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ABSTRACT

The cyanobacteriosponge Terpios hoshinota occurs on tropical reefs throughout the Indo-Pacific. The
species encrusts live coral, and other benthos, and is considered a pest species that can threaten the
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health and productivity of locally native benthic communities on coral reefs. Here we assemble a com-

plete mitochondrial genome to aid further research into the range expansion of this species. The circu-
lar genome was 20,504 bp in length and encoded 14 protein-coding genes, two ribosomal RNA (rRNA)
genes, and 25 transfer RNA (tRNA) genes. A phylogenetic analysis based on the concatenated sequen-
ces of 14 protein-coding genes of 12 members of the subclass Heteroscleromorpha including the
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newly sequenced T. hoshinota, suggests further taxonomic revisions within the order Suberitida may be

warranted.

Introduction

Terpios hoshinota Rutzler & Muzik, 1993 (Demospongiae,
Suberitida, Suberitidae) is an encrusting marine sponge with
a thin tissue layer (<1 mm) that can be grey, brown or black.
This species is considered invasive and is commonly called
the “black disease.” It is an aggressive space competitor cap-
able of growing 1-2mm per day (Liao et al. 2007). Its fast
growth rate is likely due to the nutritional benefits of hosting
a large quantity of non-photosymbiotic organisms. The
sponge grows by lateral propagation, extending short fine
tendrils across crevices to encounter new substrates. Thus, it
advances as a sheet and can make bridges between branches
of corals to aid its encroachment. It actively overgrows live or
dead corals and other benthic fauna, including hydrozoans,
octocorals, and Tridacnid clams leading to their suffocation
and death. Since being discovered in Guam in 1971, new dis-
tribution records have documented the expansion of the spe-
cies (Liao et al. 2007; Reimer et al. 2011; Fujii et al. 2011; Shi
et al. 2012; de Voogd et al. 2013; Montano et al. 2014; Ekins
et al. 2017; Fromont et al. 2019). This sponge is responsible
for the demise of large reef areas, particularly in pollution-
stressed nearshore zones (Rutzler and Muzik, 1993), but it
can also occur on relatively pristine reefs (Reimer et al. 2011;
van der Ent et al. 2016; Fromont et al. 2019).

Whether the increased prevalence of T. hoshinota is a con-
sequence of natural or artificial range expansion (possibly via
shipping translocations) or easier recognition (and thus docu-
mentation) of the species is unclear. Existing genetic data
indicates a moderate amount of haplotype diversity in the
COI region (van der Ent et al. 2016; Fromont et al. 2019).
Samples from the Kimberley (north-western Australia) shared
a single haplotype with an Indonesian sample indicating the
potential for a single point of introduction to Western
Australia (Fromont et al. 2019). Further data with additional
loci and population-level analyses are needed to confirm
whether this species is undergoing rapid distribution expan-
sion (Montano et al. 2014) and the source/directionality of
introductions. The generation of a mitogenome for this spe-
cies will aid such future studies.

Materials

A single specimen of T. hoshinota with accession number
783368 from the Western Australian Museum Marine
Invertebrate Collection was used in this study (https://
museum.wa.gov.au/research/research-areas/aquatic-zoology,
Contact Marine Invertebrate Curator Dr Zoe Richards, zoe.
richards@museum.wa.gov.au). The specimen was collected
from Berthier Island Kimberley (S14.50409 E124.98207) on the
21 September 2016 (See Figure 1).
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Figure 1. Terpios hoshinota overgrowing a corymbose Acropora at Berthier Island Kimberley, 2016. Photo by Zoe Richards.

Methods

Total genomic DNA (gDNA) was extracted from tissue using
the QIAGEN blood and tissue kit (Qiagen; Venlo,
Netherlands), following the manufacturer’s protocol. The
overall yield and quality of gDNA were measured using a
Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA) and by electrophoresis on a 2% agarose gel stained
with GelRed (Fisher Biotec, Wembley, WA, Australia). A
Nextera Flex DNA library kit (lllumina Inc., San Diego, CA,
USA) was used to assemble the gDNA library with a target
gDNA input of 100ng to saturate the tagmentation beads.
The ligation efficiency was assessed via quantitative PCR
(gPCR) using the JetSeq Hi-ROX kit (Bioline; Australia), con-
taining an SYBR-based gPCR mix that targets Illlumina’s P5
and P7 adaptors for sequencing. DNA standards ranging
from 10pM to 100 aM provide a quantitative value of the
successfully ligated product. The library build was pooled in
equimolar ratio, based on the JetSeq gPCR quantification
results, with other library builds to produce a final genome
library of 24 samples. The final genome library was size-
selected for 200-600 bp size fragments using a Pippin Prep
(Sage Sciences; USA), purified with the QIAquick PCR purifica-
tion kit (Qiagen) and quantified with a Qubit fluorometer
(Invitrogen; USA) in preparation for sequencing. The genomic
library (2.1pM load concentration) was sequenced on an
lllumina NextSeq (lllumina, San Diego, CA, USA) with a High
Output 300-cycle V2.5 chemistries (151bp paired-end
sequencing) following the manufacturer’s protocol.

