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Abstract
Optimisation methods for nonconcave maximisation problems are fundamen-
tally different from those for their concave counterparts. Concave problems
benefit from the helpful property that every local solution is also a global
one, enabling the development of computationally efficient algorithms. In
contrast, nonconcave problems lack such guarantees. Consequently, the
application of concave programming techniques to nonconcave problems
cannot guarantee global optimality, nor can they provide valid objective
bounds.

This thesis seeks to bridge this methodological divide, by adapting cutting
plane methods, traditionally reserved for concave problems, to nonconcave
mixed-integer quadratic programming problems. Cutting planes are partic-
ularly appealing due to their ease of implementation and versatility across
both continuous and integer variable types. Moreover, as these methods
result in linear approximations, they can be easily integrated alongside other
mathematical programming techniques.

We achieve this algorithmic advancement by developing the novel concept
of directional concavity, which asserts the concavity of a quadratic function
along a given direction. With this knowledge we can determine when and
where we can approximate a quadratic function by its tangents, and use this
information to search for a globally optimal solution.

Establishing directional concavity for general quadratic functions involves
three critical steps. First, we define tractable conditions that can identify
concave directions of a quadratic function. To illustrate this, we present
some example conditions that apply to a special class of quadratic func-
tion characterised by a Euclidean distance matrix. Next, we use strategic
functional decomposition to break down a quadratic function into simpler,
more manageable components. Identifying concave directions within each
component is noticeably easier, and often times more effective. Lastly, we
combine these ideas with innovative algorithmic techniques that allow us to
effectively explore the entire search space while always staying on concave
directions. This integration results in a globally convergent cutting plane
algorithm applicable to general quadratic programming problems.

We systematically develop the concept of directional concavity by focus-
ing each chapter of this thesis on one of the steps mentioned above. Each
development step is tested against various classes of quadratic programming
problems, demonstrating the algorithmic advantage of this novel approach,
in some cases reducing solve times by a factor of more than 1000 against
the current state-of-the-art methods. This work not only bridges a method-
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ological gap between concave and nonconcave optimisation techniques, but
also opens new avenues for advancements in cutting plane methods. In the
final chapter of this thesis, we explore an important application of cutting
plane-type methods in maintenance scheduling for refinery operations.
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1 Introduction

1.1 Motivation and Background

Optimisation is fundamentally a decision science, deeply woven into the fabric of our
daily lives. Every day, we are faced with decisions, big and small, that shape our reality
and our future. While the weight of our choices may vary, they typically seek a similar
goal, to maximise the benefits and desired outcomes of our actions. Although certain
aspects of our lives remain beyond our control, the deliberate application of mathematical
principles to enhance our decision-making processes is what we refer to as optimisation.
This field encompasses a broad spectrum of topics, disciplines and philosophies that all
share a common objective: to extract the maximum possible value from the resources
and options available to us.

In the study of optimisation, we translate real-world decision making into a structured
mathematical framework. This transformation involves distilling and encoding the deci-
sions, mechanisms and outcomes of an optimisation problem into a precise mathematical
representation. Atop this foundation, we construct the constraints and objectives which,
when combined, give rise to our mathematical optimisation model. This model typically
manifests in a form such as

max 𝑓 (𝑥) (1.1)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑘, (1.2)

𝑥 ∈ 𝐾 ⊂ ℝ𝑛.

Here, 𝑥 are called our decision variables, representative of the real-world options available
to a decision-maker. The options we may choose from are represented by the set 𝐾 ⊂ ℝ𝑛,
which is often referred to as the domain of 𝑥. The constraints that must be adhered to
are translated into the general functions 𝑔𝑖(𝑥), which must satisfy (1.2), and the objective
is given by 𝑓 (𝑥), which in this case is to be maximised.

While an optimisation model follows a logical and deterministic structure, in its initial
form it stands as nothing more than an abstract algebraic construct. It is only through
the application of sophisticated solution methods and algorithms that we may provide
concrete values to our decision variables, effectively translating our once abstract model
into actionable solutions.
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1 Introduction

We interact with optimisation solutions every day. Every time you enter a destination
into your favourite maps application or receive a parcel from across the country, there
is an optimisation model working behind the scenes to find the best solution (Braekers
et al., 2016). Even the mammoth task of keeping the world’s passenger aeroplanes on
time and on route involves the work of massive optimisation models (Bazargan, 2016).

1.2 Solving Optimisation Problems

Extracting solutions from an algebraic optimisation model is usually very challenging.
It is our role as optimisation practitioners to propose and develop efficient solution
algorithms, appropriate for the problem at hand. While solving small test models may
not be particularly taxing, practical problems are often of a much larger scale. In such
cases it becomes vital to have solution methods that are accurate, robust and pragmatic.
Developing such an algorithm requires a sophisticated understanding of the model’s
structure and requirements of a potential solution. By unlocking these keys, we can use
optimisation techniques to solve complex real-world problems.

However, not all optimisation problems are alike. While problem size is a tangible
indicator of potential difficulty, structure arguably plays a more important role. For
instance a linear programming model (whereby 𝑓 (𝑥) and each 𝑔𝑖(𝑥) are affine functions
and 𝐾 = ℝ𝑛) can be easily solved to global optimality using the well known simplex
method (Nelder & Mead, 1965). This means that the solution returned by the algorithm is
known to have the best objective function value of any other feasible solution. In practice,
the simplex method works very well, and there are many available linear programming
solvers that can tackle large problems with relative ease.

While easy to solve, pure linear programming is rare in practical applications. This
is because many of the decisions we seek to optimise are discrete. Questions like ‘what
day should this be scheduled?’, ‘which train is going first?’ or ‘how many welders do
we need?’ all have answers that come from a discrete set, such as the set of days, a set
of trains, or the set of integers. The challenge with optimising over a discrete set is the
combinatorial effect this has on our solution space. Adding just a single extra binary
decision to a model doubles the number of possible combinations. This exponential
increase becomes a major burden when solving large scale integer programs.

Optimising over discrete variables is known as integer programming, or mixed-integer
programming in the case where there are both discrete and continuous variables. Usually,
these problems are solved using a branch and bound algorithm, which works by breaking
down the problem into easier to manage pieces (Land & Doig, 1960). Typically, this in-
volves solving a relaxation of the original problem. A relaxation is simply a reformulation
of the model that involves an expansion of the feasible region that allows the problem to
be more easily solved. By virtue of this expansion, the optimal value of the relaxation

2
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provides an upper bound of the original problem. Furthermore, the solution found is
likely to be infeasible for the original problem. For instance, if 𝑓 (𝑥) and 𝑔𝑖(𝑥) are all
linear, we would typically use the continuous relaxation, whereby an integer variable
𝑥𝑖 ∈ ℤ is relaxed to 𝑥𝑖 ∈ ℝ. The continuous relaxation is then easily solved using the
simplex method. However, while being easier to solve, the solution of the relaxation is
likely to contain some fractional variables which do not satisfy the original constraints.

To refine these solutions towards integer feasibility we can use branching rules by
creating subtrees with tighter local bounds on a fractional variable. For instance, if 𝑥𝑖 is a
variable that should be binary, but has value 0.5 after solving the continuous relaxation,
we form two branches, one with 𝑥𝑖 = 0 and the other with 𝑥𝑖 = 1. The relaxation of
these two child nodes is then solved, and if the upper bound (given by the solution of the
relaxation) drops below the objective value of the best known solution, then the optimal
solution cannot exist in this branch and hence the node is pruned. The branch and bound
algorithm converges globally to the solution of a mixed-integer program by continuing
this procedure until an entire search tree is developed.

Formulating a tight relaxation of the problem is crucial for the success of a branch
and bound algorithm. A tight relaxation is one whose upper bound provides a good
approximation of the actual optimal value. This allows the algorithm to more effectively
eliminate branches, and hence converge to the optimal solution faster. If, on the other
hand, the relaxation provides a poor bound, the algorithm may descend down unhelpful
and misleading branches. The highly combinatorial nature of integer programming prob-
lems then means that a huge branching tree is formed, making it difficult for the algorithm
to converge. Poor relaxation is a common difficulty found in discrete optimisation, and
there are many examples of large integer problems that are easier to solve than small
problems with poor relaxations.

Adding to the complexity, real-world optimisation problems often include nonlinear
elements which are generally harder to solve than linear equivalents. Unlike in linear
programs, asserting global optimality in a nonlinear program can be very difficult, de-
pendent largely on the structure of the overall problem. For continuous problems, the
Karush-Kuhn-Tucker (KKT) conditions are a key result used to prove local optimality,
also known as first order stationarity, of a solution (Kuhn & Tucker, 1951; Slater, 1950).
In the concave problems, i.e., where 𝑓 (𝑥) is a concave function and each 𝑔𝑖(𝑥) is convex,
we have the useful property that any local solution is also a global one. As such, the KKT
conditions can be used to prove global optimality.

Note that much of the existing literature refers to the maximisation of a concave
function over a convex set as a convex problem, since it can be transformed into the
minimisation of the convex function −𝑓 (𝑥). However, this thesis is primarily interested
in maximisation problems, and hence is it is more natural and convenient to refer to
them as concave problems.

Conversely, nonconcave problems may contain many local solutions of varying quality.

3
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Finding global optimality for such problems therefore becomes incredibly difficult, so
much so that in many cases finding local stationarity is the only realistic goal. While
much research has been conducted on this topic, many of the algorithms proposed are
efficient only on a particular class of problem. As stated by the No Free Lunch theorems,
universal algorithm dominance is impossible to achieve (Wolpert & Macready, 1997). This
is especially true for nonconcave programming over discrete variables, which represents
a pinnacle of complexity in the study of optimisation.

1.3 Exact Quadratic Programming

Mixed-integer quadratic programming is the problem of maximising a quadratic function
over both integer and continuous decision variables. Mathematically, these problems
take on the form

max 𝑓 (𝑥) = ⟨𝑄𝑥 + 𝑝, 𝑥⟩ (1.3)

s.t. 𝑥 ∈ 𝐾 ⊂ ℝ𝑛, (1.4)

where 𝑄 ∈ ℝ𝑛×𝑛 is a symmetric matrix, 𝑝 ∈ ℝ𝑛 is a real vector and 𝐾 contains both integer
and continuous dimensions.

Quadratic terms are a particularly common form of nonlinearity seen in practice and
hence (1.3) has many important applications. In finance and economics, quadratic pro-
grams have commonly been used to model the complex interdependencies involved in
portfolio selection optimisation (Mencarelli & D’Ambrosio, 2019). Similarly, Aboudolas
et al. (2010) demonstrated the application of quadratic programming techniques in op-
timising urban traffic control systems in a Greek city. Beyond these applications, the
well-established least squares problem in statistical regression represents a fundamen-
tal example of quadratic programming. More recently, these techniques have gained
interest in the field of machine learning, particularly for feature selection of large mod-
els (Rodriguez-Lujan et al., 2010).

These problems are known to be NP-hard, and are therefore particularly challenging
to solve (Pia et al., 2017). As such, many authors have proposed efficient heuristic,
metaheuristic and approximation algorithms for a wide range of both classical and
practical problems. Conversely, the literature on exact methods has followed a natural
divergence, based on the concavity of the problem. This distinction has a profound effect
on the way in which we might solve the problem.

1.3.1 Concave Problems

For the case where 𝑄 is negative semi-definite, the continuous relaxation of (1.3) satisfies
the Slater conditions, and hence the problem is said to be concave. As such, many
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1.3 Exact Quadratic Programming

of the techniques used in concave nonlinear programming can be extended to mixed-
integer quadratic programming. In particular, given we can solve exactly the continuous
relaxation, we can use this to formulate a branch and bound search tree, similar to that
described earlier. An example of this idea can be seen in Gupta and Ravindran (1985) and
Leyffer (2001). In fact, many of today’s notable mixed-integer and nonlinear quadratic
programming solvers implement this key idea (Kronqvist et al., 2019).

When employing relaxation techniques within a branch and bound framework, there is
an important trade-off that needs to be balanced between the tightness of the relaxation
and the computational effort required to solve it. If solving the relaxation cannot be done
efficiently, then nodes cannot be propagated quickly, leading to slow convergence.

An alternative technique is to form a relaxation that approximates the objective func-
tion by cutting planes, thereby keeping the problem linear. For concave objective func-
tions, this is easily achieved through the use of tangent planes, thanks to the fact that

𝑓 (𝑥) ≤ 𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ (1.5)

holds for all 𝑥, 𝑦 ∈ ℝ𝑛. Thus, the tangent plane of any 𝑦 provides a valid upper bound for
the function value of 𝑥. This important property means we can use cutting planes to form
a linear upper approximation of the objective function, and use this as our relaxation.
Given a set of cut generating points 𝐴 ⊂ ℝ𝑛, the cutting plane model of (1.3) is given as

max 𝜃 (1.6)

s.t. 𝜃 ≤ 𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ , ∀𝑦 ∈ 𝐴,
𝑥 ∈ 𝐾 ⊂ ℝ𝑛.

This formulation gives rise to the following important properties.

Proposition 1. Suppose (1.3) is feasible and bounded. Then, for any nonempty subset
𝐴 ⊂ ℝ𝑛, either (1.6) is unbounded, or its optimal value provides an upper bound for (1.3).
Furthermore, if 𝐴 = 𝐾, then a solution to (1.6) is also a solution to (1.3).

Proof. Since (1.3) is feasible, there exists an 𝑥 ∈ 𝐾 and sufficiently small 𝜃 ∈ ℝ such that
(𝜃, 𝑥) is feasible for (1.6). Suppose (1.6) is bounded and let (𝜃, 𝑥) be an optimal solution.
Finally, let 𝑥∗ be an optimal solution of (1.3). Then from (1.5) and the fact that (𝜃, 𝑥) is
optimal, we have that

𝜃 = min
𝑦∈𝐴

{𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩}

≥ min
𝑦∈𝐴

{𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥∗ − 𝑦⟩} ≥ 𝑓 (𝑥∗).

Therefore (1.6) provides an upper bound for (1.3). Now, suppose 𝐴 = 𝐾. Given 𝑥 ∈ 𝐾 and
the result above we then have

𝑓 (𝑥∗) ≤ 𝜃 = min
𝑦∈𝐾

{𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩} = 𝑓 (𝑥).
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However, as 𝑥∗ is optimal we also have 𝑓 (𝑥∗) ≥ 𝑓 (𝑥) and hence 𝑓 (𝑥) = 𝑓 (𝑥∗). Therefore
𝑥 must also be a solution of (1.3).

In practice, we rarely require 𝐴 = 𝐾 to recover an optimal solution of (1.3). Instead, it
is common to implement an algorithm that can find a sufficiently large 𝐴 so as to also
solve (1.3).

The Extended Cutting Plane Algorithm from Westerlund and Pettersson (1995) achieves
this by iteratively solving (1.6) to optimality and adding the new solution to the set of
cuts. The cutting plane model is then re-solved with this additional cut, and the process is
repeated until the upper bound provided by (1.6) equals the known lower bound, at which
point we have converged to an optimal solution. The benefit of the extended cutting
plane algorithm is that each iteration’s subproblem is a mixed-integer linear program.
As such, we have broken down a quadratic programming problem into a series of linear
problems. If (1.6) is relatively easy to solve, cutting plane methods can be more efficient
than branch and bound techniques.

We can improve upon this idea by employing anOuter Approximationmethodology (Du-
ran & Grossmann, 1986). As the problem contains some integer variables, a branch and
bound tree must be formed in order to solve (1.6) to optimality. However, we can see from
Proposition 1 that 𝐴 can be any nonempty set. Duran and Grossmann (1986) showed
that whenever an integer feasible solution is found during the branch and bound process,
its tangent can be added immediately. This allows cuts to be added ‘on-the-fly’, meaning
our linear approximation is continuously tightened during the search for an optimal
solution. As such, only one mixed-integer search tree is required, thereby reducing the
computational load.

Outer approximation has become a very popular way in which to solve concave
versions of (1.3). Furthermore, the method is easily implementable in modern integer
programming solvers using the lazy constraint callback functionality. This allows for the
injection of user generated code into the general branch and bound solver routine. By
using this capability, we can create our own tangent generating functions and therefore
easily implement an outer approximation algorithm within our desired mixed-integer
programming solver.

1.3.2 Nonconcave Problems

In a nonconcave setting, the problem becomes much more difficult. This is because many
of the properties utilised in a concave setting, such as valid tangent planes or that all local
solutions are also global solutions, no longer apply. Consequently, even the continuous
relaxation of (1.3) is a global optimisation problem, and is thus very challenging.

A common solution methodology used in general mixed-integer nonconcave pro-
gramming that is easily extensible to (1.3) is the use of spatial branching with convex
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1.3 Exact Quadratic Programming

envelopes. A convex envelope is a set of linear inequalities that define upper and lower
approximations of a nonlinear, potentially nonconcave, function. In the case of (1.3),
this is usually achieved through the introduction of an auxiliary variable 𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗. This
formulation can then be linearised by the well known McCormick (1976) inequalities,
given by

𝑦𝑖𝑗 ≥ 𝑥𝑖𝑥𝑗 + 𝑥𝑖𝑥𝑗 − 𝑥𝑖𝑥𝑗
𝑦𝑖𝑗 ≥ 𝑥𝑖𝑥𝑗 + 𝑥𝑖𝑥𝑗 − 𝑥𝑖𝑥𝑗

𝑦𝑖𝑗 ≤ 𝑥𝑖𝑥𝑗 + 𝑥𝑖𝑥𝑗 − 𝑥𝑖𝑥𝑗

𝑦𝑖𝑗 ≤ 𝑥𝑖𝑥𝑗 + 𝑥𝑖𝑥𝑗 − 𝑥𝑖𝑥𝑗

where 𝑥𝑖 and 𝑥𝑖 are upper and lower bounds on 𝑥𝑖. However, this linearisation is usually
only tight at the bounds of 𝑥𝑖 and 𝑥𝑗. To overcome this, we can iteratively tighten the
envelope around 𝑦𝑖𝑗 by branching on the bounds of 𝑥𝑖 or 𝑥𝑗. This creates two child nodes
with updated local bounds on 𝑥𝑖, which can be used to tighten the 𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗 approximation.
By integrating this tightening with the general branch and bound procedure for integer
feasibility, we eventually converge to global optimality.

For pure binary problems, this linearisation can be very effective, since it is known
to be tight when 𝑥𝑖 and 𝑥𝑗 are at their upper or lower bounds. If 𝑥 ∈ {0, 1}𝑛, then the
McCormick inequalities reduce to

𝑦𝑖𝑗 ≥ 𝑥𝑗 + 𝑥𝑖 − 1 (1.7)

𝑦𝑖𝑗 ≥ 0 (1.8)

𝑦𝑖𝑗 ≤ 𝑥𝑗 (1.9)

𝑦𝑖𝑗 ≤ 𝑥𝑖. (1.10)

This provides a valid linearisation such that 𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗 where 𝑥𝑖, 𝑥𝑗 ∈ {0, 1}. As such, (1.3)
can be reformulated as the equivalent binary linear program

max
𝑛
∑
𝑖,𝑗=1

𝑞𝑖𝑗𝑦𝑖𝑗 +
𝑛
∑
𝑖=1

𝑝𝑖𝑥𝑖 (1.11)

s.t. (1.7)-(1.10)

𝑦 ∈ ℝ𝑛×𝑛,
𝑥 ∈ 𝐾 ⊂ {0, 1}𝑛.

While effective for small scale problems, this technique introduces 𝑛2 additional auxiliary
variables and thus does not scale efficiently. When 𝑄 contains only nonnegative entries,
we may use the more compact linearisation technique outlined in Glover (1975) and given
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as

max
𝑛−1
∑
𝑖=1

𝑤𝑖 +
𝑛
∑
𝑖=1

𝑝𝑖𝑥𝑖 (1.12)

s.t. 𝑤𝑖 ≤ 𝑥𝑖
𝑛
∑
𝑗=𝑖

𝑞𝑖𝑗, 𝑖 = 1, … , 𝑛 − 1,

𝑤𝑖 ≤
𝑛
∑
𝑗=𝑖

𝑥𝑗𝑞𝑖𝑗, 𝑖 = 1, … , 𝑛 − 1,

𝑤 ∈ ℝ𝑛−1,
𝑥 ∈ 𝐾 ⊆ {0, 1}𝑛.

This formulation only introduces 𝑛−1 additional variables, however has a slightly weaker
continuous relaxation compared to (1.11).

Another method that has recently received significant attention for solving (1.3) in both
purely binary and mixed-integer domains is the application of semidefinite relaxations.
Similar to the McCormick inequalities, we introduce auxiliary variables 𝑌 = 𝑥𝑥𝑇, however
these are now relaxed such that 𝑌 − 𝑥𝑥𝑇 ⪰ 0, where 𝑀 ⪰ 0 if and only if 𝑀 is positive
semi-definite. The resultant problem can then be solved using any available semidefinite
programming solver. In many cases, this formulation is known to provide some of the
tightest available relaxations of (1.3) (Burer & Vandenbussche, 2009; Chen & Burer, 2012).
Furthermore, semidefinite programs have been shown to be not much more difficult
than linear programming (Vandenberghe & Boyd, 1996). However, the number of new
decision variables in this approach is 𝑛2, and hence it scales poorly. As such, the use of
semidefinite relaxations can struggle to solve large problem sizes.

Cutting plane algorithms can be used for (1.3) when 𝑥 is binary, however they generally
require an extra concave reformulation step. In particular, using the property that 𝑥𝑖 = 𝑥2𝑖
for 𝑥𝑖 ∈ {0, 1}, the nonconcave objective 𝑓 (𝑥) = ⟨𝑄𝑥, 𝑥⟩ + ⟨𝑝, 𝑥⟩ can be replaced by a
concave function

𝑓 ′(𝑥) = ⟨(𝑄 − 𝜆𝐼𝑛) 𝑥, 𝑥⟩ + 𝜆
𝑛
∑
𝑖=1

𝑥𝑖 + ⟨𝑝, 𝑥⟩ ,

where 𝜆 is the largest eigenvalue of 𝑄, and where 𝐼𝑛 is the identity matrix of dimension
𝑛 (Lima & Grossmann, 2017). The resultant matrix 𝑄 − 𝜆𝐼𝑛 then has only negative
eigenvalues, and hence the quadratic term is concave. We can therefore use cutting plane
methods to solve as we might normally with a concave problem. This approach has
been implemented in commercial solvers such as CPLEX and Gurobi (Bliek et al., 2014;
Lima & Grossmann, 2017). However, it can be slow to converge, particularly when 𝜆 is
large (Bliek et al., 2014; Bonami et al., 2022).

Importantly, the method described above demonstrates how cutting plane methods
can be extended to nonconcave settings. This has the potential to be quite effective,
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since concave programming techniques need only search for one local solution. Thus,
an important question arises: when and how can we extend cutting plane techniques
to nonconcave settings? Specifically, under what circumstances can we use (1.6) to
solve (1.3), even in the case where 𝑓 (𝑥) is nonconcave? For instance, if we knew that
𝑓 (𝑥) was concave for all feasible solutions 𝑥 ∈ 𝐾, then this may be sufficient. If not, could
we augment our search algorithm to ensure we always stay on concave directions? Or
divide the feasible region based on the concavity of 𝑓 (𝑥)? An answer to any of these
questions would allow us to extend the efficiency of cutting plane methods to difficult
nonconcave settings.

1.4 Thesis Overview

This thesis focuses on developing and advancing cutting plane methods, usually reserved
for concave problems, to nonconcave quadratic programming. We investigate the con-
ditions under which these methods are not only applicable, but also yield substantial
computational improvements, outperforming state-of-the-art commercial solvers and
heuristic methods. By extending concave programming techniques to these nonconcave
settings, this research aims to address the key questions of when and how such extensions
can be effectively applied.

However, doing so is far from trivial. To achieve extension, we introduce the novel
concept of directional concavity. Directional concavity allows us to determine whether
a function is concave on a given 𝑥 − 𝑦 direction, thereby allowing (1.5) to hold. By
understanding the concave directions of a quadratic function, we can better utilise
cutting plane techniques to solve nonconcave problems. To establish the requirements of
directional concavity, each chapter of this thesis will focus on a specific challenge, and
examine ways to overcome each.

In Chapter 2, we look at a classical binary quadratic optimisation problem, known as
the diversity problem. This well known problem seeks to maximise a quadratic objective
defined by a Euclidean distance matrix, over a simple cardinality constraint. We prove
the interesting property that, although the Euclidean distance matrix is nonconcave, (1.5)
holds for any 𝑥, 𝑦 that are feasible for the problem. In other words, we always have valid
tangents between feasible solutions. This allows us to solve the problem using cutting
plane methods, and the resultant algorithm proves to be incredibly computationally
efficient on a majority of test instances.

Using the results from Chapter 2 as a motivator, Chapter 3 looks more closely at when a
cutting plane methodology performs poorly, and why this might be the case. This leads us
to an exploration of functional decomposition, and how breaking down the objective into
its key components can lead to much tighter approximations via tangent planes. Using the
diversity problem as a case study, we introduce some heuristic decomposition strategies
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and show the performance improvement that can arise from these reformulations.
Chapter 4 extends the results from Chapter 2 and shows how cutting plane methods

can be used on general quadratic programming problems where the objective is defined
by a Euclidean distance matrix. Unlike the diversity problem, we no longer have that (1.5)
holds for all feasible solutions. However, that is not to say we cannot still use cutting
plane techniques to solve the problem. This chapter uses the concept of directional
concavity to determine the directions of valid tangents. With knowledge of the concave
directions of the objective, we can augment our search algorithm to always stay on these
directions. This allows us to solve nonconcave problems using concave techniques by
simply changing our search strategy.

In Chapter 5, we expand upon the notion of directional concavity to encompass general
matrices, moving beyond the confines of only Euclidean distance matrices. By integrating
the results, techniques, and perspectives of the previous chapters, we introduce an exact
algorithm that revolutionises the application of cutting plane methodologies in scenarios
previously deemed unsuitable. This novel approach offers a cohesive strategy for applying
cutting plane methods across a broader class of problems. The performance and outcomes
of this algorithm are very encouraging, and highlight the benefits of this new strategy.

Finally, in Chapter 6 we explore some practical applications of optimisation and develop
a maintenance scheduling optimisation model for digester banks. Digester banks are
network-connected assets that lie on the critical path of the Bayer process, a chemical
refinement process that converts bauxite ore into alumina. Given the complexity of
scheduling maintenance for large fleets of digester banks, a continuous-time, mixed-
integer linear program is formulated to find the cost-minimising maintenance schedule
that satisfies all required constraints. A solution approach that employs lazy constraints
and Benders decomposition is proposed to solve themodel. We solve the schedulingmodel
for realistic scenarios involving two Bayer refineries based in Western Australia. The
purpose of this chapter is to highlight the importance of pragmatic solution algorithms,
tailored to the problem at hand.
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2 The Max-Sum Diversity Problem1

This chapter aims to answer an open question recently posed in the literature, that is
to find a fast exact method for solving the max-sum diversity problem, a nonconcave
quadratic binary maximisation problem. We show that, for Euclidean max-sum diversity
problems (EMSDP), the distancematrix defining the quadratic term is always conditionally
negative definite. This interesting property ensures that the cutting plane method is
exact for (EMSDP), even in the absence of concavity. As such, the cutting plane method,
which is primarily designed for concave maximisation problems, converges to the optimal
solution of (EMSDP). The method was evaluated on several standard benchmark test sets,
where it was shown to outperform other exact solution methods for (EMSDP), and is
capable of solving two-coordinate problems of up to eighty-five thousand variables.

2.1 Introduction

The problem of maximising diversity and dispersion arises in many practical settings. It
involves selecting a subset of elements from a larger set to maximise some distance metric.
Since the conception of the maximum diversity problem by Kuby (1987) (sometimes
referred to as the maximum dispersion problem), the interpretation of diversity has taken
many practical and theoretical forms. The topic has now reached a level of maturity
where a multitude of problem variations, solution algorithms, and practical applications
exist. Over the last thirty years, a significant quantity of research has focused on the
max-sum diversity problem (Kuby, 1987), which is to maximise the sum of distances
between selected elements, and the max-min diversity problem (Erkut, 1990), which is to
maximise the minimum distance among selected points. In this chapter, we focus our
attention on the Euclidean max-sum diversity problem (EMSDP).

