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ABSTRACT

Delay embedding methods are a staple tool in the field of time series analysis and prediction. However, the selection of embedding parameters
can have a big impact on the resulting analysis. This has led to the creation of a large number of methods to optimize the selection of
parameters such as embedding lag. This paper aims to provide a comprehensive overview of the fundamentals of embedding theory for
readers who are new to the subject. We outline a collection of existing methods for selecting embedding lag in both uniform and non-uniform
delay embedding cases. Highlighting the poor dynamical explainability of existing methods of selecting non-uniform lags, we provide an
alternative method of selecting embedding lags that includes a mixture of both dynamical and topological arguments. The proposed method,
Significant Times on Persistent Strands (SToPS), uses persistent homology to construct a characteristic time spectrum that quantifies the
relative dynamical significance of each time lag. We test our method on periodic, chaotic, and fast-slow time series and find that our method
performs similar to existing automated non-uniform embedding methods. Additionally, n-step predictors trained on embeddings constructed
with SToPS were found to outperform other embedding methods when predicting fast-slow time series.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0137223

Embedding methods are commonly used to analyze time series

whose full system state cannot be fully or directly observed.

However, most embedding methods require the careful selection

of parameters to achieve a faithful reconstruction of the sys-

tem dynamics. One common class of embedding methods—time

delay embedding—requires careful selection of embedding lags.

In this paper, we provide an outline of embedding theory and

a collection of existing methods and principles for guiding the

selection of embedding lags. Finally, we present an argument for

the usage of non-uniform embedding and propose a new persis-

tent homology-based method, SToPS, to inform the selection for

multiple embedding lags.

I. THE CASE FOR EMBEDDING

Since the significant results proposed by Whitney1 and Takens,2

the ideas of mathematical embedding have pervaded through almost
all aspects of the nonlinear dynamics literature. The related theo-
rems were then subsequently formalized, codified, and discussed in
the seminal paper “Embedology” by Sauer, Yorke, and Casdagli.3

This paved the way for the development of numerous embed-
ding techniques such as the method of derivatives,4 time delay
embedding,2,5 and PCA embedding,6 among others, that have been
subsequently applied to a wide variety of study areas. Today, the
embedding approach remains an invaluable tool in the study of
nonlinear time-series analysis.
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A time series x(t) ∈ R
m may be generically viewed as the prod-

uct of a data-generating process consisting of successive, though
not always regular, observations of some dynamical process with
state Es(t) ∈ R

n via a measurement function h : R
n → R

m. Typically,
m < n as the full state of the underlying dynamical process cannot
be observed. For the purposes of illustration, we will consider in this
paper the simplest case where x(t) is scalar (i.e., m = 1).

The main goals in the time series analysis often fall into two
main categories: system identification or classification and pre-
diction. The aims of the former are focused on characterizing
and understanding the dynamics and operating mechanisms of
the underlying dynamical system. This can range from the study
of system invariants such as Lyapunov spectra7,8 and correlation
dimension9–11 to the bifurcation analysis.11,12 The latter task of time-
series prediction has a more practical aim that is clearly stated in its
name: “given some history x(t0) · · · x(t), find the best predicted esti-
mates of x(t + τ).” It is worth clarifying that these two areas are not
exclusive and often work synergistically. However, we will focus on
the latter problem of time series prediction in this paper.

Though simple in its aim, practically fulfilling the task of
time series prediction presents many challenges. Outside the study
of simple toy models, many interesting systems exhibit high-
dimensional and also chaotic behavior.13–15 For the cases of time
delay systems, the dimension of the system dynamics may not even
be finite. The potential inaccessibility of the full system state also
adds to the challenge. As such, it is common to reframe the time
series prediction problem in terms of the measurement function
h : R

n → R
m where m < n. Thus, time series prediction can be

rewritten: “given some observed history h(x(t0)), . . . , h(x(t)), pre-
dict the future state x(t + τ).” This can be framed in terms of
probability theory with aim to calculate the conditional probability
P(x(t + τ)|h(x(t0)), . . . , h(x(t))).

Given observational restrictions, it is desirable for any time-
series predictor to extract and utilize as much information that
is contained within the observed time series x(t). Therein lies
the value of embedding, vis-à-vis dimension augmentation. Fortu-
nately, under sufficient precision and noise-free assumptions, Tak-
ens’ embedding theorem guarantees that a time delay embedding
with dynamics 8 defined in a space of sufficiently high dimen-
sion R

d constructed from scalar observed time series is generically
diffeomorphic to the full state space dynamics of the underlying
dynamical system.2 In essence, one can reconstruct a proxy image of
the full state dynamics using only part of the observed system vari-
able. The usual approach to achieve this is to embed the observed
time series into a sufficiently large dimension containing the “full”
state dynamics, learn the state space dynamics or vector field using
one’s favored modeling tool (e.g., neural networks,16,17 reservoir
computing18–20 support vector machines,21,22 etc.), and predict for-
ward, performing all required calculations in the new embedded
space.

Despite the elegance and utility afforded by embedding theo-
rems, their reliance on infinite data precision, length, and noise-free
signals pose practical problems. The effectiveness of embedding is
highly dependent on the choice of embedding parameters used to
augment the data.23,24 For example, in the case of time delay embed-
ding, the selection of time lag25 and embedding dimensions3,26 can
have a profound effect on the quality of resulting reconstruction.

Thus, we may summarize the main challenge of embedding as
the following question: “How do we select good embedding param-
eters?” This will be the focus of our discussion. Numerous methods
have been proposed to tackle this problem ranging from purely sta-
tistical and dynamical arguments such as mutual information11,25

and continuity statistic27 to more purely topological arguments like
distortion,28 noise amplification,28,29 and fill-factor.30 In many cases,
each of these methods only performs well for specific types of
systems and not others.

This paper has three main objectives. First, to provide a simple
overview of the challenges of selecting good embedding parame-
ters. Second, to collate and compare the various popular methods
across the dynamics-topology spectrum that have been proposed to
tackle the problem of embedding parameter selection. We will focus
on the particular case of optimizing time delay embedding. Finally,
to present a different approach based on the growing field of per-
sistent homology—the significance score—that attempts to incor-
porate both dynamical and topological arguments into selection of
embedding parameters.

This paper is structured as follows. We begin in Sec. II by
providing an overview of embedding theory and various com-
mon embedding methods. This is followed by a short discussion
on guiding principles on the selection of embedding parameters
in Sec. III. Sections IV–V introduce several embedding parame-
ter selection methods for both uniform and non-uniform delay
embedding. Finally, we present SToPS in Sec. VIII, a persistent
homology approach to embedding parameter selection, which is our
contribution to the embedding parameter selection problem.

II. EMBEDDING METHODS

Multiple embedding methods exist to perform state space
reconstruction. However, they all aim to perform a similar task,
to augment an observed time series into a high enough dimension
that is useful for describing the underlying dynamics. For complete-
ness, we provide a brief overview on embedding and three common
embedding methods, time delay embedding, derivatives embedding,
and global principal value embedding. However, the ideas present
in this paper will focus on the selection of time delay embedding
parameters. A deeper discussion on other embedding methods can
be found elsewhere.28

A. Embedding theory

For a given dynamical system with state Es(t) with dynamics on
state space S ⊆ R

d and evolution operator f such that,

Es(t + T) = fT(Es(t)), (1)

we can define a measurement function h : R
d → R that simulates

the process of observing the system and extracting information
evaluated at given time steps to produce a time-series,

x(t) = h(Es(t)). (2)

An embedding can be defined as a transformation 9 : R

→ R
m that augments the dimension of the time series using

observed values across some window of time [t1, t2]. For example,

Chaos 33, 032101 (2023); doi: 10.1063/5.0137223 33, 032101-2

© Author(s) 2023

 25 O
ctober 2024 06:12:41

https://aip.scitation.org/journal/cha


Chaos REVIEW scitation.org/journal/cha

uniform delay embedding is given by the following equation:

9(x(t)) = Ex(t) = (x(t), x(t − τ), . . .), (3)

where Ex(t) is the embedding vector with dynamics defined in a
reconstructed state space X ⊆ R

m and a transformed evolution
operator F. If 9 is a valid embedding, Takens’ embedding theorem
guarantees that generically, there exists a diffeomorphism 8 : S
→ X that preserves the dynamics of the system such that,

F = 8 ◦ f ◦ 8−1. (4)

Learning the dynamics along the reconstructed state space F is
equivalent to learning the true system dynamics f (see Fig. 1). There-
fore, the task of time series prediction using embedding simplifies to
learning the evolution operator F where

x(t + T) = 9−1 ◦ FT ◦ 9(x(t)). (5)

B. Time delay embedding

First described by Packard et al.,4 time delay embedding
involves the augmentation of a scalar time series x(t) into a higher
dimension through the construction of delay vector Ex(t) given as

Ex(t) = (x(t), x(t − τ), . . . , x(t − (m − 1)τ )), (6)

where the embedding parameters to be selected are the delay lag τ

and embedding dimension m. According to the guarantees of Tak-
ens’ theorem, any value of τ will yield a valid embedding given
sufficiently large m and measurement values of infinite precision.
However, this is not achievable in practice, and different selections
of delay lag and embedding dimension can yield varying results. A
further discussion of this is given in Sec. III A.

We also note that the task of selecting ideal delay lag τ and
embedding dimension m is not unique to time delay embedding.
Selecting values of τ and m is also key decision in other time
series analysis methods such as permutation entropy31 and ordinal
partition networks.32,33 In both of these instances, a delay vector
is constructed and represented by an encoding based on the size
order of each component. The time series may then be viewed as
transitions between different encoding states and used for further
analysis.

Many automated time-series prediction methods such as recur-
rent neural networks16,17 and reservoir computing18–20,34 may also be
related to delay embedding. In both cases, input time series is fed
into a dynamical network that contains some notion of memory.
The forward propagation of this memory of past states on future
states effectively acts as a time delay embedding with small delay lag
τ and large embedding dimension m.

C. Derivatives embedding

The embedding method of derivatives reconstructs an embed-
ding vector using successively increasing order of time derivatives
from the observed time series.4 This is given by

Ex(t) =

(

x(t),
dx(t)

dt
, . . . ,

dmx(t)

dtm

)

. (7)

Derivatives are taken via numerical approximations. The deriva-
tives embedding method is a valid embedding for sufficiently

large m if one is able to accurately calculate the required
derivatives.

D. Integral-differential embedding

One weakness of the derivatives embedding approach is the
need to evaluate numerical derivatives from data. While this may
be acceptable for the first derivative, approximations of successive
higher order derivatives are generally inaccurate as the signal to
noise ratio tends to be negatively impacted. This is true even for the
cases of very clean datasets.

An alternative to derivatives embedding is integral-differential
embedding.35 This approach avoids the calculation of successive
higher order derivatives by replacing the second-order derivative
with an integral instead. This yields the following embedding con-
struction:

Ex(t) =

(∫ t

−∞

x(t) − 〈x(t)〉t dt, x(t),
dx(t)

dt

)

, (8)

where the first component is first set to zero mean before integra-
tion. The usage of a first-order integral and numerical derivative
results in a degradation of the signal-to-noise ratio by only one order
each for first and third embedded components. This is in contrast
with the derivatives embedding approach where each successive
numerical derivative has a signal-to-noise ratio that is degraded with
increasing orders of magnitude. However, the integral-differential
embedding approach suffers from same noise effects as the pure
derivatives method for higher dimensional embedding. This limits
its applicability to systems where system dynamics are presumed to
be high dimensional.

E. Global principal value embedding

The method of principal value embedding was proposed by
Broomhead and King6 as a modified alternative to time delay
embedding using the theorems by Takens. This method draws upon
the ideas of the principal component analysis36 to find an ideal rota-
tion of time delay embedding with a sufficiently high dimension.
Given a time series x(t) of length NT and a sliding window of length
M, we can construct a collection of N = NT − (M − 1) delay vectors,

X = N−1/2











Ex1

Ex2

...
ExN











, (9)

where Exi is the delay vector constructing using the ith value in the
time series as the first component,

Exi = (x(ti), x(ti−1), . . . , x(ti−(M−1))). (10)

An m × m covariance matrix C can be calculated from X. The
elements Cij of this matrix can be simply given as

Cij = 〈x(t) x(t + (i − j))〉t, (11)

where 〈· · · 〉t denotes a time average. The principal components
of C are then found by calculating its respective eigenvalues and
eigenvectors. Taking the first d principal components correspond-
ing to the desired number of embedding dimension, the eigenvector
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FIG. 1. Schematic of the embedding process and the relationship between its components.

matrix can be used to calculate a projection of X corresponding
to the final embedded coordinates. Readers are advised to refer
elsewhere6,28 for more details.

Principal component value embedding essentially aims to
distill and simplify high-dimensional delay embedding (usually
obtained by taking a large number of lagged components) into a
lower dimensional subspace. The remaining subspaces are argued
corresponding to component directions with little dynamical vari-
ation and importance. One application of this method was as
an attempt to simplify the selection of the optimal embedding
dimension,6 where the ideal embedding dimension m corresponds
to the number of singular values that are distinctly greater than
some “noise floor.” However, this approach has received several
criticisms.37,38 The main of which arguing that the onset of a plateau
noise floor can be attributed to precision and noise strength in the
data, rather than the importance of the corresponding eigenvector
direction.

Within the general context of embedding, Paluš and Dvorák
test the quality of delay embedding with reduced dimension
obtained using the first k principal eigenvector directions.38 The
authors show that reduced dimension embeddings’ estimates of
dynamical invariants such as the correlation dimension vary with
different time delays and the number of components. They argue
that the usage of principal components of the covariance matrix
is restricted to linear correlations. Therefore, while components in
embedding may be independent in the linear sense, they may still
be nonlinearly dependent. Instead, the truncation of embedding
dimensions can result in the exclusion of important nonlinear
components.

The inclusion of large time lags within a given principal com-
ponent direction also may not make much sense for chaotic systems
where temporally close observations decorrelate exponentially in
time. From the perspective of selecting time lags, each principal
component will almost invariably contain contributions from all M
possible lagged components. Apart from the dimensional reduction
argument38 (of which care must be taken in its interpretation), global
principal value embedding does not present any significant differ-
ence to the general time delay embedding with large embedding
dimension m.

III. EMBEDDING CONSIDERATIONS

A. Embedding quality

As previously discussed, the theoretical guarantees of Takens’
fail in the presence of finite precision and noise23,25 leading to the
concept of “optimal” embedding parameters. The existence of such
an “optimal” set implies that not all embeddings are of equal quality.
However, this requires a measure by which embedding quality can
be compared against. An attempt to quantify embedding quality was
studied extensively by Casdagli28 and Potapov.39

There are large variations in the definition of embedding qual-
ity such as those based on information theoretic arguments,25 pre-
diction tasks,28 and attractor topology.30,40 It is worthwhile to note
that the “optimality” of a set of parameters is dependent on the
task that the embedding is being used for. As such, while one may
find similar results between methods based on different notions of
embedding quality, disagreement between results will likely always
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be present.11,23,28 Therefore, it is better to avoid the claim that a par-
ticular set of parameters are more favorable unless there are dynam-
ical and topological reasons within the data itself that support it.
However, we will highlight in this section the general considerations
that are often used in defining the quality of embedding.

The different notions of embedding quality can be summarized
in two broad categories or arguments, prediction-based and topo-
logical arguments. Prediction-based notions of embedding quality
can be seen to be inspired by application of embeddings in the
context of time-series prediction. Fundamentally, good embeddings
should enable better predictions.28,39

In time series prediction tasks, the presence of an unknown
measurement function h and noisy data introduces some degree of
uncertainty to the inference of the real system state s(t). Casdagli
argued that an ideal embedding should minimize the uncertainty
of inferring the true state Es(t) given a position Ex(t) in the recon-
structed state space. In essence, the inverse transformation 8−1

applied to constructed delay embedding in the presence of noise
should have little ambiguity on the true state of the system, if Es(t)
could be fully known.28 This robustness to noise and low ambi-
guity should in theory be beneficial for time series prediction and
also forms the basis of the ideas of noise amplification and distor-
tion used to quantify embedding quality. In poor embeddings, such
as those whose attractor manifolds are laminar with little separa-
tion, the effect of noisy perturbations across manifold layers results
in significant uncertainty of the true state s(t), making time series
prediction difficult.

The information theoretic arguments for choosing embedding
parameters (e.g., autocorrelation, minimum mutual information,
and continuity statistics) are also closely related to the ideas of pre-
diction. These methods generally try to maximize the amount of new
information incorporated in each delay dimension with the aim that
it will provide more information of the true system state Es(t) and aid
in time series prediction.

The other broad category of defining embedding quality are
those based on topological and geometrical arguments. Many of
these methods focus on the study of the attractor structure and dis-
tribution of the manifold in its ambient state space. In essence, good
embedding with respect to topology and geometry should aim to
be well spaced out and unfolded in its ambient space.11,30,40 This
notion of quality has parallels with noise amplification arguments
of Casdagli. Some methods based on geometrical arguments include
statistics such as the fill factor30 and displacement from diagonal.40

Ultimately, many of the considerations outlined above for deter-
mining the ideal lag and embedding dimension for time delay
embedding can be summarized with the concepts of irrelevance and
redundancy.28,41

B. Irrelevance and redundancy

The selection of time lag τ and embedding dimension m are the
main challenges when constructing time delay embedding. There
is uncertainty on the relative importance between embedding lag
and dimension. Furthermore, it has also been proposed that these
embedding parameters may not be independent. Instead the quan-
tity τw = mτ , termed the embedding window, has been proposed

as a more important parameter to optimize.28,41 However, for suffi-
ciently large embedding dimension, it could be argued that selection
of τw may be simplified to an appropriate selection of τ .

The selection of the embedding window τw (and by extension
embedding lag τ ) may be summarized by a notion that it must
be neither too short (redundance) nor too long (irrelevance). This
explanation applies for chaotic or aperiodic signals. However, peri-
odic signals may be successfully embedded with large lags τ where
the effective lag τ ∗ is related to the period T,

τ = nT + τ ∗, n ∈ N. (12)

Embeddings with high redundance result in trajectories that lie
in layers roughly parallel to each other (e.g., close to the diagonal). In
the presence of sufficient noise, the clear separation between layers
is affected. This results in a greater degree of uncertainty of the true
system state Es(t), given some noisy observation Ex(t) in reconstructed
state space.

Similarly, embeddings with high irrelevance contain compo-
nents that are highly decorrelated with the true state.28 This is also
unfavorable as it may introduce unwanted crossings between tra-
jectories in the reconstructed manifold. Therein lies the Goldilocks
problem of selecting an embedding window τw that is neither too
large or too small.

IV. UNIFORM DELAY EMBEDDINGS

The simplest form of delay embedding is the case of uniform
delays where single constant values for τ and m are selected. In this
case, embedding vectors are selected with uniformly increasing time
delays as given in the following equation:

Ex(t) = (x(t), x(t − τ), . . . , x(t − (m − 1)τ )). (13)

Due to the debate between the selection priority of τ and m,
multiple methods have been proposed to simultaneously estimate
both parameters. Some methods include those of Gao and Zheng,42,43

characteristic lengths,23 and Schuster (wavering product).44 An
overview of these methods is provided in Sec. V.

Other common methods attempt to simplify the problem by
assuming the independence of τ and m and choose to estimate both
values separately. Generally, an embedding τ is first determined
using a choice of various measures. Once selected, uniform delay
vectors of increasing dimensions are constructed and tested with
algorithms such as the Grassberger–Procaccia10 algorithm or false
nearest neighbors26,45,46 until convergence is achieved. The length
of delay vector when stability is reached is used to decide the
embedding dimension m.

The methods that are used for determining embedding lag
τ vary from simple heuristics to more complex statistical argu-
ments. One common heuristic is the selection of embedding
lag as one quarter of the signal period (or quasi-period for
chaotic signals). Delving into more statistically grounded argu-
ments, autocorrelation11 and its nonlinear generalization, mutual
information,47 continuity statistics,27 and L-statistics29 are occasion-
ally used to determine good values for τ . A comprehensive overview
and further discussion on these methods is provided in Secs. VI–VII.
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V. SIMULTANEOUS OPTIMIZATION OF UNIFORM

EMBEDDING PARAMETERS

In contrast to many of the current methods that involve the
selection of τ and m independently, several embedding methods
have been proposed that simultaneously estimate both values using a
single measure. This measure is often calculated across multiple lags
and repeated for increasing m. A value for m is first selected accord-
ing to some criterion followed by selection of τ . Detailed steps on
implementation of these methods are outlined by Celluci.23

A. Method of Gao and Zheng and characteristic

lengths

The embedding method proposed by Gao and Zheng is based
on the incidence of false nearest neighbors.42,43 False nearest neigh-
bors can be attributed to either redundancy (insufficiently unfolded)
and irrelevancy (spurious intersections in the attractor). The method
proposed by Gao and Zheng operates on the notion that the separa-
tion distance and proportion of false nearest neighbors should be
minimized in an ideal embedding.

Consider a pair of points in embedded space Exi, Exj and their
evolution k steps into the future Exi+k, Exj+k. Points that are false near-
est neighbors will tend to separate faster than real neighbors as the
attractor unfolds in a time delay embedding. As a result, the ratio
between their distances |Exi+k − Exj+k|/|Exi − Exj| will be larger for pairs
of false nearest neighbors and approximately equal to 1 for real
neighbors. Gao and Zheng then propose the following measure 3

to optimize the embedding parameters:

3(k, m, τ) =
1

Nref

∑

i,j

ln
|Exi+k − Exj+k|

|Exi − Exj|
, (14)

where Nref is the number of randomly sampled point pairs over
which the distance ratio is averaged. There are several additional
restrictions on the selection of point pairs Exi, Exj. First, the initial
separation of these points should satisfy |Exi − Exj| ≤ r, where r is a
small selected threshold, i.e., the initial separation of points should
be small enough such that the calculation of growing separation is
sensible. Second, the selection of pairs of points should not have
an intersecting Theiler window |i − j| > lTheiler, where lTheiler ∈ N

+.
This is done to prevent unwanted correlations between points on
the same local trajectory.48,49 Finally, the constant k should not be
too large and selected with respect to the natural time scale of the
system dynamics.

To identify good embedding parameters, profiles of 3(τ) are
calculated for increasing values of embedding dimensions m. The
value of m that corresponds to the largest decrease across the profile
3(τ) is selected as the embedding dimension. The embedding lag τ

is then selected as the first minimum of 3(τ).

B. Characteristic lengths

The method of characteristic lengths is an extension of Gao and
Zheng23 that attempts to solve the problem of selecting an evolu-
tion time k. Instead of arbitrarily selecting k, a characteristic length
J(m, τ) describing the natural spatial scale of the system attractor is

calculated,

J(m, τ) = 〈|Exi − Exj|〉, (15)

where 〈· · · 〉 denotes an average over sampled pairs of points of the
attractor. The characteristic length is then used to calculate the sep-
aration time TJ(Exi, Exj) defined as the time taken for pairs of nearest
neighbors to diverge by some proportion of the characteristic length
J(m, τ). For real neighbors, TJ will converge to a value related to
the Lyapunov exponent of the system with increasing embedding
dimension m, while false nearest neighbors will result in a smaller
value TJ as trajectories quickly separate. The new measure that is
used to determine the embedding parameters is given by

C(m, τ) =
1

Nref

∑

i,j

TJ(Exi, Exj), (16)

where Nref is the number of sampled pairs of nearby neighbors.
The values for m and τ that maximize C(m, τ) are selected as the
embedding dimension and lag.

C. Wavering product

The wavering product44 is similar to that of Gao and Zheng
and characteristic lengths in that all are based around the concepts
of nearest neighbors. The authors propose that good embeddings
should preserve the correspondence between the order of nearby
neighbours of a given reference point (i.e., the order of neighbors
sorted according to distance from some reference point Exi should be
preserved). This is done by comparing the order of N nearby neigh-
bors of a point Exi between a given embedding 8k, whose ordered
sequence neighbours are given by

X8k
= {Exi,1, . . . , Exi,N}8k

, (17)

and its projection onto its next order embedding 8k+1 (by increasing
m or τ ) with the sequence given by

Z8k+1
= {Ezi,1, . . . , Ezi,N}8k+1

. (18)

Here, Exi,n corresponds to the nth nearest neighbor of the ith refer-
ence point Exi. The projection Ezi,n corresponds to the same neigh-
bor data point Exi,n whose position is recalculated from next order
embedding 8k+1.

Similarly, comparisons can also be made into a projection into
an embedding of lower order (by decreasing m or τ ) giving a new
set of ordered points,

V8k−1
= {Evi,1, . . . , Evi,N}8k−1

. (19)

Ideally, a good embedding should preserve a one to one corre-
spondence in these ordered sequences. This will yield a value equal
to 1 for the following ratios:

|Exi − Ezi,n|

|Exi − Exi,n|
, and

|Exi − Exi,n|

|Exi − Evi,n|
. (20)

The method presented by Schuster and Liebert propose the
following measure as the product of the above two ratios,

Wi(mτ) =

N
∏

n=1

{(

|Exi − Ezi,n|

|Exi − Exi,n|

)

·

(

|Exi − Exi,n|

|Exi − Evi,n|

)}

. (21)

Chaos 33, 032101 (2023); doi: 10.1063/5.0137223 33, 032101-6

© Author(s) 2023

 25 O
ctober 2024 06:12:41

https://aip.scitation.org/journal/cha


Chaos REVIEW scitation.org/journal/cha

The measure to be optimized is given by the average over Nref

randomly sampled reference reference points,

W(m, τ) = ln





1

Nref

Nref
∑

i=1

Wi(m, τ)



 , (22)

with m being selected as the dimension that achieves the limit-
ing behavior of W and τ corresponds to the first minimum of the
resulting profile.

VI. SELECTING UNIFORM EMBEDDING LAG

In contrast to embedding methods in Sec. V that utilize a single
measure to optimize the selection of embedding lag and dimension,
the most practiced approach still selects the embedding lag τ and
dimension m independently according to separate metrics. Here, we
will focus on the methods used to select the lag for time delay embed-
ding. This lag may then be used to construct delay embeddings of
arbitrary dimension.

The simpler case of uniform delay embedding requires the
selection of a singular value of τ that is increased in multiples to
construct the required delay vector. The methods used to inform
the selection of delay lag τ mirror the broad dichotomy in notions
of embedding quality outlined in Sec. III A. In this section, we
divide the various methods for optimizing embedding lag into two
categories: the first based on dynamical and information theoretic
arguments and the second based on topological arguments. We also
discuss the topic of non-uniform embedding in Sec. VII.

Methods rooted in a dynamical approach can be interpreted as
focusing on the mechanism behind the data-generating process and
statistical relationships between measurements. Information theo-
retic and statistical approaches are also included in this category.
The methods that we will review in this category include the auto-
correlation, minimum mutual information, and quarter period. This
is in contrast to those in the second category whose methods are
more topological. Some examples include the fill-factor30 and noise
amplification.28,29

A brief note on embedding dimension: There are several meth-
ods that are used to identify the required embedding dimension
such as the false nearest neighbors (FNNs)26,45 and the Grass-
berger–Procaccia algorithm10 used to estimate the correlation sum
and dimension. Other invariants similar to correlation dimen-
sion such as the Kaplan–Yorke dimension50 and box-counting
dimension51 are also often used to determine the embedding dimen-
sion. These results are usually used in conjunction with Whitney’s
theorem stating that any d-dimensional manifold (such as an attrac-
tor) can be embedded in at least m > 2d + 1 dimensions.1 However,
it has been noted that this direct application has its flaws as Whit-
ney’s theorem is only proved for integer dimensions d, which is
rarely the case for a majority of systems of interest, such as those
exhibiting fractal and chaotic behavior. However, we note that an
extension of Whitney’s theorem to generalize the inequality to the
box counting dimensions (m > 2DF) was given by Sauer et al.11,52

A. Dynamical approaches

1. Autocorrelation and minimum mutual information

Many commonly analyzed dynamical systems tend to exhibit
chaotic behavior where nearby trajectories rapidly diverge and
quickly become uncorrelated. The method of autocorrelation is
based on the idea that each component in reconstruction should
include as much new information regarding the true state as pos-
sible. It has been suggested that components in the delay vector
should aim to minimize the correlation.11 This has similar effects to
minimizing the redundancy of reconstruction.

For delay embedding, the lag corresponding to the first mini-
mum of the autocorrelation function is taken as the embedding time
lag. Alternatively, the decay time to 1/e of the autocorrelation signal
has also been proposed.11 A variation of this approach based on the
first root of the mean local autocovariance has also been proposed
as a robust alternative to the minimum autocorrelation approach.53

One weakness of autocorrelation is its inability to account
for non-stationarities in the time series (e.g., drifts in phase, fre-
quency, and magnitude). Additionally, its application is limited to
linear signals.54 In all but simplest cases, dynamical systems exhibit
some level of non-stationary and nonlinear behavior. Fraser and
Swinney25 proposed that the mutual information between the system
be used in place of autocorrelation. In their original paper, Fraser
and Swinney first provide a geometrical interpretation to com-
plement the theoretic arguments for mutual information. Namely,
consider a set of points whose values in one component x lie within
some fixed window. From this set, track their positions τ steps into
the future and calculate the distribution of values pτ (x) in the same
component for the same set of points. A value of τ that results in a
wider distribution pτ (x) should correspond to a good lag, which also
corresponds to small values in the mutual information.

The mutual information I(τ ) can be interpreted as the nonlin-
ear analog of the autocorrelation function,

I(τ ) =

∫

P(x(t), x(t + τ)) log2

(

P(x(t), x(t + τ))

P(x(t))P(x(t) + τ)

)

dt,

where P(x(t)) is the probability of observing a state x(t) at any given
time and P(x(t), x(t + τ)) is the joint probability defined similarly
for both time t and a future time t + τ . Drawing from informa-
tion theory, mutual information I(τ ) aims to quantify the amount
of information about a future state at time t + τ that is contained
in an observation at time t. High levels of mutual information for a
given lag τ imply a high degree of correlation between states and will
result in higher redundancy for delay reconstruction.

The strengths of the minimum mutual information and auto-
correlation lies in its ability to provide reasonable estimates for lag
with relatively simple and quick computation. However, there are
no guarantees for the existence of a clear minimum for a given
mutual information profile I(τ ).55 Additionally, calculating mutual
information requires the numerical estimation of probability den-
sity functions P(x(t)) and P(x(t), x(t + τ)) and, thus, requires con-
sideration regarding optimal histogram bin size and data length
requirements.56,57 Numerous alternative methods to more effec-
tively estimate mutual information have been proposed including
the usage of adaptive binning,25,58 kernel density estimators,59 and
k-nearest neighbors.56
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2. Quarter of period

A commonly used heuristic for selecting an embedding lag is to
set τ to be quarter of the most dominant period in the signal.60 This
approach allows the natural time scale of the system dynamics to be
encoded within the embedding procedure. This heuristic is inspired
from the problem of embedding a sine wave in 2D x(t) = sin(ωt).
In this case, τ = 2π

4ω
yields a 2D delay embedding that is the most

circular with other values resulting in elliptical trajectories instead.
However, this heuristic cannot be directly applied to chaotic systems
where signals are aperiodic. Instead, an estimation of some form of
pseudo-period is required, which will be the focus of our proposed
method in this paper.

B. Topological approaches

1. Fill-factor

The fill-factor approach first proposed by Buzug et al.30 is an
entirely geometrical approach to calculate the quality of a given
embedding. This method assumes that an ideal embedding should
be able to unfold an attractor and maximize the separation between
the trajectories. The authors argue that such an embedding opti-
mally utilizes the ambient space and reduces the ambiguity of the
true state of the system for different points in the reconstructed state
space.

The fill-factor is calculated by first sampling m + 1 random
points from an m dimensional delay embedding of the data. A
reference point Exr is then selected from this collection and the
corresponding relative distance vectors can be calculated,

Edi(τ ) =











xi(t) − xr(t)
xi(t − τ) − xr(t − τ)

...
xi(t − (m − 1)τ ) − xr(t − (m − 1)τ )











. (23)

The corresponding m × m matrix can then be expressed as

M(τ ) = (Ed1, Ed2, . . . , Edm), (24)

and the volume of the resulting parallelepiped is given by calculating
the determinant of M,

V(τ ) = det(M(τ )). (25)

The final expression for the fill-factor is given by calculating
the average volume over a collection of randomly sampled par-
allelepipeds Vi(τ ), normalized by the range of the sampled data
points,

f = log

(

1
N

∑N
i=1 Vi(τ )

(maxk x(tk) − mink x(tk))
m

)

. (26)

The authors recommend the selection of τ that maximises
the fill-factor f over the interval τ ∈ (0, Tc/2), where Tc is the
characteristic recurrence time. The value of Tc is given by

Tc =
1

ωc

, (27)

where ωc is the most dominant frequency from the power spectrum
of the time series.

2. Noise amplification

Noise amplification was a measure proposed by Casdagli in an
attempt to quantify the quality of an embedding.28,39 This is sup-
ported by the notion that a good embedding should be useful in
performing predictions. Additionally, good embeddings should be
able to still perform relatively well even in the presence of noise.
Noise amplification for a given embedding Ex(t) is defined with
respect to predictability of the system T steps into future under the
presence of noise. Generally, this is given by

σ(T, Ex) = lim
ε→0

σε(T, Ex), (28)

where

σε(T, Ex) =
1

ε

√

Var[x(T)|Bε(Ex)]. (29)

Here, Var[x(T)|Bε(Ex)] corresponds to the conditional variance
of T step predictions into the future in R from an initial condition Ex
in embedding space R

m contaminated with added small observation
noise ε. In this case, it is assumed that predictions have no model
errors. This condition may be fulfilled by choosing nearby neighbors
in the embedding R

m as a proxy for noisy initial conditions.29

Finally, the noise amplification quantity σ(T, Ex) is averaged
over a collection of reference points sampled across the time series in
order to calculate the noise amplification value σ . Embeddings with
high noise amplification imply that nearby neighbors in embedded
space R

m tend to have future trajectories that rapidly diverge because
they do not correspond to real neighbors in the true manifold M

state space. Therefore, the impact of noise is greatly amplified as
small perturbations in the reconstructed space R

m result in large
uncertainties in the true state of the system.

3. L-statistic

One weakness of the noise amplification measure is its require-
ment to define T, the prediction horizon over which to calculate
noise amplification. This was addressed by Uzal29 by modifying the
definition of noise amplification to the following equation:

σ 2
ε (Ex) =

1

TM

∫ TM

0

σ 2
ε (T, Ex) dT. (30)

This definition calculates the noise amplification with respect
to a range of prediction horizons up to a maximum value of TM and
is found to be relatively robust for sufficiently large TM.

The algorithm used to calculate σ relies on using k near-
est neighbors from a reference point Exi as a proxy. Based on the
distribution of points, this can result in effective noise levels ε of dif-
ferent sizes for each point. Therefore, Uzal proposed a normalization
constant αk accommodate for this variation given by

α2
k =

[

∑

i

ε−2
k (Exi)

]−1

. (31)

Combining these two ideas, the authors propose that noise
amplification σ measures some notion of redundancy, and αk mea-
sures some notion of irrelevance. The L-statistic is then described as
a cost function to minimize both of these values simultaneously,

L = log(σαk) = log(σ ) + log(αk). (32)
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VII. NON-UNIFORM EMBEDDING

The popularity of uniform delay embedding can be attributed
to its ease of implementation and optimization. In a direct applica-
tion, uniform delays only require the selection of two parameters, τ
and m. However, the convenience of such an approach comes at the
cost of reduced versatility and limitations, particularly when ana-
lyzing systems with dynamics occurring on multiple disparate time
scales.60,61

First, the choice to use a single delay limits the ability for the
reconstruction to highlight features across multiple disparate time-
scales.27 For example, a fast-slow system with characteristic time
scales τ1 and τ2 where τ1/τ2 � 1, the choice of selecting τ1 (i.e., slow
dynamics) as the embedding lag can limit the reconstruction’s ability
to fully unfold attractor topologies corresponding to the fast dynam-
ics. The dynamics of the time scale of τ2 (i.e., fast dynamics) will
appear as noisy fluctuations within the reconstructed state space.

Second, reconstruction from uniform delay embedding that is
sufficient is not necessarily optimal. Here, we must clarify that the
definition of optimal presumes some criterion or notion of qual-
ity. Casdagli noted that the quality of an embedding, defined as the
reconstruction’s robustness to noisy data for prediction, can vary
locally throughout different regions of the attractor.28 This behav-
ior was also highlighted by Uzal in his extension of Casdagli’s noise
amplification and distortion methods.29 Additionally, we should also
consider that invariant measures such as the Lyapunov exponent
also vary locally.62,63 Hence, the selection of a single embedding lag
implies that all these variations may be averaged.

Non-uniform delay embedding has been proposed as an nat-
ural extension of uniform embedding that aims to address some of
the latter’s limitations. Non-uniform delay embedding requires the
selection of multiple delay lags {τ1, τ2, . . . τm−1} in order to construct
a delay vector,

Ex(t) = (x(t), x(t − τ1), . . . , x(t − τm−1)). (33)

The selection of delay lags represents a combinatorially hard
problem that grows with increasing embedding dimension. The
methods proposed for constructing non-uniform delay embedding
often involve the iterative selection of time lags to gradually con-
struct a delay vector until the required embedding dimension is
reached. In this section, we give an overview of various methods
that have been proposed to solve and automate this problem. These
methods include the continuity statistic,27 PECUZAL,64 maximiz-
ing derivatives on projections (MDOP),40 reduced autoregressive
models,60,61 and search optimization algorithms such as ant colony
optimization65 and Monte Carlo decision tree search (MTCDS).66

A. Garcia and Almeida

One of the earliest proposed methods of choosing non-uniform
delays was proposed by Garcia and Alemeida.47 They proposed a
variation in the nearest neighbor methods of Kennel and Hegger
applied to the problem of selecting time delays. Their method also
recursively selected lags using a proposed N-statistic over multiple
embedding cycles. At the end of each cycle, the false nearest neigh-
bors algorithm is used to assess the quality of newly constructed
embedding. This process is repeated until the false nearest neighbor
statistic F decreases below a critical threshold.

For the selection of the first time lag τ1, a 2D delay embedding
Ex(t) is first done with respect to some prospective time lag τ ∗ to be
tested,

Ex(t) = (x(t), x(t − τ ∗)). (34)

The closest neighbor Ex(tj) for each point Ex(ti) in the embed-
ding reconstruction is identified. Neighbors should be chosen such
that they are not temporally close (i.e., with respect to some Theiler
window).48,49 This is to ensure that their spatial proximity is not
purely due to their temporal proximity. The two Euclidean distances
d1,τ∗(ti), d2,τ∗(ti) between any given two points are then calculated as
follows:

d1,τ∗(ti) = ||Ex(ti) − Ex(tj)|| (35)

d2,τ∗(ti) = ||Ex(ti + δt) − Ex(tj + δt)||, (36)

where δt is the sampling time of data. Simply put, d1,τ∗ is the spatial
separation between pairs of nearest neighbors in the reconstructed
state space and d2,τ∗ is the resulting separation one step forward
in time. The N-statistic is taken as the proportion of points whose
distance ratio d2,τ∗/d2,τ∗ > 10,

N(τ ∗) =
1

N

N
∑

i=1

1

(

d2,τ∗(ti)

d1,τ∗(ti)
> 10

)

, (37)

where N is the length of the time series and 1 is the indicator func-
tion. The threshold of 10 was heuristically selected by the authors
based on the numerical calculations of Kennel et al.46 The time lag
corresponding to the first minimum in N(τ ∗) is taken to be the
embedding lag.

For non-uniform delay embedding, the selection of additional
lags for each subsequent embedding cycle is done using a simi-
lar procedure. However, the reconstructed space used to calculate
nearest neighbors and pairwise distances are calculated condition-
ally on previously selected lags. Therefore, the selection of the mth
embedding lag in a non-uniform embedding procedure will require
neighbors and distances d2,τ∗ , d2,τ∗ to be calculated using embed-
ding with m − 1 lags that have already been chosen and the new
candidate lag τ ∗,

Ex(t) = (x(t), x(t − τ1), . . . , x(t − τm−1), x(t − τ ∗)). (38)

B. Continuity statistic

The continuity statistic was first proposed by Pecora et al.
as a way to procedurally construct non-uniform delay vectors
based on the idea of functional independence between vector
coordinates.27 Takens’ and Sauer both discussed the requirement
that an embedding reconstruction requires vectors whose coordi-
nates are independent.3,67 Pecora et al. proposed using a test for
calculating the functional dependence between the components
of a delay vector’s components in order to assess the quality of
embedding. A functional dependence between vector coordinates
implies

x(t − τm) = F(x(t), x(t − τ1), . . . , x(t − τm−1)), (39)

where F is some arbitrary function. Constructing non-uniform delay
embedding requires iterative building of a collection of time lags
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FIG. 2. Illustration of the proposed functional dependence F that is tested with
the continuity statistic. The reference point (red) has four neighbors (blue) within
a ball of radius δ. Under mapping F, only three of these neighbors lie within a
distance ε from the image of the reference point. The value p is the fraction of
neighbors in embedded space (left) that are also neighbors in the potential new
lagged component (right). The value of ε is adjusted until p is insufficient to reject
the null hypothesis that the probability of neighbors in embedded space (left) are
also neighbors in the new lagged component (right) is binomially distributed with
p∗ = 0.5.

Eτ = {τ1, . . . τm−1} that minimizes the likelihood of functional depen-
dence between components. In each iteration, a prospective lag τi

is tested for functional dependence with the existing lagged com-
ponents corresponding to Eτ . If there is no significant functional
dependence, then τi may be added to the collection of lags. To test
the equality of Eq. (39), the authors assume that F is smooth and use
the property of continuity to quantify functional dependence.

Consider an existing m-dimensional embedding Exm(t) ∈ R
m

constructed from lag τ = {τ1, . . . τm} and a potential new embed-
ding lag to be tested τm+1. To test the functional dependence of
a new lag, select a reference reference point Exm(t0) in embed-
ded space. If a smooth functional dependence exists, then the
continuity condition states that points Exm,i nearby the reference
point (||Exm,i − Exm(t0)|| < δ) in reconstructed space R

m should have
lagged m + 1th components that are also close by to each other
(|xi(t − τm+1) − x(t0 − τm+1)| < ε) (see Fig. 2).

The proportion p of points Exm,i whose lagged components lie
within ε of the reference point’s lag component can be calculated.
This proportion is then compared against a null hypothesis; that cor-
respondence between these sets is purely by chance. Large values of
p suggest a strong relationship between the m-dimensional recon-
struction and the new τm+1 lagged component. Pecora et al. suggest
the usage of a binomial distribution with a critical value of p∗ = 0.5
in order to decide if a functional dependence exists with respect to
some chosen ε due to its simplicity and robustness to noise.27

For a given τm+1 to be tested and a sample of points, the con-
tinuity test is applied with decreasing values of ε until the null
hypothesis fails to be rejected. The smallest possible value for reject-
ing the null hypothesis is given as ε∗. This value is averaged over a
collection of reference points sampled from the data to calculate the
continuity statistic 〈ε∗〉(τm+1).

During each iteration of choosing a candidate lag τm+1 for an
existing collection of lags Eτ = {τ1, . . . , τm}, the continuity statistic
profile 〈ε∗〉(τm+1) is calculated. The new lag τm+1 is taken as the
lag corresponding to the relative maxima of the continuity statis-
tic profile. This is repeated until the desired embedding dimension
(as per Whitney’s theorem) is reached. Pecora et al. also propose an
undersampling statistic that can be used as a termination criterion
for iterative selection of time delays. Further details can be found in
the original paper.

This method was applied to a 2-torus, yielding embedding
lags and embedding dimensions that were matching with theoret-
ical expectations.27 The resulting reconstructed attractor was also
found to be visually optimal. Similar results were gained when
applied to the Lorenz chaotic time series. However, the resulting
reconstruction appeared to be visually overfolded.

C. PECUZAL

A criticism of the continuity statistic method is the ambiguity
in selecting the optimal lag τ at each embedding iteration.64 In the
original paper of Pecora et al., the definition of “relative maxima”
is unclear, and there is no objective criterion for selecting the best
lag between multiple prospective local maxima.64 Additionally, the
method also does not consider the effects of selecting different dis-
tances δ used to define nearby points in the reconstruction. Finally,
the undersampling statistic originally proposed as a breaking condi-
tion for the embedding algorithm is computationally intensive and
does not inform on which of the prospective lags should be selected.
A more detailed critique is provided by Kraemer et al.64

Kraemer et al. suggested that the continuity statistics approach
could be combined with Uzal’s L-statistic29 in order to provide a
fully automated method of constructing non-uniform embedding
delays. In their paper, they provide a workflow that uses the con-
tinuity statistic to perform a coarse search of multiple lag times and
identify a small set of potential lags. These usually correspond to the
various local maxima of the continuity statistic profile 〈ε∗〉(τm+1).

The L-statistic is then used as an assessment criteria to select
which of the prospective lags should be selected in each embed-
ding cycle. This addresses the problem of ambiguity of selecting
lags that is present when using continuity statistics. The prospec-
tive lag whose new extended delay embedding resulted in the largest
decrease in the L-statistic is selected in each embedding cycle. The
L-statistic also provides a breaking condition for the embedding
algorithm. The embedding cycles end when there is no achievable
decrease in the L-statistic from the collection of prospective lags, i.e.,
1L > 0 between successive embedding cycles.

D. Maximum derivatives on projection

The maximum derivatives on projection (MDOP) method was
first proposed by Nichkawde as a geometrical alternative to the
statistics and information theoretic approaches of mutual infor-
mation and continuity statistics.40 MDOP optimizes an embedding
based on the criteria that a reconstructed attractor should be maxi-
mally unfolded and minimize redundancy in the delay components.
Similar to the majority of non-uniform embedding methods, MDOP
recursively constructs the delay vector through embedding cycles.
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Each cycle identifies a new time lag that maximizes the directional
derivative φ′

d(τ ) of points in reconstructed state space.
Like Pecora’s approach in continuity statistics, MDOP begins

with the criterion of functional dependence between each new
prospective lag and an existing time delay reconstruction [see
Eq. (40)]. However, unlike in continuity statistic, Nichkawde sug-
gests using the directional derivative of the functional dependence
F [see Eq. (39)] to quantify the degree of redundancy in embed-
ding and unfolding of the reconstructed attractor. This directional
derivative is given by

F′
m =

∣

∣

∣

∣

1Fm

1xm

∣

∣

∣

∣

, (40)

where 1xm corresponds to the spatial distance between a pair of
nearby neighbor points Ex(ti), Ex(tj) in reconstructed space with m − 1
dimensions,

1xm,ij = ||Ex(ti) − Ex(tj)|| (41)

=

√

√

√

√

m−1
∑

k=1

[x(ti − τk) − x(tj − τk)]
2 (42)

τ0 = 0. (43)

The sampled pair of points should also be chosen such that spa-
tial closeness is not due to them being virtually close in time.48,49

This is easily achieved by allowing for a Theiler window lTheiler where
|i − j| > lTheiler.

Testing the inclusion of a new time lag τm requires evaluat-
ing the spatial variation in the prospective new lagged component,
1Fm,ij, and is given by the following equation:

1Fm,ij = |x(ti − τm) − x(tj − τm)|. (44)

This quantity is used to evaluate the directional derivative of a
small region on the reconstructed attractor,

F′
m,ij =

∣

∣

∣

∣

1Fm,ij

1xm,ij

∣

∣

∣

∣

. (45)

The directional derivative is evaluated with respect to each
prospective new time lag τm and is averaged across randomly sample
close pairs of points across the entire reconstructed attractor,

βd(τm) =
〈

F′
mi,j

〉

i,j
, (46)

where 〈· · · 〉i,j corresponds to the geometric mean across all sam-
pled pairs of points. The author proposes using a geometric mean
due to its robustness in the presence of outliers. In each recursive
embedding cycle, the lag τm that maximizes the directional deriva-
tive βd(τm) is selected to be used for the reconstruction in the next
cycle. This process is repeated until the desired number of embed-
ding dimensions m is reached, where m is chosen via a number of
different embedding dimension estimation methods such as false
nearest neighbors, etc.

E. Reduced autoregressive models

The reduced autoregressive model for non-uniform embedding
was proposed by Judd and Mees60,68 as a proposed method of con-
structing ideal models with respect to some information criterion.
This method involves the construction of a pseudo-linear autore-
gressive predictive model with all k possible lagged components as
inputs or basis functions,

x(t + 1) = a0 +

k
∑

i=1

aix(t − τi) + ε(t), (47)

where λ = (a0, . . . , ak)
T are the coefficients of each input to be deter-

mined and εt are the model prediction errors. For a time series of
length N, construct a matrix Vτ with each row containing a vector of
lags at a given time t,

Vτ =











x(τk + 1) x(τk) . . . x(1)
x(τk + 2) x(τk + 1) . . . x(2)

...
...

. . .
...

x(N) x(N − 1) . . . x(N − τk)











. (48)

The matrix Vτ has dimensions (N − k) × k and is defined with
respect to a set of lags B = τ1, . . . , τk and τ1 < τ2 < · · · < τk.

Estimates for the coefficients of λ̂ can be calculated using least
squares regression,

λ̂ = (VT
τ Vτ )

−1
VT

τ ξ , (49)

where ξ = (x(τk + 1), x(τk + 2), . . . , x(N)). Therefore, the resulting
model errors utilizing the set of all possible lagged components B

can be calculated as eτ = Vτ λ̂τ .
In order to reduce the number lagged components to a smaller

selection, Judd and Mees propose the method of minimum descrip-
tion length. The principle of minimum description length is an
application of Occam’s razor to the context of model selection.
It defines that the best model for a given time series prediction
task is one that achieves the most concise description of the data.
For model selection, this would require achieving a compromise
between model accuracy and model complexity (i.e., model descrip-
tion length). Model description length L may be approximated
by

L = Lε + La = N log(ε̄) + Lλ,

where Lε is the description length of the model errors which is a
function of the length of the time series N and the mean square
prediction error ε̄ and Lλ is the description length of the model
parameters.

The algorithm for reducing the number of lagged components
is as follows:

1. Construct an empty set B′ of chosen lags, and B of candidate lags
2. Define the prediction error with respect to the chosen set of lags

B′ as eB′ = ξ − VT
B′λB′ where VT

B′ and λB′ are defined with respect
to the smaller set of lags B′. If B′ is empty, then eB′ = ξ .
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3. Calculate the vector µ = VT
τ eB′ and identify the index p of the

largest magnitude element corresponding to the most signifi-
cant lag component. Add this lag {B′ ∪ τp} → B′

4. Recalculate µ with respect to the new set of chosen lags B′ and
verify that least significant lag component was the lag τp that was
most recently added. Otherwise, return to step 2.

5. Evaluate the model description lengths LB and LB′ sets of lags
B and B′. If LB′ < LB, return to step 2. Otherwise, end the
algorithm and return the set of chosen lags B′ → B.

An implementation of the minimum description length cri-
terion for optimal embedding lag and window was done by Small
and Tse.69,70 An extension of this method was proposed by Hirata
et al.61 where a normalized maximum likelihood L is used in place
of minimum description length L for model selection.71,72 Hirata
et al. also propose a variation in the above algorithm by Judd
and Mees—cross-validation—that utilizes the radial basis modesl
instead of pseudo-linear models.

F. Search optimization algorithms

Many of the common non-uniform embedding methods
involve a single optimization step in each embedding cycle. In con-
trast, search optimization algorithms attempt to search across state
space of possible lags to identify ideal combination embedding lags
without necessarily selecting the first local optima encountered. Two
examples of such approaches are the ant colony optimization (ACO)
method65 and Monte Carlo decision tree search (MTCDS).66

Ant colony optimization (ACO) is a swarm intelligence method
first proposed by Dorigo73,74 that is inspired by the foraging behav-
ior of ant colonies. Similar to other swarm optimization methods,
ACO initializes a number of agents (“ants”) that simultaneously per-
form an initial search of the solution space. The quality of each
attempted solution is assessed according to an objective function
and a “pheremone” is assigned to the corresponding search path.
These pheremones are able to accumulate and fade over time. This
biases the search direction of subsequent iterations of the algorithm
and is reminiscent of the optimal path finding behaviors of real
world ant colonies.

The ant colony optimization method applied to non-uniform
embedding (ACO-NE) builds upon this framework in a few ways.
(i) By using an objective function based on various notions of
embedding quality (mean neighborhood distance, minimum false
nearest neighbors, and minimum description length69,70) to optimize
parameters. (ii) Incorporating heuristics into the algorithm to speed
up convergence. Interested readers are encouraged to refer to the
original paper for more details.65

Another search optimization algorithm, MTCDS, proposed by
Kraemer et al.66 reframes the non-uniform lag selection problem
into a decision tree search. Each embedding cycle is represented
by a collection leaves or nodes stemming from a root (the original
time series) where each leaf is the selection of a particular candidate
embedding lag. A Monte Carlo approach is used to randomly sample
the tree and identify various local optima for a given objective func-
tion and backpropagation is then used to decide on the best selection
of lags in each step.

VIII. PERSISTENT STRANDS AND CHARACTERISTIC

TIMES

The focus of this paper is on the problem of selecting time
delays for delay embedding, and, in particular, for non-uniform
delay embedding. Many of the proposed methods for optimizing
embedding delay in both the uniform and the non-uniform case
generally fall into the broad categories of dynamics (e.g., mutual
information, continuity, etc.) or topology (fill factor, MDOP). With
the exception of the PECUZAL automated embedding framework,
non-uniform delay embedding strategies only focus on one of these
two broad aspects in their definition of good embedding.

Another weakness in non-uniform embedding is that they do
not always provide a full picture on the relative significance of each
delay. When operating under the iterative construction of delay
vectors, each prospective new time delay must be reevaluated with
respect to the most recently updated embedding. Hence, the sig-
nificance of each subsequent delay is conditional on the previous
selected sequence of delays. This is a weakness particularly in fully
automated algorithms such as MDOP and PECUZAL where ideal
embedding lags are selected automatically, with little to no refer-
ence on their relative impact on embedding quality. Additionally,
there is often a lack of consistency between the results of different
methods. This can be attributed to the fact that optimization is done
with respect to different notions of embedding quality. Often, these
methods do not provide a dynamical explanation for each time lag’s
significance and ability to improve a given embedding.

In view of this, we argue that a good non-uniform embedding
method should have two main qualities. First, the embedding crite-
ria should utilize both dynamical (irrelevance, periodicity, indepen-
dence of coordinates) and topological (attractor unfolding) features
in their selection of embedding lag. Second, the significance of each
selected embedding lag should be explainable.

As our contribution, we propose a new method, “signifi-
cant times on persistent strands” or SToPS, of identifying non-
uniform embedding time lags using techniques drawn from persis-
tent homology and recurrence analysis. We introduce the idea of
a characteristic time scale spectrum of a signal based on the peri-
odicities of time series and show how this may be used to identify
ideal time delays. The selection of multiple time delays are also
treated independently, marking a contrast to the iterative approach
of constructing delay vectors that is common in most non-uniform
delay embedding methods. We demonstrate the performance of our
method on a collection standard periodic and chaotic time series
from the literature. Additionally, we explore its performance on
experiment neuron data containing fast-slow dynamics and show
that SToPS is sensitive in identifying explainable time delays.

A. Introduction to persistent homology

Persistent homology has seen a recent growth in popularity
particularly in the fields of dynamical systems.75–79 We also note that
recent work has also been done attempting to automate the selection
of delay embedding parameters with persistent homology.80 In its
essence, persistent homology aims to quantify and track the evolu-
tion of the topological properties of an object (network, point cloud
data, etc.) under an increasing notion of distance.76 The process of
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gradually increasing distances is referred to as “thickening.” Topo-
logical features that persist for a large interval of distance under
the thickening process are observed to be significant. For simplic-
ity, we refer to the coordinates or increasing distance ε as analogous
to increasing time. Conversely, short-lived topological changes are
typically perceived to be noise.

We describe the thickening process as follows. Consider a point
cloud A = {xi} arranged in the pattern of a circle. Place an open ball
Bε(xi) of radius ε centered at each point and let the union of all open
balls be the set of interest,

B(ε) =

N
⋃

i=1

Bε(xi), (50)

where we are interested in calculating the homology of the set B(ε)

whose complex is given by K(B(ε)). As ε is increased, the set of open
balls also increase in size, forming a filtration shown below,

K0 ⊆ K1 ⊆ · · · ⊆ Kn, (51)

where Kn = K(B(εn)) and ε0 ≤ ε1 ≤ · · · ≤ εn. More precisely, each
set Kn represents a collection of simplicial complexes, with subse-
quent εn yielding a nested sequence called filtration. Computation of
the thickening process is well documented with two main algorithms
employed, Vietoris-Rips81 and Čech,82 of which we will employ the
former.

For this case, we are concerned with changes in the homol-
ogy of the set as ε increases. Simply, persistent homology aims to
enumerate and track the number of n-dimensional “holes” in the
set.83 Namely, H0, H1, and H2 for cases of low-dimensional homol-
ogy. The zero-, one-, and two-dimensional holes correspond to
disjoint components, cycles, and voids, respectively. Simplices (tri-
angles, tetrahedrons, etc.) are considered solid components and are,
therefore, not holes.

In the context of low-dimensional strange attractors, persistent
homology tracks the persistence or lifetime (death time minus birth
time) homological features (usually H1 holes) of the attractor using
spatial data from an embedding or otherwise. All the information
pertaining to the birth and persistence of features can be represented
easily in a persistence diagram. In a persistence diagram, each homo-
logical feature (i.e., H0—disjoint components, H1—holes) are repre-
sented by a plotted point with coordinates (εb, εd) corresponding to
its birth and death times, respectively.

The tracking of birth and death time of homological features
presents two useful features. First, it allows the tracking of the
locations of holes within the data. When analyzing phase space tra-
jectories, these holes may correspond to short-term pseudo-periods
or turning points in the time series (see Fig. 5). By tracking ε and
representative cycles, one can also identify boundary points of holes.
Second, the lifetimes of homological features allow an estimate of the
relative size of the feature, which may or may not be related to its sig-
nificance depending on the type of data. All of these features may be
represented in a persistent diagram (see Fig. 3) where points further
from the diagonal represent more persistent homological features.

B. Characteristic time scales

One approach to select lags for non-uniform embedding would
be to select values related to the natural time scale of the system’s

dynamics. Picking lags that are much smaller or larger would log-
ically correspond to the cases of high redundancy and irrelevance,
respectively. Consider the simplest case of a periodic signal. One
can argue that an ideal embedding would require a delay that is
related to the time scale of its main dynamics, i.e., its periodicity.
For this, we employ the quarter period heuristic in the definition of
the characteristic time τ ,

τ =
T

4
.

A natural progression of this concept into more complex dynamics
would be to take the lag from the collection of natural frequencies,

τi =
2π

4ωi

.

Because τi is evaluated at individual frequencies ωi, which may vary
greatly in magnitude, it is possible to capture the dynamics of sys-
tems with multiple time scales, such as fast-slow dynamical systems.
Relating embedding lag with natural frequencies and periodicity
also introduces a degree of explainability to the selection of τ that
also directly relates to the dynamics. While this presents a potential
advantage over typical non-uniform embedding methods, it requires
one to be able to accurately measure the natural frequencies (or
equivalent) from any given signal.

If the analyzed signals were relatively smooth and easily decom-
posable into sinusoids, Fourier transforms would provide an excel-
lent solution to this problem. However, this approach quickly fails
when analyzing discontinuous-like signals such as neuron voltages
where the time series is characterized by alternating phases of burst-
ing and resting dynamics. Fourier transforms also require the time
signal to be stationary on its statistics. This property is not possi-
ble for chaotic time series where the phase and period of the signal
vary over time. For example, the frequency power spectrum of a
chaotic signal such as Lorenz and Chua produces a shape with an
exponential decay. Similar arguments may be made when analyz-
ing experimental time series, where it is expected that drifting and
oscillations in the phase and/or period may occur.

Another alternative method to detect periodicity would be to
use the notion of recurrence distance employed in the recurrence
analysis and unstable periodic orbit detection,84

d(τ ) =
1

N

N
∑

i=1

∥

∥

∥

∥

(

x(ti)

x(ti − τ)

)

−

(

x(ti + 4τ)

x(ti + 3τ)

)
∥

∥

∥

∥

, (52)

where τ is a characteristic time if the recurrence distance d(τ ) is
below some threshold d∗,

d(τ ) < d∗. (53)

The recurrence distance tracks the displacement from a point
in state space and its future trajectory. For a periodic orbit and cor-
rectly selected τ , this will result in a local minima for d(τ ) where
the periodic orbit returns close to its initial position. This method of
detecting characteristic times τ is unsuitable as it cannot distinguish
between cases where T = τ/2 and the resulting embedded trajectory
clusters along the diagonal.

We propose a method of identifying and weighting the signifi-
cance of characteristic times from a time series. The identification
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FIG. 3. Illustration of the filtration process with Betti numbers β0,β1 illustrating the number of H0 (disjoint components) and H1 (holes) in homology, respectively. Filtration is
with increasing open ball radius ε. Initially for small ε, the constructed balls form eight disjoint components with no holes (β0 = 8,β1 = 0). Further increases in ε eventually
cause the intersection of two balls, resulting in merging of two components. Subsequently, ε is increased until all components are merged into a single component with
one unfilled center (β0 = 1,β1 = 1). Eventually, ε is increased until the hole in the center is filled in (shaded in red), resulting in a single solid component with no holes
(β0 = 1,β1 = 0).

of characteristic times is done by sampling “strands” (short con-
tiguous windows of 2D delay embedded time series) and calculating
their persistent homology. The representative cycles of the persistent
strands’ calculated homologies are used to assign a significance score
to each identified characteristic time in order to construct a charac-
teristic time spectrum. This spectrum can then be used to inform the
selection of lags for non-uniform time delay embedding. This com-
bined framework is named Significance Times on Persistent Strands
(SToPS).

IX. SIGNIFICANCE TIMES ON PERSISTENT STRANDS

A. Persistent strands

The first challenge to tackle is the identification of all pseudo-
periodic behavior of period T. For a characteristic time τ , the quarter
period heuristic suggests that the corresponding 2D embedding with
coordinates (x(t), x(t − τ)) will result in a periodic orbit that is
approximately maximally convex in reconstructed space. We note
that the precise shape of this orbit is not guaranteed to be circular
and varies depending on the signal.

To test for periodic behavior with characteristic time τ for a sig-
nal x(t), 2D delay embedding of the time series with a single lagged
component is constructed,

Ex(t) = (x(t), x(t − τ)). (54)

A collection of N strands of length l = 4τ with random initial
positions ti are then sampled from the time series, where each strand
is given by

Exi(t) = (x(t), x(t − τ)), t ∈ [ti, ti + 4τ ]. (55)

We argue that strands of this length should be approximately
sufficient to detect loop structures in 2D embedding based on the
quarter period heuristic. The persistent homology of each strand
can be calculated to detect the presence of orbits with period l. For
each strand Exi(t), extract the maximum persistence from the result-
ing persistence diagram PD. A sample strand is said to contain an
orbit of length l if the maximum persistence of the corresponding

diagram exceeds a critical value ρ. The value of ρ is taken to be
the average distance between two consecutive observations in phase
space. Therefore, a naïve value Pi that quantifies the significance of
a characteristic time τ can be defined as

Pi =

{

maxpers(PDi), maxpers(PDi) > ρ

0 maxpers(PDi) < ρ
. (56)

This value can be used to calculate an overall maximum per-
sistence spectrum P(τ ) by averaging over all non-zero scores Pi for
each characteristic time τ ,

P(τ ) = 〈Pi〉Pi 6=0. (57)

We also impose an additional constraint that the number of
points used to reconstruct the boundary of the hole (H1 homol-
ogy) in the orbit should be at least Nhole. This avoids the problem
of including spurious holes where a small number of points suggest
the existence of a hole even though the embedded strand is insuffi-
ciently long to close the orbit (Fig. 4). We select a minimum value of
Nhole = 8 for our analyses based on the argument that a minimum of
8 points should be sufficient in at least identifying a hole of a small
lag τ = 2 without discounting higher lags. This value was found to
work well in our analyses.

The maximum persistence spectrum provides a simple way to
quantify the degree to which τ corresponds to a dynamically signifi-
cant time scale (i.e., periods). However, P(τ ) is biased toward larger
features due to its reliance on the lifetime of each homological fea-
ture. As a result, spatially small but dynamically significant features
over small time scales are underrepresented. We also note that P(τ )

is unable to differentiate between pathologically inefficient embed-
dings such as those whose loops are not maximally circular or have
trailing tails (see Fig. 5).

As we can see from Sec. III A, a good embedding is one
that has been maximally unfolded to best utilize the reconstructed
state space, while being robust to the effects of noise amplification.
Therefore, the significance of each characteristic time τ should be
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(a)

(b)

FIG. 4. Pathological problems of the SToPS method. (a) Lags are too small and
resulting strand length is too short to fully enclose resulting in the detection of
spurious holes with very small number of boundary points. (b) Presence of a hole
even at large lags due to overlapping trajectories on a similar orbit. Long strand
does not efficiently use all the available points.

weighted according to how well the corresponding strand “unfolds”
into a loop structure in the 2D delay embedding with lag τ .

From this, we propose the significance score S(τ ), which is a
measure of the dynamical significance of each characteristic time τ

that accounts for the quality of unfolding of sampled strands. Using
the topological notion of good embedding, the significance score
Si(τ ) for the ith sampled strand is defined as

Si(τ ) = αi(τ )γi(τ ), (58)

where α(τ) and γ (τ) are two separate measures named the circular-
ity and efficiency, respectively. This score is also not biased toward

FIG. 5. Illustration of a randomly sampled “strand” (shaded red) taken from a
time series and the subsequent pathological cases of embeddings from differ-
ent time scales τ . Each case corresponds to non-optimal embeddings based on
the notions of circularity and efficiency. Significant characteristic times should aim
to maximize both metrics (top right quadrant). Blue shaded areas correspond
to the polygon formed by homology generators of the hole calculated from the
embedded strand’s representative homology.

larger homological features, allowing for the detection of both small
and large pseudo-periodic dynamics.

The circularity α(τ) tries to quantify the quality of unfolding of
a persistent strand in embedded space. Embeddings that yield circu-
lar loops imply a selected lag τ that maximally unfolds the dynamics
(i.e., τ may correspond to a characteristic time). Therefore, loops
that are more circular or regular have higher values compared
to ellipses and other shapes with eccentricities. This allows circu-
larity to also function as a measure of redundancy with lower α

corresponding to high redundancy.
To calculate αi for a given sampled strand, the boundary points

Ebi corresponding to the birth of the most persistent homological
feature are identified by examining representative cycles. Principal
component analysis (PCA) is used to identify the major and minor
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axes of the embedded hole. Because each strand is used to evaluate
a single lag in 2D delay embedding, the first and second principal
eigenvalues approximately correspond to the relative sizes of the
major and minor axes of the embedded points’ bounding ellipse.
Hence, we define circularity as the ratio between the first and second
principal eigenvalues, averaged across all strands,

α(τ) = 〈αi〉Pi 6=0 =

〈

λ2,i

λ1,i

〉

Pi 6=0

, (59)

where α(τ) ∈ (0, 1]. As α → 1, embedded holes are more uniformly
circular.

Efficiency γ (τ) is defined by the ratio of two areas,

γ (τ) =
Ah

Apc

, (60)

where Ah is the area of the hole given by the ordered set of bound-

ary points Ebi and Apc is the area of the smallest convex polygon that
includes all points in the strand Exi(t). The area of the hole Ah can be
simply calculated using the shoelace algorithm.85 The area of the lat-
ter Apc can be similarly calculated by using a Graham scan algorithm
to first identify the smallest bounding convex polygon.86 Similar to
α(τ), the efficiency score is also bounded with γ (τ) ∈ [0, 1]. Effi-
ciency is a measure of how well utilized the ambient space of an
embedded strand is with respect to the hole. It is used to detect cases
where the detected hole is circular but does not utilize the full length
of the strand (see Fig. 5).

X. TESTING METHODOLOGY

SToPS was tested on three different types of time series cover-
ing periodic, chaotic, and fast-slow dynamics.

First, a sum of sines signal (see Fig. 6) with step size dt = 0.001
was used to simulate the case of periodic time series,

x(t) =

N
∑

i=1

Ai sin(2πωit + πφi), (61)

where N = 3 is the number of superimposed of sine waves. Phases
φ = {0, 0.25, 0.75} and magnitudes A = {1, 0.5, 0.2} were selected
to ensure that the spacial scales of the dynamics were distinct
(see Fig. 6).

The second time series analyzed was the x-component of the
canonical Lorenz chaotic time series. This is used to represent the
case of chaotic time series. This time series was numerically inte-
grated with a fourth-order Runge–Kutta scheme with an integration
time step of 0.0004 and subsampled to an effective time step of
dt = 0.004 for 25 000 steps.

The third time series consisted of experimental data measured
from a lobster somatogastric ganglion (STG) lateral pyloric (LP)
neuron. This time series represents a third class of dynamics corre-
sponding to fast-slow dynamics with two different spatial and tem-
poral scales. This time series was originally analyzed by Abarbanel87

and includes two characteristic dynamics. These are small magni-
tude and time scale oscillations corresponding to neuron spiking
dynamics and a long time scale periodic behavior for neuron burst-
ing (see Fig. 6). Additionally, the phase of the bursting dynamics

(a)

(b)

(c)

FIG. 6. Three classes of time series tested: sum of sines (periodic), Lorenz
(chaotic), and Lobster LP Neuron (multiple disparate time scales). (a) Artifi-
cial time series constructed from sum of three sine terms with ω = {1, 5, 30},
φ{0, 0.25, 0.75}, and Ai = {1, 0.5, 0.2}. (b) First component [x(t)] of the chaotic
Lorenz time series. (c) Lobster LP neuron time series showing pseudo-periodic
dynamics over two scales. Fast (spiking neurons) and slow (bursting neurons).

also varies slightly over time. This results in a gradual shift of spa-
tial position of the expected loop in a 2D embedding. As a result,
strands with lengths T that are too long are penalised as these loops
eventually get filled in.

All three input time series were normalized with zero mean and
unit standard deviation before applying the embedding algorithms.
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FIG. 7. Comparison of various methods for estimating embedding delay for the sum of sines time series with component frequencies ω = (1, 5, 30). Top to bottom: mutual
information, max persistence, significance score (black) with circularity (blue) and efficiency (red), and standard deviation of significance score. Theoretical characteristic
times based on one quarter of the period of component frequencies given by solid blue vertical lines. Comparison non-uniform delays calculated from PECUZAL and MDOP
given in green and red vertical lines.

A small amount of additive noise ξ ∼ N(0, 0.0012) was applied to the
sum of sines and the digitized experimental Lobster LP neuron data
to ensure there were not exact overlaps in values. In all cases, the
input data were limited to 25 000 points when calculating embed-
ding lags to ensure the computational time was sufficiently short.
This is due to the use of a k-means++ random sampler,88 whose
computation increases with the number of points, to select strand
locations that uniformly explore the reconstructed state space.

Different ranges of characteristic times were tested to calculate
the efficiency, circularity, and significance score profile depending
on the type of time series. Each τ consists of sampling 250 strands
of length T = 4τ . Due to the poor computational scaling of the
Vietoris-Rips filtration, long strands where T is large are subsampled
by a factor of k,

k =

⌊

4τ

Np

⌋

, (62)

where Np = 250 is the approximate scale of the maximum allowable
strand length. This value was chosen in order to accommodate the
slow computational efficiency of calculating the Vietoris-Rips filtra-
tion and associated persistent homology. The threshold ρ∗ used to

define the minimum lifespan needed to classify a homological fea-
ture as significant was chosen to be the average distance between
temporally adjacent points,

ρ∗ = 〈||Ex(ti) − Ex(ti+1)||〉i.k, (63)

where 〈· · · 〉i,k is the average across all points in the 2D delay
embedded strand Ex(t) subsampled with a factor k. The circular-
ity, efficiency, and significance score profiles were calculated using
SToPS. Both mean Sµ(τ ) and standard deviation Sσ (τ ) profiles are
calculated and compared against a selection of embedding delay
optimization measures. In our analyses, the peaks of each profile are
selected by observation. However, automatic identification of peaks
may be implemented by using a search algorithm to identify all local
maxima in the significance score profiles.

The calculated significance scores were compared against the
mutual information used to select τ for uniform delay embedding.
Two automated methods, MDOP40 and PECUZAL,64 were also used
as a comparison benchmark for non-uniform delay embedding.
These calculations were done using implementations provided by
the ‘‘DynamicalSystems.jl’’ package.89

In addition to compare the output lags from each method, it is
of interest to find how different non-uniform embeddings impact
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FIG. 8. Comparison of various methods for estimating embedding delay for the chaotic Lorenz time series. Top to bottom: mutual information, max persistence, significance
score (black) with circularity (blue) and efficiency (red), and standard deviation of significance score. Comparison non-uniform delays calculated from PECUZAL and MDOP
given in green and red vertical lines.

performance in prediction tasks. For each of the non-uniform
embedding methods, the first two dominant lags are taken to con-
struct 3D delay embedding. This is done by visually inspecting the
Sµ(τ ), Sσ (τ ) profile in the case of SToPS. Time lags for PECUZAL
and MDOP were taken as the first two detected timelags in their
respective iterative procedures.

The resulting delay embeddings used to train a simple four-
layer feed forward neural network consisting of two hidden lay-
ers, one input and one output layer. Each hidden layer has 128
nodes with a ReLU activation function with an overall network
architecture of 3:128:128:3.

The neural network is trained to output one-step prediction,

Ex(t + δt) = NN(Ex(t)). (64)

The learning rate was set to 0.001 with a batch size of 512 and
run for 30 epochs. In each instance, only the first half of the time
series data is used for training. The second half is reserved for vali-
dation. Validation is done by calculating n-step freerun predictions.
This is calculated by providing an initial condition and feeding back
the neural network outputs n times to get the final prediction [see
Eq. (65)], which is then used for calculating prediction error.

Ex(t + nδt) = NN(n)(Ex(t)). (65)

XI. RESULTS AND DISCUSSION

A. Significant times

1. Periodic dynamics—Sum of sines

The periodic sum of sines time series represents the case of
periodic dynamics with multiple time scales. The component fre-
quencies were selected as ω = {1, 5, 30}, corresponding to three dif-
ferent characteristic times at lags τ = (250, 50, 8). The sum of sines
times series was a major challenge for the baseline mutual informa-
tion I(τ ) measure (see Fig. 7), where the minima were only able to
identify the highest frequency periodicity in the data. The max per-
sistence P(τ ) was also not useful in identifying any significant time
lags from the time series.

For automated non-uniform embedding methods, PECUZAL
found a single time lag at τ = 341. MDOP returned four time lags at
τ = (241, 42, 271, 180), two of which are close to the expected lags
τ = (250, 50, 8). The other remaining time lags detected by both
methods did not bear any clear relation to the expected characteristic
times.

In contrast, the proposed significance score measures, Sµ(τ )

and Sσ (τ ), both showed peaks around the expected time lags
corresponding to approximately one quarter of the component
periodicities (i.e., T = 1, 1/5, 1/30) (see Fig. 7). However, the peak
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FIG. 9. Comparison of 3D time delay embedding between PECUZAL, MDOP, and SToPS with the corresponding 2D projections. PECUZAL and MDOP time delays are
selected from the first two detected delays. SToPS delays are visually selected from Sµ(τ ). The fast, small-scale oscillations for spiking neurons are captured by SToPS but
not by PECUZAL and MDOP.
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FIG. 10. Comparison of various methods for estimating embedding delay for the chaotic Lorenz time series. Top to bottom: mutual information, max persistence, significance
score (black) with circularity (blue) and efficiency (red), and standard deviation of significance score. Comparison non-uniform delays calculated from PECUZAL and MDOP
given in green and red vertical lines.

corresponding to the ω = 5 component (i.e., τ = 45) is not clear
with two peaks occurring at nearby time lags instead. This anomaly
may be because the spatial and time scales of the second frequency
are not dynamically distinct enough from the large time scale. When
calculating the 2D embedding, this can cause persistent strands to
form spirals instead of circular holes at the characteristic times. We
note that circularity α(τ) and efficiency γ (τ) provide quite dif-
ferent profiles with the latter heavily influencing the shape of the
resulting profile Sµ(τ ). A comparison of the phase space reconstruc-
tions between MDOP, PECUZAL, and SToPS is provided in the
Appendix.

2. Chaotic dynamics—Lorenz

For Lorenz, the minima of mutual information yielded lags at
τ ≈ (40, 150). This result matches closely with the maxima taken
from the maximum persistence P(τ ) profile. Of the two lags detected
by PECUZAL τ = (46, 24), one was similar to a minima from the
mutual information curve. Similarly, MDOP yielded three differ-
ent lags τ = (148, 192, 37), one of which approximately matches the
minima of the mutual information.

The significance measures calculated using SToPS yielded two
distinct maxima across Sµ(τ ), Sσ (τ ) with lags at τ = (41, 130). The

first lag is similar to calculated lags from PECUZAL and MDOP.
However, the second lag τ = 130 results in an overembedding of
the time series and does not directly correspond to any lag output
by either PECUZAL or MDOP. Closer inspection of the embedded
time series at τ = 120 reveals the re-emergence of the lobes of the
Lorenz attractor at 3/4 of the period with boundaries created by
multiple dense loops. While this may produce well-defined holes
in persistent homology near the lobes, it does not efficiently uti-
lize all the points in the sampled strand (i.e., 4τ = 520 points) (see
Fig. 4) and, hence, should not be classified as a characteristic time
lag of the time series and is reflected in the much lower significance
score. The usage of this time lag results in an overembedding of
the time series. However, closer inspection of the sampled strands
show that part of the increase in Sµ(τ ) is attributed to the hole
formed from the spread of trajectories near the saddle point of the
attractor.

There is also an apparent correspondence between successive
minima of mutual information and detected time lags in non-
uniform embedding methods. This suggests that mutual informa-
tion I(τ ) may be useful for informing the selection of lags for non-
uniform embedding. However, one difficulty is assessing whether
the lag of a minimum is within an acceptable embedding window
mτ such that irrelevance is not a problem.
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FIG. 13. Comparison of 10-step freerun predictions of the lobster LP neuron time series across various embedding methods. The persistent strands method appears to be
able to better detect and replicate the fast neuron spiking dynamics. Magnitude of predictions are normalized with zero mean and unit standard deviation.

3. Fast-slow dynamics—Lobster LP neuron

From observing the lobster neuron data (see Fig. 6), it is possi-
ble to infer two dominant time scales corresponding to expected lags
of approximately τ = (12 400). Temporal variations in these can
be attributed to observational noise or potentially chaotic dynam-
ics. The uniform embedding measures of mutual information and
max persistence were found to be poor in identifying lags, although
max persistence P(τ ) begins to quickly increase when approaching
the expected characteristic lag τ = 400. This is unsurprising as 2D
embedding at those lags begins to unfold large orbits from the large
time scale dynamics corresponding to the slow bursting phase of the
neuron (see Fig. 9).

For non-uniform embedding, both PECUZAL and MDOP
yielded a large number of potential embedding lags. However, both
methods failed to successfully recover the lags for the fast dynamics
(see Fig. 8). Additionally, apart from the lag at τ ≈ 500 correspond-
ing to the slow dynamics, both PECUZAL and MDOP produce
multiple additional time lags with no obvious explainable relation
to the time scales of the data.

The significance score using SToPS was able to retrieve the two
main time lags present in the data at approximately τ = (5, 500).
There appears to be a slight disagreement on the location of the
larger time lag with Sµ(τ ) and Sσ (τ ) producing slightly different
lag times. The Sµ(τ ) also shows a small peak at approximately
τ = (40, 60). Further inspection into the representative homology
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FIG. 14. Comparison of significance score Sµ(τ ) against PECUZAL and MDOP lags at various additive noise levels. SToPS significance score is relatively stable with peak
locations being the same for all tested noise levels. PECUZAL and MDOP are stable for low levels of noise but gradually drift for increasing noise levels.

of the sampled strands reveal that this is the result of multiple over-
lapping orbits from the fast spiking dynamics. However, this feature
is captured by τ = 5 and the peaks at τ = (40, 60) are an artifact of
overembedded time series lying on similar orbits (see Fig. 4).

Based on these results, only SToPS was able to detect both dom-
inant time scales in the data. The lags from PECUZAL and MDOP
are conditional on the selection of previously detected lags due to the
iterative approach employed by the algorithm. In contrast, SToPS
produces a single characteristic time spectrum S(τ ) from which the
significance of each potential lag can be assessed and selected inde-
pendently. We visually compare the resulting 3D delay embeddings
of these three methods in Fig. 9. Similar comparisons for the sum of

sines and Lorenz data are provided in the Appendix. For PECUZAL
and MDOP, we select the first two non-zero delays in order of
detection at τ = (265, 496) and τ = (322, 552), respectively. The
lags for SToPS were selected visually from Sµ(τ ) and Sσ (τ ) with
lag times τ = (5, 500). From the projections of the reconstructed
state space, we find that SToPS associates different projections with
dynamics of different time scales. This results in unfolding that
is visually easier to interpret. In contrast, the PECUZAL requires
a large number of dimensions before all dynamical components
can be visually detected. Restricting the number of dimensions
results in the fast dynamics being obscured at the expense of slow
dynamics.

Chaos 33, 032101 (2023); doi: 10.1063/5.0137223 33, 032101-22

© Author(s) 2023

 25 O
ctober 2024 06:12:41

https://aip.scitation.org/journal/cha


Chaos REVIEW scitation.org/journal/cha

FIG. 11. Distribution of the 25-step freerun prediction error for the Lorenz
time series over 25 000 steps using a neural network trained on the 3D delay
embedding for one step prediction.

B. Freerun predictions

Freerun prediction errors with models constructed from differ-
ent non-uniform embeddings were calculated for the non-periodic
Lorenz and lobster LP neuron time series. In each case, 3D delay
embedding was constructed using the first two lags detected with
PECUZAL and MDOP. For SToPS, the first two visually dominant
maxima of the Sµ(τ ) and Sσ (τ ) profiles were selected. In the case

FIG. 12. Distribution of the 10-step freerun prediction error for the lobster LP
neuron time series over the entire subsampled dataset (approximately 200 000
steps) using a neural network trained on the 3D delay embedding for one-step
prediction.

for Lorenz where only one relevant time lag exists (Fig. 10) (i.e.,
τ = 41), we use a uniform embedding scheme where the second lag
is a multiple of the first.

The prediction error for Lorenz was calculated using a 25-step
freerun prediction with a trained feedforward neural network (see
Sec. X). For the lobster LP neuron, training was done on a subsam-
pled dataset that included every third point. This subsampling was
done to reduce the training time. A 10-step freerun prediction was
then evaluated with the subsampled data (i.e., equivalent to 30-step
freerun prediction). The lower number of freerun prediction steps
was used to allow a more accurate evaluation of the prediction per-
formance within the fast neuron spiking regime of the time series.
In both cases, the first half of the data was used for training and the
second half used for testing and evaluation. Additional analyses for
freerun prediction with non-subsampled data are provided in the
Appendix.

The error of each prediction was calculated as the magnitude of
the error between the predicted delay vector n-steps ahead,

E(t) = ||NN(n)(Ex(t)) − Ex(t + n)||. (66)

The resulting distributions of E(t) for both time series with the
three different embedding methods are given in Figs. 11 and 12.
For Lorenz, we see that SToPS (persistent strands) provides a mean
error in between PECUZAL and MDOP. In the experimental data
case (lobster LP neuron), SToPS outperforms both measures with
a lower error. These findings are also reflected in corresponding
medians in both cases. The median prediction error in the Lorenz
case was 0.106 (SToPS), 0.122 (PECUZAL), and 0.112 (MDOP). The
lobster LP neuron median prediction errors were 0.106 (SToPS),
0.122 (PECUZAL), and 0.112 (MDOP). Additionally, SToPS shows
an error distribution with a heavier tail for freerun predictions
with the lobster LP neuron compared to PECUZAL and MDOP.
Despite the potentially lower prediction error, we note that this
improvement is not significant and should not be the targeted bene-
fit of SToPS. Instead, we argue that the main advantage of SToPS
is that it provides lags that are explainable in the context of the
observed dynamics of the time series.

One advantage of using SToPS is the deliberate inclusion of
both fast and slow time scales within the embedding of the time
series. Therefore, it is expected that models trained on this embed-
ding should be able to better resolve the fast dynamics that would
have otherwise be missed if larger delays were selected. This is
verified in Fig. 13 where SToPS produced a 10-step freerun pre-
diction that is able to better replicate the small-scale, fast spiking
dynamics characteristic of the neuron time series. This is in contrast
to models trained on the same number of lags from PECUZAL and
MDOP where freerun predictions are not able to capture the same
level of detail in the spiking dynamics. We note that this advan-
tage is not as apparent when the full dataset without subsampling
is used to train a model for prediction. However, it was found that
the prediction errors were slightly lower for SToPS in this case.

XII. NOISE EFFECTS

One often cited benefit of persistent homology is its robustness
to noise.90,91 Because only geometric features (i.e., holes) are tracked,
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TABLE I. Computation times for PECUZAL, MDOP, and SToPS on the Lorenz and lobster LP neuron time series with 25 000 steps with varying maximum number of candidate

lags (i.e., τ ∈ [1, τmax]). Computation times are given in seconds. The computed lags for PECUZAL and MDOP are provided. SToPS does not have computed lags as results are

given as a significance score profile.

Time series τmax PECUZAL MDOP SToPS

Lorenz 50 6.0 0.19 148
(45,23) (42,23)

100 10.2 0.23 982
(45,23) (100,62)

150 15.8 0.28 1689
(45,23) (147,40)

200 21.2 0.42 2396
(45,23) (147,189,40)

Lobster 50 7.1 0.39 95.9
(50,24) (50,31,11,44)

100 46.9 0.48 881
(100,63,81,11,35) (100,51,19,81)

300 112 0.82 3376
(300,251,114) (300,149,55,245)

600 2705 1.62 7266
(515,304,132,505,32,20,253,394,81,232,55) (544,274,599,114,423)

as long as the magnitude of the noise does not destroy the underly-
ing structure of the embedded time series, the calculated homologies
should be stable. To test this property in our method, we repeat
analyses with the Lorenz dataset for varying signal-to-noise ratios
and observe the changes in the resulting significance score profile
Sµ(τ ). Five noise levels of additive Gaussian noise with signal-noise
ratios SNR = (1000, 500, 100, 50) were applied after normalizing the
input Lorenz time series with zero mean and unit standard devia-
tion. Results are shown in Fig. 14. We found that each of the profiles
was relatively stable and robust to increasing noise levels with little
to no change in the observed significant lags. For high levels of noise
(> 20 dB), the spurious lag artifact at τ = 120 disappeared. This is
likely due to the effects of noise across multiple trajectories along a
similar orbit destroying the underlying homology structure.

Similarly, PECUZAL and MDOP revealed similar lags for low
noise levels (< 37 dB). However, higher levels of noise resulted
in gradual drifts in both methods. The lags from PECUZAL also
differed significantly for small τ for noise levels above 30 dB. In con-
trast, MDOP was relatively unaffected by noise, and drift effects were
relatively small. Additionally, MDOP was also the only method able
to produce any lag predictions for signal-to-noise ratios below 17 dB.
Both SToPS and PECUZAL were unable to produce any results.

XIII. COMPUTATION COMPLEXITY

The computation of persistent homology is not parsimonious
and still suffers from poor computational scaling. While computa-
tion of persistent homologies for datasets with few points is relatively
quick, the computation time grows rapidly for even moderately sized
datasets. This presents a challenge of the SToPS method as it requires
the computation of persistent homology of multiple sampled strands
across a large collection of time series. From the proposed algorithm,

the time complexity is approximately

OSToPS ≈ O(Nτ NsφPH(Np)),

where Nτ and Ns and Np are the number of lags tested and the
number of sampled strands and strand length, respectively, and
φPH(Np) is the time complexity for persistent homology compu-
tation. This value varies depending on the implementation of the
persistent homology algorithm and the type of filtration used (e.g.,
Čech, Rips, Delaunay, etc.). The Vietoris-Rips filtration has a simpli-
cial complex size K that scales exponentially with 2O(Np) in current
formulations.92 The computation of the Vietoris-Rips filtration can
be split into two phases. However, calculating the computational
complexity bounds is not straightforward.93 We note that there
is ongoing work aimed at improving and optimizing the persis-
tent homology algorithm, which has resulted in significant gains in
performance.92,94

A comparison of the approximate run times for SToPS,
PECUZAL, and MDOP is provided in Table I. Computation was
done on a Ryzen 7 4800HS with 16 GB of RAM using only one
thread in order to allow results to be comparable. Despite having a
much longer computational time compared to other methods, we
note that SToPS allows multiple lags to be considered in parallel
as the significance of each potential time lag is evaluated indepen-
dently. This is in contrast to PECUZAL and MDOP where the
iterative embedding cycles approach is used, and each new lag is
selected conditional upon previously selected lags. However, there
is a new method proposed by Krämer et al. based on Monte Carlo
tree search that attempts to tackle this problem.66 The flexibility to
assess embedding lags independently may provide large gains in
computational speed where the computation for multiple lags may
be distributed across multiple threads. Our current implementation
of the algorithm does not yet provide support for this.

Chaos 33, 032101 (2023); doi: 10.1063/5.0137223 33, 032101-24

© Author(s) 2023

 25 O
ctober 2024 06:12:41

https://aip.scitation.org/journal/cha


Chaos REVIEW scitation.org/journal/cha

The selection of new lags conditional on previously selected
lags also means that the results of PECUZAL and MDOP are not
robust to changes in the maximum allowable lag τmax. Changes to
the range of potential lags can affect the order of selection of future
lags if a new candidate lag that better optimizes the objective statis-
tic is introduced. For complex data, this can result in widely varying
results as the maximum lag changes. The presence of noise in the
data also results in different lags as shown by drifting lags found
in Fig. 14. Calculated lags for the lobster LP neuron time series
were found to vary even across trials with different realizations of
identically distributed noise.

We also note that the computation time for these embedding
algorithms can vary depending on the complexity of the input time
series. For example, successive embedding cycles in PECUZAL typi-
cally increase in computation time. For complex or noisy time series,
PECUZAL may produce multiple lags of varying significances. This
is seen by the jump in estimated lags for the lobster data between
max lags of 300 and 600. In contrast, the SToPS algorithm assesses
the significance of each score and should grow linearly proportional
to the number of lags. An exception is for small lags τ where strands
are too short and have no holes’ homology to track.

XIV. CONCLUSIONS

One of the aims of this paper is to provide an overview of
the embedding fundamentals and review existing methods for opti-
mizing embedding parameters. We first provide in Sec. I a rough
overview on the fundamental concepts of embedding theorems and
its applications in the context of the time series analysis. A simple
case for the usage of embedding in time series prediction tasks is
also given for new or uninitiated readers. In this paper, we focus on
the problem of identifying good embedding parameters, specifically
on the selection of embedding lags in non-uniform embedding. An
overview on the considerations when selecting embedding param-
eters is provided in Sec. III followed by a comprehensive review of
various uniform delay embedding methods in Secs. IV–VI.

We argue that a non-uniform embedding approach provides
more flexibility in reconstructing fast-slow dynamical systems. Fol-
lowing this, an overview of existing methods that attempt to auto-
mate the selection of non-uniform embedding lags is provided in
Sec. VII. However, while many of these automated non-uniform
embedding methods reliably return a collection of lags, they do not
necessarily agree with each other or provide a satisfactory dynami-
cal explanation for their selection. Furthermore, due to the iterative
process used to select delays, the choice of each subsequent delay is
conditional on previous selections.

In Secs. VIII and IX A, we propose a new method of selecting
non-uniform embedding lags, SToPS, that aims to produce lags that
have more dynamical explainability and are independently selected.
SToPS utilizes persistent homology to detect loops formed by 2D
delay embeddings of sampled windows of the time series, which
we call “persistent strands.” This is done over multiple different
lengths of sample windows to produce a characteristic time spec-
trum Sµ(τ ) where larger values of the significance score correspond
to time scales that are dynamically significant (i.e., they relate to
some notion of periodicity in the time series). The structure of

each persistent strand loop is characterized by two quantities, cir-
cularity and efficiency, which are combined to give the significance
score Si(τ ). Selection of time lags τ is done based on the mean and
standard deviation profiles of the significance score Sµ(τ ), Sσ (τ ).

The SToPS embedding method is tested on three different
classes of time series: periodic (sum of sines), chaotic (Lorenz), and
fast-slow (lobster LP neuron). In all cases, SToPS was found to
detect dynamically explainable time scales that were not reflected in
other reference non-uniform embedding methods PECUZAL and
MDOP. Additionally, SToPS was found to outperform PECUZAL
and MDOP in identifying dominant time scales for the lobster LP
neuron where fast-slow dynamics are present.

The impact of each different embedding method on the time
series prediction performance was also tested. Embedded time series
were used to train a one-step neural network predictor. It was found
that the resulting models performed similarly across all embedding
methods for both the Lorenz and lobster LP neuron time series.
However, freerun predictions of the lobster LP neuron time series
with models trained using SToPS embedding lags were found to
be able to replicate the fast neuron spiking dynamics better than
reference embedding methods. We also provide a brief discussion
and analysis on the computational efficiency of SToP as well as its
robustness to noisy input data.

Overall, while the performance of SToPS is only marginally bet-
ter than the existing non-uniform embedding methods PECUZAL
and MDOP, we argue that SToPS provides lags that are more
dynamically explainable compared to its counterparts. The assess-
ment individual time lags also allow the method to be applied to
multivariate time series by considering each component as an inde-
pendent scalar time series and identifying their respective time lags.
This may then be used to construct a delay vector that utilizes all
components of the time series. The performance of SToPS in this
context has not yet been tested and presents as an avenue of fur-
ther research. Additionally, the independent selection of lags via the
characteristic time spectrum provides a clearer picture of the rela-
tive importance of each time lag when compared to existing iterative
methods for automated non-uniform delay embedding where an
explicit collection of lags is provided.

However, the pursuit of more dynamically explainable delay
lags introduces a level of subjectivity in the interpretation of the
characteristic time spectrum. Nevertheless, we argue that focus-
ing on selecting dynamically relevant and explainable delay lags is
potentially a more meaningful approach to construct models that
are more relatable to observed system dynamics. This advantage is
especially evident in systems with multiple disparate time and spatial
scales, as demonstrated by the dynamics of the Lobster LP neuron.
Therefore, we propose dynamical relevance and explainability to be
a key additional consideration in the future development of time
delay embedding methods.
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APPENDIX A: NON-UNIFORM EMBEDDING PROFILES

A collection of profiles of the calculated statistics used to select
embedding lags the automated non-uniform embedding algorithms
PECUZAL and MDOP are given in Fig. 15. Relevant statistics are
the continuity statistic 〈ε∗〉 for PECUZAL and the β statistic for
MDOP. For PECUZAL, the τ lags corresponding to local maxima
in 〈ε∗〉 are used as candidate lags. The lag that results in the largest
decrease in the L-statistic is chosen as the final embedding lag in
each embedding cycle. A similar process is done for MDOP, but the
global maxima of β is chosen instead. A termination criterion based
on the false nearest neighbor (FNN) statistic is used in conjunction.

APPENDIX B: FREERUN PREDICTION OF

NON-SUBSAMPLED DATA

This section contains results of additional freerun prediction
tests for models that train on the full lobster LP neuron dataset with-
out any subsampling. This is theoretically an easier task as the model
is provided with a larger amount of data and smaller with smaller
magnitude predictions in each step. Prediction horizons of 10 steps
(Fig. 16) and 30 steps (Fig. 17) were done. The latter’s prediction
horizon is equal to 10-step prediction horizon models trained on
the subsampled data. In the 10-step non-subsampled case, SToPS is

FIG. 15. Resulting embedding profiles for the calculated statistics in the compari-
son automated non-uniform embeddingmethods. (a) Sum of three sine terms with
ω = {1, 5, 30}, φ = {0, 0.25, 0.75}, and A = {1, 0.5, 0.2}. (b) First component
of Lorenz. (c) Lobster LP neuron time series.
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FIG. 16. 10-step freerun prediction results for a neural network model trained
on non-subsample data. (a) Comparison of freerun prediction trajectories. (b)
Distribution of 10-step mean prediction error.

found to yield a lower prediction error than PECUZAL and MDOP.
The replication of the fast spiking dynamics is relatively similar
between all methods. Similar results were found for the 30-step pre-
diction case. However, the replication of the fast spiking dynamics is

FIG. 17. 30-step freerun prediction results for a neural network model trained
on non-subsample data. (a) Comparison of freerun prediction trajectories. (b)
Distribution of 30-step mean prediction error.

poorer than 10-step prediction cases likely due to the accumulation
of errors in successively predicted values.

APPENDIX C: PHASE SPACE RECONSTRUCTION

COMPARISONS

A comparison of various reconstructed attractors for the sum
of sines and Lorenz time series is provided in Figs. 18 and 19 with
the first two detected lags given. For the periodic sum of sines,
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FIG. 18. Sum of sines (ω = 1, 5, 30) phase space reconstructions with PECUZAL, MDOP, and SToPS.
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FIG. 19. Lorenz phase space reconstructions with PECUZAL, MDOP, and SToPS.
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FIG. 20. Sum of sines (ω = 1, 5, 30) recurrence plots of 2D and 3D embeddings.
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FIG. 21. Lorenz recurrence plots of 2D and 3D embeddings.
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FIG. 22. Lobster LP neuron recurrence plots of 2D and 3D embeddings.
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PECUZAL yielded only a single lag. For the Lorenz time series,
SToPs only yielded a single peak at τ = 41, which was subsequently
used for uniform embedding. Both PECUZAL and SToPS share a
similar lag at τ ≈ 40. MDOP yields lags that cause overembedding.

Recurrence plots for corresponding 2D and 3D embeddings for
the sum of sines, Lorenz, and lobster LP neuron time series are pro-
vided in Figs. 20–22. All embedding methods were able to preserve
some of the periodic structure for the sum of sines dataset. However,
the recurrence plots for MDO and SToPS revealed more small-scale
structure than PECUZAL. For Lorenz, both PECUZAL and SToPS
yield similar recurrence plots. MDOP recurrence plot loses some
detail in comparison and is likely due to overfolding of the attrac-
tor caused by large embedding lags. In the lobster LP neuron time
series, the selection of a small lag with SToPS reveals the expected
periodic behavior in several diagonal regions of the recurrence plot.
This is not as clear in PECUZAL and MDOP embeddings where
the detected periodic behavior is dominated by the slow neuron
dynamics.
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