The mitogenome was assembled using NOVOPIlasty
(Dierckxsens et al. 2017), with an input seed of a COI region
of Terpios hoshinota (GenBank accession number
MN507878.1). The mitogenome was primarily annotated
using MITOS (Bernt et al. 2013; genetic code: 4) and the ref-
erence sequence MN507878.1 in Geneious v10.0.6 (Kearse

et al. 2012). Transfer RNA genes were identified using the
tRNAscan-SE v2.0 (Chan et al. 2021) and MITOS.

The online server Proksee (https://proksee.ca) that used
GCview (Stothard and Wishart 2005) was used to generate
the circular mitochondria genome map. The phylogenetic
tree was reconstructed using Maximum-likelihood (ML) with
1000 bootstrap replicates in RAXML-NG (Kozlov et al. 2019)
based on nucleotide sequences of 14 protein-coding genes
from the mitogenomes of 11 other heteroscleromorphan spe-
cies (Genbank accession numbers listed in Figure 3). All
nucleotide sequences were aligned with MAFFT (Katoh and
Standley 2013). ModelTest-NG v0.1.6 (Darriba et al. 2020) was
used to select the best-fitting model for each protein-coding
gene.

Results

NOVOPIlasty recovered a circularized contig of 20,504 bp in
length, with an average coverage of 110x (Figure 2). The
resulting annotation of the complete mitogenome consists of
14 protein-coding genes, 25 tRNA genes and two rRNA
genes. Trn anticodons were further annotated to include
their one-letter IUPAC amino acid abbreviation and to help
distinguish isoacceptor genes. trnM is repeated three times,
trnR, trmL and trnS are duplicated. All trnM genes were
annotated as functional genes rather than pseudogenes as
no pseudogenes were identified by tRNAscan-SE. The mito-
chondrial base composition was A 29.1%, C 14.8%, G 21.7%,
T: 34.4%. The newly reported mitogenome was deposited in
GenBank under accession number ON099442.1.

The phylogenetic reconstruction of the subclass
Heteroscleromorpha based on the concatenated sequences
of 14 protein-coding genes was strongly supported at all
nodes including the node connecting T. hoshinota to
Halichondria (Figure 3).
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Figure 2. Mitochondrial genome architecture of Terpios hoshinota. Position of protein coding sequence (CDS) genes, rRNAs, and tRNAs are shown. GC content is
plotted with a black sliding window, and GC skew is indicated by colored sliding window (green and purple color).

Discussion and conclusion

The mitochondrial genome of the Suberitid sponge Terpios
hoshinota was 817-1027 base pairs longer than those pub-
lished for the Halichondria sister group (Knobloch et al. 2019;
Kim et al. 2019). The length of these Heteroscleromorphan
mitogenomes is 2,000-3,000 base pairs longer than those of
Hexasterophoran  sponges (see  Aphrocallistes  vastus,
Rosengarten et al. 2008). The mitogenome architecture fol-
lowed the typical Demospongidae arrangement (Salas-
Castaneda et al. 2019), and the nucleotide composition had
high content of A+T (63.5%) similar to other Suberitid
sponges (Kim et al. 2019).

The protein-coding genes were typical of Demospongidae
including the presence of apt9 (Zardoya 2020). A synteny
putatively ancestral to the metazoans, cox2-apt8-apt6-cox3, is
retained. A gene sequence of cox1-tRNA(s)-nad1 which is
shared among the demosponges is also present; however,
tRNA(c) also appears in this gene block in T. hoshinota. The
complement of 25 tRNA genes is larger than that recorded in
some demosponges and hexactinellids (20-22, Haen et al.
2007) but identical to that of Halichondria (Kim et al. 2017,
2019). The difference is accounted for by repeats of trnM,
trnR and trnS in T. hoshinota.

The phylogenetic reconstruction showed T. hoshinota
(family Suberitidae) groups with halichondrids instead of
the suberitids (represented by Suberites domuncula in
Figure 3) indicating polyphyletic relationships between the
families Subertitidae and Halichondriidae. The absence of
monophyly within these two families has previously been
observed through 28S nuclear-ribosomal genes (see
Thacker et al. 2013) and is consistent with the current
understanding of relationships  within the Subclass
Heteroscleromorpha (Morrow and Cardenas 2015). This
mitogenomic dataset adds to the body of evidence sug-
gesting further taxonomic revisions within the order
Suberitida may be warranted. However, further molecular
systematic analyses utilizing broader next-generation data-
sets are needed to test if the relationships between mito-
genomes reflect evolutionary relationships between species,
and to underpin robust phylogenetic inferences about
T. hoshinota and its relatives.

When occurring in outbreak proportions, T. hoshinota
poses a threat to coral reefs across the Indo-West Pacific. The
mechanisms responsible for T. hoshinota outbreaks remain
uncertain; however, the propensity for long-range dispersal
has helped this species expand its range (Chow et al. 2022).
This new mitogenome provides a valuable genetic resource
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Figure 3. Phylogenetic analysis of the subclass Heteroscleromorpha based on the concatenated sequences of 14 protein-coding genes. The newly sequenced
T. hoshinota mitogenome is highlighted in bold. Numbers above the branches indicate ML bootstrap values from 1,000 replicates.

to help examine phylogenetic relationships within the
Heteroscleromorpha. It also provides a foundation for
expanding knowledge of T. hoshinota diversity and migration
patterns across the Indo-West Pacific and may prove benefi-
cial to unraveling what triggers outbreaks of this species.
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