Given a set of 𝑛 predefined locations 𝑢1, … , 𝑢𝑛 in a vector space ℝ𝑠 (𝑠 ≥ 1), the (EMSDP)
aims to find a subset of 𝑝 locations such that the sum of the distances between the 𝑝
points is maximised. Here, we consider 𝑑𝑖𝑗 to be the distance between locations 𝑖 and 𝑗
defined by 𝑑𝑖𝑗 = ‖𝑢𝑖 − 𝑢𝑗‖ where ‖⋅‖ is the standard Euclidean distance in ℝ𝑠. Let 𝐷 = [𝑑𝑖𝑗]
denote the full distance matrix where 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑛. The (EMSDP) is then

1This chapter is based on Spiers, Bui, and Loxton (2023b).
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given as

max 𝑓 (𝑥) = 1
2
⟨𝐷𝑥, 𝑥⟩ , (EMSDP)

s.t. 𝑥 ∈ 𝐾

where

𝐾 = {𝑥 ∈ {0, 1}𝑛 ∶
𝑛
∑
𝑖=1

𝑥 = 𝑝} .

The (EMSDP) is known to be strongly NP-hard (Eremeev et al., 2019; Kuo et al., 1993;
Ravi et al., 1994). Practical applications of the maximum diversity problem are vast.
One of the first examples presented in the literature is in locating unwanted facilities
on a network (Church & Garfinkel, 1978; Kuby, 1987). This application was recently
used to find the optimal location of temporary waste collection points in an Indonesian
city (Julianto et al., 2023). Furthermore, diversity maximisation has also been used to find
the optimal locations of chairs for COVID-19 social distancing (Ferrero-Guillén et al.,
2022).

Research into solution methods for the max-sum diversity problem has mainly focused
on heuristics and meta-heuristics. Recently, Zhou et al. (2017) introduced an opposition-
based memetic algorithm for the (EMSDP). They define opposite solutions as being
̄𝑥 = 𝑥 − 1, and use these solutions to diversify the search of a machine learning algorithm.

The algorithm achieved impressive results, and was later shown in Martí et al. (2022)
to be one of the best performers for Euclidean instances of the (EMSDP). For further
discussion on heuristics for the (EMSDP), see the excellent review paper by Martí et al.
(2022).

While heuristic methods for the (EMSDP) have made significant progress, the devel-
opment of exact algorithms has fallen behind. One of the first exact approaches was
presented in Kuo et al. (1993) and used linear reformulation techniques to transform
the problem into an integer linear form. This was done in two ways. The first used a
linearisation technique presented in Glover and Woolsey (1974), whereby the quadratic
𝑥𝑖𝑥𝑗 terms are replaced by a new auxiliary variable 𝑦𝑖𝑗. The linear formulation of (EMSDP)
is then given as

max
𝑛−1
∑
𝑖=1

𝑛
∑
𝑗=𝑖+1

𝑑𝑖𝑗𝑦𝑖𝑗, (2.1)

s.t. 𝑦𝑖𝑗 ≥ 𝑥𝑖 + 𝑥𝑗 − 1, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
𝑦𝑖𝑗 ≤ 𝑥𝑖, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, (2.2)

𝑦𝑖𝑗 ≤ 𝑥𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, (2.3)

𝑦𝑖𝑗 ≥ 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
𝑥 ∈ 𝐾,
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where constraints (2.2)-(2.3) enforce 𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗. Note that this formulation is equivalent
to the McCormick envelopes introduced in Chapter 1.3.2 where 𝑥𝑖 and 𝑥𝑗 are binary. A
second reformulation that uses inequalities and real variables to handle quadratic terms,
a technique first outlined in Glover (1975), is given as

max
𝑛−1
∑
𝑖=1

𝑤𝑖, (2.4)

s.t. 𝑤𝑖 ≤ 𝑥𝑖
𝑛
∑
𝑗=𝑖+1

𝑑𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤𝑖 ≤
𝑛
∑
𝑗=𝑖+1

𝑑𝑖𝑗𝑥𝑗, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 − 1,
𝑥 ∈ 𝐾.

This formulation was shown in Martí et al. (2010) to be far more efficient than (2.1). It
was later used as the exact solver for the comprehensive empirical analyses presented
in Parreño et al. (2021) and Martí et al. (2022).

The first significant advancement in exact methods for the (EMSDP) came in Pisinger
(2006). This paper presented several upper bounds based on Lagrangian relaxation,
semidefinite programming and reformulation techniques. The upper bounds are com-
putationally cheap and can therefore be implemented in a branch and bound procedure.
Numerical results show that for Euclidean distance problems, the procedure is capable of
solving problems with 𝑛 = 80with an average solve time of 60 seconds, but it struggles for
sizes 𝑛 ≥ 100. Martí et al. (2010) presented a branch and bound algorithm based on partial
solutions, where a partial solution is a set of 𝑘 elements where 𝑘 < 𝑝. Upper bounds are
then calculated based on all other solutions that contain these 𝑘 elements. The objective
function is split into three parts, and an upper bound for each is calculated. These bounds
are then integrated into a branch and bound search tree. While the algorithm is faster
than the linear formulation (2.4), the numerical results show that it struggles to solve
instances of 𝑛 = 150 in under an hour of computation time.

This chapter answers an open question posed in the recent review paper Martí et al.
(2022). That is, while progress in exact methods for variants of the maximum diversity
problem have advanced significantly (such as Sayyady & Fathi, 2016 for the max-min
problem and Garraffa et al., 2017 for the max-mean problem), a fast exact solver for
the max-sum diversity problem remains elusive. The max-sum problem remains the
most widely studied problem variation, yet very few exact methods exist. One of the
reasons for this might be that the problem is generally nonconcave, meaning the naive
application of concave nonlinear programming techniques is not appropriate. However,
when the distance measurements are taken as Euclidean, the problem exhibits certain
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special characteristics that allow for nonlinear programming techniques, particularly
cutting plane methods, to be applied, even in the presence of nonconcavity.

The use of cutting plane methods for (EMSDP) have seen limited application in existing
literature. However, this technique has been applied to closely related problems, such as
the unconstrained binary quadratic problem, standard quadratic programming problem
and quadratic knapsack problem. In the majority of cases, this has been through the
application of the concave reformulation step outlined in Chapter 1.3.2. As such, these
methods have rarely seen particularly impressive performances. In this chapter, we show
that the cutting plane algorithm can solve the nonconcave (EMSDP) directly, without the
need for a reformulation step.

The performance of the cutting plane algorithm is evaluated using two publicly avail-
able test sets from the MDPLIB 2.0 test library (Martí et al., 2021), several randomly
generated instances as well as a subset of problems from the TSPLIB test library. Nu-
merical results show that the cutting plane algorithm is vastly superior to other exact
solvers and is capable of solving large, two-coordinate problems of up to 𝑛 = 85900. The
algorithm’s performance deteriorates as the number of coordinates grows, however, even
in these difficult instances it remains superior to other exact solvers, and is able to solve
large 20-coordinate problems of up to 𝑛 = 2000.

The chapter is organised as follows. In Section 2.2 we derive some well known and
important results pertaining to Euclidean distance matrices. Section 2.3 uses these results
to formulate an exact cutting plane approach for solving (EMSDP). The convergence to
optimality is established in Theorem 10. We then provide in Theorem 13 an estimation of
how many non-optimal solutions each cutting plane eliminates at each iteration. Finally,
in Section 2.4, we evaluate the effectiveness of the proposed cutting plane algorithm
through extensive numerical experiments.

2.2 Euclidean Distance Geometry

We begin by deriving some important results regarding Euclidean distance matrices. An
𝑛 × 𝑛 matrix 𝐷 = [𝑑2𝑖𝑗]1≤𝑖,𝑗≤𝑛 is called a squared Euclidean distance matrix if there are

𝑛 vectors 𝑣1, … , 𝑣𝑛 in a Euclidean space ℝ𝑠 such that 𝑑2𝑖𝑗 = ‖𝑣𝑖 − 𝑣𝑗‖
2
for all 𝑖, 𝑗 = 1, … , 𝑛,

where ‖⋅‖ is the Euclidean norm (see Schoenberg, 1937, Gower, 1982, Bapat & Raghavan,
1997, Hayden et al., 1999 and citations therein). The existing literature on Euclidean
geometry has mainly focused on squared distance variety, as opposed to the real distance
matrix defined by [𝑑𝑖𝑗]1≤𝑖,𝑗≤𝑛 and used in the (EMSDP). We now demonstrate how these
differing definitions are intrinsically linked.

Let 𝑉 = [𝑣1, … , 𝑣𝑛] ∈ ℝ𝑠×𝑛 be a real matrix whose columns are given by the locations
𝑣1, … , 𝑣𝑛 ∈ ℝ𝑠. The Gram matrix of 𝑉 is given by the square, symmetric, 𝑛 × 𝑛 matrix,

𝐺 = 𝑉 𝑇𝑉 = [⟨𝑣𝑖, 𝑣𝑗⟩]1≤𝑖,𝑗≤𝑛 .
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Recall from the law of cosines,

‖𝑣𝑖 − 𝑣𝑗‖
2 = ‖𝑣𝑖‖

2 + ‖𝑣𝑗‖
2 − 2 ⟨𝑣𝑖, 𝑣𝑗⟩ .

This identity provides an alternative definition of 𝐺, given by

𝐺 = 1
2
[‖𝑣𝑖‖

2 + ‖𝑣𝑗‖
2 − ‖𝑣𝑖 − 𝑣𝑗‖

2]
1≤𝑖,𝑗≤𝑛

.

This definition becomes especially useful when we only have knowledge of 𝐷, i.e., we
know the pairwise distances but not the locations. Given pairwise distances are transla-
tion invariant, let us suppose 𝑣1 defines the origin. Then the (𝑛 − 1) × (𝑛 − 1) Gram matrix
of the distance matrix 𝐷 is given by

𝐺 = 1
2
[𝑑21𝑖 + 𝑑21𝑗 − 𝑑2𝑖𝑗]2≤𝑖,𝑗≤𝑛 . (2.5)

The following results are credited to various works by Schoenberg and prove some
important properties relating a distance matrix to its Gram matrix.

Theorem 2 (Schoenberg, 1935). A symmetric, hollow (zero diagonal), nonnegative matrix
𝐷 ∈ ℝ𝑛×𝑛 is a squared Euclidean distance matrix of 𝑛 points in ℝ𝑠 (but not ℝ𝑠−1) if and only
if its Gram matrix is positive semidefinite with rank 𝑠.

Proof. We begin by proving the forward statement. Suppose 𝐷 is a squared Euclidean
distance matrix of points 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑠. Then by the law of cosines,

𝑑21𝑖 + 𝑑21𝑗 − 𝑑2𝑖𝑗 = ‖𝑣𝑖 − 𝑣1‖
2 + ‖𝑣𝑗 − 𝑣1‖

2 − ‖𝑣𝑖 − 𝑣𝑗‖
2 = 2 ⟨𝑣𝑖 − 𝑣1, 𝑣𝑗 − 𝑣1⟩ .

Therefore its Gram matrix 𝐺, given by (2.5), is equivalent to

𝐺 = [⟨𝑣𝑖 − 𝑣1, 𝑣𝑗 − 𝑣1⟩]2≤𝑖,𝑗≤𝑛 = 𝑊 𝑇𝑊

where 𝑊 = [𝑣2 − 𝑣1, … , 𝑣𝑛 − 𝑣1] ∈ ℝ𝑠×(𝑛−1). Hence, 𝐺 is clearly positive semidefinite since
its principal root 𝑊 is real. Furthermore, given these points are not embeddable in ℝ𝑠−1

they must be linearly independent in ℝ𝑠. Therefore, 𝑊 is of full row rank and hence the
rank of 𝐺 is 𝑠.

For the reverse statement, we have that 𝐺 is the Gram matrix of 𝐷, defined by (2.5).
Given 𝐺 is positive semidefinite, its principal root exists and is real. Suppose this is
given as 𝑊 = [𝑣2, … , 𝑣𝑛] ∈ ℝ𝑠×(𝑛−1), and let 𝑣1 = 0 define the origin. Then from (2.5), for
𝑖 = 2, … , 𝑛, we have

‖𝑣𝑖 − 𝑣1‖
2 = ‖𝑣𝑖 − 0‖2 = ‖𝑣𝑖‖

2 = ⟨𝑣𝑖, 𝑣𝑖⟩ = 𝑔𝑖𝑖 = 𝑑21𝑖.

Similarly, for 𝑖, 𝑗 = 2, … , 𝑛,

‖𝑣𝑖 − 𝑣𝑗‖
2 = ‖𝑣𝑖‖

2 + ‖𝑣𝑗‖
2 − 2 ⟨𝑣𝑖, 𝑣𝑗⟩ = 𝑔𝑖𝑖 + 𝑔𝑗𝑗 − 2𝑔𝑖𝑗 = 𝑑21𝑖 + 𝑑21𝑗 − 𝑑21𝑖 − 𝑑21𝑗 + 𝑑2𝑖𝑗 = 𝑑2𝑖𝑗 .

Therefore, 𝐷 = [‖𝑣𝑖 − 𝑣𝑗‖
2]

1≤𝑖,𝑗≤𝑛
as required. This concludes the proof.
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2 The Max-Sum Diversity Problem

Theorem 3. A symmetric, hollow, nonnegative matrix 𝐷 ∈ ℝ𝑛×𝑛 is a squared Euclidean
distance matrix of 𝑛 points in ℝ𝑠 if and only if it is conditionally negative definite, that is
that ⟨𝐷𝑥, 𝑥⟩ ≤ 0 for all 𝑥 ∈ ℝ𝑛 such that∑𝑛

𝑖=1 𝑥𝑖 = 0.

Proof. It suffices to prove that 𝐷 is conditionally negative definite if and only if its Gram
matrix 𝐺 is positive semidefinite. Let 𝑥 ∈ ℝ𝑛 be such that ∑𝑛

𝑖=1 𝑥𝑖 = 0. Then we have
from (2.5) that

𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗 (𝑑21𝑖 + 𝑑21𝑗 − 2𝑑2𝑖𝑗) =
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗𝑑21𝑖 +
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗𝑑21𝑗 − 2
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗𝑑2𝑖𝑗

= 2
𝑛
∑
𝑖=1

𝑥𝑖 (
𝑛
∑
𝑗=1

𝑥𝑗𝑑21𝑗) − 2
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗𝑑2𝑖𝑗

= 2 (
𝑛
∑
𝑖=1

𝑥𝑖) (
𝑛
∑
𝑗=1

𝑥𝑗𝑑21𝑗) − 2
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗𝑑2𝑖𝑗

= −2
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗𝑑2𝑖𝑗 ≥ 0.

This concludes both forward and reverse proofs.

Theorem 4. If 𝐷 is a squared Euclidean distance matrix, then it has exactly one positive
eigenvalue.

Proof. Firstly, 𝐷 must be hollow, since 𝑑𝑖𝑖 = ‖𝑣𝑖 − 𝑣𝑖‖ = 0. Let 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 and 𝑣1, … , 𝑣𝑛 ∈
ℝ𝑛 denote the eigenvalues and eigenvectors of 𝐷. Then given ∑𝑛

𝑖=1 𝜆𝑖 = tr(𝐷) = 0, we
must have that 𝐷 has at least one positive eigenvalue. Assume, for a contradiction, that
𝐷 has 2 or more positive eigenvalues, i.e., 𝜆2 > 0. Let

𝛼 =
⎧⎪
⎨⎪
⎩

0, if ∑𝑛
𝑖=1 𝑣1𝑖 = 0,

1, if ∑𝑛
𝑖=1 𝑣1𝑖 ≠ 0 and ∑𝑛

𝑖=1 𝑣2𝑖 = 0,
∑𝑛

𝑖=1 𝑣1𝑖/∑
𝑛
𝑖=1 𝑣2𝑖, otherwise,

and let 𝑥 = 𝑣1 − 𝛼𝑣2. Then ⟨𝐷𝑥, 𝑥⟩ = 𝜆1 + 𝛼2𝜆2 > 0. However, note that ∑𝑛
𝑖=1 𝑥𝑖 = 0.

Consequently, ⟨𝐷𝑥, 𝑥⟩ ≤ 0 since 𝐷 is also conditionally negative definite, creating a
contradiction. Therefore 𝐷 has exactly one positive eigenvalue.

Lemma 5 (Schoenberg, 1938b, see also Schoenberg, 1938a). If 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑠 then

𝑛
∑
𝑖,𝑗=1

𝑒−𝜆
2‖𝑣𝑖−𝑣𝑗‖

2
𝑥𝑖𝑥𝑗 ≥ 0

for all 𝑥 ∈ ℝ𝑛 and 𝜆 > 0.
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2.2 Euclidean Distance Geometry

Proof. Let 𝑤 ∈ ℝ be a real number, and recall the well known Fourier transform of a
Gaussian function (see Abramowitz & Stegun, 1968, pp. 302; Bracewell & Kahn, 1966, pp.
105-108),

𝑒−𝑤
2
= (4𝜋)−1/2∫

∞

−∞
𝑒𝑖𝑤𝑢𝑒−𝑢

2/4𝑑𝑢.

Then, observe that for any 𝑣 ∈ ℝ𝑛 and 𝜆 ∈ ℝ we have

𝑒−𝜆
2‖𝑣‖2 = 𝑒−(𝜆𝑣1)

2
⋯ 𝑒−(𝜆𝑣𝑛)

2

= (4𝜋)−1/2∫
∞

−∞
𝑒𝑖𝜆𝑣1𝑢1𝑒−𝑢

2
1/4𝑑𝑢1⋯(4𝜋)−1/2∫

∞

−∞
𝑒𝑖𝑣𝑛𝑢𝑛𝑒−𝑢

2
𝑛/4𝑑𝑢𝑛

= (4𝜋)−𝑛/2∫
ℝ𝑛

𝑒𝑖𝜆⟨𝑣 ,𝑢⟩𝑒−‖𝑢‖
2/4𝑑𝑛𝑢

= (4𝜋)−𝑛/2 (∫
ℝ𝑛

cos (𝜆 ⟨𝑣 , 𝑢⟩) 𝑒−‖𝑢‖
2/4𝑑𝑛𝑢 + 𝑖 ∫

ℝ𝑛
sin (𝜆 ⟨𝑣 , 𝑢⟩) 𝑒−‖𝑢‖

2/4𝑑𝑛𝑢)

= (4𝜋)−𝑛/2∫
ℝ𝑛

cos (𝜆 ⟨𝑣 , 𝑢⟩) 𝑒−‖𝑢‖
2/4𝑑𝑛𝑢, (2.6)

where (2.6) comes from the fact that sin(⋅) is an odd function. Therefore, for all 𝑥 ∈ ℝ𝑛,

𝑛
∑
𝑗,𝑘=1

𝑒−𝜆
2‖𝑣𝑗−𝑣𝑘‖

2
𝑥𝑗𝑥𝑘 = (4𝜋)−𝑛/2∫

ℝ𝑛
(

𝑛
∑
𝑗,𝑘=1

cos (𝜆 ⟨𝑣𝑗 − 𝑣𝑘, 𝑢⟩) 𝑥𝑗𝑥𝑘) 𝑒−‖𝑢‖
2/4𝑑𝑛𝑢. (2.7)

Furthermore, observe that

𝑛
∑
𝑗,𝑘=1

cos (𝜆 ⟨𝑣𝑗 − 𝑣𝑘, 𝑢⟩) 𝑥𝑗𝑥𝑘 =
𝑛
∑
𝑗,𝑘=1

cos (𝜆 ⟨𝑣𝑗, 𝑢⟩) cos (𝜆 ⟨𝑣𝑗, 𝑢⟩) 𝑥𝑗𝑥𝑘

+
𝑛
∑
𝑗,𝑘=1

sin (𝜆 ⟨𝑣𝑗, 𝑢⟩) sin (𝜆 ⟨𝑣𝑗, 𝑢⟩) 𝑥𝑗𝑥𝑘

=(
𝑛
∑
𝑗=1

cos (𝜆 ⟨𝑣𝑗, 𝑢⟩) 𝑥𝑗)
2

+ (
𝑛
∑
𝑗=1

sin (𝜆 ⟨𝑣𝑗, 𝑢⟩) 𝑥𝑗)
2

≥ 0

and 𝑒−‖𝑢‖
2
≥ 0 and therefore we must have (2.7) is nonnegative as required.

Theorem 6 (Schoenberg, 1935). 𝐷 = [𝑑2𝑖𝑗]1≤𝑖,𝑗≤𝑛 is a squared Euclidean distance matrix if
and only if 𝐷(𝛼) = [𝑑2𝛼𝑖𝑗 ]1≤𝑖,𝑗≤𝑛 is also a squared Euclidean distance matrix where 0 < 𝛼 < 1.

Proof. The following proof relies on the existence of the helper integral

𝐼 (𝛼) = ∫
∞

0
(1 − 𝑒−𝜆

2
) 𝜆−1−2𝛼𝑑𝜆. (2.8)
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2 The Max-Sum Diversity Problem

We begin by proving the existence of this integral for 0 < 𝛼 < 1. Using the substitution
𝜆 = √𝜇 we get

𝐼 (𝛼) = ∫
∞

0
(1 − 𝑒−𝜇) 𝜇(−1−2𝛼)/2𝜇−1/2 1

2
𝑑𝜇 = 1

2 ∫
∞

0
(1 − 𝑒−𝜇) 𝜇−1−𝛼𝑑𝜇.

Then using integration by parts,

𝐼 (𝛼) = −1
2𝛼 [𝜇−𝛼 (1 − 𝑒−𝜇)]∞0 + 1

2𝛼 ∫
∞

0
𝜇−𝛼𝑒−𝜇𝑑𝜇.

Then, for 0 < 𝛼 < 1 we have the following,

lim
𝜇→0

{𝜇−𝛼(1 − 𝑒𝜇)} = lim
𝜇→0

{
−𝑒𝜇

𝛼𝜇𝛼−1
} =

1
𝛼 lim
𝜇→0

{−𝑒𝜇𝜇1−𝛼} =
1
𝛼 (−𝑒

0) (01−𝛼) = 0, (2.9)

lim
𝜇→∞

{𝜇−𝛼(1 − 𝑒−𝜇)} = 0,

∫
∞

0
𝜇(1−𝛼)−1𝑒−𝜇𝑑𝜇 = Γ(1 − 𝛼), (2.10)

where (2.9) comes from L’Hospital’s rule (Taylor, 1952) and (2.10) comes from the defini-
tion of a Gamma function (see Davis, 1959). Therefore for 0 < 𝛼 < 1,

𝐼 (𝛼) = 1
2𝛼Γ(1 − 𝛼) ≥ 0

and hence the integral exists.
Substituting 𝜆 = 𝑡𝜇 where 𝑡 ≥ 0 into (2.8) we get

𝐼 (𝛼) = ∫
∞

0
(1 − 𝑒−𝑡

2𝜇2) (𝑡𝜇)−1−2𝛼𝑡𝑑𝜇 = 𝑡−2𝛼∫
∞

0
(1 − 𝑒−𝑡

2𝜇2) 𝜇−1−2𝛼𝑑𝜇

and therefore

𝑡2𝛼 = 1
𝐼 (𝛼) ∫

∞

0
(1 − 𝑒−𝑡

2𝜇2) 𝜇−1−2𝛼𝑑𝜇.

Forward Proof. Let 𝑡 = 𝑑𝑖𝑗, then

𝑑2𝛼𝑖𝑗 = 1
𝐼 (𝛼) ∫

∞

0
(1 − 𝑒−𝑑

2
𝑖𝑗𝜇2) 𝜇−1−2𝛼𝑑𝜇.

Since 𝐷 is a squared Euclidean distance matrix there exists 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑛 such that
𝑑𝑖𝑗 = ‖𝑣𝑖 − 𝑣𝑗‖

2
for 𝑖, 𝑗 = 1, … , 𝑛 and hence by Lemma 5 we have ∑𝑛

𝑖,𝑗=1 𝑒
−𝑑2𝑖𝑗𝜇2𝑥𝑖𝑥𝑗 ≥ 0 for

all 𝑥 ∈ ℝ𝑛. Then, for all 𝑥 with ∑𝑛
𝑖=1 𝑥 = 0, we get

𝑛
∑
𝑖,𝑗=1

𝑑2𝛼𝑖𝑗 𝑥𝑖𝑥𝑗 =
−1
𝐼 (𝛼) ∫

∞

0
(

𝑛
∑
𝑖,𝑗=1

𝑒−𝑑
2
𝑖𝑗𝜇2𝑥𝑖𝑥𝑗) 𝜇−1−2𝛼𝑑𝜇 ≤ 0 (2.11)
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2.3 The Euclidean Diversity Cut Algorithm

and hence 𝐷(𝛼) is conditionally negative definite meaning it is a squared Euclidean
distance matrix.
Reverse Proof. For the reverse proof, we have that 𝐷(𝛼) is conditionally negative
definite and hence (2.11) holds. Furthermore, observe that for 0 < 𝛼 < 1 we have
𝐼 (𝛼) = 1

2𝛼
Γ(1 − 𝛼) ≥ 0 and 𝜇−1−2𝛼 ≥ 0 for 𝜇 ≥ 0. As such,

𝑛
∑
𝑖,𝑗=1

𝑑2𝑖𝑗𝑥𝑖𝑥𝑗 = lim
𝛼→1−

𝑛
∑
𝑖,𝑗=1

𝑑2𝛼𝑖𝑗 𝑥𝑖𝑥𝑗

= lim
𝛼→1−

−1
𝐼 (𝛼) ∫

∞

0
(

𝑛
∑
𝑖,𝑗=1

𝑒−𝑑
2
𝑖𝑗𝜇2𝑥𝑖𝑥𝑗) 𝜇−1−2𝛼𝑑𝜇 ≤ 0

as required.

Corollary 7. Given a set of points 𝑢1, … , 𝑢𝑛 ∈ ℝ𝑠, there exists a set of points 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑡

such that ‖𝑢𝑖 − 𝑢𝑗‖ = ‖𝑣𝑖 − 𝑣𝑗‖
2 for all 𝑖, 𝑗.

Proof. By the previous theorem, 𝐷(1/2) = [‖𝑢𝑖 − 𝑢𝑗‖]1≤𝑖,𝑗≤𝑛 is a squared Euclidean distance

matrix. Therefore there must exist a set of locations 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑡 such that ‖𝑢𝑖 − 𝑢𝑗‖ =
‖𝑣𝑖 − 𝑣𝑗‖

2
for all 𝑖, 𝑗.

Corollary 8. The value of 𝑡 from the previous corollary is either 𝑛 − 1 or 𝑛 − 2.

Proof. From Theorem 4 of Schoenberg (1937), the matrix 𝐷(2𝛼) from Theorem 6 is of
full rank. Therefore, 𝐷(1/2) = [‖𝑢𝑖 − 𝑢𝑗‖]1≤𝑖,𝑗≤𝑛 = [‖𝑣𝑖 − 𝑣𝑗‖

2]
1≤𝑖,𝑗≤𝑛

must also be of full

rank. By Theorem 6 of Gower (1985), the rank of a squared Euclidean distance matrix is
either 𝑡 + 1 or 𝑡 + 2, where 𝑡 is the number of coordinates of the locations that construct
it. Therefore, since the rank of 𝐷(1/2) is 𝑛, either 𝑡 = 𝑛 − 1 or 𝑡 = 𝑛 − 2.

Note that for the remainder of this chapter, we do not need to know concrete values
for 𝑣1, … , 𝑣𝑛. We simply require an assertion that they exist. However, it is easy to
generate these locations by conducting eigenvalue decomposition on the Gram matrix
defined by (2.5), where 𝑑2𝑖𝑗 = ‖𝑢𝑖 − 𝑢𝑗‖. We discuss this methodology in further detail in
Chapter 3.3.1.

2.3 The Euclidean Diversity Cut Algorithm

The results of the previous section outline some crucial results regarding Euclidean
distance matrices. We can use these results to prove the following interesting property,
that ensures the objective function of (EMSDP) is concave on its feasible domain. Let
ℎ ∶ ℝ𝑛 × ℝ𝑛 → ℝ be the tangent plane of 𝑓 defined as follows,

ℎ(𝑥, 𝑦) = 𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ , ∀𝑥, 𝑦 ∈ ℝ𝑛.

The following result shows the validity of tangent planes on feasible solutions.
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2 The Max-Sum Diversity Problem

Proposition 9. For all 𝑥, 𝑦 ∈ 𝐾, we have 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).

Proof. Note that

𝑓 (𝑥) − ℎ(𝑥, 𝑦) = 1
2
⟨𝐷𝑥, 𝑥⟩ − 1

2
⟨𝐷𝑦, 𝑦⟩ − ⟨𝐷𝑦, 𝑥 − 𝑦⟩

= 1
2
⟨𝐷(𝑥 + 𝑦), 𝑥 − 𝑦⟩ − ⟨𝐷𝑦, 𝑥 − 𝑦⟩

= 1
2
⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ,

therefore it is sufficient to prove ⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0. By Corollary 7, 𝐷 is also a squared
Euclidean distance matrix and therefore by Theorem 3 it is also conditionally negative
definite. Now, for all 𝑥, 𝑦 ∈ 𝐾 have ∑𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖) = 0 and therefore ⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0
as required.

Concavity in 𝑓 (𝑥), albeit only on feasible solutions, ensures that tangents planes of
feasible solutions provide valid upper approximations of an optimal solution. Let 𝐴 ⊂ 𝐾
be any subset of feasible solutions of the (EMSDP) and let Γ𝐴 ⊂ 𝐾 × ℝ be defined as

Γ𝐴 = {(𝑥, 𝜃) ∈ ℝ𝑛+1 ∶ 𝑥 ∈ 𝐾, 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐴} .

The cutting plane model of (EMSDP), denoted by (Θ𝐴), is then given as the following
linear maximisation problem

max
(𝑥,𝜃)∈Γ𝐴

𝜃, (Θ𝐴)

which can be written out explicitly as

max 𝜃
s.t. 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐴, (2.12)

𝑥 ∈ 𝐾.

Then, whenever 𝐴 ⊂ 𝐾, Proposition 9 holds and hence the results of Proposition 1 hold
analogously. In other words, (Θ𝐴) provides a valid upper bound of (EMSDP) and when
𝐴 = 𝐾, the problems are equivalent.

Based on this result, we propose a cutting plane approach to solve the nonconcave
quadratic problem (EMSDP) by solving the linear problem (Θ𝐾). However, since it is
not practical to generate a cutting plane 𝜃 ≤ ℎ(𝑥, 𝑦) for every 𝑦 ∈ 𝐾, our cutting plane
algorithm successively generates cuts of type (2.12) whenever a candidate solution is
found. Let 𝐴𝑘 denote the set 𝐴 at iteration 𝑘, and let 𝐿𝐵𝑘 denote the lower bound at
iteration 𝑘. We say 𝑥 ∈ 𝐾 is a candidate solution if there is (𝑥, 𝜃) ∈ Γ𝐴𝑘 such that 𝜃 > LB𝑘.
The Euclidean Diversity-Cut (EDC) Algorithm, outlined in Algorithm 1, successively
generates candidate solutions and adds the cutting planes to the linear model (Θ𝐴𝑘) to
eliminate non-optimal solutions until no candidate solution remains in the search space.
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2.3 The Euclidean Diversity Cut Algorithm

Algorithm 1: The Euclidean Diversity Cut (EDC) Algorithm.

1 function EuclideanDiversityCut (𝑓,𝑝):
2 Take 𝑥0 ∈ 𝐾
3 Set 𝐴0 ← {𝑥0}, 𝐿𝐵0 ← 𝑓 (𝑥0), 𝑘 ← 1
4 while ∃(𝑥𝑘, 𝜃𝑘) ∈ Γ𝐴𝑘−1 s.t. 𝜃

𝑘 > 𝐿𝐵𝑘−1 do
5 𝐿𝐵𝑘 ← max{𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)}
6 𝐴𝑘 ← 𝐴𝑘−1 ∪ {𝑥𝑘}
7 𝑘 ← 𝑘 + 1
8 return 𝐿𝐵𝑘

The EDC Algorithm does not require solving the linear problem (Θ𝐴𝑘) to optimality
whenever an additional cut is added. Rather, it looks for a feasible solution (𝑥𝑘, 𝜃𝑘) ∈ Γ𝐴𝑘−1
that improves upon the current lower bound, i.e., 𝜃𝑘 > LB𝑘−1. This algorithm outlines the
framework of a general branch and cut procedure, where cuts are added during the solve
process. A branch and cut procedure based on the EDC Algorithm can be implemented in
standard MIP solvers using the callback functionality. Callbacks allow certain processes
or algorithms to be implemented alongside general branch and bound or branch and cut
procedures. In the case of the EDC Algorithm, we begin by solving (Θ𝐴0) with a single cut
generated by some feasible solution. Whenever an incumbent solution is found during
the solve process, a callback is used to add the associated cutting plane. This allows the
MIP solver to preserve the information from previous steps and therefore generates only
one search tree, improving the computational performance of the algorithm.

We now prove that the EDC Algorithm converges to an optimal solution of (EMSDP).

Theorem 10. The sequence {𝑥𝑘} ⊂ 𝐾 generated by the EDC Algorithm converges to an
optimal solution of (EMSDP) after a finite number of steps.

Proof. Consider the sequence {𝑥𝑘} generated by the EDC Algorithm. We first show that
the EDC Algorithm converges after a finite number of steps. Suppose 𝑥𝑘1 = 𝑥𝑘2 for some
0 ≤ 𝑘1 < 𝑘2. Let (𝑥𝑘2 , 𝜃𝑘2) ∈ Γ𝐴𝑘2−1

. Then 𝜃𝑘2 > LB𝑘2−1 and,

𝜃𝑘2 ≤ ℎ(𝑥𝑘2 , 𝑥𝑘1) = 𝑓 (𝑥𝑘1) ≤ LB𝑘2−1

which is a contradiction. This shows that the EDC Algorithm will not revisit a previous
point. Since the set 𝐾 is finite, we must have finite convergence.

We now prove that the algorithm terminates at an optimal solution. Suppose the
algorithm terminates at step 𝑘, then for every (𝑥̃ , ̃𝜃) ∈ Γ𝐴𝑘−1 , it holds that

̃𝜃 ≤ LB𝑘−1 ≤ max
𝑥∈𝐾

𝑓 (𝑥) = max
(𝑥,𝜃)∈Γ𝐾

𝜃,
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where the last equality follows from Propositions 1 and 9. Taking the maximum over all
(𝑥̃ , ̃𝜃) ∈ Γ𝐴𝑘−1 in the first inequality, we obtain

max
(𝑥,𝜃)∈Γ𝐴𝑘−1

𝜃 ≤ LB𝑘−1 ≤ max
(𝑥,𝜃)∈Γ𝐾

𝜃. (2.13)

Note that because 𝐴𝑘−1 ⊂ 𝐾, we have Γ𝐾 ⊂ Γ𝐴𝑘−1 , and hence

max
(𝑥,𝜃)∈Γ𝐴𝑘−1

𝜃 ≥ max
(𝑥,𝜃)∈Γ𝐾

𝜃.

From (2.13), the inequality above and the definition of LB𝑘−1, the following equations
hold

max
(𝑥,𝜃)∈Γ𝐴𝑘−1

𝜃 = max
(𝑥,𝜃)∈Γ𝐾

𝜃 = max
𝑥∈𝐾

𝑓 (𝑥) = LB𝑘−1 = 𝑓 (𝑥 𝑙),

for some 𝑙 ∈ {0, 1, … , 𝑘 − 1}, and hence 𝑥 𝑙 is optimal for (EMSDP).

We now study the efficiency of the cutting planes by answering the question of how
many non-optimal solutions are eliminated after iteration 𝑘 by the cut 𝜃 ≤ ℎ(𝑥, 𝑥𝑘). We
first establish the following elementary results.

Proposition 11. Let 𝑥𝑘 ∈ 𝐾 (𝑘 ≥ 0) be the iterate generated by the EDC Algorithm during
iteration 𝑘. If ∇𝑓 (𝑥𝑘) = 0, then 𝑥𝑘 is an optimal solution of (EMSDP) and the algorithm
terminates.

Proof. If ∇𝑓 (𝑥𝑘) = 0, then the cutting plane ℎ(𝑥, 𝑥𝑘) ≥ 𝜃 becomes

𝑓 (𝑥𝑘) ≥ 𝜃. (2.14)

Hence, 𝑓 (𝑥𝑘) ≥ max(𝑥,𝜃)∈Γ𝐴𝑘+1 𝜃 ≥ max(𝑥,𝜃)∈Γ𝐾 𝜃 = max𝑥∈𝐾 𝑓 (𝑥), and the candidate 𝑥𝑘

is an optimal solution of (EMSDP). The constraint (2.14) implies that there will be
no candidate solution found in iteration 𝑘 + 1, and hence the EDC Algorithm must
terminate.

Lemma 12. Let 𝑥𝑘 be the iterate generated by the EDC Algorithm during iteration 𝑘. Then,
for any subsequent iteration 𝑙 > 𝑘, it holds that

LB𝑙−1 − 𝑓 (𝑥𝑘)
‖∇𝑓 (𝑥𝑘)‖

< ‖𝑥 𝑙 − 𝑥𝑘‖ .

Proof. Let 𝑘 < 𝑙 be iterations of the EDC Algorithm, and let (𝑥 𝑙, 𝜃 𝑙) ∈ Γ𝐴𝑙−1 . Then

𝑓 (𝑥𝑘) ≤ LB𝑙−1 < 𝜃 𝑙 ≤ 𝑓 (𝑥𝑘) + ⟨∇𝑓 (𝑥𝑘), 𝑥 𝑙 − 𝑥𝑘⟩

and hence we have that

LB𝑙−1 − 𝑓 (𝑥𝑘) < ⟨∇𝑓 (𝑥𝑘), 𝑥 𝑙 − 𝑥𝑘⟩ ≤ ‖𝑥 𝑙 − 𝑥𝑘‖ ⋅ ‖∇𝑓 (𝑥𝑘)‖ .
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As 𝑘 < 𝑙, the algorithm did not terminate at 𝑘 and hence from Proposition 11, ‖∇𝑓 (𝑥𝑘)‖ ≠ 0.
Therefore we have that

LB𝑙−1 − 𝑓 (𝑥𝑘)
‖∇𝑓 (𝑥𝑘)‖

< ‖𝑥 𝑙 − 𝑥𝑘‖

thus proving the assertion.

Theorem 13. Let 𝑘 and 𝑙 be iterations of the EDC Algorithm such that 𝑘 < 𝑙. Suppose at
iteration 𝑙 there exists a non-negative integer 𝑁𝑙 such that

√2𝑁𝑙 ≤
LB𝑙−1−𝑓 (𝑥𝑘)
‖∇𝑓 (𝑥𝑘)‖

. (2.15)

Then at step 𝑙 onwards, the cutting plane 𝜃 ≤ ℎ(𝑥, 𝑥𝑘) removes at least
𝑁𝑙

∑
𝑞=0

(
𝑝
𝑞
)(

𝑛 − 𝑝
𝑞

)

binary points from the feasible set 𝐾, where (𝑎𝑏) =
𝑏!(𝑎−𝑏)!

𝑎!
for all 𝑎, 𝑏 ∈ ℕ, and 𝑎 ≥ 𝑏.

Proof. Let 𝑘 and 𝑙 be iterations of the EDC Algorithm such that 𝑘 < 𝑙, and suppose (2.15)
holds for some non-negative integer 𝑁𝑙. It follows from Lemma 12 that at iteration 𝑙, the
cutting plane 𝜃 ≤ ℎ(𝑥, 𝑥𝑘) removes all points 𝑥 ∈ 𝐾 such that

‖𝑥 − 𝑥𝑘‖ ≤ √2𝑁𝑙. (2.16)

Consider two sets of indices

𝐼1 ∶= {𝑖 ∶ 𝑥𝑘𝑖 = 1}, 𝐼2 ∶= {𝑖 ∶ 𝑥𝑘𝑖 = 0}.

Since 𝑥𝑘 ∈ 𝐾, we have |𝐼1| = 𝑝 and |𝐼2| = 𝑛 − 𝑝. For any 𝑥 ∈ 𝐾, we consider

𝐼1(𝑥) ∶= {𝑖 ∶ 𝑥𝑖 = 1}, 𝐼2(𝑥) ∶= {𝑖 ∶ 𝑥𝑖 = 0}.

Then for any point 𝑥 ∈ 𝐾, we have that

‖𝑥 − 𝑥𝑘‖
2
= |𝐼1 ∩ 𝐼2(𝑥)| + |𝐼2 ∩ 𝐼1(𝑥)|

i.e., the squared distance between 𝑥 and 𝑥𝑘 is the sum of the indices that are in 𝑥𝑘 but not
in 𝑥, and the indices that are not in 𝑥𝑘 but are in 𝑥. Furthermore, we can see that

|𝐼1 ∩ 𝐼2(𝑥)| =
𝑛
∑
𝑖=1

𝑥𝑘𝑖 (1 − 𝑥𝑖)

=
𝑛
∑
𝑖=1

(𝑥𝑘𝑖 − 𝑥𝑘𝑖 𝑥𝑖 + 𝑥𝑖 − 𝑥𝑖)

=
𝑛
∑
𝑖=1

(𝑥𝑘𝑖 + 𝑥𝑖(1 − 𝑥𝑘𝑖 ) − 𝑥𝑖)

=
𝑛
∑
𝑖=1

𝑥𝑖(1 − 𝑥𝑘𝑖 ) + 𝑝 − 𝑝

= |𝐼2 ∩ 𝐼1(𝑥)|
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2 The Max-Sum Diversity Problem

and hence
‖𝑥 − 𝑥𝑘‖ = √2 |𝐼1 ∩ 𝐼2(𝑥)|.

Now, for any 𝑞 ∈ {0, 1, … , 𝑁𝑙}, consider all the solutions 𝑥 ∈ 𝐾 such that

𝑞 = |𝐼1 ∩ 𝐼2(𝑥)| . (2.17)

Altogether there are (𝑝𝑞)(
𝑛−𝑝
𝑞 ) feasible solutions 𝑥 ∈ 𝐾 that satisfy (2.17). Therefore in

total, there are precisely∑𝑁𝑙
𝑞=0 (

𝑝
𝑞)(

𝑛−𝑝
𝑞 ) feasible points in 𝐾 that satisfy (2.16). This proves

the assertion.

Theorem 13 provides insight on the strength of individual cuts within the cutting plane
algorithm as iterations progress. It shows that cuts are stronger when 𝑁𝑙 can be chosen
larger. We now explore the general strength of cuts of type (2.12) by comparing them to
the standard concave reformulation technique commonly used to solve binary quadratic
problems such as (EMSDP). Let 𝑓 (𝑥) be defined as in (EMSDP), then given a regulator
𝜌 ∈ ℝ let

𝑓𝜌(𝑥) =
1
2
(⟨(𝐷 − 𝜌𝐼𝑛)𝑥, 𝑥⟩ + 𝜌

𝑛
∑
𝑖=1

𝑥𝑖)

define a 𝜌-perturbation of 𝑓, where 𝐼𝑛 is the identity matrix of dimension 𝑛. Given 𝑥
is binary we have that 𝑥𝑖 = 𝑥2𝑖 and hence 𝑓 (𝑥) = 𝑓𝜌(𝑥) for all 𝑥 ∈ {0, 1}𝑛 and 𝜌 ∈ ℝ.
Therefore solving the perturbed problem given by

max
𝑥∈𝐾

𝑓𝜌(𝑥)

is equivalent to solving the original problem. Provided 𝜌 is chosen such that the perturbed
quadratic term is negative semi-definite, i.e., 𝐷 − 𝜌𝐼𝑛 ⪯ 0, the objective function 𝑓𝜌(𝑥)
becomes concave, thereby guaranteeing the global convergence of a cutting plane or
outer approximation algorithm. This is a common technique found in many binary
quadratic solvers (Billionnet & Elloumi, 2007; Lima & Grossmann, 2017). However, the
perturbation term should be used with caution, as shown by the following result.

Proposition 14. Let ℎ𝜌(𝑥, 𝑦) denote the tangent plane of 𝑓𝜌(𝑥). If 𝜌1 ≤ 𝜌2, then

ℎ𝜌1(𝑥, 𝑦) ≤ ℎ𝜌2(𝑥, 𝑦)

for all 𝑥 ∈ 𝐾.

Proof. Let 𝑒 = (1, … , 1) ∈ ℝ𝑛, then

ℎ𝜌1(𝑥, 𝑦) = 𝑓𝜌1(𝑦) + ⟨𝐷𝑦 − 𝜌1𝑦 + 1
2
𝜌1𝑒, 𝑥 − 𝑦⟩ ,

= 𝑓𝜌1(𝑦) + ⟨𝐷𝑦, 𝑥 − 𝑦⟩ + 1
2
𝜌1 ⟨𝑒 − 2𝑦, 𝑥 − 𝑦⟩ .
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Now, as 𝑥2𝑖 = 𝑥𝑖 and 𝑦2𝑖 = 𝑦𝑖 we have that

⟨𝑒 − 2𝑦, 𝑥 − 𝑦⟩ =
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖 − 2𝑥𝑖𝑦𝑖 + 2𝑦2𝑖 )

=
𝑛
∑
𝑖=1

(𝑥2𝑖 + 𝑦2𝑖 − 2𝑥𝑖𝑦𝑖)

=
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2 ≥ 0.

Therefore,

ℎ𝜌1(𝑥, 𝑦) = 𝑓𝜌1(𝑦) + ⟨𝐷𝑦, 𝑥 − 𝑦⟩ + 1
2
𝜌1 ⟨𝑒 − 2𝑦, 𝑥 − 𝑦⟩

≤ 𝑓𝜌1(𝑦) + ⟨𝐷𝑦, 𝑥 − 𝑦⟩ + 1
2
𝜌2 ⟨𝑒 − 2𝑦, 𝑥 − 𝑦⟩

= 𝑓𝜌2(𝑦) + ⟨𝐷𝑦, 𝑥 − 𝑦⟩ + 1
2
𝜌2 ⟨𝑒 − 2𝑦, 𝑥 − 𝑦⟩ = ℎ𝜌2(𝑥, 𝑦),

as required.

Let 𝜆max denote the largest eigenvalue of 𝐷. It is proved in Hammer and Rubin (1970)
that when 𝜌 ≥ 𝜆max, 𝐷 − 𝜌𝐼𝑛 is negative semidefinite and hence 𝑓𝜌(𝑥) is concave. As
such, an outer approximation algorithm is guaranteed to converge thanks to concavity
in 𝑓𝜌(𝑥). However, unlike outer approximation, our cutting plane algorithm does not
require any perturbation or reformulation of the original problem. In other words, the
EDC Algorithm converges to the global solution even for the case where 𝜌 = 0. Moreover,
from Proposition 14, we can see that cuts become weaker (remove fewer nonoptimal
solutions) as 𝜌 increases. Hence, the EDC Algorithm is expected to perform better than
an outer approximation algorithm applied to the perturbed problem.

2.4 Numerical Results

We now explore the performance of the EDC Algorithm on a range of test instances.
The algorithm was implemented in CPLEX Version 22.1 using the callback functionality.
As explained in the previous section, callbacks allow for cuts to be added to the model
during the general solve procedure, thus generating only one branch and cut search tree.
The program was compiled using g++ and run on a machine with a 2.3GHz AMD EPYC
processor with 32 GB of RAM, using a single thread.

The performance of the EDC Algorithm was evaluated on three publicly available
and four randomly generated test libraries. The publicly available test library MDPLIB
2.02 (Martí et al., 2021) has commonly been used as a benchmark for the maximum

2Available at https://www.uv.es/rmarti/paper/mdp.html.
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2 The Max-Sum Diversity Problem

diversity problem and contains many test sets. Within this test library, we use the test
sets GKD-c and GKD-d. Test set GKD-c contains 20 Euclidean distance matrices of 500
locations. Each location is defined by 20 coordinates in the range of 0 to 100. Test
set GDK-d contains 70 Euclidean distance matrices between randomly generated points
with two coordinates in the range 0 to 100. There are ten matrices for each value
𝑛 = 25, 50, 100, 250, 500, 1000, 2000. One of the major differences between these test sets
is the number of coordinates of original locations. To explore further the effect the
number of coordinates has on the algorithm, we randomly generate an additional four
test sets similar to GKD-d, where each test set uses a different number of coordinates.
Finally, in order to test the limits of the EDC Algorithm, we use a subset of the very large
problems available within the TSPLIB test library3.

The algorithm was compared against three exact solution methods. The first method
solves the Glover reformulation (2.4) using CPLEX. This linear reformulation was shown
in Martí et al. (2022) to be competitive among other exact solvers. Additionally, as CPLEX
can handle binary quadratic programs, we also solve the problem in its original form
using quadratic CPLEX. The final exact approach is to apply outer approximation to the
perturbed objective function, 𝑓𝜌(𝑥), where 𝜌 = 𝜆max. Such a perturbation makes the
function concave and hence guarantees the global convergence of outer approximation.
Note that when using outer approximation, calculating 𝜆max is done as a preprocessing
step and is not considered to count towards the solver’s runtime. Finally, we compared
the performance of the algorithm against the heuristic algorithm OBMA (Zhou et al., 2017),
which was shown in Martí et al. (2022) to be one of the most effective on Euclidean
instances.

Table 2.1 summarises the performance of all solvers on test sets GKD-c and GKD-d.
The table is broken down by time limit, test set, and 𝑝

𝑛
ratio. Then, the average final

optimality gap at the end of the time limit is reported for each exact solver. For all
solvers, including the heuristic OBMA, the number of times the final solution matched the
best-known solution is also reported. Note that this is not necessarily the number of
times the algorithm was able to confirm optimality but rather gives an indication of the
solvers’ ability to locate good solutions quickly.

On test set GKD-d, the EDC Algorithm was vastly superior to other exact solvers across
all time limits. For the 10-second time limit, the algorithm was able to confirm optimality
in almost all cases and locate more optimal solutions than the heuristic OBMA. Increasing
the time limit to 100 seconds, the algorithm could easily solve all test instances of set
GKD-d to optimality (including the large instances of 𝑛 = 2000), representing a significant
improvement when compared to the other exact algorithms. While still superior to the
other exact solution methods, the algorithm’s performance appears slightly worse on
test set GKD-c. It is able to locate almost all optimal solutions within the 600-second time

3Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
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Average Gap (%) Number Best
Time

Limit (sec)
Set Tests

𝑝

𝑛

EDC
Algorithm

Glover
CPLEX

Quadratic
CPLEX

Outer
Approx

EDC
Algorithm

Glover
CPLEX

Quadratic
CPLEX

Outer
Approx

OBMA

10 GKD-d 70 0.1 0.0001 104.5611 3193.7143 1222.6446 69 20 28 10 60
10 GKD-d 70 0.2 0.0000 70.9375 851.8493 621.9356 70 13 25 1 68
10 GKD-d 70 0.5 0.0000 29.6054 128.7590 153.1647 70 20 29 1 70
10 GKD-c 20 0.1 0.1439 126.9552 921.7808 1610.4214 5 0 0 0 20
10 GKD-c 20 0.2 0.0178 123.7596 406.2149 731.2725 12 0 0 0 20
10 GKD-c 20 0.5 0.0002 67.1518 100.4986 178.9432 20 0 0 0 20

100 GKD-d 70 0.1 0.0000 97.6257 3156.0311 1139.4223 70 29 30 10 70
100 GKD-d 70 0.2 0.0000 73.0000 841.8472 580.3135 70 26 28 3 70
100 GKD-d 70 0.5 0.0000 29.9724 125.2907 145.2900 70 32 30 1 70
100 GKD-c 20 0.1 0.0995 116.9812 921.7808 1597.5409 9 0 0 0 20
100 GKD-c 20 0.2 0.0067 104.1303 406.2149 721.2425 18 0 0 0 20
100 GKD-c 20 0.5 0.0001 57.8678 100.4986 175.8901 20 0 0 0 20

600 GKD-d 70 0.1 0.0000 91.1853 3120.6212 1103.8050 70 40 30 10 70
600 GKD-d 70 0.2 0.0000 75.9072 833.0172 548.4910 70 37 29 10 70
600 GKD-d 70 0.5 0.0000 32.0015 121.4612 141.8368 70 40 30 1 70
600 GKD-c 20 0.1 0.0668 109.6791 904.1314 1588.1770 15 0 0 0 20
600 GKD-c 20 0.2 0.0022 93.2871 402.3066 715.2041 20 0 0 0 20
600 GKD-c 20 0.5 0.0000 51.5980 99.2862 175.7679 20 0 0 0 20

Table 2.1: For every combination of time limit, test set and 𝑝
𝑛
ratio, we report the average final

gap as a percentage for all exact solvers. For all solvers (including the heuristic OBMA),
we also report the number of times the final solution matched the best-known solution.
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Figure 2.1: Performance of the EDC Algorithm on test set GKD-d. For each value 𝑛 and 𝑝, there
are 10 problems to solve. We report the average solve time and the average number of
cuts added for each pair 𝑛 and 𝑝.

limit, however the algorithm struggles to close the optimality gap completely. That said,
the performance is still a noticeable improvement compared to the other exact solvers.

Figure 2.1 shows the performance of the EDC Algorithm on test set GKD-d. The
figure shows the average solve time and the average number of cuts required to solve to
optimality for each value of 𝑛 and 𝑝 in the test set. Interestingly, the average solve time
for large instances of 𝑛 = 2000 remains less than 10 seconds. Furthermore, increasing
the size of the problem from 𝑛 = 250 to 𝑛 = 2000 demands a similar number of cuts
to prove optimality. This is testament to the strength of the cuts themselves and their
ability to remove a vast number of nonoptimal solutions easily, as shown in Theorem 13.
Finally, we note that substantially fewer cuts are required for 𝑝 = ⌈0.5𝑛⌉ compared with
𝑝 = ⌈0.1𝑛⌉ and 𝑝 = ⌈0.2𝑛⌉.

It is worth noting that the performance of the EDC Algorithm seems to contradict
a previously held notion about the difficulty of diversity problems. Martí et al. (2022)
state that as 𝑝 approaches 𝑛/2, a problem instance becomes harder due to the larger
number of feasible solutions. While this may be true for many existing exact and heuristic
solvers, this result was not observed for the EDC Algorithm. The results in Table 2.1 and
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2.4 Numerical Results

𝑝

𝑛

Number
Optimal

Average
Solve Time (sec)

Average
Gap (%)

Average
Cuts Added

0.1 8 2738.1935 0.0382 6704.65
0.2 19 643.5760 0.0001 2632.50
0.5 20 28.0190 0.0000 381.30

Table 2.2: Performance of the EDC Algorithm on test set GKD-c. For each value 𝑝
𝑛
, there are 20

problems to solve. The number of tests solved to optimality, average solve time (sec),
gap (%) and cuts added after an hour time limit is reported.

Figure 2.1 show that when 𝑝 is chosen as the larger value, fewer cuts are required on
average, and therefore the problem is solved faster. This contradicts the statement in
Martí et al. (2022) and shows that the run time does not increase for the EDC Algorithm
as 𝑝 approaches 𝑛/2.

Table 2.2 details the performance of the EDC Algorithm on test set GKD-c after an
hour of solve time. For each value of 𝑝

𝑛
, there are 20 test instances, and we report the

number of tests where the EDC Algorithm managed to prove optimality within the time
limit, as well as the average solve time, optimality gap and number of cuts added. When
𝑝 = ⌈0.5𝑛⌉, the algorithm can still solve problem instances to optimality well within the
time limit. However, when 𝑝 = ⌈0.1𝑛⌉, the algorithm could only solve eight tests within
an hour. While the final optimality gap is small, the number of cuts required significantly
increases compared to the results seen in Figure 2.1. The number of cuts required to
solve an instance in GKD-c can be more than 100 times that of a similar-sized problem
in GKD-d, the key difference between these tests being the number of coordinates of
each location. This suggests that the cut strength decreases as the number of original
coordinates increases.

To explore this relationship further, four new tests sets are introduced. Each test set
contains 5 Euclidean distance matrices for each value 𝑛 = 25, 50, 100, 250, 500, 1000, 2000,
totalling 35 distance matrices in each test set. The key difference between the test sets is
the number of coordinates of original locations. The four test sets are denoted as GKD-d5
(with 𝑠 = 5), GKD-d10 (with 𝑠 = 10), GKD-d15 (with 𝑠 = 15), GKD-d20 (with 𝑠 = 20). Each
coordinate is then uniformly randomly generated in the range 0 to 100. As before, every
instance is then run with 𝑝 = ⌈0.1𝑛⌉ , ⌈0.2𝑛⌉ , ⌈0.5𝑛⌉, making three tests for each distance
matrix.

Figure 2.2 outlines the performance profiles for the four exact solution methods on the
four new test sets GKD-d5, GKD-d10, GKD-d15 and GKD-d20. The results show that as the
number of coordinates increases from 5 to 20, the performance of the EDC Algorithm
deteriorates substantially. This is in contrast to the other three exact solvers, whose
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Figure 2.2: Performance profile on test sets GKD-d5, GKD-d10, GKD-d15 and GKD-d20. For each test
set, there are a total of 105 test instances. The number solved to optimality is shown
for each of the exact solvers used.

performance remains fairly stable as the number of coordinates increases. Although the
algorithm is not able to solve large coordinate instances as effectively, it still remains
superior to the other exact solution methods. For GKD-d5, the EDC Algorithm can solve
almost all tests to optimality within the 600-second time limit (including some of the
large instances with 𝑛 = 2000). However, once the number of coordinates increases to 20,
the performance is almost halved. This appears to support the observation made on test
sets GKD-c and GKD-d that the strength of the cuts decreases as the number of coordinates
increases.

Table 2.3 outlines the performance of the EDC Algorithm on test sets GKD-d5, GKD-d10,
GKD-d15 and GKD-d20 in more detail. For the large ratio problems where 𝑝 = ⌈0.5𝑛⌉, the
algorithm can still easily solve all problem instances well within the time limit. However,
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2.4 Numerical Results

Set
𝑝

𝑛

Number
Optimal

Average Solve
Time (sec)

Average
Gap (%)

Average Number
Cuts Added

GKD-d5 0.1 32 322.0020 0.0006 990.0857
GKD-d5 0.2 35 29.7180 0.0000 418.4000
GKD-d5 0.5 35 1.1731 0.0000 46.1429

GKD-d10 0.1 23 1469.1109 0.0263 4005.7429
GKD-d10 0.2 32 554.1971 0.0005 2302.8286
GKD-d10 0.5 35 5.2383 0.0000 149.8286

GKD-d15 0.1 12 2395.1338 0.0909 6416.5938
GKD-d15 0.2 21 1824.7223 0.0276 5652.9143
GKD-d15 0.5 35 29.1460 0.0000 463.9143

GKD-d20 0.1 9 2604.2534 0.1462 7237.7586
GKD-d20 0.2 13 2325.6716 0.0391 6901.9355
GKD-d20 0.5 35 144.6117 0.0000 1310.8286

Table 2.3: Performance of the EDC Algorithm on test sets GKD-d5, GKD-d10, GKD-d15 and GKD-d20

over an hour time limit. For each pair of test set and ratio 𝑝
𝑛
, 35 tests are solved. The

number solved to optimality, average solve time, optimality gap and number of cuts are
reported.

across all ratios, the number of cuts required to prove optimality is significantly higher
than the results seen on set GKD-d. As such, the EDC Algorithm’s performance on high
coordinate instances with low 𝑝

𝑛
ratio is considerably worse and is often unable to prove

optimality within an hour time limit.

We now test the limits of the EDC Algorithm on a subset of test instances available
within the TSPLIB test library. The library contains several location problems of very
large dimensions (up to 𝑛 = 85900) and contains original coordinate locations. To solve
such large instances, the computational implementation is modified slightly such that
the pairwise distances between locations are only calculated when required. As such,
the full pairwise distance matrix is no longer loaded into memory, only the original
coordinates. In doing so, we avoid the memory burden that arises from saving large
distance matrices. However, this strategy means that generating cuts requires calculating
all pairwise distances associated with a given solution, creating extra steps to generate
cuts. This is not expected to create significant issues, as we have already shown that for
two-dimensional problems, the number of cuts required to prove optimality is very small.

Within the TSPLIB test library, 17 Euclidean two-coordinate test instances with 𝑛 ≥
2000 are used. As before, every test instance is then run with 𝑝 = ⌈0.1𝑛⌉ , ⌈0.2𝑛⌉ , ⌈0.5𝑛⌉,
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𝑝 = ⌈0.1𝑛⌉ 𝑝 = ⌈0.2𝑛⌉ 𝑝 = ⌈0.5𝑛⌉

Instance 𝑛
Solve

Time (sec)
Cuts

Solve
Time (sec)

Cuts
Solve

Time (sec)
Cuts

d2103.tsp 2103 8.43 98 7.49 62 6.54 22
u2152.tsp 2152 9.02 86 6.93 55 10.52 34
u2319.tsp 2319 6.58 74 6.30 43 12.19 34
pr2392.tsp 2392 7.43 76 8.20 53 10.59 28
pcb3038.tsp 3038 12.89 78 27.61 109 27.44 45
fl3795.tsp 3795 21.04 90 36.67 69 38.83 41
fnl4461.tsp 4461 48.09 143 35.09 64 66.42 48
rl5915.tsp 5915 65.14 117 116.67 121 116.75 49
rl5934.tsp 5934 54.27 93 51.94 54 81.12 34
pla7397.tsp 7397 121.92 118 166.82 106 198.15 54
rl11849.tsp 11849 208.72 87 363.62 89 389.30 37
usa13509.tsp 13509 675.39 197 324.01 64 339.21 26
brd14051.tsp 14051 507.15 148 676.59 116 506.14 36
d15112.tsp 15112 676.25 171 776.97 116 842.26 49
d18512.tsp 18512 799.56 129 775.45 73 1379.92 56
pla33810.tsp 33810 2053.07 113 3320.10 110 3519.85 47
pla85900.tsp 85900 18291.56 151 16374.19 74 19986.27 38

Table 2.4: Performance of the EDC Algorithm on a subset of tests within the TSPLIB test library.
For each set of locations, the problem is run with 𝑝 = ⌈0.1𝑛⌉ , ⌈0.2𝑛⌉, and ⌈0.5𝑛⌉, and we
report the solve time in seconds and the number of cuts required to solve the problem
to optimality.

comprising three tests for each set of locations. Each problem is then solved to proven
optimality using the EDC Algorithm. In Table 2.4, we report the solve time in seconds
and the number of cuts added across the three values of 𝑝

𝑛
. The results in Table 2.4 are

consistent with previous tests. The number of cuts required to solve the problem to
optimality remains small, indicating that the cuts are tight, and hence large problems
are easily solved within a reasonable time frame. Even for the very large problems of
𝑛 = 85900, the number of cuts required to solve for 𝑝 = ⌈0.1𝑛⌉ is only 151. This is a very
small number considering the size of the problem. The strength in cuts allows this very
large problem to be solved to optimality in five hours.
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2.5 Conclusion

2.5 Conclusion

This chapter presented a cutting plane algorithm for the max-sum diversity problem.
While the problem is inherently nonconcave, the cuts are shown to be appropriate, and
the algorithm converges to the optimal solution. As the cuts can be applied directly to
the original problem, the algorithm can avoid the reformulation steps needed in some
integer quadratic solvers such as CPLEX.

The EDC Algorithm’s performance was evaluated on several test libraries, where it was
found to be vastly superior to other exact solution methods. The algorithm is especially
effective for low-coordinate problems where the cuts are tight, allowing the algorithm to
solve large instances quickly. As the number of coordinates grows, the cuts become less
effective, and the algorithm’s performance deteriorates. This trend was not observed on
other exact methods, however. In the following chapter, we examine in detail why high
coordinate instances are difficult for the cutting plane method, and propose an effective
technique to improve performance on these difficult instances.
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3 Coordinate Partitioning for
Difficult Diversity Problems1

The Euclidean max-sum diversity problem becomes substantially more difficult as the
number of coordinates increases, despite the number of decision variables not changing.
In this chapter, we overcome this complexity by constructing a new set of locations
whose squared Euclidean distances equal that of the original. Using squared distances
allows the objective function to be decomposed into the sum of pairwise distances
within each coordinate. We use a partition set of the coordinates to enable a functional
decomposition of the objective. Each functional component is expected to be simpler than
the original, and therefore easier to approximate via cutting plane methods. We prove
the global convergence of our new approach and introduce several partitioning strategies.
Furthermore, we show how a principal component analysis of coordinate influence can be
conducted with minimal extra computation, the results of which can be used to guide the
partitioning process. Extensive numerical results prove the efficiency of the partitioned
cutting plane method, with the algorithm able to solve large, 20-coordinate problems of
up to 1000 locations. Finally, we introduce a new class of challenging diversity problems,
characterised by locations situated on the edge of a ball.

3.1 Introduction

In Chapter 2, we discussed applications of (EMSDP) concerning mainly location-based
applications. However, since the problems conception, many researchers have relaxed the
notion of distance to more general settings. One example is in genetics, where breeders
attempt to maximise the diversity of traits among a breeding stock (Porter et al., 1975).
In these slightly more abstract applications, Euclidean distance has often been used as a
measure of dissimilarity between data points (Shirkhorshidi et al., 2015). For example,
by using Euclidean dissimilarity, the (EMSDP) can help in forming skilfully and socially
diverse teams (Hochbaum et al., 2023), which have become highly desirable in many
workplace settings (Roberge & van Dick, 2010). Furthermore, Euclidean dissimilarity is
especially common in clustering applications (Charikar et al., 2019; Lloyd, 1982), such as
in the Maximally Diverse Grouping Problem (Feo et al., 1992; O’Brien & Mingers, 1997).

1This chapter is based on Spiers, Bui, and Loxton (2023a)
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3 Coordinate Partitioning for Difficult Diversity Problems

This problem is an extension of the (EMSDP) which considers the clustering of nodes
into groups of given sizes, such that the sum of intra-group Euclidean dissimilarity is
maximised.

Practical applications of the (EMSDP) for facility location problems typically involve a
small number of coordinates, given that real-world scenarios often focus on locations
in either ℝ2 or ℝ3. However, when we instead use Euclidean distance as a measure of
dissimilarity, as in the Maximally Diverse Grouping Problem, the number of coordinates
is equal to the number of features in the data. Although the size of the (EMSDP) remains
unaffected by an increasing number of coordinates, our work in the previous chapter
demonstrates that, surprisingly, this has a significant impact on problem complexity.
Consequently, problems with large feature sets have the potential to generate challenging
instances of the (EMSDP).

Gaining insight into the main factors that contribute to instance difficulty can provide
invaluable insights into problem structure. This understanding can subsequently guide
the improvement and development of new solution methods. As highlighted by the
‘no-free-lunch’ theorem (Wolpert & Macready, 1997), universal algorithm superiority
across all problem classes or instances is unattainable. The inability of an algorithm
to adequately solve a particular class of problem has led to the development of many
novel solution approaches. It is common to find several potential solution algorithms for
the same problem, each targeting a specific complexity (K. Smith-Miles & Lopes, 2012).
Moreover, instance analysis can help in identifying which algorithm is best suited to
different problem types (K. A. Smith-Miles, 2009).

In this chapter, we conduct a comprehensive analysis into the complexity of high
coordinate instances of the (EMSDP), the results of which motivate our new approach.
Cutting plane and outer approximation algorithms are most effective when their tangent
planes provide a tight approximation of the objective function. However, as seen in the
previous chapter, when the number of coordinates increases the tangent planes become
weak. As cuts weaken, they can no longer effectively direct the search for the optimal
solution, leading to an overall slowdown in convergence. By better understanding the
problem structure, we can attempt to overcome this difficulty and improve cut tightness.

In certain scenarios, improving the approximation of the objective can be achieved
through functional decomposition. This process involves breaking down the objective into
its essential functional components and applying outer approximation to each component
separately. Consider a concave objective function defined by 𝑓 (𝑥) = ∑𝑚

𝑖=1 𝑓𝑖(𝑥). It is well
known that tighter approximations arise when outer approximation is applied to each
𝑓𝑖(𝑥), rather than solely 𝑓 (𝑥) (Kronqvist et al., 2018). Nevertheless, achieving a functional
decomposition such as this is rarely straightforward. In Tawarmalani and Sahinidis (2005),
the authors show how composition functions such as ℎ = 𝑔 ∘𝑓 (𝑥) can be decomposed into
𝑔(𝑢) and 𝑓 (𝑥). By applying outer approximation to 𝑔(𝑢) and 𝑓 (𝑥) separately, the authors
achieved a tighter approximation of ℎ(𝑥) compared to applying outer approximation
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directly to ℎ(𝑥). Despite possibly introducing extra decision variables and competing
objectives, functional decomposition can be very effective when the improvement in
objective approximation outweighs these added complexities.

To overcome the difficulty of high-coordinate instances, we present a method for parti-
tioning a Euclidean distance matrix into its distinct coordinate spaces, thereby enabling a
functional decomposition of the objective function. This process involves generating a
new set of points whose squared pairwise distances are equal to the corresponding Eu-
clidean distances. The coordinate space of these new points is then partitioned, allowing
the objective to be separated such that 𝑓 (𝑥) = ∑𝑚

𝑖=1 𝑓𝑖(𝑥). Each Euclidean objective func-
tion now contains fewer coordinates, and as such is expected to be easier to approximate.

The remainder of this chapter is structured as follows. In Section 3.2, we explore in
detail the difficulty of high coordinate instances by quantifying the relative strength
of tangent planes. This insight leads to a new class of challenging problems, where
locations are situated on the edge of a ball. Then, in Section 3.3, we formulate a functional
decomposition of the (EMSDP) by partitioning the distance matrix into its distinct coor-
dinate subspaces. We prove the global convergence of this new algorithm, and outline
several heuristic partitioning strategies. Finally, Section 3.4 presents the results from
comprehensive numerical experiments used to evaluate the performance of the newly
proposed algorithm and partition strategies.

3.2 Geometric Insights into Cutting Planes

To help explain why the cuts weaken as the number of coordinates increases, we now
present a geometric interpretation of (2.12) that identifies regions of excluded solutions,
referred to as exclusion zones. We further show how the density of these regions, and
therefore the number of solutions removed, decreases exponentially as the number of
coordinates increases. This new insight offers a deeper understanding of the relative
difficulty of (EMSDP) instances, allowing us to introduce a new class of challenging
problems.

Let us begin by quantifying the relative strength of different cuts. Given a feasible
solution 𝑦 ∈ 𝐾 and an appropriate lower bound 𝐿𝐵 ≥ 𝑓 (𝑦), let

𝑅(𝑦, 𝐿𝐵) = {𝑥 ∈ 𝐾 ∶ ℎ(𝑥, 𝑦) ≤ 𝐿𝐵}

denote the set of solutions removed by the tangent plane of 𝑦. These solutions cannot
improve upon the current lower bound and therefore never satisfy line 4 of Algorithm 1.
While determining the size of 𝑅(𝑦, 𝐿𝐵) can provide a valuable measure of cut strength,
this is generally considered an intractable and highly combinatorial problem for even
moderately sized instances. However, significant intuition can be gained by considering
solutions with a strictly decreasing gradient, i.e., those where ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ ≤ 0, as these
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3 Coordinate Partitioning for Difficult Diversity Problems

are known to be included in 𝑅(𝑦, 𝐿𝐵). Let 𝐼 (𝑥) = {𝑖 ∶ 𝑥𝑖 = 1} denote the set of locations
included in the solution of 𝑥, and recall that

𝜕𝑓 (𝑦)
𝜕𝑦𝑖

= ∑
𝑗∈𝐼 (𝑦)

𝐷𝑖𝑗 = ∑
𝑗∈𝐼 (𝑦)

‖𝑢𝑖 − 𝑢𝑗‖ .

Hence, ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ ≤ 0 is equivalent to

𝑛
∑
𝑖=1

𝑥𝑖
𝜕𝑓 (𝑦)
𝜕𝑦𝑖

≤
𝑛
∑
𝑖=1

𝑦𝑖
𝜕𝑓 (𝑦)
𝜕𝑦𝑖

⟺ ∑
𝑖∈𝐼 (𝑥)

∑
𝑗∈𝐼 (𝑦)

‖𝑢𝑖 − 𝑢𝑗‖ ≤ ∑
𝑖∈𝐼 (𝑦)

∑
𝑗∈𝐼 (𝑦)

‖𝑢𝑖 − 𝑢𝑗‖ . (3.1)

In other words, the sum of the distances from the locations in 𝑦 to those in 𝑥 must be less
than or equal to the total sum of the distances between the locations in 𝑦.

With this intuition in mind, how can we easily construct a solution that satisfies (3.1)?
One approach is to consider solutions generated by single location swaps, i.e., 𝑥 = 𝑦+𝑒𝑖−𝑒𝑗,
where 𝑖 ∉ 𝐼 (𝑦) and 𝑗 ∈ 𝐼 (𝑦) and where 𝑒𝑖 is a vector with 1 in the 𝑖th component and 0
elsewhere. This simplifies (3.1) to:

∑
𝑘∈𝐼 (𝑦)

‖𝑢𝑖 − 𝑢𝑘‖ ≤ ∑
𝑘∈𝐼 (𝑦)

‖𝑢𝑗 − 𝑢𝑘‖ . (3.2)

In other words, if the sum of the distances to the incoming location is less than or equal to
the sum of the distances to the outgoing location, then 𝑥 ∈ 𝑅(𝑦, 𝐿𝐵). These sums can be
visualized by considering locations in ℝ2. Figure 3.1 shows in blue the five locations that
make up the solution of 𝑦. In each subplot, we consider swapping the location depicted
by the blue square with that depicted by the yellow star. The red lines represent the sum
of distances to the outgoing location (the right-hand side of (3.2)), while the green lines
represent the sum of distances to the incoming location (the left-hand side of (3.2)).

Two observations become immediately apparent from this visualisation. Firstly, since
the left hand side of (3.2) contains the additional nonzero distance from the outgoing
to incoming locations, swaps are more likely to satisfy (3.2) when these locations are
close together. This can be seen in Figure 3.1, where there are five incoming distances to
consider, yet only four outgoing. Secondly, swapping to a location closer to the geometric
centre of all locations is more likely to result in a smaller sum distance, thereby increasing
the likelihood of satisfying (3.2). Considering the two subplots, the swap on the left is
more likely to satisfy (3.2) compared with that on the right, as the incoming location is
closer to the geometric centre of the locations.

Guided by the interpretation provided in (3.2), let

𝑂(𝑤) = {𝑜 ∈ ℝ𝑠 ∶ ∑
𝑘∈𝐼 (𝑦)

‖𝑜 − 𝑢𝑘‖ ≤ ∑
𝑘∈𝐼 (𝑦)

‖𝑤 − 𝑢𝑘‖} (3.3)
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Figure 3.1: Geometric representation of (3.2). The five locations that form the solution 𝑦 are
shown in blue. The red lines indicate the sum of distances to the outgoing location,
depicted by the blue square, while the green lines represent the sum of distances to the
incoming location, depicted by the yellow star. These correspond to the right-hand
and left-hand sides of (3.2), respectively.

define a region in ℝ𝑛. If 𝑜 ∈ 𝑂(𝑤), then the sum of the distances from the points in 𝐼 (𝑦) to 𝑜
is less than or equal to the sum of the distances to 𝑤. Therefore, if we then swap a location
𝑢𝑗 with 𝑢𝑖 ∈ 𝑂(𝑢𝑗), we get that (3.2) holds and hence ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ = ⟨∇𝑓 (𝑦), 𝑒𝑖 − 𝑒𝑗⟩ ≤ 0.
Note that the boundary of 𝑂(𝑤) forms an 𝑛-ellipse, with the foci being the locations in
𝐼 (𝑦), and 𝑤 lying on its perimeter. In the following proposition, we generalise this result
to consider up to 𝑚 ≤ 𝑝 potential swaps.

Proposition 15. Let 𝑥, 𝑦 ∈ 𝐾 be such that 𝐼 (𝑥) = {𝑖1, … , 𝑖𝑝} and similarly 𝐼 (𝑦) = {𝑗1, … , 𝑗𝑝}.
If 𝑢𝑖𝑘 ∈ 𝑂(𝑢𝑗𝑘) for 𝑘 = 1, … , 𝑝, then 𝑥 ∈ 𝑅(𝑦, 𝐿𝐵) where 𝐿𝐵 ≥ 𝑓 (𝑦).

Proof. If 𝑢𝑖𝑘 ∈ 𝑂(𝑢𝑗𝑘) holds for 𝑘 = 1, … , 𝑝, then (3.2) also holds for each pair of 𝑢𝑖 and 𝑢𝑗.
Aggregating over 𝑘 = 1,… , 𝑝 we see that (3.1) also holds and hence ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ ≤ 0.
Therefore, 𝑥 ∈ 𝑅(𝑦, 𝐿𝐵).

We can think of 𝑂(𝑢𝑗1), … , 𝑂(𝑢𝑗𝑝) as representing the exclusion zones of 𝑦, as they
identify regions of nonoptimal solutions that have been removed from the search space.
These regions can be visualised by considering locations in ℝ2. Each row of subplots
in Figure 3.2 shows a different solution for the same 50 locations in ℝ2, where 𝑝 = 5.
For each solution shown on the left, we plot the boundary of the regions defined by
𝑂(𝑢𝑗1), … , 𝑂(𝑢𝑗5) on the right. By Proposition 15, any solution 𝑥 created by choosing a
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3 Coordinate Partitioning for Difficult Diversity Problems

unique location in each 𝑂(𝑢𝑗1), … , 𝑂(𝑢𝑗5) is in 𝑅(𝑦, 𝐿𝐵), and therefore never satisfies line
4 of Algorithm 1. These are the solutions that are known to be removed by the cut of 𝑦.
Note that the last row Figure 3.2 shows the exclusion zones of the optimal solution for
the (EMSDP) for these locations.

From Figure 3.2 it is clear to see that the cuts are more effective at removing non-
optimal locations in the relative interior. This backs up the intuition from Figure 3.1 and
demonstrates the strong functional approximation that can be achieved for points closer
to the geometric centre of selected locations. Consequently, a higher density of interior
points facilitates the removal of nonoptimal locations more easily, as we get an improved
outer approximation for a larger proportion of search space.

However, as the number of coordinates grows, the volume of the entire space expands
exponentially, leading to an exponential decrease in density. As the density of interior
locations decreases, our functional approximation weakens. Consequently, the algorithm
struggles to prove whether there exists an additional 𝑥 satisfying line 4 of Algorithm 1,
leading to an overall slowdown in algorithm convergence.

Furthermore, we can see in Figure 3.3 the affect a large 𝑝/𝑛 ratio has on exclusions zones.
Observe how the optimal solution for this set of locations contains almost all remaining
points in the smallest exclusion zone, leading to a much stronger outer approximation.
This backs up the observations in from the previous chapter, where the cutting plane
algorithm was shown to perform strongly on (EMSDP) instances with large 𝑝/𝑛 ratios.

To confirm our understanding regarding exclusion zones and interior density, we now
conduct a small simulation study. Using the following proposition, we can count the
number of solutions that satisfy Proposition 15, thereby providing a lower bound for the
size of 𝑅(𝑦, 𝐿𝐵).

Proposition 16. Let 𝑦 be such that 𝜕𝑓 (𝑦)
𝜕𝑦𝑗1

≤ … ≤ 𝜕𝑓 (𝑦)
𝜕𝑦𝑗𝑝

and let 𝐻(𝑗) = {𝑖 ∶ 𝑢𝑖 ∈ 𝑂(𝑢𝑗)} give

the set of locations in the exclusion zone of 𝑢𝑗. Finally, let

ℎ(𝑘) = {
𝐻(𝑗1), if 𝑘 = 1,
𝐻(𝑗𝑘) ∖ 𝐻(𝑗𝑘−1), otherwise .

The number of solutions that satisfy Proposition 15 for a given 𝑦 is given by the recursive
sum

𝐿 ∶=
min{|ℎ(1)|,𝑝}

∑
𝑤1=1

min{|ℎ(2)|,𝑝−𝑤1}
∑

𝑤2=max{2−𝑤1,0}
…

min{|ℎ(𝑝)|,𝑝−∑𝑝−1
𝑘=1 𝑤𝑙}

∑
𝑤𝑝=max{𝑝−∑𝑝−1

𝑙=1 𝑤𝑙,0}

𝑝
∏
𝑘=1

(
|ℎ(𝑘)|
𝑤𝑘

) (3.4)

where 𝐿𝐵 ≥ 𝑓 (𝑦). Furthermore, |𝑅(𝑦 , 𝐿𝐵)| ≥ 𝐿.

Proof. The proof is given in Appendix A.1.

Applying this counting technique to the solutions depicted in Figure 3.2, we find that 𝑦1
excludes at least 0.1% of the total search space, 𝑦2 excludes at least 7.1% and the optimal
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3.2 Geometric Insights into Cutting Planes
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Figure 3.2: Example exclusions zones of solutions 𝑦1, 𝑦2, and 𝑦3 on a set of 50 random locations in
ℝ2 where 𝑝 = 5. Note that 𝑓 (𝑦1) < 𝑓 (𝑦2) < 𝑓 (𝑦3) and 𝑦3 is the optimal solution for the
(EMSDP) for these locations.
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3 Coordinate Partitioning for Difficult Diversity Problems
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Figure 3.3: Example exclusions zones for the optimal solution of a set of 50 locations in ℝ2, where
𝑝 = 25.

solution 𝑦3 removes more than 96.6% of the search space. For the large 𝑝/𝑛 solution
shown in Figure 3.3, this solution alone is able to remove more than 99.9% of the search
space.

We can relate the number of solutions excluded by a cut to the number of coordinates by
calculating (3.4) for the optimal solutions of randomly generated instances of the (EMSDP).
Following the approach of the previous chapter, we generated random instances with
𝑛 = 30, 𝑝 = 3, 6, 15, and 𝑠 = 2, 5, 10, 15, 20. For every combination of 𝑛, 𝑝, and 𝑠, we
generated and solved a total of 50 problems to optimality. We then determined the
minimum proportion of search space removed by the optimal solution, based on the
lower bound provided by (3.4). The results of this simulation are presented in Figure 3.4,
and reflect the findings from the previous chapter. As the number of coordinates increases,
the quality of outer approximation decreases exponentially, making it difficult to remove
a substantial proportion of the search space. Furthermore, increasing 𝑝/𝑛 leads to a much
stronger outer approximation. Most notably, for cases where 𝑝/𝑛 = 0.5 and 𝑠 = 2, the
optimal solution alone is able to remove almost all the search space.

This insight sheds new light on the factors that make certain instances of (EMSDP)
challenging. For instance, consider a set of locations that are all positioned on the
edge of a ball. As previously observed, exclusion zones are generally more effective at
capturing points in their relative interior. Consequently, if points sit on a circle, their
exclusion zones are unlikely to be effective. An example of this is shown in Figure 3.5.
Clearly, the exclusion zones encompass significantly fewer locations due to the minimal
interior density. Furthermore, when considering Figure 3.5.a, the strongest functional
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Figure 3.4: Minimum proportion of solution space removed by the optimal solution of the (EMSDP)
for different values of 𝑝 and 𝑠.

approximation is clustered around the lower-left corner, near to the geometric median of
the selected locations. However, this covers only a small proportion of the total perimeter,
meaning there remains many 𝑥 that satisfy line 3 of Algorithm 1. This trend appears
to get worse with an improved solution quality. The exclusion zones of the solution
shown in Figure 3.5.b, which has a far better objective value than that in 3.5.a, contain
none of the other locations. If we consider this cut on its own, then any 𝑥 ≠ 𝑦 satisfies
line 4 of Algorithm 1 and hence 𝑅(𝑦, 𝑓 (𝑦)) = {𝑦}. This suggests that the tangent planes
of near optimal solutions may struggle to remove nonoptimal solutions due to the low
interior density, and existence of many nondominanted, near optimal solutions. We
further explore the complexities of the ball instances in Chapter 3.4, demonstrating that
they indeed constitute a particularly challenging class of problem.

3.3 Methodology

We now present our new methodology for solving difficult instances of the (EMSDP). The
principle behind this method is to project high-coordinate problems down into smaller
coordinate subspaces. In doing so, we expect the cuts to be stronger and more effective
within their corresponding lower coordinate space. Figure 3.6 illustrates an example of
this idea, where an instance in ℝ2 is projected down into two separate instances in ℝ. The
exclusion zones of the same solution in the lower coordinate space appear to be stronger,
and solving these individual problems is expected to be easier.

We begin by outlining how to construct points 𝑣1, … , 𝑣𝑛 such that ‖𝑢𝑖 − 𝑢𝑗‖ = ‖𝑣𝑖 − 𝑣𝑗‖
2
.

As these new locations use squared Euclidean distances, the objective function can be

43
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Figure 3.5: Exclusion zones of a solution where all locations lie on the edge of a ball.
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Figure 3.6: Exclusion zones of a solution in ℝ2, as well as the zones generated by projecting the
solution down into two subspaces in ℝ.
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3.3 Methodology

broken up into partitions of coordinates. These partitions contain fewer coordinates
and are therefore expected to be easier to solve. We then show how principal compo-
nent analysis can assist in generating effective coordinate partitions, and outline three
partitioning strategies.

3.3.1 Location Recovery

Theorem 6 establishes the existence of a set of points 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑡 such that ‖𝑢𝑖 − 𝑢𝑗‖ =
‖𝑣𝑖 − 𝑣𝑗‖

2
for all 𝑖, 𝑗. While these locations are not originally known, they can be recon-

structed by using the pairwise distances between 𝑢 points. Firstly, recall from the law of
cosines that

‖𝑢𝑖 − 𝑢𝑗‖ = ‖𝑣𝑖 − 𝑣𝑗‖
2 = ‖𝑣𝑖‖

2 + ‖𝑣𝑗‖
2 − 2 ⟨𝑣𝑖, 𝑣𝑗⟩ . (3.5)

Let us assume that 𝑣1 lies at the origin. This assumption is valid since pairwise distances
are rotation and translation invariant. The first column of the distance matrix 𝑄 then
gives

𝑑2𝑖1 = ‖𝑣𝑖 − 𝑣1‖
2 = ‖𝑣𝑖 − 0‖2 = ‖𝑣𝑖‖

2 .

Hence we can rewrite (3.5) as,

⟨𝑣𝑖, 𝑣𝑗⟩ =
1
2
(‖𝑣𝑖‖

2 + ‖𝑣𝑗‖
2 − ‖𝑢𝑖 − 𝑢𝑗‖) =

1
2
(𝑑2𝑖1 + 𝑑2𝑗1 − 𝑑2𝑖𝑗) . (3.6)

This result allows us to reconstruct the Gram matrix of vectors 𝑣1, … , 𝑣𝑛. Let 𝐺 =
[𝑔𝑖𝑗]1≤𝑖,𝑗≤𝑛 be an 𝑛 × 𝑛 matrix where

𝑔𝑖𝑗 =
1
2
(𝑑2𝑖1 + 𝑑2𝑗1 − 𝑑2𝑖𝑗) . (3.7)

Then from (3.6),
𝐺 = [⟨𝑣𝑖, 𝑣𝑗⟩]1≤𝑖,𝑗≤𝑛 = 𝑉 𝑇𝑉

where 𝑉 is an 𝑡 × 𝑛 matrix with locations 𝑣1, … , 𝑣𝑛 as its columns, i.e., 𝑉 = [𝑣1, … , 𝑣𝑛]. The
existence of the real matrix 𝑉 has already been established in Theorem 2, and therefore,
we have that 𝐺 is always a positive semidefinite (PSD) matrix.

Using eigenvalue decomposition, we can factorise 𝐺 as

𝐺 = 𝑊Λ𝑊 𝑇

where 𝑊 is an orthonormal matrix whose columns are the eigenvectors of 𝐺, and Λ is a
diagonal matrix whose entries are the eigenvalues of 𝐺. Being PSD, the eigenvalues of 𝐺
are nonnegative, and hence we can recover points 𝑣1, … , 𝑣𝑛 by finding

𝑉 = 𝑊√Λ.

Note that the number of coordinates of 𝑣 points, denoted by 𝑡, is equal to the number of
nonzero eigenvalues of 𝐺.
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3 Coordinate Partitioning for Difficult Diversity Problems

3.3.2 Coordinate Partitioning

After recovering points 𝑣1, … , 𝑣𝑛, we can express the original objective function as,

𝑓 (𝑥) = 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑥𝑖𝑥𝑗
𝑡

∑
𝑘=1

(𝑣𝑖𝑘 − 𝑣𝑗𝑘)
2

(3.8)

where 𝑣𝑖𝑘 gives the 𝑘th coordinate of location 𝑣𝑖. Let 𝑇 = {𝑇1, … , 𝑇𝑚} denote a partition
set containing 𝑚 subsets of the coordinates {1, … , 𝑡}. As 𝑇 is a partition set, we have that

1. 𝑇𝑟 ⊂ {1, … , 𝑡} for 𝑟 = 1, … , 𝑚,

2. ⋃𝑚
𝑟=1 𝑇𝑟 = {1, … , 𝑡}, and

3. 𝑇𝛼 ∩ 𝑇𝛽 = ∅ for all 𝛼 ≠ 𝛽.

Using this partition set, (3.8) can be written as

𝑓 (𝑥) = 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑥𝑖𝑥𝑗
𝑚
∑
𝑟=1

∑
𝑘∈𝑇𝑟

(𝑣𝑖𝑘 − 𝑣𝑗𝑘)
2

=
𝑚
∑
𝑟=1

1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑥𝑖𝑥𝑗 ∑
𝑘∈𝑇𝑟

(𝑣𝑖𝑘 − 𝑣𝑗𝑘)
2

=
𝑚
∑
𝑟=1

𝑓𝑟(𝑥),

where 𝑓𝑟(𝑥) is the sum of the pairwise squared Euclidean distances of the 𝑇𝑟 subset of
coordinates of points 𝑣1, … , 𝑣𝑛.

Crucially, each 𝑓𝑟(𝑥) represents the sum of pairwise squared Euclidean distances
between exactly 𝑝 points. Therefore, by the same logic as Proposition 9, every 𝑓𝑟(𝑥)
is a concave function on 𝑥 ∈ 𝐾, and hence

𝑓𝑟(𝑥) ≤ 𝑓𝑟(𝑦) + ⟨∇𝑓𝑟(𝑦), 𝑥 − 𝑦⟩

holds for all 𝑥, 𝑦 ∈ 𝐾 and 𝑟 = 1, … , 𝑚. Then, given a subset of feasible solutions 𝐴 ⊂ 𝐾
and valid partition set 𝑇, the coordinate partitioned cutting plane model of the (EMSDP),
denoted by (Θ𝑇𝐴), is given as

max
𝑚
∑
𝑟=1

𝜃𝑟, (Θ𝑇𝐴)

s.t. 𝜃𝑟 ≤ 𝑓𝑟(𝑦) + ⟨∇𝑓𝑟(𝑦), 𝑥 − 𝑦⟩ , ∀𝑦 ∈ 𝐴, 𝑟 = 1, … , 𝑚,
𝜃𝑟 ≥ 0, 𝑟 = 1, … , 𝑚,
𝑥 ∈ 𝐾.
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3.3 Methodology

Algorithm 2: Partitioned Diversity-Cut method for solving (EMSDP).

1 function PartitionedDiversityCut (𝑇 , 𝑓 , 𝑝):
2 Choose a feasible 𝑥 ∈ 𝐾
3 Set 𝐴 ← {𝑥}, 𝐿𝐵 ← 𝑓 (𝑥)
4 while ∃(𝑥′, 𝜃′1, … , 𝜃′𝑚) ∈ Γ𝑇𝐴 s.t. ∑𝑚

𝑟=1 𝜃
′
𝑟 > 𝐿𝐵 do

5 𝐿𝐵 ← max{𝐿𝐵,∑𝑚
𝑟=1 𝑓𝑟(𝑥

′)}
6 𝐴 ← 𝐴 ∪ {𝑥′}
7 return 𝐿𝐵

As with the standard cutting plane algorithm, the partitioned cutting plane formula-
tion (Θ𝑇𝐴) can be solved using a similar branch and cut framework. An outline of this
approach is shown in Algorithm 2.

This method allows us to reduce the complexity of the problem by breaking it down
into coordinate partitions. As each partition contains a smaller number of coordinates,
their associated cuts are expected to be tighter. In fact, it is shown in the following
proposition that for any possible partition set, the upper bound provided by (Θ𝑇𝐴) is
always at least as good as that provided by (Θ𝐴).

Proposition 17. For any subset of feasible solutions 𝐴 ⊂ 𝐾 and valid partition set 𝑇, we
have that Θ𝑇𝐴 ≤ Θ𝐴.

Proof. Let (𝑥∗, 𝜃∗1 , … , 𝜃∗𝑚) be an optimal solution of (Θ𝑇𝐴). Then it follows that

𝜃∗𝑟 = min
𝑦∈𝐴

{𝑓𝑟(𝑦) + ⟨∇𝑓𝑟(𝑦), 𝑥∗ − 𝑦⟩} , 𝑟 = 1, … , 𝑚.

By aggregating this expression over 𝑟 = 1, … , 𝑚, we have that

Θ𝑇𝐴 =
𝑚
∑
𝑟=1

𝜃∗𝑟 =
𝑚
∑
𝑟=1

min
𝑦∈𝐴

{𝑓𝑟(𝑦) + ⟨∇𝑓𝑟(𝑦), 𝑥∗ − 𝑦⟩} ,

≤ min
𝑦∈𝐴

{
𝑚
∑
𝑟=1

(𝑓𝑟(𝑦) + ⟨∇𝑓𝑟(𝑦), 𝑥∗ − 𝑦⟩)} ,

= min
𝑦∈𝐴

{𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥∗ − 𝑦⟩} .

Now, as 𝑥∗ is a feasible solution of (Θ𝐴), we also have that

min
𝑦∈𝐴

{𝑓 (𝑦) + ⟨∇𝑓 (𝑦), 𝑥∗ − 𝑦⟩} ≤ Θ𝐴

and therefore Θ𝑇𝐴 ≤ Θ𝐴 as required.

In many cases, the upper bound provided by the partitioned problem can be far tighter
than that of the original. This is most effective when partitions contain few coordinates.

47



3 Coordinate Partitioning for Difficult Diversity Problems

However, we saw in Corollary 8 that either 𝑡 = 𝑛 − 2 or 𝑡 = 𝑛 − 1. Therefore, to achieve
low coordinate partitions, a large 𝑚 is potentially required. This in turn increases the size
of the partitioned problem (Θ𝑇𝐴). It is therefore crucial to partition the set of coordinates
strategically.

3.3.3 Principal Component Analysis

Understanding the relative importance of each coordinate can then help in formulating
strategic partition sets. This understanding can be garnered by conducting a principal
component analysis (PCA) on the set of locations 𝑣1, … , 𝑣𝑛 to identify the contribution
each coordinate makes to overall variance.

To carry out PCA on the set of locations 𝑣1, … , 𝑣𝑛, we begin by centering the locations
such that the means of each coordinate is 0. Let

𝑣𝑖𝑘 = 𝑣𝑖𝑘 −
∑𝑛

𝑙=1 𝑣𝑙𝑘
𝑛

be the centred 𝑘th coordinate of 𝑣𝑖, and let 𝑉 = [𝑣1, … , 𝑣𝑛] be thematrix of centred locations.
Note that centering each coordinate individually does not change pairwise distances,

‖𝑣𝑖 − 𝑣𝑗‖
2 =

𝑡
∑
𝑘=1

(𝑣𝑖𝑘 − 𝑣𝑗𝑘)
2

=
𝑡

∑
𝑘=1

(𝑣𝑖𝑘 −
∑𝑛

𝑙=1 𝑣𝑙𝑘
𝑛 − 𝑣𝑗𝑘 +

∑𝑛
𝑙=1 𝑣𝑙𝑘
𝑛 )

2

=
𝑡

∑
𝑘=1

(𝑣𝑖𝑘 − 𝑣𝑗𝑘)
2 = ‖𝑣𝑖 − 𝑣𝑗‖

2 .

Let 𝐺 = 𝑉
𝑇
𝑉 be the Gram matrix of the centred locations and let 𝐺 = 𝑊 Λ 𝑊

𝑇
be its

spectral decomposition, where 𝜆1 ≥ ⋯ ≥ 𝜆𝑡 are the nonzero eigenvalues associated with
coordinates 1, … , 𝑡. It follows from the theory of PCA that the proportion of overall
variance explained by coordinate 𝑘 is given as the ratio

𝜆𝑘
∑𝑡

𝑙=1 𝜆𝑙
.

We can use this ratio to strategically partition the set of coordinates. However, in order
to conduct PCA, we must first recover locations 𝑣1, … , 𝑣𝑛, and then carry out eigenvalue
decomposition on the centred locations, leading to eigenvalue decomposition being
carried out twice.

Interestingly, we can calculate 𝐺 without prior knowledge of the non-centred locations
𝑣1, … , 𝑣𝑛, and therefore only need to carry out eigenvalue decomposition once. Let
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3.3 Methodology

𝐺 = [𝑔𝑖𝑗]1≤𝑖,𝑗≤𝑛, then it follows that

𝑔𝑖𝑗 = ⟨𝑣𝑖, 𝑣𝑗⟩

=
𝑡

∑
𝑘=1

𝑣𝑖𝑘𝑣𝑗𝑘

=
𝑡

∑
𝑘=1

(𝑣𝑖𝑘 −
∑𝑛

𝑙=1 𝑣𝑙𝑘
𝑛 ) (𝑣𝑗𝑘 −

∑𝑛
𝑙=1 𝑣𝑙𝑘
𝑛 )

=
𝑡

∑
𝑘=1

(𝑣𝑖𝑘𝑣𝑗𝑘 − 𝑣𝑖𝑘
∑𝑛

𝑙=1 𝑣𝑙𝑘
𝑛 − 𝑣𝑗𝑘

∑𝑛
𝑙=1 𝑣𝑙𝑘
𝑛 + (

∑𝑛
𝑙=1 𝑣𝑙𝑘
𝑛 )

2

)

=
𝑡

∑
𝑘=1

(𝑣𝑖𝑘𝑣𝑗𝑘 −
1
𝑛

𝑛
∑
𝑙=1

𝑣𝑖𝑘𝑣𝑙𝑘 −
1
𝑛

𝑛
∑
𝑙=1

𝑣𝑗𝑘𝑣𝑙𝑘 +
1
𝑛2

𝑛
∑
𝑙=1

𝑛
∑
𝑞=1

𝑣𝑙𝑘𝑣𝑞𝑘)

=
𝑡

∑
𝑘=1

𝑣𝑖𝑘𝑣𝑗𝑘 −
1
𝑛

𝑛
∑
𝑙=1

𝑡
∑
𝑘=1

𝑣𝑖𝑘𝑣𝑙𝑘 −
1
𝑛

𝑛
∑
𝑙=1

𝑡
∑
𝑘=1

𝑣𝑗𝑘𝑣𝑙𝑘 +
1
𝑛2

𝑛
∑
𝑙=1

𝑛
∑
𝑞=1

𝑡
∑
𝑘=1

𝑣𝑙𝑘𝑣𝑞𝑘

= 𝑔𝑖𝑗 −
1
𝑛

𝑛
∑
𝑙=1

𝑔𝑖𝑙 −
1
𝑛

𝑛
∑
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𝑛
∑
𝑙=1

𝑛
∑
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𝑔𝑙𝑞, (3.9)

where (3.9) comes from the fact ∑𝑡
𝑘=1 𝑣𝑖𝑘𝑣𝑗𝑘 = ⟨𝑣𝑖, 𝑣𝑗⟩ = 𝑔𝑖𝑗. Therefore, we can reconstruct

𝐺 as before using (3.7), and then generate 𝐺 using (3.9). This allows us to determine the
centred Gram matrix of 𝑣 points, 𝐺, using only the locations 𝑢1, … , 𝑢𝑛. By then conducting
eigenvalue decomposition on 𝐺, we not only recover the locations 𝑣1, … , 𝑣𝑛, but also their
eigenvalues, which are now representative of the importance of each coordinate.

3.3.4 Partition Strategies

Determining strategic partitions is crucial. While fully partitioning the problem may
yield the strongest individual cuts within each partition, this introduces extra decision
variables and potentially an exponential number of additional constraints. An effective
partition strategy should balance the increased computational load of these additional
variables and constraints with the benefits of achieving stronger cuts in each partition.

We now present three partitioning strategies, that use the results from PCA to generate
effective partitions. Each strategy aims to partition coordinates 1, … , 𝑡 into 𝑚 subsets,
such that each partition is easily approximated through cutting planes, and competing
objectives are easily balanced, thus improving the effectiveness of Algorithm 2. For each
approach, let 𝑚 give the desired number of subsets, and let the coordinates be ordered
based on their importance such that 𝜆1 ≥ … ≥ 𝜆𝑡.

The first approach involves a greedy selection of coordinates based on their importance,
to form partitions of similar size. An outline of this strategy is shown in Algorithm 3,
which results in 𝑡%𝑚 partitions of size ⌊𝑡/𝑚⌋ + 1, and 𝑚 − 𝑡%𝑚 partitions of size ⌊𝑡/𝑚⌋,
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Algorithm 3: Greedy partitions of 𝑡 coordinates into 𝑚 partitions.

1 function GreedyPartitions (𝑡 , 𝑚):
2 𝑇1, … , 𝑇𝑚 ← ∅
3 𝑐 ← 1
4 for 𝑟 = 1, … , 𝑡%𝑚 do
5 𝑇𝑟 ← {𝑐, … , 𝑐 + ⌊𝑡/𝑚⌋ + 1}
6 𝑐 ← 𝑐 + ⌊𝑡/𝑚⌋ + 2
7 for 𝑟 = 𝑡%𝑚 + 1,… , 𝑚 do
8 𝑇𝑟 ← {𝑐, … , 𝑐 + ⌊𝑡/𝑚⌋}
9 𝑐 ← 𝑐 + ⌊𝑡/𝑚⌋ + 1

10 𝑇 ← {𝑇1, … , 𝑇𝑚}
11 return 𝑇

where % represents the modulo function. Coordinates are added to these partitions in
order of importance. As such, early partitions contain more important coordinates and
can thus have a larger potential influence on the objective function. Furthermore, within
each partition coordinate importance is expected to be similar.

Algorithm 4: Stepped partitions of 𝑡 coordinates into 𝑚 partitions.

1 function SteppedPartitions (𝑡 , 𝑚, 𝜆1, … , 𝜆𝑡):
2 𝑇1, … , 𝑇𝑚 ← ∅
3 𝑘 ← 1 , 𝑟 ← 1
4 Λ ← 0
5 while 𝑘 ≤ 𝑡 do
6 𝑇𝑟 ← 𝑇𝑟 ∪ {𝑘}
7 Λ ← Λ + 𝜆𝑘
8 𝑘 ← 𝑘 + 1
9 if Λ/∑𝑡

𝑖=1 𝜆𝑖 ≥ 𝑟/𝑚 then 𝑟 ← 𝑟 + 1
10 𝑇 ← {𝑇1, … , 𝑇𝑚}
11 return 𝑇

Algorithm 3 can be adjusted to ensure that all partitions account for a similar amount
of total variance while maintaining a greedy selection of coordinates. Consequently,
earlier partitions may contain only a handful of coordinates, whereas later partitions
should contain more. This approach is detailed in Algorithm 4, and referred to as stepped
partitions. The result is a set of partitions where each subset accounts for roughly 1/𝑚
of the total variance, however, the number of coordinates within each partition may vary
substantially.
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Algorithm 5: Stratified partitions of 𝑡 coordinates into 𝑚 partitions.

1 function StratifiedPartitions (𝑡 , 𝑚):
2 𝑇1, … , 𝑇𝑚 ← ∅
3 𝑟 ← 1
4 for 𝑘 = 1, … , 𝑡 do
5 𝑇𝑟 ← 𝑇𝑟 ∪ {𝑘}
6 𝑟 ← 𝑟 + 1
7 if 𝑟 = 𝑚 + 1 then 𝑟 ← 1
8 𝑇 ← {𝑇1, … , 𝑇𝑚}
9 return 𝑇

The final strategy aims to establish partitions with large internal variances while trying
to form partitions of similar sizes and total variance explained. This method emphasises
selecting diverse coordinates within each partition. To achieve this, coordinates are
allocated to partitions from 1 to 𝑚 in descending order of significance, before looping
back to the first partition and repeating. This stratified approach is outlined in Algorithm 5.
The result is a series of similar-sized partitions, with diverse interval variances.

3.3.5 Illustrative Example

We conclude this section with a brief illustrative example to demonstrate the effectiveness
of the partitioned cutting plane approach. In this example, we randomly generated 51
locations in ℝ10, and selected a heuristic solution where 𝑝 = 5. Figure 3.7 displays the
first two coordinates of these locations as well as the chosen solution. Using the lower
bound from (3.4), we see that this solutions removes at least 1.45% of the search space.

To implement the partitioned cutting plane algorithm, we begin by computing the
centred Gram matrix from (3.9). We then employ eigenvalue decomposition to construct
locations 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑡, resulting in 50 non-zero eigenvalues, and thus 𝑡 = 50. PCA
reveals that the variance explained by each of the 50 coordinates ranges from 9.62% to
0.57%. Therefore, despite the large number, not all coordinates are expected to provide a
significant contribution to the objective. Finally, we use Algorithm 5 to create 25 stratified
partitions, each with 2 coordinates.

Figure 3.8 presents the distribution of locations in every partition. It also displays
the exclusion zones of the solution from Figure 3.7, calculated using (3.3) with squared
Euclidean distances. Clearly, partitioning the coordinates leads to a substantial improve-
ment in the approximation of the objective function. In a majority of partitions, the
exclusion zones cover a notable portion of other locations, and in some cases they cover
almost the entire space.

Furthermore, we calculate (3.4) for the provided solution within each partition. While
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Figure 3.7: First two coordinates of 51 locations in ℝ10, as well as a heuristic solution with 𝑝 = 5.
This solution removes at least 1.45% of the search space.

this value no longer has the same interpretation as before due to the objective changing
to ∑𝑚

𝑟=1 𝜃𝑟, it still provides a measure of relative strength of each cut. For instance, in
partition 1 we see that more than 77.7% of the search space leads to a smaller value of 𝜃1.
Therefore, for an incumbent solution to satisfy line 3 of Algorithm 2, it must counteract
the decrease in 𝜃1 by a relative increase in objective contribution from another partition.
However, this is difficult to achieve, as almost all other partitions exclude a greater
proportion of the search space compared to the original solution in the non-partitioned
space. Therefore, coordinate partitioning should lead to significant improvements in the
approximation of the objective function as well as the removal of nonoptimal solutions.

3.4 Numerical Results

We now present numerical results for the partitioned cutting plane algorithm and ac-
companying partition strategies. The algorithm is implemented in C++ using CPLEX
version 22.1.1 as its mixed-integer linear solver. The lazy constraint callback function-
ality is used to allow tangent planes to be added during the branch and bound proce-
dure. Eigenvalue decomposition is conducted using the Eigen 3.4.0 library (available at
https://eigen.tuxfamily.org). The source code of our implementation can be accessed at
https://github.com/sandyspiers/coordinate_partitioning. All tests were conducted on a
machine with a 2.3 GHz AMD EPYC processor with 64GB RAM, using a single thread.

The solution algorithms are evaluated using two classes of randomly generated in-
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Figure 3.8: The 25 two-coordinate partitions of the locations from Figure 3.7. For each partition
we show the exclusion zones calculated from (3.3) using squared Euclidean distances,
as well as the lower bound (3.4).
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stances. The first class, referred to as cube instances, has locations uniformly distributed
within a hypercube of dimension 𝑠. These instances align with the framework suggested
in Chapter 2, which was originally an extension of that proposed in Glover et al. (1995),
with additional emphasis put on the number of coordinates of original locations. Addition-
ally, we test the solvers on ball instances, where locations are situated on the boundary of
a hyperball of dimension 𝑠. This class of problem, first introduced in Section 3.2, remains
unexplored in existing diversity problem literature.

Algorithm 6: Random partitions of 𝑡 coordinates into 𝑚 partitions.

1 function RandomPartitions (𝑡 , 𝑚):
2 𝐶 ← {1, … , 𝑡} , 𝑇1, … , 𝑇𝑚 ← ∅ , 𝑟 ← 1
3 while 𝐶 ≠ ∅ do
4 Choose a random 𝑐 ∈ 𝐶
5 𝐶 ← 𝐶 ∖ {𝑐} , 𝑇𝑟 ← 𝑇𝑟 ∪ {𝑐} , 𝑟 ← 𝑟 + 1
6 if 𝑟 = 𝑚 + 1 then 𝑟 ← 1
7 𝑇 ← {𝑇1, … , 𝑇𝑚}
8 return 𝑇

Random partitions of similar size are used as a benchmark against our three proposed
partitioning techniques. These benchmark partitions are generated using Algorithm 6,
which results in 𝑡%𝑚 partitions of size ⌊𝑡/𝑚⌋+1 and 𝑚−𝑡%𝑚 partitions of size ⌊𝑡/𝑚⌋. This
creates a similar partition set to Algorithm 3, however now coordinates are chosen at
random. This strategy will be used as a control, to test whether the proposed partitioning
methods produce significant improvements.

3.4.1 Cube Instances

We begin by assessing the performance of the partitioned cutting plane algorithm on
a large set of randomly generated cube instances. Location sets are generated in sizes
𝑛 = 100, 250, 500, 1000, each with coordinate counts 𝑠 = 2, 5, 10, 15, 20. Every coordinate
of a location is uniformly randomly generated in the range [0, 100]. Consequently,
locations are uniformly distributed inside a hypercube of dimension 𝑠, such as those
shown in Figure 3.2 of Section 3.2. For every combination of number of locations and
number of coordinates, we generate five unique sets of locations. Then, for each set of
locations, we solve the (EMSDP) where 𝑝 = 0.1𝑛 and 𝑝 = 0.2𝑛, resulting in a total of 200
test instances.

Each problem instance is solved by the partitioned cutting plane algorithm using one
of the three proposed partitioning strategies, as well as a random partition set generated
by Algorithm 6. The number of desired partitions is set to 𝑚 = 0.1𝑛, 0.25𝑛, 0.5𝑛, or
0.75𝑛. We then further solve the problem using a full partitioning (𝑚 = 𝑛), as well as the
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n
Cutting
Plane

Partition Ratio

0.10 0.25 0.50 0.75 1.0

100 0.00 0.00 0.00 0.00 0.01 0.01
250 0.00 0.03 0.04 0.07 0.10 0.12
500 0.00 0.23 0.34 0.53 0.74 0.90
1000 0.01 1.59 2.43 3.90 5.78 8.36

Table 3.1: Average setup time in seconds for cube test instances at various partition ratios. This
includes the time to conduct eigenvalue decomposition and to construct 𝑚 distance
matrices.

cutting plane method from Chapter 2 as a benchmark. This makes a total of 17 solver
configurations.

Before we delve into the performance of the various solution methods, it’s worth
noting that in order to use the partitioned cutting plane algorithm, we must first perform
eigenvalue decomposition to determine locations 𝑣1, … , 𝑣𝑛, and then construct 𝑚 distance
matrices, one for each partition. While this can be a computationally demanding task, we
show in the remainder of this section how solve time is generally far greater than setup
time. Nonetheless, the average time required to setup the partitioned cutting plane solver
for each partition ratio is detailed in Table 3.1. Notably, the setup time only becomes
significant when 𝑛 = 1000. Moreover, we know that the computational load of eigenvalue
decomposition should be consistent for a given 𝑛. Therefore, the longer setup times seen
at high partition ratios are due to the extra time required to construct and save to memory
a large number of distance matrices. This time could possibly be improved by using a
more sophisticated, on-the-fly approach to pairwise distance calculations, however, we
leave this task as an avenue for future improvements.

A summary of performance for each solver configuration on the random cube instances
is shown in Table 3.2. This table displays the average total time in seconds, including
both setup and solve times, where the latter is capped at 1000 seconds. The results of the
standard cutting plane algorithm are consistent with the EDC Algorithm from Chapter 2,
with the method being very efficient given a small number of coordinates, but struggles
as 𝑠 grows. In fact, for 𝑠 = 2, the cutting plane method remains the most efficient and in
many cases vastly outperforms Algorithm 2 at every partition configuration. With fewer
coordinates, the objective function is easy to approximate, and hence excess partitions
can slow this process down. However, as the number of coordinates grows, partitions
help to better approximate the objective, leading to an overall improvement in runtime.
Comparing the different strategies, greedy partitions appear to be the worst strategy by
a considerable margin. In many cases, greedy partitions can lead to more than double
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𝑠 𝑛 Cutting
Plane

Random Greedy Stepped Stratified Fully
Partitioned

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

2 100 0.03 0.03 0.06 0.11 0.19 0.06 0.09 0.11 0.16 0.02 0.03 0.05 0.07 0.03 0.05 0.08 0.13 0.17
250 0.09 0.23 0.50 1.07 1.45 0.51 1.11 1.38 2.00 0.22 0.39 0.71 1.15 0.21 0.52 0.91 1.46 1.96
500 0.40 1.77 4.00 7.58 11.62 5.28 8.35 11.31 16.83 1.64 3.81 6.44 9.55 1.66 3.68 7.39 11.44 14.81
1000 0.53 10.67 20.66 42.65 67.27 26.34 54.84 61.74 101.94 9.13 18.37 35.31 50.51 8.80 21.99 37.57 62.26 84.43

5 100 2.08 0.33 0.26 0.30 0.54 0.93 0.56 0.41 0.66 0.41 0.25 0.23 0.28 0.27 0.22 0.28 0.40 0.46
250 2.92 1.11 1.31 2.12 3.28 4.29 4.03 2.87 5.48 0.90 1.14 1.46 1.96 0.89 1.22 2.02 3.01 4.04
500 29.87 4.12 6.53 10.40 17.50 29.60 16.32 15.63 29.78 3.46 5.68 7.91 12.45 4.03 5.51 9.27 16.12 19.01
1000 86.93 19.13 33.98 69.71 86.53 107.39 84.21 83.38 131.90 15.70 29.85 47.83 78.71 19.16 35.76 54.69 92.36 118.91

10 100 282.98 4.02 1.71 1.61 2.19 13.99 2.85 1.71 3.06 6.65 3.13 1.63 1.52 3.41 1.48 1.17 2.22 1.89
250 432.62 86.52 35.41 31.58 39.52 324.19 87.45 36.05 71.17 254.54 82.01 38.49 28.98 70.09 27.94 23.59 32.42 36.95
500 509.59 53.99 43.86 48.16 77.57 319.85 122.03 70.08 131.95 93.36 54.58 49.84 50.37 53.36 39.47 49.28 71.97 79.60
1000 696.31 142.37 155.78 225.63 302.03 728.21 393.82 310.55 574.97 168.30 185.14 200.49 221.56 132.31 136.73 195.58 319.59 347.27

15 100 903.94 321.39 51.01 34.01 44.16 483.02 87.16 38.29 80.75 387.59 219.36 55.09 38.51 307.41 49.57 26.97 35.67 39.13
250 889.99 250.57 87.07 69.72 94.78 470.36 234.84 96.59 167.47 307.22 243.68 94.42 75.28 243.81 91.92 62.80 74.14 79.21
500 845.83 350.48 200.02 197.36 246.15 604.86 417.11 249.67 429.08 456.71 353.21 226.35 171.68 312.71 188.61 164.44 232.46 261.62
1000 946.62 592.59 561.84 600.46 690.40 937.49 734.99 682.33 845.65 607.43 600.24 608.67 636.41 567.46 551.39 576.88 694.44 735.38

20 100 780.19 161.40 26.46 15.96 18.56 327.71 45.21 22.51 37.99 190.93 80.20 27.40 17.12 155.33 24.08 15.09 17.33 18.17
250 1000.02 571.26 457.35 422.75 463.26 894.25 523.21 458.98 504.26 686.43 532.27 463.18 446.71 541.09 455.54 414.57 445.68 429.50
500 973.22 687.14 561.68 470.84 575.18 893.22 699.99 565.95 687.74 797.52 650.64 523.47 469.82 674.88 498.60 450.38 487.02 496.08
1000 879.52 577.01 537.34 567.22 645.88 889.86 736.29 654.25 785.02 680.76 592.67 586.58 563.46 559.20 552.66 552.01 630.60 708.71

Table 3.2: Comparison of average run time in seconds (across 10 problem instances) for the
standard and partitioned cutting plane algorithms using four partition strategies at
various ratios and the full partition. Time includes setup and solve time, where the
solve time is capped at 1000 seconds. The best partition ratio for each strategy is shown
in bold.

the average solve time compared to the random partitions benchmark. In contrast, the
stepped and stratified strategies are usually able to improve on the random benchmark,
however, this improvement is often marginal. As expected, the full partition approach
only becomes competitive for large 𝑠, however the improvement is often minimal.

To more clearly assess the impact of partition ratio on runtime, Figure 3.9 illustrates
how the optimal partition ratio changes as the number of coordinates increases. The
figure plots the average runtime for each coordinate count, as well as the number of
cuts added per partition. For fewer coordinates, specifically 𝑠 = 2, 5, there is a clear
correlation between average solve time and partition count, with additional partitions
slowing down runtime. However, by 𝑠 = 10, this trend starts to shift. We can consider
this as the cross-over point, after which we notice the opposite trend, where partitioning
up to the 𝑚 = 0.5𝑛 ratio leads to faster run times.

Examining the number of cuts needed per partition, it’s clear that increasing the number
of partitions can considerably reduce the number of cuts required. This is especially true
when compared with the cutting plane algorithm at high coordinates. This outcome is to
be expected, as partitions with fewer coordinates should be simpler to approximate and
thus require fewer cuts. However, while a full partitioning results in the fewest cuts per
partition, it results in the largest overall problem size. As a result, its average run time
is not the most efficient. Considering the range of coordinates tested, a partition ratio
of 0.5 appears to be the most well-balanced strategy, as it is competitive at both high
and low number of coordinates. Although this ratio is slightly slower than the cutting
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Figure 3.9: The average run time in seconds, and average number of cuts added per partition
for different number of coordinates, broken down by partition ratio. Time includes
setup and solve time, where the solve time is capped at 1000 seconds. Note that a 1.0
partition ratio refers to a full partitioning.
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Fully Partitioned Random Greedy Stepped Stratified

Random 1.2405e-28 6.8159e-29 8.2721e-01 1.0
Greedy 2.3191e-06 1.0 1.0 1.0
Stepped 5.8087e-14 1.7279e-01 3.5090e-16 9.8398e-01
Stratified 3.9121e-33 3.3279e-10 1.2583e-32 1.6023e-02

Table 3.3: Results of the paired Wilcoxon signed-rank test comparing partition strategies at a 0.5
partition ratio, as well as the fully partitioned strategy. Each entry shows the p-value
for the hypothesis that the strategy in the row leads to faster solve times compared to
the strategy in the column, across all cube test instances.

plane algorithm at 𝑠 = 2, it’s a minor difference compared to the significant runtime
improvements observed at higher coordinates. Therefore, a 0.5 ratio appears to be the
best balance, offering a significant reduction in cuts per partition without excessively
increasing the number of objective terms.

Figure 3.10 compares the performance of the four partition strategies at a ratio of 0.5,
across the five different values of 𝑠. The standard cutting plane algorithm is used as a
benchmark. The results clearly show how partitioning the coordinates makes the solver
far more resilient to increasing the number of coordinates. At 𝑠 = 2, while the partitioned
strategies do perform worse than the original cutting plane algorithm, they are still able
to efficiently solve all test instances well within the 1000-second time limit. Increasing
to 𝑠 = 5, all approaches are comparable, with only slight variations in performance.
However, this would appear to be the turning point. At a larger number of coordinates,
the partitioned cutting plane algorithm begins to vastly outperform the standard approach.
Impressively, at the 𝑠 = 20 level, the partitioned approach can solve more than half the
test set, whereas the standard cutting plane algorithm is only able to solve a small number.

Comparing the various partitioning strategies is somewhat challenging using the
performance profile alone. However, the stratified approach appears to be the best overall
performer at the 0.5 ratio, frequently outperforming the random benchmark. Notably,
the stepped approach also competes closely with this benchmark, despite resulting in
partitions of significantly varied sizes.

To verify the statistical significance of these observations, Table 3.3 presents the results
of a paired Wilcoxon signed-rank test, comparing the solve time of different partition
strategies at a 0.5 partition ratio across all cube test instances. Each entry in the table
tests the hypothesis that the strategy in the corresponding row results in a faster solve
time compared to the strategy in the corresponding column.

The results support the observation that the stratified partition strategy is the fastest at
a 0.5 partition ratio. At a 5% level of significance, we can conclude that this partitioning
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Figure 3.10: Solver performance on the cube instances at various number of coordinates, with
partition ratio as 𝑚 = 0.5𝑛. We additionally show the performance of the fully
partitioned approach and the standard cutting plane algorithm.
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strategy is the most efficient across the cube test instances. Additionally, the random
benchmark outperforms the greedy partition strategy (p-value 6.8159e-29), indicating
that this was potentially a poor strategy to use for this test set.

These findings suggest that using eigenvalues and PCA to guide partitioning is a
promising technique that can lead to effective and deterministic partitions. Having a
deterministic strategy is crucial to ensuring the robustness of Algorithm 2. For example,
if one was to rely random allocations alone, then this might result in partitions similar
to those produced by the greedy approach. However, we can see from the previous
results that greedy partitions lead to the worst average solve time. As such, using PCA
to deterministically partition coordinates appears to be very effective, and could offer
significant benefits for other problem classes as well.

Finally, while the partitioned cutting plane algorithm is more robust than the original
for increasing values of 𝑠, it still suffers a minor deterioration in performance. This
indicates that some of the structure of points 𝑢1, … , 𝑢𝑛 that make tangent planes weak
(such as low interior density), remain even after mapping to points 𝑣1, … , 𝑣𝑛. While
partitioning functional components remedies most of these issues, some difficulties still
remain. As such, we still see the partitioned approach worse with increasing 𝑠. With that
said, it is far more robust than the original.

3.4.2 Ball Instances

We complete this section by exploring the performance of the partitioned cutting plane
algorithm on the ball instances first mentioned in Section 3.2. These instances are such
that every location is situated on the edge of a hyperball of dimension 𝑠, such as those
shown in Figure 3.5. We generate instances of sizes of 𝑛 = 25, 50, 100, with the number
of coordinates as 𝑠 = 2, 5. Each coordinate of a location is randomly generated from a
normal distribution with mean 𝜇 = 0 and standard deviation 𝜎 = 1. Subsequently, every
location 𝑥 ∈ ℝ𝑠 is translated to 𝑥 ← 50𝑥/ ‖𝑥‖, thereby positioning the location on the
edge of a hyperball with radius 50. For every combination of number of locations and
number of coordinates, we generate five unique sets of locations. Then, for each set of
locations, we solve the (EMSDP) with 𝑝 = 5 for 𝑛 = 25 and 𝑝 = 0.1𝑛, 0.2𝑛 for 𝑛 = 50, 100,
resulting in a total of 50 test instances.

Although the cutting plane algorithm has been shown to be the leading solutionmethod
for cube instances, this cannot be said for the ball instances, as they have not yet been
explored in the literature. Therefore, in addition to the standard and partitioned cutting
plane algorithm, we also benchmark the partitioned cutting plane algorithm against
the Glover reformulation detailed in (2.4). This mixed-integer linear reformulation is
subsequently solved using CPLEX.

Table 3.4 displays the average run time and average final optimality gap for the ball
instances, where solve time is limited to 1000 seconds. Firstly, it is clear that the ball

60



3.5 Conclusion

𝑠 𝑛 Cutting
Plane

Glover
Random Stratified Fully

Partitioned
0.25 0.5 0.75 0.25 0.5 0.75

2 25 1.01 (0.00) 2.26 (0.00) 0.46 (0.00) 0.46 (0.00) 0.72 (0.00) 0.47 (0.00) 0.46 (0.00) 0.63 (0.00) 0.68 (0.00)
50 572.83 (0.53) 602.72 (26.32) 267.73 (0.00) 153.69 (0.00) 265.43 (0.00) 234.38 (0.00) 172.94 (0.00) 207.21 (0.00) 200.17 (0.00)
100 1000.02 (1.28) 1000.01 (119.19) 1000.01 (0.42) 1000.03 (0.38) 1000.02 (0.38) 1000.01 (0.40) 1000.02 (0.37) 1000.02 (0.36) 1000.01 (0.37)

5 25 36.89 (0.00) 2.60 (0.00) 3.56 (0.00) 2.60 (0.00) 3.73 (0.00) 3.55 (0.00) 2.25 (0.00) 3.17 (0.00) 3.69 (0.00)
50 1009.15 (6.76) 603.60 (19.95) 736.52 (0.65) 634.82 (0.48) 675.29 (0.54) 696.62 (0.63) 618.39 (0.48) 673.30 (0.48) 641.76 (0.49)
100 1000.02 (4.58) 1000.00 (97.41) 1000.03 (2.02) 1000.04 (1.81) 1000.02 (1.84) 1000.05 (2.02) 1000.02 (1.76) 1000.05 (1.79) 1000.12 (1.71)

Table 3.4: Average runtime in seconds across the various solver configurations for the ball test
instances, where solve time is capped at 1000 seconds. We show in parenthesis the
average final optimality gap as a percentage.

instances represent a particularly challenging class of the (EMSDP). When considering
the 𝑛 = 100 problem size, none of the solution methods were able to solve a single problem
to optimality within the time limit. While there is an improvement in performance for
the smaller 𝑛 = 50 instances, all the solvers lagged significantly when compared with
the outcomes from the cube instances. At 𝑠 = 2, the partitioned cutting plane algorithm
is clearly the most effective, consistently yielding the smallest average runtime and
optimality gap. Furthermore, the 0.5 partition ratio once again provides the best balance
between problem size and cut strength. However, for 𝑠 = 5, the performance of the
partitioned approach deteriorate noticeably. In fact, Glover linearisation becomes fairly
competitive for these test instances and achieved similar average run times. That said,
Glover linearisation yields very poor bounds if the problem is not solved within the time
limit, resulting in a very large average final gaps. In contract, all partition strategies yield
fairly small optimality gaps, with the largest being 2.02%.

The challenge of the ball instances becomes clear when examining the performance
breakdown in Figure 3.11. This figure shows the average primal-dual gap and number of
cuts added at 4 time points across the 1000-second limit. Within the first 60 seconds, the
algorithm is capable of achieving a respectable bound of less than 4%. However, this gap
is not closed significantly when extending out to 1000 seconds. This is in contrast to the
number of cuts added, which climbs substantially over the solve time. In some cases, the
number of cuts almost doubles over this time frame. Therefore, even though the problem
size is small, the tangent planes are not able to efficiently direct the search. As a result,
the solver struggles to close the gap, leading to poor performance when compared with
the cube instances.

3.5 Conclusion

This chapter introduces a novel approach to tackle challenging Euclidean max-sum
diversity problems. By constructing a new set of locations, whose squared Euclidean
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Figure 3.11: The average primal-dual gap and average number of cuts added during the solve
procedure for the ball test instances with 𝑛 = 100 for various solver configurations.
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distances match the Euclidean distances of the original, we can employ a functional
decomposition of the objective. This allows us to break up the objective based on
subsets of coordinates. We show how, after partitioning the set of coordinates, the new
objective terms are expected to be easier to approximate by tangent planes, making the
problem easier to solve. Furthermore, we show how principal component analysis can
be conducted alongside location recovery, thus requiring minimal excess computation.
The results from PCA highlight the relative importance of coordinates, and can therefore
be used to guide the partitioning process.

Extensive numerical results prove the effectiveness of this new approach. By breaking
down the objective function, the cutting plane algorithm becomes far more resilient to
an increasing number of coordinates. As such, it can solve large, 20-coordinate instances
of up to 1000 locations. Moreover, we introduce a new class of problems characterized by
locations positioned on the edge of a ball. These instances have not been researched before
in the context of diversity problems, and are shown to be very challenging. Nevertheless,
the partitioned cutting plane algorithm remains the standout performer in this problem
class, achieving far tighter best bounds.
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4 Euclidean Max-Sum Problems1

This chapter studies binary quadratic programs in which the objective is defined by the
maximisation of a Euclidean distance matrix, subject to a general polyhedral constraint
set. This class of nonconcave maximisation problems, which we refer to as the Euclidean
Max-Sum problem, includes the capacitated, generalised and max-sum diversity problems
as special cases. Due to the nonconcave objective, traditional cutting plane algorithms
are not guaranteed to converge globally. In this chapter, we introduce two exact cutting
plane algorithms to address this limitation. The new algorithms remove the need for
a concave reformulation, which is known to significantly slow down convergence. We
establish exactness of the new algorithms by examining the concavity of the quadratic
objective in a given direction, a concept we refer to as directional concavity. Numerical
results show that the algorithms outperform other exact methods for benchmark diversity
problems (capacitated, generalised and max-sum) and can easily solve problems of up to
three thousand variables.

4.1 Introduction

In this chapter, we show how cutting planes can be used to generate exact solutions for
the problem of maximising the sum of pairwise Euclidean distances between selected
points, subject to general polyhedral constraints, hereafter referred to as the Euclidean
Max-Sum problem (EMSP). The (EMSP) is a generalisation of the Euclidean Max-Sum
diversity problem from previous chapters, in which the cardinality constraint is replaced
by a general polyhedral set. More precisely, given a set of locations 𝑢1, … , 𝑢𝑛 ∈ ℝ𝑠 (𝑠 ≥ 1),
the (EMSP) is defined as the following nonconcave binary maximisation problem,

max 𝑓 (𝑥) = 1
2
⟨𝐷𝑥, 𝑥⟩ , (EMSP)

s.t. 𝑥 ∈ 𝑃 ∩ {0, 1}𝑛,

where 𝐷 = [𝑑𝑖𝑗]𝑖,𝑗=1,…,𝑛 is an 𝑛 × 𝑛 Euclidean distance matrix defined by 𝑑𝑖𝑗 = ‖𝑢𝑖 − 𝑢𝑗‖, and
where 𝑃 ⊂ ℝ𝑛 is a polyhedral set defined by

𝑃 = {𝑥 ∈ ℝ𝑛 ∶ 𝐴𝑥 ≤ 𝑎} ,

1This chapter is based on Bui et al. (2024)
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where 𝐴 ∈ ℝ𝑚×𝑛 and 𝑎 ∈ ℝ𝑚. Here, the definition of 𝑥 can be easily generalised to include
both integer and continuous variables. We showed in Chapter 2.2, Corollary 7 that 𝐷 is
also a squared Euclidean distance matrix. As such, it is conditionally negative definite,
i.e., ⟨𝐷𝑥, 𝑥⟩ ≤ 0 if ∑𝑛

𝑖=1 𝑥𝑖 = 0, and has exactly one positive eigenvalue. In this chapter,
we exploit this property to show how the cutting plane methodology, which is normally
restricted to concave maximisation problems, can be applied to find an optimal solution
of (EMSP).

The Euclidean max-sum problem has various important practical applications. In
machine learning and statistical analysis, Euclidean distance is often used as a measure of
dissimilarity between data points in clustering algorithms (Madhulatha, 2012; Shirkhor-
shidi et al., 2015). By maximising the Euclidean distance between points, clusters can be
formed based on their dissimilarity, allowing for effective grouping and classification of
data. An example of this is the Maximally Diverse Grouping Problem (Feo et al., 1992;
O’Brien & Mingers, 1997). Furthermore, in various practical applications such as urban
planning or network design, there is a need to strategically locate unwanted facilities
such as waste disposal sites or polluting industries (Erkut & Neuman, 1989; Kuby, 1987).
Maximising the distance between these unwanted (but necessary) facilities and sensitive
areas such as residential zones or environmental conservation areas helps minimise
the negative impact on surrounding communities or ecosystems. Lastly, maximising
Euclidean distances allows for the selection of points that capture diverse characteristics
or represent different regions of interest, thereby enhancing the coverage and diversity
of the chosen set.

In the previous chapters, we formulated a cutting plane algorithm for the Euclidean
max-sum diversity problem by establishing the concavity of the objective function on
the hyperplane ∑𝑛

𝑖=1 𝑥𝑖 = 𝑝, which ensures that tangent planes of feasible solutions serve
as valid upper planes. As such, our cutting plane algorithm is globally convergent for the
Euclidean max-sum diversity problem. The resultant exact algorithm is competitive with
heuristic and meta-heuristic methods and can solve two-coordinate instances of up to
eighty thousand variables. However, without the cardinality constraint, the objective
function is not concave over the feasible set, and hence tangent planes do not always form
valid cuts. The purpose of this chapter is to develop a new cutting plane methodology
that still converges for this more general problem, where concavity is not guaranteed.

To the best of our knowledge, outside of the Euclidean max-sum diversity problem,
quadratic maximisation problems defined by Euclidean distance matrices have never
been explored in isolation. One reason for this is that these maximisation problems are,
in general, nonlinear and nonconcave. Mixed-integer nonlinear programming is one
of the most challenging classes of optimisation problems. Although there are several
exact methods that provide general frameworks to tackle concave maximisation problems,
including outer approximation (Duran & Grossmann, 1986; Kronqvist et al., 2020; Leyffer,
1993; Lubin et al., 2018), branch and bound (Bonami et al., 2013; Gupta & Ravindran,
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1983; Vielma et al., 2008), and cutting plane methods (Kronqvist et al., 2016; Lundell et al.,
2022; Westerlund & Pettersson, 1995), advancements in exact algorithms for nonconcave
problems are still modest. The most common way to handle binary nonconcave max-
imisation is to reformulate the problem into an equivalent concave problem by using a
penalty approach, before applying exact methods to the new concave problem such as
that outlined in Chapter 1.3.2.

This chapter extends the cutting plane algorithm to general Euclidean distance max-
imisation by relaxing the requirement for a cardinality constraint. This is achieved by
exploiting the property that Euclidean distance matrices have exactly one positive eigen-
value. To provide intuition on the key idea, consider a full eigenvalue decomposition of
the objective function,

𝑓 (𝑥) = 1
2
⟨𝐷𝑥, 𝑥⟩ = 1

2
𝑥𝑇 (

𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣𝑇𝑖 ) 𝑥 = 1
2

𝑛
∑
𝑖=1

𝜆𝑖𝑥𝑇 (𝑣𝑖𝑣𝑇𝑖 ) 𝑥,

where 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 and 𝑣1, … , 𝑣𝑛 denote the eigenvalues and eigenvectors of 𝐷. This
expresses the quadratic objective as a sum of functional components which are either
convex or concave, depending on the sign of their respective eigenvalues. However, as𝐷 is
a Euclidean distance matrix, we have from Theorem 4 that it contains exactly one positive
eigenvalue, and therefore 𝑓 (𝑥) has only one convex component. By restricting our search
domain to exclude directions that traverse this convex component, our objective function
can effectively be treated as a concave function (see Lemma 18).

As an example, consider the hyperbolic paraboloid defined by

𝑔(𝑥, 𝑦) = 𝑥𝑦 = 1
4
(𝑥 + 𝑦)2 − 1

4
(𝑥 − 𝑦)2.

Clearly, whenever 𝑎𝑥 + 𝑏𝑦 = 0 (𝑎𝑏 > 0), the function reduces to 𝑔(𝑥, 𝑦) = 𝑥(−𝑎𝑥
𝑏
) = −𝑎

𝑏
𝑥2,

which is concave. Hence, while 𝑔(𝑥, 𝑦) is nonconcave for 𝑥, 𝑦 ∈ ℝ, it is concave on
the 𝑎𝑥 + 𝑏𝑦 = 0 plane. The resultant concave parabola is shown in red in Figure 4.1.
This is essentially the technique used in Chapter 2, where the Euclidean distance matrix
is known to contain exactly one positive eigenvalue, and hence the objective has one
convex functional component. The cardinality constraint then ensures that the feasible
set excludes this convex component, and the quadratic function can be treated as concave.
For the general problem (EMSP), which may not include a cardinality constraint, the
main idea of our approach is to only generate the tangent planes on concave directions.
By doing so the cutting planes are valid and the algorithm always converges to an optimal
solution.

The remainder of this chapter is organised as follows. In Section 4.2, we formalise
the concept of directional concavity and, based on this, formulate two key sufficient
conditions for valid tangent planes, as detailed in Theorem 20. These conditions then
form the basis of two exact cutting plane algorithms which vary in their approach to
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Figure 4.1: The intersection of a paraboloid and a hyperplane is either convex or concave.

generating new cuts. Finally, in Section 4.3 we conduct extensive numerical experiments
to evaluate the effectiveness of the proposed solution approaches.

4.2 Methodology

We denote the feasible set of (EMSP) as 𝐾 = {𝑥 ∈ {0, 1}𝑛 ∶ 𝑥 ∈ 𝑃} ∖ {0}, where 𝑥 = 0 is
excluded since 𝑓 (𝑥) ≥ 0 = 𝑓 (0) for every 𝑥 ∈ 𝐾. As before, let ℎ(𝑥, 𝑦) be the tangent
plane of 𝑦 evaluated at 𝑥. We say that the tangent plane at a feasible solution 𝑦 ∈ 𝐾
forms a valid cut if it provides an upper approximation for the optimal value of (EMSP),
i.e, 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦), where 𝑥∗ is an optimal solution of (EMSP). This differs from the
majority of the existing literature, where valid cuts provide an upper approximation of
the objective function at all feasible solutions (not just at an optimal solution).

Since the function 𝑓 in (EMSP) is not concave, not every feasible solution 𝑦 ∈ 𝐾
generates a valid cut. In this section, we establish sufficient conditions for when the
tangent plane ℎ(𝑥, 𝑦) is valid. The key to our approach is to study the concavity of
the function 𝑓 when restricted to a given direction, exploiting the observation that the
restriction of a quadratic function to a line is either concave or convex.
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4.2.1 Directional Concavity

Given a vector 𝑢 ∈ ℝ𝑛 ∖ {0}, we say that 𝑢 is a concave direction of 𝐷 if ⟨𝐷𝑢, 𝑢⟩ ≤ 0; this
means that 𝑓 (𝑥) is concave along the line with direction 𝑢 emanating from the origin.
Conversely, a vector 𝑣 ∈ ℝ𝑛 ∖ {0} is a convex direction of 𝐷 if ⟨𝐷𝑣, 𝑣⟩ ≥ 0. Note that 𝑥 − 𝑦
is a concave direction of 𝐷 if and only if

𝑓 (𝑥) − ℎ(𝑥, 𝑦) = 1
2
⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0.

Thus, the tangent plane at 𝑦 is an upper approximation of 𝑓 (𝑥) when the line from 𝑦 to 𝑥
is a concave direction of 𝐷. We now show that 𝑢 = 𝑥 − 𝑦 is a concave direction of the
matrix 𝐷 if 𝑢 is orthogonal to 𝐷𝑧, where 𝑧 is a convex direction of 𝐷.

Lemma 18. Suppose 𝑥, 𝑦 ∈ ℝ𝑛, and there is vector 𝑧 ∈ ℝ𝑛 ∖ {0} such that

a. ⟨𝐷𝑧, 𝑧⟩ ≥ 0, and

b. ⟨𝐷𝑧, 𝑥 − 𝑦⟩ = 0.

Then, ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥).

Proof. Recall from the proof of Proposition 9 that the inequality ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) is equiv-
alent to ⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0. We suppose to the contrary that ⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ > 0.
Because 𝐷 is a Euclidean distance matrix, by Theorem 4 it has exactly one positive
eigenvalue. Furthermore, because 𝐷 is a real symmetric matrix, it is orthogonally diag-
onalisable. Let 𝜆1 > 0 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 be the eigenvalues of 𝐷, and let 𝑣1, … , 𝑣𝑛 be the
corresponding eigenvectors, which are normalised and orthogonal. Then, we can express
𝑥 − 𝑦 and 𝑧 on the basis {𝑣1, … , 𝑣𝑛} as follows,

𝑥 − 𝑦 =
𝑛
∑
𝑖=1

𝛼𝑖𝑣𝑖, 𝑧 =
𝑛
∑
𝑖=1

𝛽𝑖𝑣𝑖,

for some 𝛼𝑖, 𝛽𝑖 ∈ ℝ (𝑖 = 1, … , 𝑛). Then,

⟨𝐷𝑧, 𝑧⟩ =
𝑛
∑
𝑖=1

𝜆𝑖𝛽2𝑖 ≥ 0, (4.1)

⟨𝐷𝑧, 𝑥 − 𝑦⟩ =
𝑛
∑
𝑖=1

𝜆𝑖𝛽𝑖𝛼𝑖 = 0, (4.2)

⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ =
𝑛
∑
𝑖=1

𝜆𝑖𝛼2𝑖 > 0. (4.3)

Because 𝜆𝑖 ≤ 0 (𝑖 = 2, … , 𝑛), inequality (4.1) and 𝑧 ≠ 0 imply that 𝛽1 ≠ 0, and (4.3) implies
that 𝛼1 ≠ 0. Therefore, we can multiply both sides of (4.1) by 𝛼21 > 0, (4.2) by −2𝛼1𝛽1 ≠ 0,
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and (4.3) by 𝛽21 > 0, and sum up to obtain

0 < (𝜆1𝛽21𝛼21 + 𝛼21
𝑛
∑
𝑖=2

𝜆𝑖𝛽2𝑖 ) − 2 (𝜆1𝛽21𝛼21 + 𝛼1𝛽1
𝑛
∑
𝑖=2

𝜆𝑖𝛽𝑖𝛼𝑖) + (𝜆1𝛽21𝛼21 + 𝛽21
𝑛
∑
𝑖=2

𝜆𝑖𝛼2𝑖 )

=
𝑛
∑
𝑖=2

𝜆𝑖(𝛼21𝛽2𝑖 − 2𝛼1𝛽1𝛼𝑖𝛽𝑖 + 𝛽21𝛼2𝑖 ) =
𝑛
∑
𝑖=2

𝜆𝑖(𝛼1𝛽𝑖 − 𝛼𝑖𝛽1)2.

The inequality above only holds when there is at least one positive eigenvalue among
𝜆2, … , 𝜆𝑛, which is a contradiction. Hence, it must hold that ⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0.

Recall that the Euclidean distance matrix 𝐷 is conditionally negative definite. The next
result exploits this fact to replace condition (b) in Lemma 18 with two new conditions.

Lemma 19. Suppose 𝑥, 𝑦 ∈ ℝ𝑛, and there is 𝑧 ∈ ℝ𝑛 ∖ {0} such that

a. ⟨𝐷𝑧, 𝑧⟩ ≥ 0,

b. ⟨𝐷𝑧, 𝑥 − 𝑦⟩ ≤ 0, and

c. either
∑𝑛

𝑖=1(𝑥𝑖−𝑦𝑖)
∑𝑛

𝑖=1 𝑧𝑖
≥ 0, or∑𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖) = ∑𝑛
𝑖=1 𝑧𝑖 = 0.

Then, ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥).

Proof. Similar to Lemma 18, 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦) is equivalent to ⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0. Let
𝑢 = 𝑥 − 𝑦, and choose 𝑤 ∈ ℝ𝑛 such that

𝑤 = 𝛼𝑧, where 𝛼 = {
1 if ∑𝑛

𝑖=1 𝑢𝑖 = ∑𝑛
𝑖=1 𝑧𝑖 = 0,

∑𝑛
𝑖=1 𝑢𝑖

∑𝑛
𝑖=1 𝑧𝑖

otherwise.

From (c), 𝛼 ≥ 0 and ∑𝑛
𝑖=1 𝑢𝑖 = ∑𝑛

𝑖=1 𝑤𝑖, or equivalently ∑𝑛
𝑖=1(𝑢𝑖 − 𝑤𝑖) = 0. Note that from

(a) and (b), we have

⟨𝐷𝑤, 𝑤⟩ = 𝛼2 ⟨𝐷𝑧, 𝑧⟩ ≥ 0, ⟨𝐷𝑤, 𝑢⟩ ≤ 0.

Because 𝐷 is conditionally negative definite, we have ⟨𝐷(𝑤 − 𝑢), 𝑤 − 𝑢⟩ ≤ 0. Combining
this with ⟨𝐷𝑤, 𝑤⟩ ≥ 0 and ⟨𝐷𝑤, 𝑢⟩ ≤ 0, we get

⟨𝐷𝑢, 𝑢⟩ = ⟨𝐷(𝑤 − 𝑢), 𝑤 − 𝑢⟩ − ⟨𝐷𝑤, 𝑤⟩ + 2 ⟨𝐷𝑤, 𝑢⟩ ≤ 0,

thus giving 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).

Using Lemmas 18 and 19, we now establish conditions for when a tangent plane ℎ(𝑥, 𝑦)
provides an upper approximation for higher value solutions in 𝐾, i.e., ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) for
all 𝑥 such that 𝑓 (𝑥) ≥ 𝑓 (𝑦).
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Theorem 20. Suppose 𝑥, 𝑦 ∈ ℝ𝑛+ ∖ {0}, such that 𝑓 (𝑥) ≥ 𝑓 (𝑦). Then, ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) if
either

a. ∑𝑛
𝑖=1 𝑥𝑖 ≤ ∑𝑛

𝑖=1 𝑦𝑖, or

b. there is 𝑤 ∈ ℝ𝑛+ ∖ {0} such that ⟨𝐷𝑤, 𝑥 − 𝑦⟩ ≤ 0.

Proof. Because 𝑓 (𝑥) ≥ 𝑓 (𝑦), we have

⟨𝐷(𝑥 + 𝑦), 𝑥 − 𝑦⟩ ≥ 0. (4.4)

a. Suppose ∑𝑛
𝑖=1 𝑥𝑖 ≤ ∑𝑛

𝑖=1 𝑦𝑖, and choose 𝑧 ∶= −(𝑥 + 𝑦). Since 𝐷, 𝑥 and 𝑦 all have
only nonnegative entries, it follows that

⟨𝐷𝑧, 𝑧⟩ = ⟨−𝐷(𝑥 + 𝑦), −(𝑥 + 𝑦)⟩ = ⟨𝐷(𝑥 + 𝑦), 𝑥 + 𝑦⟩ ≥ 0.

Then from (4.4) we have ⟨𝐷𝑧, 𝑥 − 𝑦⟩ ≤ 0. Taking into account that∑𝑛
𝑖=1 𝑥𝑖 ≤ ∑𝑛

𝑖=1 𝑦𝑖
and 𝑥 + 𝑦 ∈ ℝ𝑛+, condition (c) in Lemma 19 is fulfilled. Hence, by Lemma 19, the
inequality ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) holds.

b. Suppose there is 𝑤 ∈ ℝ𝑛+ ∖ {0} such that ⟨𝐷𝑤, 𝑥 − 𝑦⟩ ≤ 0. Then, given (4.4), there
exists a 𝑧 ∈ ℝ𝑛+ ∖ {0} on the line between 𝑤 and 𝑥 + 𝑦 such that ⟨𝐷𝑧, 𝑥 − 𝑦⟩ = 0.
Note that 𝐷 has zero diagonal and positive off-diagonal entries, hence ⟨𝐷𝑧, 𝑧⟩ > 0.
Therefore by Lemma 18, we have that the inequality ℎ(𝑥, 𝑦) ≥ 𝑓 (𝑥) holds.

4.2.2 Cutting Plane Algorithms

We now introduce two cutting plane algorithms designed to solve (EMSP). Let 𝐴 ⊂ ℝ𝑛+
denote an arbitrary finite set of points that generate valid tangent planes, such that for
all 𝑦 ∈ 𝐴 we have 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦) where 𝑥∗ is an optimal solution. Then, we define

Γ𝐴 = {(𝑥, 𝜃) ∈ ℝ𝑛+1 ∶ 𝑥 ∈ 𝐾, 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐴} .

The cutting plane model of the (EMSP) is then given as the following mixed-integer linear
program,

max
(𝑥,𝜃)∈Γ𝐴

𝜃. (ILP𝐴)

Since the points in 𝐴 generate valid tangents we have ℎ(𝑥∗, 𝑦) ≥ 𝑓 (𝑥∗) for all 𝑦 ∈ 𝐴 and
hence (𝑥∗, 𝑓 (𝑥∗)) is feasible for (ILP𝐴), meaning the optimal value of (ILP𝐴) is a valid
upper bound for (EMSP). We now present two algorithms for solving the (EMSP) that
iteratively generate new, valid tangent planes, thereby tightening the approximation
of (ILP𝐴). Provided the first cut added is valid, both methods are guaranteed to converge

71



4 Euclidean Max-Sum Problems

to an optimal solution of the (EMSP). Note that from Theorem 20.a, we can always
choose the first cut to be the solution to the maximum cardinality problem. Let 𝑦 be the
solution to max𝑥∈𝐾∑

𝑛
𝑖=1 𝑥𝑖, then 𝑦 ∈ 𝐾, 𝑓 (𝑥∗) ≥ 𝑓 (𝑦) and ∑𝑛

𝑖=1 𝑥
∗
𝑖 ≤ ∑𝑛

𝑖=1 𝑦𝑖. Therefore,
by Theorem 20.a, 𝑦 generates a valid tangent.

The first algorithm makes use of the following proposition, which asserts that the
tangent plane at the optimal solution of (ILP𝐴) is always valid.

Proposition 21. Given 𝐴 ⊂ ℝ𝑛+ is a set of points that generate valid tangents, let (𝑥, 𝜃) be
an optimal solution of the cutting plane problem (ILP𝐴). Then 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑥), where 𝑥∗

is an optimal solution of (EMSP).

Proof. We begin by proving that there is a 𝑦 ∈ 𝐴 such that ⟨𝐷𝑦, 𝑥∗ − 𝑥⟩ ≤ 0. Suppose, for
a contradiction, that for all 𝑦 ∈ 𝐴 we have ⟨𝐷𝑦, 𝑥∗ − 𝑥⟩ > 0, or equivalently, ⟨𝐷𝑦, 𝑥∗⟩ >
⟨𝐷𝑦, 𝑥⟩. Then,

𝜃 ≤ ℎ(𝑥, 𝑦) < ℎ(𝑥∗, 𝑦)

holds for all 𝑦 ∈ 𝐴. Let ̂𝜃 be such that,

̂𝜃 = min
𝑦∈𝐴

ℎ(𝑥∗, 𝑦) > 𝜃.

However, (𝑥∗, ̂𝜃) ∈ Γ𝐴, and ̂𝜃 > 𝜃, which contradicts (𝑥, 𝜃) being an optimal solution.
Hence, the first assertion is settled. The second assertion is a direct consequence of
Theorem 20.b, where 𝑤 = 𝑦 ≠ 0 (since otherwise 𝑦 would not generate a valid cut), and
noting that 𝑓 (𝑥) ≤ 𝑓 (𝑥∗). Hence, 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑥).

Using this result, we can now solve the (EMSP) by repeatedly solving (ILP𝐴) to opti-
mality, and using the solutions as new valid tangent planes. An implementation of this
approach is shown in Algorithm 7, and its convergence is established in Proposition 22.

Algorithm 7: Repeated (ILP𝐴) method for solving (EMSP).

1 function RepeatedILP (𝑓,𝐾,𝜖):
2 𝑘 ← 0, 𝑈𝐵𝑘 ← +∞
3 Take 𝑥0 ∈ argmax𝑥∈𝐾∑

𝑛
𝑖=1 𝑥𝑖

4 Set 𝐴1 ← {𝑥0}, 𝐿𝐵𝑘 ← 𝑓 (𝑥𝑘)
5 while 𝑈𝐵𝑘−𝐿𝐵𝑘

𝐿𝐵𝑘
> 𝜖 do

6 𝑘 ← 𝑘 + 1
7 Solve (ILP𝐴𝑘) to obtain (𝑥𝑘, 𝜃𝑘)
8 𝑈𝐵𝑘 ← 𝜃𝑘, 𝐿𝐵𝑘 ← max{𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)}
9 𝐴𝑘+1 ← 𝐴𝑘 ∪ {𝑥𝑘}

10 return 𝐿𝐵𝑘
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Proposition 22. Algorithm 7 converges to an optimal solution of the (EMSP) in a finite
number of steps.

Proof. As every (ILP𝐴𝑘) is solved to optimality, we have from Proposition 21 that the
tangent plane of every 𝑥𝑘 is valid. This implies that (𝑥∗, 𝑓 (𝑥∗)) is always feasible at every
step 𝑘, i.e., (𝑥∗, 𝑓 (𝑥∗)) ∈ Γ𝐴𝑘 for all 𝑘 ≥ 0. Thus,

UB𝑘 = max
(𝑥,𝜃)∈Γ𝐴𝑘

𝜃 ≥ 𝑓 (𝑥∗) = max
𝑥∈𝐾

𝑓 (𝑥) ≥ LB𝑘.

Because the feasible region 𝐾 is finite (variables 𝑥 are discrete and the polyhedral set 𝑃
is bounded), there is a step 𝑘 such that the optimal solution (𝑥𝑘, 𝜃𝑘) of (ILP𝐴𝑘) satisfies
𝑥𝑘 ∈ 𝐴𝑘. In this case, we have UB𝑘 = 𝜃𝑘 ≤ ℎ(𝑥𝑘, 𝑥𝑘) = 𝑓 (𝑥𝑘) ≤ LB𝑘, and hence, UB𝑘 = LB𝑘.
When UB𝑘 = LB𝑘, we have 𝜃𝑘 = max𝑥∈𝐾 𝑓 (𝑥), and therefore Algorithm 7 has converged
to an optimal solution.

Note that the repeated (ILP𝐴) algorithm is similar to the extended cutting plane method
presented in Westerlund and Pettersson (1995), with a modification on the first cut added
ℎ(𝑥, 𝑥0). The main iterations of each algorithm are the same, as they solve the linearised
problem to optimality, and add the solution to the set of cuts. However, while these
algorithms are similar, the extended cutting plane algorithm is designed for concave
problems. As such, it is generally not applicable to the (EMSP) without modifying the
first cut added.

Although Algorithm 7 is globally convergent, it requires solving (ILP𝐴) to optimality
at every iteration, since only the optimal solution is guaranteed to generate a valid cut.
Depending on 𝐾, this potentially represents a difficult mixed-integer programming prob-
lem. We now describe an alternative algorithm in which cuts are added at intermediate
feasible points to accelerate convergence.

Recall from Theorem 20.a that 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦) whenever 𝑓 (𝑥) ≥ 𝑓 (𝑦) and ∑𝑛
𝑖=1 𝑥𝑖 ≤

∑𝑛
𝑖=1 𝑦𝑖. As such, consider the restriction of the (EMSP) to points with cardinality 𝑐 ∈ ℕ.

The feasible region of this problem is then given by 𝐾𝑐 = {𝑥 ∈ 𝐾 ∶ ∑𝑛
𝑖=1 𝑥𝑖 = 𝑐}. We can

solve max𝑥∈𝐾𝑐 𝑓 (𝑥) exactly by instead solving the following linear cutting plane problem,

max 𝜃 (4.5)

s.t. 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐾𝑐, (4.6)

𝑥 ∈ 𝐾𝑐.

Although there are an exponential number of constraints in (4.6), we can accelerate the
solution process by using a branch and cut methodology, whereby cuts are added on the
fly during the search procedure.

Given we can solve max𝑥∈𝐾𝑐 𝑓 (𝑥) by the cutting plane problem (4.5), we can therefore
decompose (EMSP) such that

max
𝑥∈𝐾

𝑓 (𝑥) = max
𝑐=1,…,𝐶

max
𝑥∈𝐾𝑐

𝑓 (𝑥) = max
𝑐=1,…,𝐶

max
𝑥,𝜃

{𝜃 ∶ 𝑥 ∈ 𝐾𝑐, 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐾𝑐}
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where 𝐶 is the maximum cardinality achievable in 𝐾. Algorithm 8 below executes this
decomposition by solving the inner maximisation problem repeatedly for decreasing
cardinality 𝑐. At each step 𝑘 (corresponding to cardinality 𝑐𝑘) the algorithm imposes
not only the cuts corresponding to points in 𝐾𝑐𝑘 , but also additional cuts generated by
feasible points with higher cardinality from previous iterations. By Theorem 20.a, for
such feasible points 𝑦, the cut 𝜃 ≤ ℎ(𝑥, 𝑦) does not exclude improved solutions with
cardinality less than or equal to 𝑦, and hence the decomposition remains valid. Line 10 of
the algorithm finds the upper bound of the remaining iterations with a lesser cardinality,
meaning we do not need to iterate over every possible cardinality. The process repeats
until the optimal solution is found.

Algorithm 8: Forced cardinality method for solving (EMSP).

1 function ForcedCardinality (𝑓,𝐾,𝜖):
2 𝑘 ← 0, 𝑈𝐵0 ← +∞
3 Take 𝑥0 ∈ argmax𝑥∈𝐾∑

𝑛
𝑖=1 𝑥𝑖

4 𝐿𝐵𝑘 ← 𝑓 (𝑥𝑘)
5 𝑐1 ← ∑𝑛

𝑖=1 𝑥
0
𝑖 , 𝐴1 ← {𝑥0}

6 while 𝑈𝐵𝑘−𝐿𝐵𝑘
𝐿𝐵𝑘

> 𝜖 and 𝑐𝑘 > 0 do

7 𝑘 ← 𝑘 + 1
8 Solve max𝑥,𝜃 {𝜃 ∶ 𝑥 ∈ 𝐾𝑐𝑘 , 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐾𝑐𝑘 ∪ 𝐴𝑘} for (𝑥𝑘, 𝜃𝑘) using

branch and cut, saving all cuts found and adding their corresponding
points to 𝐴𝑘+1

9 𝐿𝐵𝑘 ← max{𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)}
10 Solve max(𝑥,𝜃)∈Γ𝐴𝑘+1{𝜃 ∶ ∑𝑛

𝑖=1 𝑥𝑖 ≤ 𝑐𝑘 − 1} for 𝑈𝐵𝑘
11 𝑐𝑘+1 ← 𝑐𝑘 − 1
12 return 𝐿𝐵𝑘

Proposition 23. Algorithm 8 converges to an optimal solution of the (EMSP) in a finite
number of steps.

Proof. Let 𝑥∗ be an optimal solution of the (EMSP) and suppose ∑𝑛
𝑖=1 𝑥

∗
𝑖 = 𝑐𝑘. We will

prove two things: at step 𝑘, 𝑥𝑘 is a solution of (EMSP), and prior to step 𝑘, 𝑈𝐵𝑘 is an
upper bound for the optimal value of (EMSP), ensuring the algorithm does not terminate
early. For the first assertion, observe that ∑𝑛

𝑖=1 𝑥
∗
𝑖 ≤ ∑𝑛

𝑖=1 𝑦𝑖 and 𝑓 (𝑥∗) ≥ 𝑓 (𝑦) for all
𝑦 ∈ 𝐾𝑐𝑘 ∪ 𝐴𝑘. Therefore, by Theorem 20.a, 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦) for all 𝑦 ∈ 𝐾𝑐𝑘 ∪ 𝐴𝑘. Hence,
(𝑥∗, 𝑓 (𝑥∗)) is a feasible solution to the subproblem on line 8 of Algorithm 8. Suppose that
(𝑥𝑘, 𝜃𝑘) is optimal for this subproblem. Then we have that

𝑓 (𝑥∗) ≤ 𝜃𝑘 ≤ ℎ(𝑥𝑘, 𝑥𝑘) = 𝑓 (𝑥𝑘).

74



4.2 Methodology

Therefore 𝑥𝑘 obtained at step 𝑘 must be optimal for (EMSP), and 𝐿𝐵𝑘 = 𝑓 (𝑥∗).
We now prove that the upper bound determined on line 10 of Algorithm 8 is always

valid if the optimal solution has not yet been reached, i.e., at iterations 𝑙 < 𝑘 where
∑𝑛

𝑖=1 𝑥
∗
𝑖 = 𝑐𝑘. At step 𝑙 < 𝑘, the set 𝐴𝑙+1 contains only solutions with cardinality at

least 𝑐𝑙. Therefore, ∑𝑛
𝑖=1 𝑥

∗
𝑖 = 𝑐𝑘 ≤ 𝑐𝑙 − 1 < ∑𝑛

𝑖=1 𝑦𝑖 and 𝑓 (𝑥∗) ≥ 𝑓 (𝑦) for all 𝑦 ∈ 𝐴𝑘+1.
By Theorem 20.a, this ensures that 𝑓 (𝑥∗) ≤ ℎ(𝑥∗, 𝑦), meaning (𝑥∗, 𝑓 (𝑥∗)) is a feasible
solution for the subproblem on line 10 of Algorithm 8. Hence, the optimal value of this
subproblem 𝑈𝐵𝑙 is an upper bound of the globally optimal solution, i.e.,

𝑈𝐵𝑙 = max
(𝑥,𝜃)∈Γ𝐴𝑙+1

{𝜃 ∶
𝑛
∑
𝑖=1

𝑥𝑖 ≤ 𝑐𝑙 − 1} ≥ 𝑓 (𝑥∗).

As such, the algorithm does not terminate until a globally optimal solution has been
found.

Note that, the lower bound at each iteration 𝑘 of Algorithm 8 satisfies

𝐿𝐵𝑘 = max
𝑐=𝑐𝑘,…,𝐶

max
𝑥∈𝐾𝑐

𝑓 (𝑥) = max
𝑥∈𝐾

{𝑓 (𝑥) ∶
𝑛
∑
𝑖=1

𝑥𝑖 ≥ 𝑐𝑘} . (4.7)

In other words, this is the best function value achievable for the current and higher
cardinalities. We can show this by induction. For 𝑘 = 1, this statement is clearly true
since 𝐴1 = {𝑥0} ⊂ 𝐾𝑐1 meaning that the subproblem on line 8 of Algorithm 8 reduces to
problem (4.5), and hence by the arguments given above, 𝑥1 is optimal for max𝑥∈𝐾𝑐1

𝑓 (𝑥)
and consequently 𝐿𝐵1 = max𝑥∈𝐾𝑐1

𝑓 (𝑥). Suppose the assertion holds at step 𝑘 − 1. Then,
for step 𝑘, there are two cases to consider;

(i) max𝑥∈𝐾𝑐𝑘
𝑓 (𝑥) < 𝐿𝐵𝑘−1, or

(ii) max𝑥∈𝐾𝑐𝑘
𝑓 (𝑥) ≥ 𝐿𝐵𝑘−1.

For case (i), given (4.7) holds for 𝑘 − 1 we have that

𝐿𝐵𝑘 = max{𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)}
= 𝐿𝐵𝑘−1
= max

𝑐=𝑐𝑘−1,…,𝐶
max
𝑥∈𝐾𝑐

𝑓 (𝑥)

= max
𝑐=𝑐𝑘,…,𝐶

max
𝑥∈𝐾𝑐

𝑓 (𝑥)

as required. For case (ii), suppose 𝑥′ is optimal for max𝑥∈𝐾𝑐𝑘
𝑓 (𝑥). Then we must have

𝑓 (𝑥′) ≥ 𝑓 (𝑦) and ∑𝑛
𝑖=1 𝑥

′
𝑖 ≤ ∑𝑛

𝑖=1 𝑦𝑖 for all 𝑦 ∈ 𝐴𝑘, and hence from Theorem 20.a,
𝑓 (𝑥′) ≤ ℎ(𝑥′, 𝑦). Therefore, (𝑥′, 𝑓 (𝑥′)) is feasible for the linear subproblem on line 8 of
Algorithm 8. This implies

𝑓 (𝑥′) ≤ 𝜃𝑘 ≤ ℎ(𝑥𝑘, 𝑥𝑘) = 𝑓 (𝑥𝑘).
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Thus, given (4.7) holds for 𝑘 − 1, we have

𝐿𝐵𝑘 = max {𝐿𝐵𝑘−1, 𝑓 (𝑥𝑘)} = 𝑓 (𝑥𝑘) = max
𝑐=𝑐𝑘,…,𝐶

max
𝑥∈𝐾𝑐

𝑓 (𝑥)

as required.
In difficult instances of the (EMSP), a large number of tangent planes are potentially

required to sufficiently approximate the objective function (such as with high-coordinate
instances of the diversity problem). To accelerate cut generation, recall that the Euclidean
distance matrix is conditionally negative definite, and hence ⟨𝐷(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0 holds
for all 𝑥, 𝑦 ∈ ℝ𝑛 with ∑𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖) = 0. This implies that we can generate valid cuts
even for non-integer 𝑦; specifically, 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦) holds for any 𝑦 (integer or continuous)
that has the same cardinality as 𝑥. Therefore, Proposition 23 still holds if we modify
the subproblem on line 8 of Algorithm 8 to include additional cuts generated by non-
integer points with cardinality 𝑐𝑘. These tangents can be generated by solving the linear
relaxation, and are therefore computationally cheap to generate and may improve the
approximation.

However, using the linear relaxation potentially introduces a large integrality gap,
possibly reducing the effectiveness of these cuts. A good strategy to reduce this gap is to
ensure additional cuts are generated close to the best-known solution. This is achieved by
employing a trust-region methodology, where the continuous solutions are constrained to
the region defined by ‖𝑥 − 𝑦𝑘‖

1
≤ 𝛾, where 𝑦𝑘 is the current best-known integer solution

up to step 𝑘 and 𝛾 ≥ 0 is a given parameter. When 𝑥 ∈ [0, 1]𝑛, this is easily enforced by
the following constraint

𝑛
∑
𝑖=1
𝑦𝑘𝑖 =0

𝑥𝑖 +
𝑛
∑
𝑖=1
𝑦𝑘𝑖 =1

(1 − 𝑥𝑖) ≤ 𝛾 . (4.8)

Algorithm 9 outlines the process for generating LP tangents, where 𝜖 is the maximum
allowable relative tolerance between bounds and 𝑀 is the maximum number of cuts to
be added. This algorithm is called during each iteration 𝑘, before solving the subproblem
on line 8, and its main inputs are 𝐴𝑘 and the current best-known solution 𝑦𝑘. Note that if
𝛾 = 0 then the trust region contains only 𝑦𝑘, and hence this is the only solution returned
by Algorithm 9. The cuts from Algorithm 9 can then be introduced by replacing the
subproblem in line 8 with

max
𝑥,𝜃

{𝜃 ∶ 𝑥 ∈ 𝐾𝑐𝑘 , 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐾𝑐𝑘 ∪ 𝐴𝑘 ∪ 𝐿𝑘} ,

where 𝐿𝑘 comes from Algorithm 9. Note that as the points 𝑦 ∈ 𝐿𝑘 are not necessarily
integer feasible, it is not always true that 𝑓 (𝑥∗) ≥ 𝑓 (𝑦) and hence they do not satisfy the
requirements for Theorem 20. As such, the tangents of these solutions may only be used
for the current iteration.
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Algorithm 9: LP-relaxation cuts for (EMSP).

1 function GetLPTangents (𝑓, 𝐾, 𝐴𝑘, 𝑐𝑘, 𝛾, 𝑦𝑘, 𝜖, 𝑀):
2 𝑝 ← 0, 𝑈𝐵0 ← +∞, 𝐿𝐵0 ← 𝑓 (𝑦𝑘)
3 𝐿 ← ∅.

4 while
𝑈𝐵𝑝−𝐿𝐵𝑝

𝐿𝐵𝑝
> 𝜖 and 𝑝 ≤ 𝑀 do

5 𝑝 ← 𝑝 + 1
6 Solve the continuous relaxation of

max𝑥,𝜃 {𝜃 ∶ 𝑥 ∈ 𝐾𝑐𝑘 , 𝜃 ≤ ℎ(𝑥, 𝑦), ∀𝑦 ∈ 𝐴𝑘 ∪ 𝐿} with trust-region
constraint (4.8) to obtain (𝑥𝑝, 𝜃𝑝)

7 𝑈𝐵𝑝 ← 𝜃𝑝, 𝐿𝐵𝑝 ← max{𝐿𝐵𝑝−1, 𝑓 (𝑥𝑝)}, 𝐿 ← 𝐿 ∪ {𝑥𝑝}
8 return 𝐿

4.3 Numerical Results

We now present numerical results for Algorithms 7 and 8. These algorithms were
implemented in Julia 1.10 using the JuMP mathematical programming package (Lubin
et al., 2023) and Gurobi version 11.0 as the mixed-integer linear solver. The branch and
cut method in Algorithm 8 utilised the lazy constraint callback function, enabling the
addition of tangent planes as constraints during the branch and bound procedure. For
Algorithm 8, we add LP-tangents by using Algorithm 9 with 𝛾 = 0, 0.5𝑛, or 𝑛 and with
a maximum iteration limit of 𝑀 = 100. Note that when 𝛾 = 0 the trust region contains
only the best known solution (labelled 𝑦𝑘 in Algorithm 9). This results in four distinct
solver configurations.

Our implementation’s source code, including the raw results data, can be accessed at
https://github.com/sandyspiers/EuclideanMaximisation/tree/v1.0-julia2. The results data
also includes tests using CPLEX 22.1.1 as the MIP solver, which produce similar results
to those reported here. A relative termination tolerance of 𝜖 = 10−6 was used for the
main iterations of Algorithms 7-9, as well as for any mixed-integer subproblems solved
by Gurobi. All other mixed-integer programming parameters were set to their defaults.
All tests were conducted on a machine with a 2.3 GHz AMD EPYC processor with 64GB
RAM, using a single thread.

The performance of the algorithms was evaluated against the well-known Glover
linearisation of the objective function. This reformulation was first introduced in Glover

2Commit reference b921170.
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(1975) and is given as

max
𝑛−1
∑
𝑖=1

𝑤𝑖, (4.9)

s.t. 𝑥 ∈ 𝑃 ∩ {0, 1}𝑛,

𝑤𝑖 ≤ 𝑥𝑖
𝑛
∑
𝑗=𝑖+1

𝑑𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤𝑖 ≤
𝑛
∑
𝑗=𝑖+1

𝑑𝑖𝑗𝑥𝑗, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 − 1.

In addition to (4.9), we solve (EMSP) using the mixed-integer quadratic programming
solver available within Gurobi.

4.3.1 Capacitated Diversity Problem

We begin by evaluating the performance of the different solution methods for solving
the capacitated diversity problem. In this problem, the constraint set 𝑃 contains only the
following knapsack constraint,

𝑛
∑
𝑖=1

𝑐𝑖𝑥𝑖 ≤ 𝑏,

where 𝑐𝑖 ∈ ℝ+ (𝑖 = 1, … , 𝑛), and min𝑖=1,…,𝑛 𝑐𝑖 ≤ 𝑏 < ∑𝑛
𝑖=1 𝑐𝑖. As such, (EMSP) then becomes

the problem of selecting a subset of predefined locations, each with a weight, to maximise
the sum of the pairwise distances, while keeping the total weight less than or equal
to a given limit. The capacitated diversity problem belongs to the family of diversity
problems, which has a wide variety of practical applications, including facility location,
social network analysis, and ecological conservation (Lai et al., 2018; Z. Lu et al., 2023;
Peiró et al., 2021).

The test instances used are derived from the publicly available MDPLIB 2.03 test
library (Martí et al., 2021). Within this test library, we use the Euclidean instances
of the capacitated diversity problem. This includes 10 instances each of sizes 50, 150, and
500. These instances were generated such that the weight of each node was randomly
generated in the range [1, 1000], with the capacity set to 𝑏 = 0.2∑𝑛

𝑖=1 𝑐𝑖 and 𝑏 = 0.3∑𝑛
𝑖=1 𝑐𝑖,

making 60 instances in total.
In addition to the previous publicly available test sets, we randomly generated some

larger instances of the capacitated diversity problem. These instances are made up of
either 1000, 1500, 2000, 2500, or 3000 nodes, where each node contains either 2, 10, or
20 coordinates. Each coordinate of a location was uniformly randomly generated in

3Available at https://www.uv.es/rmarti/paper/mdp.html.
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Figure 4.2: Solver performance on the 60 capacitated diversity problem instances available within
the MDPLIB 2.0 test library, using a single thread for computation. The time axis is
split at 5 seconds due to marked differences in solver performance.

the range [0, 100]. The weight of each node was uniformly randomly generated in the
range [1, 1000], and the capacity was set to 𝑏 = 0.2∑𝑛

𝑖=1 𝑐𝑖 or 𝑏 = 0.3∑𝑛
𝑖=1 𝑐𝑖. For every

combination of the number of nodes and the number of coordinates, we generated 5
instances, comprising a total of 150 test instances in total.

The performance of various solvers for the benchmark problem instances (labelled
CDP) and randomised problem instances (labelled RCDP) over a 600-second time limit is
displayed in Figures 4.2 and 4.3, respectively. For CDP test instances, Algorithms 7 and 8
exhibit similar performance, both efficiently solving the entire test set within a maximum
of 3.14 seconds. This represents a substantial improvement compared to the other exact
methods. While Glover linearisation can solve some of the smaller instances within 5
seconds of run time, it fails to solve the entire problem set within the 600-second time
limit. Solving the problem in its original quadratic form proved to be the least effective
method by a significant margin, solving fewer than 20 instances. The use of LP-tangents
did not appear to improve Algorithm 8 and, in fact, worsened the runtime slightly.

On the larger RCDP test instances, we continue to see impressive performances from
both Algorithms 7 and 8. Remarkably, even with the immense size of these instances, the
repeated (ILP𝐴) method was still able to solve all instances in under 5 seconds. We also
begin to see a difference in performance between the two algorithms, with the forced
cardinality method becoming less effective for these very large problem sizes. That said,
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Figure 4.3: Solver performance on the 150 randomly generated capacitated diversity problem
instances.

it is still able to solve all instances within 60 seconds of run time.

The results from these tests are further summarised in Table 4.1, which shows the
average solve time for each test set, broken down by problem size. It clearly shows how,
on the capacitated diversity problem, the performance of Algorithm 7 remains stable for
increasing problem size.

4.3.2 Generalised Diversity Problem

The generalised diversity problem (GDP) represents a fundamental optimisation problem
in the fields of facility location, supply chain management, and network design (Martinez-
Gavara et al., 2021). At its core, the GDP seeks to strategically position a set of facilities
on a network to efficiently serve a given demand distribution. This entails optimising
not only the allocation of facilities to locations but also considering the spread of these

80



4.3 Numerical Results

Type 𝑛 Repeated
(ILP𝐴)

Forced Cardinality Glover
Linearisation

Quadratic
Programming𝛾 = 0 𝛾 = 0.5𝑛 𝛾 = 𝑛

CDP
50 0.21 0.05 0.16 0.15 0.40 196.52
150 0.08 0.04 0.10 0.10 12.59 600.00
500 0.15 0.09 0.14 0.14 245.49 600.01

RCDP

1000 0.58 0.64 0.63 0.58 - -
1500 0.68 1.93 1.75 1.71 - -
2000 0.80 3.88 3.36 3.37 - -
2500 0.54 12.48 7.09 6.94 - -
3000 0.59 12.55 9.35 9.16 - -

GDP
50 0.25 0.19 0.14 0.05 0.21 0.13
150 0.39 0.08 0.11 0.11 4.01 3.67
500 0.36 0.32 0.39 0.39 36.43 600.01

RGDP
1000 0.80 1.83 1.73 1.69 - -
1500 0.93 4.58 4.32 4.29 - -
2000 1.22 10.15 7.72 7.62 - -

Table 4.1: Average solve time in seconds of the various solver setups, broken down by test set and
test size. Each problem is solved with a time limit of 600 seconds, using a single thread.

81



4 Euclidean Max-Sum Problems

facilities. The max-sum GDP is given as

max 𝑓 (𝑥) (GDP-f)

s.t.
𝑛
∑
𝑖=1

𝑐𝑖𝑥𝑖 ≥ 𝐵,

𝑛
∑
𝑖=1

𝑎𝑖𝑥𝑖 ≤ 𝐾,

𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, … , 𝑛,

where 𝑐𝑖 and 𝑎𝑖 represent the capacity and cost of site 𝑖. Sites must be chosen such that
the minimum demand 𝐵 is met, and setup cost is kept below the maximum 𝐾. The
formulation in (GDP-f) considers the capacity to be fixed once a facility is open. A more
realistic model considers variable setup costs, where extra capacity can be achieved at a
given cost, once the facility is open. The variable cost version of the GDP is given as

max 𝑓 (𝑥) (GDP-v)

s.t.
𝑛
∑
𝑖=1

𝑡𝑖 ≥ 𝐵,

𝑛
∑
𝑖=1

(𝑎𝑖𝑥𝑖 + 𝑏𝑖𝑡𝑖) ≤ 𝐾,

𝑡𝑖 ≤ 𝑐𝑖𝑥𝑖, 𝑖 = 1, … , 𝑛,
𝑡𝑖 ∈ ℤ, 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, … , 𝑛.

We note that (GDP-f) and (GDP-v) were first introduced in Martinez-Gavara et al. (2021)
where the objective was to maximise the minimum distance, however, for our purposes
we have changed this objective to maximise the sum of pairwise distances.

For the GDP, we again use the Euclidean test instances available within the MDPLIB 2.0
test library on the (GDP-v) model. All parameters were uniformly randomly generated
as follows. The capacity 𝑐𝑖 was generated in the range [1, 1000], the fixed cost 𝑎𝑖 in the
range [𝑐𝑖/2, 2𝑐𝑖] and finally the variable cost 𝑏𝑖 in [min{1, 𝑎𝑖}/100,max{1, 𝑎𝑖}/100]. The
minimum capacity is set at either 𝐵 = 0.2∑𝑛

𝑖=1 𝑐𝑖 or 𝐵 = 0.3∑𝑛
𝑖=1 𝑐𝑖. Finally, the maximum

budget is set as 𝐾 = 𝜙 ∑𝑛
𝑖=1 (𝑎𝑖 + 𝑏𝑖𝑐𝑖), where 𝜙 = 0.5 or 𝜙 = 0.6. As before, there are 10

instances each of size 50, 150 and 500, making a total of 120 test instances.
To test the solution algorithms on a larger scale, we generated several large instances

of GDP-v. These instances were generated similarly to the method described above;
however we increased the number of locations to 1000, 1500, and 2000 and generated
locations with 2, 10, and 20 sets of coordinates. Furthermore, to reduce the cardinality of
the optimal solution and avoid the possibility of full solutions, we decreased the minimum
capacity and maximum budget parameters such that 𝐵 = 0.05∑𝑛

𝑖=1 𝑐𝑖 or 𝐵 = 0.1∑𝑛
𝑖=1 𝑐𝑖
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Figure 4.4: Solver performance on the 120 variable cost generalised diversity problem instances
within the MDPLIB 2.0 test library. The time axis is split at 5 seconds due to marked
differences in solver performance.

and 𝐾 = 𝜙 ∑𝑛
𝑖=1 (𝑎𝑖 + 𝑏𝑖𝑐𝑖), where 𝜙 = 0.1 or 𝜙 = 0.2. For every combination of the

number of nodes, the number of coordinates, minimum capacity, and maximum budget,
we generated 5 instances, comprising a total of 180 test instances in total.

The performance of different solver setups for the benchmark instances (labelled
GDP) and random instances (labelled RGDP) over a 600-second time limit is displayed
in Figures 4.4 and 4.5, respectively. For GDP instances, Algorithms 7 and 8 exhibit
similar performance, both efficiently solving nearly the entire set within 4 seconds. The
incorporation of LP-tangent planes for Algorithm 8 has a negligible effect on its solve
time. However, both Glover linearisation and the quadratic programming approach find
this test set comparatively easier than the capacitated diversity problem, as the Glover
linearisation model can solve over half the instances within five seconds and the full set
in under 200 seconds. Turning to the results of the RGDP instances shown in Figure 4.5,
the repeated (ILP𝐴) method continues to outperform other solver setups. Moreover, the
results suggest that introducing LP-tangent planes can marginally improve Algorithm 8
at large problem sizes. A summary of solve times for these larger instances is provided
in Table 4.1.
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Figure 4.5: Solver performance on the 180 randomised variable cost generalised diversity problem
instances.

4.3.3 Cardinality and Cut Strength

To gain a deeper insight into the strength of the cutting planes, we present a breakdown
of the number of each type of cut added in Figure 4.6. The figure shows the number of
integer cuts (defined by points in 𝐴𝑘) and LP-tangents (defined by points in 𝐿𝑘) across
the four solver setups for the CDP, RCDP, GDP, and RGDP test instances. Interestingly,
the repeated (ILP𝐴) method consistently outperforms the forced cardinality method
in almost all test sets, despite the latter introducing significantly more cutting planes
since all intermediate feasible solutions are used to generate cuts. This suggests that by
solving (ILP𝐴) to optimality, the cut generated provides a very tight approximation of the
objective function at the optimal solution. Therefore, in many cases, it is worth taking the
extra time to solve the (ILP𝐴) subproblem to optimality, as the cut generated is expected
to be tight. This also explains why the addition of LP-tangent planes does not seem to
provide much computational benefit to either approach. As these cuts are generated on
the continuous relaxation, they are expected to be even further away from the optimal
solution than any integer solution, and hence provide a worse approximation. Tightening
the trust region by decreasing 𝛾 also seems to have little effect. While LP-tangents are
easy to generate and can therefore introduce a large number of cuts, they do not provide
a good approximation of the objective function, and hence they do not substantially
reduce the number of integer tangents required.
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Figure 4.6: Breakdown of the number of integer- and LP-tangents added across the CDP, RCDP,
GDP and RGDP test instances.
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Figure 4.7: Average solve time based on the difference between the maximum cardinality and car-
dinality of the optimal solution, across the CDP, RCDP, GDP and RGDP test instances.
The shaded regions denote the range bounded by the minimum and maximum solve
times.

One example of where LP-tangents become highly beneficial is in problems that have
a large difference between the maximum cardinality and the cardinality of an optimal
solution. In such cases, the forced cardinality approach must solve many iterations
before reaching an iteration that contains an optimal solution. Figure 4.7 shows the
minimum, average, and maximum solve time at each difference between the maximum
cardinality and the cardinality of the found solution across the CDP, RCDP, GDP, and
RGDP test instances. The repeated (ILP𝐴) method is virtually unaffected by this metric,
and its average runtime remains steady. However, the forced cardinality method performs
substantially worse as this number increases. That said, LP-tangents appear to improve
performance by quickly solving earlier iterations, thereby reducing overall solve time.
As such, they become fairly beneficial in these cases.
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Figure 4.8: Solver performance on the 60 capacitated diversity problem instances available within
the MDPLIB 2.0 test library, using all 16 threads for computation.

4.3.4 Multi-threaded Tests

While all tests mentioned thus far use a single thread for computation to provide a fair
test setup, this is rarely required in practice. As such, we now revisit test sets CDP and
GDP, allowing the solver to use all 16 available threads. Note that for Algorithms 7-9,
the main loop iterations are still single-threaded, but the mixed-integer solver may now
use all threads to solve the required subproblems.

The results on sets CDP and GDP are shown in Figures 4.8 and 4.9 respectively. Given
their already short runtimes, the performances of Algorithms 7 and 8 do not improve
substantially. This is partly explained by the fact that each subproblem is easy to solve, and
hence does not benefit greatly from parallelism. For Glover linearisation, the performance
difference within the first 5 seconds is marginal, solving only a few extra instances in
each case. However, after this time frame, the solver benefits greatly and sees marked
improvements, especially on the CDP instances. Finally, the quadratic programming
approach benefits the most from parallelism, allowing it to perform comparably with
Glover linearisation on the GDP instances. That said, the cutting plane algorithms remain
the best performers on each test set.
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Figure 4.9: Solver performance on the 120 generalised diversity problem instances available within
the MDPLIB 2.0 test library, using all 16 threads for computation.

4.3.5 Max-sum Diversity Problem

We finish this section by looking at difficult instances of the max-sum diversity problem.
This is similar to the capacitated diversity problem visited earlier, except the knapsack
constraint is replaced by the following cardinality constraint,

𝑛
∑
𝑖=1

𝑥𝑖 = 𝑝.

The problem has many real-world applications and fits the structure of (EMSP). While
this problem can be efficiently solved using the cutting plane approaches of the previous
chapters, we can use this problem to test the robustness of Algorithms 7 and 8. Notably,
we showed in Chapter 2 that instances with a large number of coordinates are particularly
difficult to approximate by cutting planes, thereby resulting in poor performance. As such,
we use the test instances in set GKD-c of MDPLIB2.0. These 20 instances each contain 500
locations with 20 coordinates, and where 𝑝 = 50.

Table 4.2 shows the average gap as a percentage, average objective value, average
number of integer cuts added, and the number of problems solved to optimality on the
GKD-c test set over a 600-second time limit. While Algorithm 7 is only able to solve 3 out
of 20 instances, the average final gap is very small at just 0.07%. Furthermore, it is able
to achieve this gap with an average of only 141 cuts. In contrast, the forced cardinality
approach is only able to solve a single instance to optimality. For the remaining instances,
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Repeated
(ILP𝐴)

Forced Cardinality Glover
Linearisation

Quadratic
Programming𝛾 = 0 𝛾 = 0.5𝑛 𝛾 = 𝑛

Ave Gap (%) 0.07 ∞ ∞ ∞ 115.59 702.83
Ave Objective Value 19500.83 19490.72 19482.78 19482.78 18985.52 19501.70

Ave Number Integer Cuts 141.45 3820.10 4015.80 4001.40 - -
Number Solved 3 1 0 0 0 0

Table 4.2: Solver performance on test set GKD-c using a single thread over a 600-second time limit.

the algorithm is never able to reach its upper bounding subproblem (line 10, Algorithm 8)
as it times out beforehand. Consequently, the algorithm never determines a valid upper
bound. This represents a major shortcoming of this approach. That said, it can still
achieve a decent lower bound, close to that of Algorithm 7. Interestingly, the standard
quadratic programming approach achieved the best average objective value and yet a
very poor objective bound. This is possibly indicative of the fact that the problem is
inherently nonconcave, and hence Gurobi is most likely relying on over-estimators to
provide objective bounds. However, these bounds appear to perform very poorly and
result in a very large optimality gap.

4.4 Conclusion

In this chapter, we presented two exact cutting plane algorithms for the general Euclidean
distance maximisation problem. We establish the validity of tangents by introducing the
concept of directional concavity. This notion led to the formulation of two important
sufficient conditions for valid cuts, shown in Theorem 20. Two cutting plane solution
algorithms were then introduced. The algorithms exploit Theorem 20 to ensure the search
for the optimal solution always stays on a concave direction of the objective function,
therefore ensuring all cuts are valid. This was achieved by either repeatedly solving
the cutting plane subproblem to optimality, or by iteratively forcing and decreasing the
cardinality of the problem.

Extensive numerical experiments were conducted to test the suggested solution algo-
rithms. The results are very promising, with all proposed methods easily able to solve
capacitated diversity problem instances with 3000 locations in under 60 seconds. This
represents a significant improvement compared to other exact methods for the (EMSP).
The repeated (ILP𝐴) method appeared to be the best overall performer as it generates
tight cuts and remains fairly stable for increasing dimensions. Additionally, the approach
is still able to provide a good upper bound even for very difficult instances, unlike the
forced cardinality approach. Therefore, the choice of which approach to use should
depend on the specific problem structure, especially the expected difference between the
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maximum cardinality and the cardinality of an optimal solution.
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5 Directionally Concave Branch
and Cut

We now combine the directionally concave cutting plane techniques of the previous
chapters into a unified algorithm to solve general mixed-integer quadratic programming
problems. The approach uses functional decomposition to create objective components,
each with at most one positive eigenvalue. Using an extension of the results from the
previous chapter, we formulate directionally concave upper planes of each functional
component using a combination of tangent planes and convex over-envelopes. The
resultant branch and cut algorithm is globally convergent, and extensive numerical
experiments demonstrate the promising performance of this approach.

5.1 Introduction

In this chapter, we develop a novel, exact branch and cut algorithm to solve general
quadratic programming problems of the form,

𝑧 = max 𝑓 (𝑥) = ⟨𝑄𝑥, 𝑥⟩ + ⟨𝑝, 𝑥⟩ (5.1)

s.t. 𝑥 ∈ 𝐾 ⊂ ℝ𝑛.

Here, 𝑄 ∈ ℝ𝑛×𝑛 represents a square, symmetric matrix with exactly 𝑚 strictly positive
eigenvalues, 𝑝 ∈ ℝ𝑛 is a vector, and 𝐾 is a bounded subset of ℝ𝑛 that may contain both
integer and continuous dimensions.

As discussed in Chapter 1, problems of this form have many important practical
applications in a wide range of fields. However, they are generally very challenging to
solve, particularly when the objective function is nonconcave. Throughout the previous
chapters, we exploited specific characteristics of the matrix 𝑄 to solve the problem via
cutting plane methods. For instance, Chapter 2 demonstrated how restricting the feasible
domain, such as with a cardinality constraint, can ensure valid tangents. Additionally,
Chapter 3 discussed how functional decomposition can help form tighter cuts, and
therefore improve the linear approximation. Finally, the previous chapter introduced the
novel concept of directional concavity, and began exploring ways to assert whether a
function is concave on a given 𝑥 − 𝑦 direction.
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Based on these insights, this chapter aims to combine and extend the results from
earlier chapters to develop a sophisticated branch and cut algorithm for (5.1). To achieve
this, we introduce a new directionally concave tangent plane, based off the results from
the previous chapter. Originally, directional concavity was proved on only Euclidean
distance matrices by exploiting the property of having a single positive eigenvalue. Here,
we expand these results to encompass general matrices 𝑄. Furthermore, we provide
sufficient conditions that can identify regions where a tangent plane is known to be
valid. These conditions are practical and useful in an algorithmic setting. By combining
directionally concave tangent planes with over-envelopes, we can formulate a tight upper
approximation of the objective function. This forms the basis of our exact branch and
cut approach.

Formulating directionally concave tangent planes requires using eigenvalue decom-
position to identify regions of concavity and convexity within 𝑄. While eigenvalue
decomposition is a well-established tool in quadratic programming, it is typically used
to partition the search space into fully concave and convex components. For exam-
ple, Bomze (2002) use eigenvalue decomposition to formulate the objective function of
the standard quadratic programming problem as a difference-of-convex function, i.e.,
𝑄 = 𝑃 − 𝑆, where both 𝑃 and 𝑆 are positive semidefinite. The authors then used a branch
and bound algorithm to converge on a local solution. Similarly, in C. Lu et al. (2017),
the authors use eigenvalue decomposition to derive a tight semidefinite relaxation for
the nonconcave part of a quadratic constraint. This relaxation is then integrated into a
branch and bound algorithm, where branching directions are guided by the eigenvalues
of the functional components.

The novelty of our approach lies in decomposing the problem into nonconcave func-
tional components. Being nonconcave, these components have both positive and negative
eigenvalues. We then apply our directionally concave tangents, enabling us to leverage
the efficiency of cutting plane methods even for nonconcave functions.

5.2 A Directionally Concave Branch and Cut
Algorithm

In this section, we introduce our novel directionally concave branch and cut algorithm,
designed to solve quadratic programming problems of type (5.1). Key to our approach
is the use of directionally concave upper planes, used to approximate the nonconcave
objective function. These planes are generated through the use of auxiliary vectors that
assert whether the tangent plane of 𝑦 is valid at an 𝑥. Ensuring the validity of these
tangents is challenging however, especially when 𝑄 contains many positive eigenvalues.
Recognising these difficulties, we look at the special case of a single positive eigenvalue,
and show it is possible to formulate a tight upper approximation of 𝑓 (𝑥) using a combina-
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tion of directionally concave tangent planes and convex over-envelopes. By decomposing
𝑄 into a set of matrices each with a single positive eigenvalue, we can use these upper
approximations to formulate a globally convergent branch and cut algorithm.

5.2.1 Directional Notation

Before commencing the main analysis, let us begin by introducing some notation that
will be used throughout the chapter. Let

𝜆1 ≥ ⋯ ≥ 𝜆𝑚 > 0 ≥ 𝜆𝑚+1 ≥ ⋯ ≥ 𝜆𝑛

and 𝑣1, … , 𝑣𝑛 denote the eigenvalues and eigenvectors of the matrix. Note that we as-
sume 𝑄 has exactly 𝑚 strictly positive eigenvalues. We can write 𝑄 on the basis of its
eigenvectors such that 𝑄 = ∑𝑛

𝑖=1 𝜆𝑖𝑣
𝑇
𝑖 𝑣𝑖. Consider the matrices 𝑄+ and 𝑄−, defined by

𝑄+ =
𝑚
∑
𝑖=1

𝜆𝑖𝑣𝑇𝑖 𝑣𝑖, 𝑄− =
𝑛
∑

𝑗=𝑚+1
𝜆𝑗𝑣𝑇𝑗 𝑣𝑗.

Then 𝑄 = 𝑄++𝑄−. Furthermore, 𝑄+ is positive definite as it has only positive eigenvalues,
and similarly 𝑄− is negative semi-definite. As such, we can think of 𝑄+ and 𝑄− as
representing the convex and concave functional components, respectively.

Given eigenvectors are orthonormal, we can express any vector 𝑥 ∈ ℝ𝑛 using the basis
of eigenvectors such that 𝑥 = ∑𝑛

𝑖=1 𝛼𝑖𝑣𝑖, where 𝛼1, … , 𝛼𝑛 ∈ ℝ. Let us now extend our new
directional notation by defining

𝑥+ =
𝑚
∑
𝑖=1

𝛼𝑖𝑣𝑖, 𝑥− =
𝑛
∑

𝑗=𝑚+1
𝛼𝑗𝑣𝑗.

Then, analogous to before, 𝑥 = 𝑥+ + 𝑥−. This notation allows us to consider the convex
and concave components of a vector. The following remark summarises somewell-known
matrix and vector properties using this new notation.

Remark 24. Let 𝑄 be defined as above, and let 𝑥, 𝑦 ∈ ℝ𝑛. Then the following holds,

1. ⟨𝑥, 𝑦⟩ = ⟨𝑥+, 𝑦+⟩ + ⟨𝑥−, 𝑦−⟩,

2. (𝑄𝑥)+ = 𝑄+𝑥+, and similarly (𝑄𝑥)− = 𝑄−𝑥−,

3. ⟨𝑄𝑥, 𝑦⟩ = ⟨𝑄+𝑥+, 𝑦+⟩ + ⟨𝑄−𝑥−, 𝑦−⟩, and

4. ⟨𝑄+𝑥+, 𝑥+⟩ = 0 if and only if 𝑥+ = 0.

Proof. Let 𝑥 = ∑𝑛
𝑖=1 𝛼𝑖𝑣𝑖 = 𝑥+ + 𝑥− and 𝑦 = ∑𝑛

𝑖=1 𝛽𝑖𝑣𝑖 = 𝑦+ + 𝑦−. The proofs of each
property are shown below,
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1. Observe ⟨𝑥, 𝑦⟩ = ⟨𝑥+ + 𝑥−, 𝑦+ + 𝑦−⟩ = ⟨𝑥+, 𝑦+⟩ + ⟨𝑥+, 𝑦−⟩ + ⟨𝑥−, 𝑦+⟩ + ⟨𝑥−, 𝑦−⟩.
Furthermore, ⟨𝑥+, 𝑦−⟩ = ⟨∑𝑚

𝑖=1 𝛼𝑖𝑣𝑖, ∑
𝑛
𝑗=𝑚+1 𝛽𝑗𝑣𝑗⟩ = ∑𝑚

𝑖=1∑
𝑛
𝑗=𝑚+1 𝛼𝑖𝛽𝑗 ⟨𝑣𝑖, 𝑣𝑗⟩ = 0,

and analogously, ⟨𝑥−, 𝑦+⟩ = 0. Hence, ⟨𝑥, 𝑦⟩ = ⟨𝑥+, 𝑦+⟩ + ⟨𝑥−, 𝑦−⟩.

2. Firstly, consider that

𝑄𝑥 = (
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑇𝑖 𝑣𝑖) 𝑥 =
𝑛
∑
𝑖=1

𝜆𝑖 (
𝑣𝑖1𝑣𝑖1 ⋯ 𝑣𝑖1𝑣𝑖𝑛
⋮ ⋱ ⋮

𝑣𝑖𝑛𝑣𝑖1 ⋯ 𝑣𝑖𝑛𝑣𝑖𝑛
)(

𝑥1
⋮
𝑥𝑛
)

=
𝑛
∑
𝑖=1

𝜆𝑖
⎛
⎜⎜
⎝

𝑣𝑖1∑
𝑛
𝑗=1 𝑣𝑖𝑗𝑥𝑗
⋮

𝑣𝑖𝑛∑
𝑛
𝑗=1 𝑣𝑖𝑗𝑥𝑗

⎞
⎟⎟
⎠

=
𝑛
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩ 𝑣𝑖,

and hence,

(𝑄𝑥)+ = (
𝑛
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩ 𝑣𝑖)
+

=
𝑚
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩ 𝑣𝑖 = (
𝑚
∑
𝑖=1

𝜆𝑖𝑣𝑇𝑖 𝑣𝑖) 𝑥 = 𝑄+𝑥.

Furthermore, for 𝑖 = 1, … , 𝑚, we have ⟨𝑣𝑖, 𝑥⟩ = ⟨𝑣𝑖, 𝑥+ + 𝑥−⟩ = ⟨𝑣𝑖, 𝑥+⟩ and conse-
quently

(𝑄𝑥)+ =
𝑚
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩ 𝑣𝑖 =
𝑚
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥+⟩ 𝑣𝑖 = (
𝑚
∑
𝑖=1

𝜆𝑖𝑣𝑇𝑖 𝑣𝑖) 𝑥+ = 𝑄+𝑥+.

The proof of (𝑄𝑥)− = 𝑄−𝑥− is analogous.

3. From 1. and 2., ⟨𝑄𝑥, 𝑦⟩ = ⟨(𝑄𝑥)+ , 𝑦+⟩ + ⟨(𝑄𝑥)− , 𝑦−⟩ = ⟨𝑄+𝑥+, 𝑦+⟩ + ⟨𝑄−𝑥−, 𝑦−⟩.

4. We first prove the forward statement. Observe that ⟨𝑄+𝑥+, 𝑥+⟩ = ∑𝑚
𝑖=1 𝜆𝑖𝛼

2
𝑖 = 0.

Given 𝜆𝑖 > 0 by definition, this holds only if 𝛼𝑖 = 0 for 𝑖 = 1, … , 𝑚, and therefore
𝑥+ = 0. The reverse holds trivially.

This new notation, and results from the previous remark, allow us to view 𝑄 as
a difference-of-convex function. