interaction diagram of multi-dimensional
meteorological information.

ences the power load for each season is chosen; (2) As shown
in Figure 2, based on the Copula theory, the spatial-temporal
correlation analysis of the primary meteorological information
from meteorological stations in various distribution areas and
the power load is conducted to determine their correlation
degree, respectively; (3) Choosing the meteorological station
data with the highest correlation with the power load to obtain
the meteorological information fusion result and form the
influencing factor matrix.

2.3 Spatio-temporal fusion of
multi-dimensional meteorological information
based on Copula theory

In Figure 3a, the square Euclidean distance value of each Copula
function for the spatio-temporal fusion of multi-dimensional
meteorological data from March to May (Spring) is displayed.
The corresponding thermodynamic diagram with load is cre-
ated for each meteorological information sequence by choosing
the best Copula function using the least Euclidean distance
method, as shown in Figure 3b. The correlation degree is indi-
cated by each colour block in the figure; the deeper the colour
block, the higher the correlation. The correlation degree, which
can be employed as a load influencing factor, is larger than or
equivalent to 0.3 [21].

The strongest correlation, 0.589, between surface tempera-
ture and load may be found in Figure 3b. In addition, there is a
strong correlation between load and temperature at the height
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4650 WANG ET AL.

FIGURE 3 Spatio-temporal fusion of multi-dimensional meteorological information based on Copula theory. (a) Square Euclidean distance of each Copula
function under different meteorological information. (b) Copula-related thermodynamic diagram of influencing factors.

of 2 m, precipitation, dew point temperature, east wind speed,
net sunshine intensity, total sunshine intensity, and ultraviolet
rays intensity. Since there are high mutual correlations between
temperature at the height of 2 m, surface temperature, and dew
point temperature, and between net sunlight intensity, total sun-
light intensity, and ultraviolet rays intensity, to reduce the input
dimensionality, they can be considered a class of meteorological
information respectively, and represented by the meteorological
information with the highest correlation to the load. As a
result, the primary meteorological data are the surface tem-
perature, precipitation, the east wind speed, and net sunshine
intensity.

The data from meteorological stations FA–FH are then
filtered and spatial-temporally merged, as indicated in Table 1,
by the spatial-temporal correlation between the primary mete-
orological information of each meteorological station and the
electrical load. An influencing factor matrix is created using the
following variables: FA surface temperature, FC precipitation,

FF east wind speed, and FG net sunshine intensity. The anal-
ysis procedure is the same in the summer, fall, and winter as
described above.

3 VARIATIONAL MODAL
DECOMPOSITION AND PREDICTION
MODEL

3.1 Variational mode decomposition

The electrical power demand is affected by a variety of factors,
such as the weather, holidays etc., which exacerbates its non-
linear and non-stationary characteristics and makes projections
more challenging [22]. Power load data can be deconstructed
into modal components with different frequencies using VMD
to lessen their complexity and non-stationary characteristics
[23, 24].
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TABLE 1 Correlation coefficient of each weather station.

Meteorological stations Surface temperature Rainfall Eastward wind speed Net sunshine intensity

FA 0.431 0.354 0.418 0.481

FB 0.364 0.410 0.391 0.443

FC 0.407 0.519 0.367 0.371

FD 0.271 0.342 0.443 0.218

FE 0.349 0.274 0.317 0.344

FF 0.212 0.412 0.510 0.319

FG 0.371 0.334 0.271 0.541

FH 0.228 0.419 0.329 0.351

Assume that the input signal f(t) is decomposed into k modes
uk(t), and Hilbert transformation is performed for each mode
to obtain the analytic signal of uk(t). We have the following
calculation formula:

⎧⎪⎨⎪⎩
min

{uk},{𝜔k}

∑
k

‖‖‖𝜕t [(𝛿(t ) +
j

𝜋t
) × uk(t )]e− j𝜔kt‖‖‖2

s.t .
∑

k
uk(t ) = f (t )

(3)

where {uk} and {ωk} are the modal functional and central fre-
quency of the kth IMF component, and δ(t) is the unit impulse
signal.

Using the augmented Lagrange function to solve Equa-
tion (3), we obtain

L({uk}, {𝜔k}, 𝜆) = 𝛼

K∑
k=1

‖‖‖‖‖𝜕t

[(
𝛿(t ) +

j

𝜋t

)
× uk(t )

]
e− j𝜔kt

‖‖‖‖‖
2

+

‖‖‖‖‖‖ f (t ) −
K∑

k=1

uk(t )
‖‖‖‖‖‖

2

+

⟨
𝜆(t ), f (t ) −

K∑
k=1

uk(t )

⟩
(4)

where α denotes a penalty parameter, λ(t) represents a
Lagrangian multiplier, and K is the number of modal decom-
position.

Then, the alternating direction method of multipliers
(ADMM) is adopted to solve Equation (4). The iterative
formulas of which can be deduced as follows:

ûn+1
k

(𝜔) =
f̂ (𝜔) −

∑
i≠k

ûi (𝜔) + �̂�(𝜔)∕2

1 + 2𝛼(𝜔 − 𝜔k )2
(5)

𝜔n+1
k

=
∫ ∞

0
𝜔 ||ûk(𝜔)|| d𝜔

∫ ∞

0
||ûk(𝜔)||2d𝜔

(6)

where ûn+1
k

(𝜔) is the Wiener filter results corresponding to
IMF components, and 𝜔n+1

k
is the centre frequency of the

components.

3.2 Marine predator algorithm

The marine predator algorithm replicates the differential mobil-
ity of active and passive predators in marine animals at different
velocities to enhance the merit-seeking capability of the algo-
rithm in a parallel architecture [25, 26]. The optimal foraging
strategies of marine predators are Lévy wandering and Brow-
nian wandering, which allow the algorithm to seek merit both
locally and globally. The mathematical model of the MPA
algorithm is as follows:

Firstly, the prey matrix P is initialized. The following equation
is used to establish each element Xij in the matrix:

Xi j = Xmin + rand (0, 1) ⋅ (Xmax − Xmin) (7)

where Xmax and Xmin are the upper and lower bounds of the
solution, respectively. rand(0,1) refers to a random coefficient in
the range of (0,1).

The prey matrix P is obtained as follows:

P =

⎡⎢⎢⎢⎢⎣
X1,1 X1,2 ⋯ X1,d

X2,1 X2,2 ⋯ X2,d

⋮ ⋮ ⋮ ⋮

Xn,1 Xn,2 ⋯ Xn,d

⎤⎥⎥⎥⎥⎦
(8)

where n is the number of search agents and d is the position of
each dimension.

The fitness value is calculated for each individual
Xi = [Xi,1,Xi,2,…,Xi,d] in each prey matrix P. The top predator
matrix E is obtained by copying n copies of the individual Xi

I

with the best fitness

E =

⎡⎢⎢⎢⎢⎣
X I

1,1 X I
1,2 ⋯ X I

1,d

X I
2,1 X I

2,2 ⋯ X I
2,d

⋮ ⋮ ⋮ ⋮

X I
n,1 X I

n,2 ⋯ X I
n,d

⎤⎥⎥⎥⎥⎦
(9)

During the optimization process, t denotes the current
number of iterations, tmax denotes the maximum number of iter-
ations, and the optimization search process is divided into three
stages, the locally optimal solution is disturbed using the fish
aggregation devices (FADs) effect, and the post-perturbation
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fitness is calculated to update the iterative process. The moving
step of prey matrix P and top predator matrix E in the iterative
process is denoted by di. RL denotes Lévy motion, RB denotes
Brownian motion, and the Kronecker product of prey and top
predator under the two wandering modes and three stages is
used as the influencing factor of the moving step di.

Phase 1: When t < tmax/3 is a high-velocity ratio stage, the
top predator gives up hunting, the prey for Brownian motion,
the mathematical expression is as follows:

Pi+1 = Pi + p ⋅ R ⊗ di (10)

di = RB ⊗ (Ei − RB ⊗ Pi ), i = 1, … , n (11)

where p is taken as a constant 0.5, R is a uniform random num-
ber between 0 and 1, Pi and Ei are the prey position, and top
predator position at the current moment t, respectively.

Phase 2: When tmax/3 < t < 2tmax/3 is the equal-velocity
ratio phase, the population is updated in two parts: the first
half of the population is the Lévy motion population, which is
responsible for exploitation, and the second half of the popula-
tion is the Brownian motion population, which is responsible
for exploration. The parallel architecture of the MPA algo-
rithm is reflected by this evenly divided population, and the
mathematical expression of this phase is shown as follows:

Pi+1 =

{
Pi + p ⋅ R ⊗ di i = 1, … , n∕2
Pi + p ⋅ CF ⊗ di i = n∕2, … , n

(12)

di =

{
RL ⊗ (Ei − RL ⊗ Pi ), i = 1, … , n∕2
RB ⊗ (RB ⊗ Ei − Pi ), i = n∕2, … , n

(13)

CF = (1 − t∕tmax)
2t∕tmax (14)

where p is taken as 0.5 as above, and CF is the adaptive
coefficient to control the movement step of the predator.

Phase 3: When t > 2tmax/3 is the low-velocity ratio stage, the
prey adopts the same Lévy motion as the top predator for move-
ment, and the mathematical expression at this time is shown as
follows:

Pi+1 = Ei + p ⋅CF ⊗ di (15)

di = RL ⊗ (RL ⊗ Ei − Pi ), i = 1, … , n (16)

Furthermore, FADs or eddy formation effect usually alters
the foraging behaviour of marine predators, and this strategy
allows the algorithm to avoid local extremes as much as possible
during the iterative process in order to achieve better optimiza-
tion results. The following are the mathematical expressions:

Pi+1 =

{
Pi +CF ⋅ P0 ⊗ U, r ≤ pF

Pi +
[
pF(1 − r ) + r

]
(Pr1 − Pr2 ), r > pF

(17)

where U is a randomly generated binary vector, pF is the per-
turbation probability factor, which takes the value of 0.2, r is a
uniform random number from 0 to 1, and the Pr1 and Pr2 are the
randomly removed individuals in the prey matrix, respectively.

3.3 MPA-based VMD optimization method

In the parameter initialization process of VMD, two important
parameters, penalty factor α and the number of decompositions
k, need to be adjusted first. If the value of k is too small, the
decomposition is incomplete and will cause information loss;
conversely, over-decomposition will occur [27, 28]. The penalty
factor α mainly affects the bandwidth of the decomposed spec-
trum of each mode and the degree of convergence of the
algorithm [29]. Artificially set parameters make the decompo-
sition structure subjective; for this reason, this paper proposes
to optimize the parameters of VMD using the MPA algorithm.

3.3.1 MPA optimization algorithm tests

VMD parameter optimization can be considered a two-
dimensional function optimization problem, and to verify the
advantage of MPA in this optimization problem, optimization
experiments are performed for the function in Equation (14):

f = x2 − 10 cos(2𝜋x ) + y2 − 10 cos(2𝜋y) + 10 (18)

PSO, Sparrow Search Algorithm (SSA), and MPA were
selected to find their minimum values, respectively. The pop-
ulation sizes of the three algorithms are set the same to ensure
the rationality and fairness of the experiments: the population
size is set to 20 and the number of iterations is set to 500. Both
the individual learning factor and the social learning factor of
the PSO algorithm are set to 1.5, the safety threshold of Spar-
row Search ST is 0.8, the discoverer is 20% of the population
size, and the number of vigilantes is set to 5; the FAD of MPA
algorithm is 0.2. The convergence curves corresponding to each
algorithm are depicted in Figure 4.

From Figure 4b, it can be seen that compared with the PSO
and SSA algorithms, the MPA algorithm has a faster search
speed and the fastest convergence; in the case of 500 itera-
tions, the PSO search result is 0.0234, the SSA search result
is 0.0127, and the MPA algorithm search result is 1.2347 ×
10−5, which is closer to the global optimum. To sum up, MPA
has a better optimization efficiency. Therefore, the MPA algo-
rithm is used to optimize the key parameters of VMD to reduce
the loss of the decomposition process, and the subjectivity of
the decomposition structure, and improve the decomposition
effect.

3.3.2 Design of the fitness function

The convergence speed of the optimization algorithm and
the solution of the optimal solution position is influenced by
the fitness function. The PE algorithm can better reflect the
change pattern and complexity of the time series [30–32], and
the alignment entropy algorithm is used to construct the fitness
function in this paper.

Let the time series be decomposed into {y(1),y(2),…,y(k)}
components and {s(t),t = 1,2,…,N} be the time series of IMF,
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FIGURE 4 Comparison of optimization algorithm test. (a) Benchmark
function 3D model. (b) MPA, PSO, SSA convergence curves. MPA, marine
predators algorithm; PSO, particle swarm optimization; SSA, sparrow search
algorithm.

and the series be processed using phase space reconstruction

x j = [s( j ), s( j + 𝜏), … , s( j + (m − 1) 𝜏)] (19)

where m is the number of dimensions, j = 1,2,…,N−(m−1)
τ, and τ is the delay time. The sequence of the reconstructed
matrix after sorting is

S (g) = ( j1, j2, … jm ) (20)

where g= 1,2…,l. After calculating the probability values P1, P2,
…, Pl for the occurrence of each symbol in S(g), we then obtain
the PE of the sequence {s(t),t = 1,2,…,N}

Hp(m̂) = −

l∑
g=1

PgInPg (21)

FIGURE 5 Schematic diagram of LSTM structure. LSTM, long
short-term memory.

The normalized form of the PE HP(m) is obtained as

HP =
HP

In(m!)
(22)

The PE HP value measures the degree of randomness of the
sequence, with larger values indicating a more random sequence
or smaller values indicating a more regular sequence.

From Equations (17) and (18), the magnitude of each com-
ponent PE is calculated as {PE(1),PE(2),…,PE(k)}, respectively.
To sum the PE values of each component, WPE is utilized.
The average amplitude ratio of each component to the original
sequence is used to calculate the weight value. The WPE value
is calculated, and the fitness function of the MPA algorithm is
set to the WPE value, so that the VMD penalty factor α and the
number of decompositions k can be ideally determined [29, 30].

3.4 LSTM neural network forecasting

In the LSTM network, the hidden layer neurons of the tradi-
tional RNN network are replaced by a memory unit [33–35].
The structure of this memory unit consists of input gates, for-
getting gates, and output gates. The cell transmits data over
arbitrary time periods. The gates follow the input and output
data flow from the cell. The LSTM network can be used to
reduce difficulties with gradient disappearing and exploding that
were discovered by RNN. The structure of LSTM is shown in
Figure 5.

In Figure 5, xt denotes the current input information, st-1 is
the state of the implied layer at the previous moment, and the
quantities are calculated as

ft = sigmoid (Wfxxt +Wfsst−1 + b f ) (23)

it = sigmoid (Wixxt +Wisst−1 + bi ) (24)
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4654 WANG ET AL.

c′t = tanh(Wcxxt +Wcsst−1 + bc ) (25)

ot = sigmoid (Woxxt +Wosst−1 + bo) (26)

c′t = tanh(ct ) (27)

where Wfx, Wix, Wcx, Wox, Wfs, Wis, Wcs, and Wos are the
weight matrices, bf, bi, bc, and bo are the bias terms. Moreover,
ft, it, and ot are real numbers between [0,1], which determine
the forgetting ratio of c, thus obtaining the st corresponding to
moment t:

ct = ft ct−1 + it c′t (28)

st = ot c′t (29)

3.5 MPA-LSSVM neural network

Least-Squares Support Vector Machine (LSSVM) is a better
model obtained by optimizing the Support Vector Machine
(SVM) model to improve the convergence speed and the accu-
racy of the final prediction results during the iterative process
[36–38]. However, the selection of parameters in the LSSVM
model has a great impact on the performance of the model,
so this paper proposes MPA to optimize the parameters of the
LSSVM model [39]. The optimization model of LSSVM is as
follows:

min
𝜔,𝜉,b

J (𝜔, 𝜉 ) =
1
2
𝜔T 𝜔 +

𝛾

2

N∑
i=1

𝜉2
i

s.t . yi = 𝜔T 𝜑(xi ) + b + 𝜉i , i = 1, 2, …, n (30)

The optimal MPA-LSSVM model is obtained by itera-
tively finding the optimal MPA-LSSVM model based on the
MPA algorithm for the regularization parameter γ and the
kernel function parameter σ. The optimization steps are as
follows:

1. Initialize the MPA algorithm’s parameters, such as popula-
tion size, position, iterations, and so forth.

2. Determine the fitness function and calculate the fitness.
3. Update the parameters and calculate the fitness, compare the

historical optimum with the current fitness, and if the latter is
greater, set the current top predator position as the optimum
to achieve the position update.

4. Determine whether the maximum number of iterations is
reached, if not, return to step 3 until the maximum number
of iterations is reached.

5. Output the optimal regularization parameter γ and the kernel
function parameter σ to complete the MPA-LSSVM model,
and bring the optimal parameters into the LSSVM model to
complete the prediction of temporal data.

4 SF-MPA-VMD COMBINED
FORECASTING MODEL

4.1 Short-term power load forecasting
model

Figure 6 depicts the general framework of multi-dimensional
meteorological information spatio-temporal fusion and MPA-
VMD decomposition of the short-term load combination
forecasting model used in this paper. The Copula theory is
used to calculate the influencing factor matrix by examining the
spatio-temporal correlation between meteorological data and
the power load of weather stations in various regions. When
combined with MPA-VMD, the IMF components are obtained
by decomposing the load data from the model input matrix, and
the input matrix is divided into training and testing. The training
set optimizes the LSTM and MPA-LSSVM model parameters to
obtain the best prediction model and predicted value for each
IMF component, the test set selects the prediction model corre-
sponding to each frequency component based on the evaluation
index, and the test set feeds each frequency component into
the corresponding prediction model. The prediction model is
reconstructed to obtain the final prediction result.

4.2 Evaluation index of prediction results

In this experiment, there are three error statistics, namely root
mean square error (RMSE), prediction efficiency (PE), and
mean absolute percentage error (MAPE), which were used as
evaluation indicators of the prediction results

MAPE =
1
n

n∑
i=1

‖‖‖‖ ŷi − yi

yi

‖‖‖‖ × 100% (31)

RMSE =

√∑n

i=1 (ŷi − yi )
2

n
(32)

PE =

(
1 −

∑n

i=1
(yi − ŷi )

2∑n

i=1
(yi − ȳi )

2

)
× 100% (33)

where ŷi is the predicted value of load power, yi is the corre-
sponding true value of load power, and n is the number of
prediction points.

5 ANALYSIS OF ALGORITHMS

5.1 Model sources and data preparation

The experimental data include 35,040 points of power load
data sampled every 15 min from 1 March 2020 to 28 February
2021, for the city of Yichang in Hubei province, in the middle
of China, as well as the historical meteorological data sampled
every 15 min by eight meteorological stations in the region.
As shown in Figure 1, the data set contains the contents.
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WANG ET AL. 4655

FIGURE 6 Short-term load combination forecasting model based on multi-dimensional meteorological information spatio-temporal fusion and MPA-VMD.
MPA, marine predators algorithm; VMD, variational mode decomposition.

Considering the characteristics of power load in each season,
we divide the data set into four periods: March to May (Spring),
June to August (Summer), September to November (Autumn),
and December to February (Winter). Each period data was
divided into weekdays and holidays according to weekdays or
not. The precede 80% of the data in each period is taken as the
training set, and the subsequent 20% is taken as the test set.
Each data point is normalized to [0,1] to remove the influence
of varying factor magnitudes. The influence factor matrix is
then created using the multi-dimensional meteorological infor-
mation fusion method described in Section 1.3. The input set is
made up of MPA-VMD load decomposition components. The
single-step rolling forecast is then used to predict the load value
at 96 points for the next 24 h. The model is updated with the
projected load values as new features, and the predicted load
values are then acquired and back-normalized.

5.2 MPA-VMD load series decomposition

To demonstrate the benefits of MPA-VMD load data decom-
position, the VMD parameters were obtained by optimizing the
objective function constructed in Section 3.3.2 using PSO, SSA,

and MPA, and the load sequence was decomposed into the cor-
responding components, and the resulting parameter values and
load decomposition loss values are shown in Table 2.

As shown in Table 2, compared with the empirical set-
ting parameters and the PSO and SSA setting parameters, the
decomposition loss is smaller using MPA setting parameters,
which is reduced by 85.39%, 80.79%, and 69.22%, respectively.
From the above analysis, it can be concluded that the MPA-
VMD decomposition can reduce the decomposition loss and
improve the decomposition effect by adaptively determining the
optimal parameters of VMD while avoiding the randomness
brought by the empirical setting parameters, and the decompo-
sition sequence obtained by decomposing the load data using
the MPA-VMD method is shown in Figure 7.

5.3 Short-term load forecasting results

5.3.1 SF-MPA-VMD combined forecasting

The high- and low-frequency components of the training set
were brought into the combined LSTM and MPA-LSSVM pre-
diction models, and the prediction results were obtained by
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4656 WANG ET AL.

TABLE 2 Decomposition parameter setting and experimental results of VMD.

Decomposition parameters Results of decomposition

Method of decomposition Number of decomposition k Penalty factor α Decomposition of loss(MW)

VMD 5 1000 20.33

PSO-VMD 15 2546 15.46

SSA-VMD 13 2358 9.65

MPA-VMD 9 1443 2.97

MPA, marine predators algorithm; PSO, particle swarm optimization; SSA, sparrow search algorithm; VMD, variational mode decomposition.

FIGURE 7 Load data decomposition.

TABLE 3 Evaluation index of each prediction model.

LSTM MPA-LSSVM

IMF RMSE/MW MAPE /% PE /% RMSE /MW MAPE /% PE /%

IMF1 7.169 3.358 83.413 5.073 3.147 87.374

IMF2 1.493 2.599 89.475 0.158 0.672 98.453

IMF3 0.573 1.866 94.264 0.701 1.975 92.716

IMF4 0.349 1.347 96.724 10.967 3.523 85.134

IMF5 0.350 1.494 95.721 11.262 3.597 85.472

IMF6 0.524 1.948 93.176 7.872 3.367 86.436

IMF7 0.461 1.765 94.192 6.002 3.231 87.154

IMF8 0.481 1.895 94.656 3.716 2.962 89.575

IMF9 0.290 0.738 98.773 1.051 2.256 89.726

IMF, intrinsic mode functions; LSTM, long short-term memory; MAPE, mean absolute percentage error; PE, prediction efficiency; RMSE, root mean square error.

using the LSTM and MPA-LSSVM models for each compo-
nent, and the evaluation indexes RMSE and MAPE values of
each component prediction result are shown in Table 3.

As shown in Table 3, for the IMF1 and IMF2 compo-
nents, the RMSE, MAPE, and PE values of the predicted
values obtained using MPA-LSSVM forecasting are smaller

than those of the LSTM forecasting model, and for the
IMF3-IFM9 components, the RMSE and MAPE values of
the predicted values obtained using the LSTM forecasting
model are smaller than those of the MPA-LSSVM, so these
two evaluation indexes are considered together to obtain
IMF1-IMF2 by using the MPA-LSSVM prediction model, and
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WANG ET AL. 4657

FIGURE 8 SF-MPA-VMD combined forecasting component and load forecasting result. (a) SF-MPA-VMD-combined prediction results for each component.
(b) SF-MPA-VMD-combined forecast load prediction results. MPA, marine predators algorithm; VMD, variational mode decomposition; SF, spatio-temporal fusion.

IMF3-IMF9 by using the LSTM prediction model. Based on
the above method, the prediction results of each component
on 30 April 2021 are obtained as shown in Figure 8a, and
the overall load prediction results are obtained by recon-
structing the component prediction results as shown in
Figure 8b.

5.3.2 Comparison with other methods

To verify the effectiveness of the proposed method, the fol-
lowing three sets of comparative experiments are designed to
predict the validation set load data and conduct comparative
analysis.

Comparison experiment 1
To verify the influence of the spatio-temporal fusion of multi-
dimensional meteorological information on the accuracy of

TABLE 4 Comparison of prediction evaluation indexes between single
meteorological station and spatio-temporal fusion.

Model RMSE/MW MAPE/% PE/%

MPA-VMD-LSTM 25.321 0.964 96.457

SF-MPA-VMD-LSTM 11.946 0.494 98.981

LSTM, long short-term memory; MAPE, mean absolute percentage error; MPA, marine
predators algorithm; PE, prediction efficiency; RMSE, root mean square error; SF, spatio-
temporal fusion; VMD, variational mode decomposition.

load forecasting, the meteorological data for which feature
selection and spatio-temporal fusion were used as two sets of
influencing factors, and the components obtained from the
MPA-VMD decomposition formed the input matrix of the
LSTM forecasting model to obtain the MPA-VMD-LSTM and
SF-MPA-VMD-LSTM forecasting results, and the evaluation
indicators are shown in Table 4.
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4658 WANG ET AL.

TABLE 5 Comparison of MPA optimized VMD decomposition load
forecasting evaluation indexes.

Model RMSE/MW MAPE/% PE/%

SF-VMD-LSTM 23.622 0.883 97.378

SF-PSO-VMD-LSTM 21.564 0.821 97.448

SF-SSA-VMD-LSTM 18.463 0.762 97.846

SF-MPA-VMD-LSTM 11.946 0.494 98.981

LSTM, long short-term memory; MAPE, mean absolute percentage error; MPA, marine
predators algorithm; PE, prediction efficiency; PSO, particle swarm optimization; RMSE,
root mean square error; SF, spatio-temporal fusion; SSA, sparrow search algorithm; VMD,
variational mode decomposition.

From Table 4, the influencing factors matrix formed through
the spatio-temporal fusion of multi-dimensional meteorologi-
cal information, compared with the influencing factors matrix
formed by feature selection only; the prediction evaluation
indexes of the proposed model such as the value of RMSE
are reduced by 13.375 MW, the value of MAPE is reduced
by 0.47%. The PE value is improved by 2.52%. It is hereby
proved that the accuracy of load forecasting can be enhanced
by spatio-temporal fusion of multi-dimensional meteorological
information effectively.

Comparison experiment 2
To verify the effectiveness of the MPA-VMD decomposition
signal, the meteorological data after the spatio-temporal fusion
of multi-dimensional meteorological information is used as the
input matrix of influence factors, and the load data are pro-
cessed by PSO-VMD, SSA-VMD, MPA-VMD decomposition,
and empirically set VMD parameter decomposition respectively.
Four groups of decomposition results are obtained, and each
constitutes an input matrix with influence factors and is input
to the LSTM prediction model The prediction results of the
four decomposition methods, SF-PSO-VMD-LSTM, SF-SSA-
VMD-LSTM, SF-MPA-VMD-LSTM, and SF-VMD-LSTM,
were obtained, and the evaluation indexes were compared as
shown in Table 5.

From the evaluation results in Table 5, it can be seen that the
prediction ability of the prediction model is further improved
after optimizing the VMD decomposition parameters by PSO,
SSA, and MPA. Compared with the traditional empirical set-
ting of VMD parameters, PSO-VMD and SSA-VMD for load
data decomposition prediction, the MPA-VMD method pro-
posed in this paper is optimal for all three evaluation indicators,
indicating that MPA has the best finding effect and effectively
improves the prediction accuracy.

Comparison experiment 3
To verify the influence of the combined forecasting model
on the accuracy of load forecasting, the meteorological data
after the spatio-temporal fusion of multi-dimensional mete-
orological information is used as the influencing factor, and
the load components decomposed by MPA-VMD form the
input matrix, which is the input to the LSTM forecast-
ing model, MPA-LSSVM forecasting model, and combined

TABLE 6 Comparative results of different forecasting methods.

Model RMSE /MW MAPE /% PE /%

MPA-VMD-LSTM 25.321 0.964 96.457

SF-VMD-LSTM 23.622 0.883 97.378

SF-PSO-VMD-LSTM 21.564 0.821 97.448

SF-SSA-VMD-LSTM 18.463 0.762 97.846

SF-MPA-VMD-MPA-LSSVM 18.335 0.625 98.435

SF-MPA-VMD-LSTM 11.946 0.494 98.981

The proposed 8.207 0.333 99.356

LSTM, long short-term memory; MAPE, mean absolute percentage error; MPA, marine
predators algorithm; PE, prediction efficiency; PSO, particle swarm optimization; RMSE,
root mean square error; SF, spatio-temporal fusion; SSA, sparrow search algorithm; VMD,
variational mode decomposition.

LSTM and MPA-LSSVM forecasting model, and the forecast-
ing results of each model are obtained. The prediction results of
SF -MPA-VMD-LSTM, SF-MPA-VMD-MPA-LSSVM, and the
method SF-MPA-VMD-combination of this paper are shown in
Figure 9.

Summarizing the above three sets of experiments, the com-
parison of prediction evaluation indexes for a total of seven
prediction methods in three groups of comparison tests was
obtained as shown in Table 6.

As shown in Figure 9 and Table 6, compared with other
forecasting models, the RMSE of the SF-MPA-VMD-combined
forecasting model proposed in this paper decreases by 17.114,
15.415, 13.357, 10.256, 10.128, and 3.739 MW, respectively,
from the perspective of the average absolute percentage error.
In terms of the average absolute percentage error, the MAPE
values of the proposed model decrease by 65.46%, 62.29%,
59.44%, 56.30%, 46.72%, and 32.59%, respectively. From the
PE perspective, the forecasting model proposed in this paper
is better than other models. In summary, the multi-dimensional
meteorological information spatio-temporal fusion and MPA-
VMD decomposition short-term load combination forecasting
model proposed in this paper has better stability and the
accuracy of load forecasting has been significantly improved.

Predictive model performance comparison experiments
To verify the impact of the forecasting model on the accu-
racy of the load forecast, the prediction models proposed in
this paper are compared with XGBoost, CNN-BiLSTM, LSTM,
and GBDT models. The prediction results of each model
are obtained as shown in Figure 10, and the comparison of
prediction evaluation indicators is shown in Figure 11.

As can be seen from Figures 10 and 11, compared to other
prediction models, the RMSE of the prediction models pro-
posed in this paper decreased by 4.3799, 1.4869 , 1.4737, and
0.2464 MW, respectively. MAPE values decreased by 32.7678%,
15.0158%, 14.6469%, and 3.3675% respectively. From a PE
value perspective, the proposed method in this paper has the
largest PE value. In summary, the short-term electricity load
forecasting method proposed in this paper has better stabil-
ity and the accuracy of load forecasting has been significantly
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WANG ET AL. 4659

FIGURE 9 Comparison of load forecasting
effect.

FIGURE 10 Comparison of load forecasting
effect.

FIGURE 11 Different prediction model evaluation indicators.

improved. New methods are provided for power load fore-
casting to ensure safe and stable operation of the power
system.

Model generalization ability test
To verify the generalization ability of the model proposed in
this paper, choose 12 and 16 May 2020 as spring weekday and
holiday forecast samples, 27 and 29 August 2020 as summer
weekday and holiday forecast samples, 24 and 28 November
2020 as autumn weekday and holiday forecast samples, and 22
and 26 February 2021 as winter weekday and holiday forecast
samples, respectively, the load forecast results are obtained as
shown in Figure 12, and the evaluation indexes are shown in
Figure 13.

From Figures 12 and 13, it can be seen that the proposed
forecasting model in this paper has the best RMSE, MAPE,
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4660 WANG ET AL.

FIGURE 12 Load forecast results of working days and rest days by season in Spring, Summer, Autumn, and Winter.

and PE values for weekday and holiday forecasting in Spring,
Summer, Autumn, and Winter seasons, which shows that the
model is suitable for electrical load forecasting in different
seasons and fully reflects the model generalization ability and
forecasting performance.

In summary, the proposed multidimensional meteorological
information spatio-temporal fusion and MPA-VMD short-term
load combination prediction model has good stability and the
generalization ability and the load prediction accuracy have been
significantly improved.

 17518695, 2023, 20, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/gtd2.12992 by C

urtin U
niversity L

ibrary, W
iley O

nline L
ibrary on [24/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://ietresearch.onlinelibrary.wiley.com/action/rightsLink?doi=10.1049%2Fgtd2.12992&mode=


WANG ET AL. 4661

FIGURE 13 Forecast evaluation of working days and rest days by season in spring, summer, autumn, and winter. (a) RMSE values for weekdays and holidays
by season, spring, summer, fall, and winter. (b) MAPE values for weekdays and holidays by season, spring, summer, fall, and winter. (c) PE values for weekdays and
holidays by season, spring, summer, fall, and winter. MAPE, mean absolute percentage error; PE, prediction efficiency; RMSE, root mean square error.
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4662 WANG ET AL.

The forecasting method is applied to the local power grid
load forecasting, which has achieved excellent results, improved
the power grid operation efficiency, and reduced the work
intensity of the operation and maintenance personnel.

6 CONCLUSIONS

To improve the prediction accuracy of power load, this paper
considers the characteristics of the load and meteorological
information in both time and space dimensions and designs a
combined MPA-VMD short-term load prediction model in the
time dimension. In the spatial dimension, the meteorological
information such as wind speed, wind direction, temperature,
and sunshine intensity from multiple meteorological stations
are temporally and spatially fused with the electrical load
information to forecast the load according to the meteorolog-
ical factors in the region, and the following conclusions are
obtained based on the comparative analysis of experimental
results.

1. Based on the Copula theory, the spatio-temporal fusion of
power load and meteorological data from multiple mete-
orological stations, and the minimum Euclidean distance
method to select the optimal Copula function for non-linear
coupling analysis of meteorological information series and
load series in each season can effectively reduce the feature
dimension and improve the PE and accuracy.

2. The MPA search algorithm has better search capability and
speed than the PSO algorithm and the SSA algorithm, and
can effectively avoid falling into local optimum in the search
process. MPA is used for VMD key parameter optimiza-
tion, compared with PSO, SSA optimized VMD parameters,
and empirically set VMD parameters, the RMSE and MAPE
values are optimal, fully demonstrating the necessity of
optimizing VMD parameters, and also proving the effective-
ness of constructing the objective function according to the
ranked entropy algorithm, and the superiority of MPA opti-
mized VMD parameters to achieve adaptive decomposition
of load sequences.

3. Using a combination of LSTM and MPA-LSSVM fore-
casting methods, the experimental results show that the
proposed model has better forecasting accuracy and gen-
eralization ability by comparing with traditional forecasting
methods and forecasting weekdays and holidays in Spring,
Summer, Autumn, and Winter.
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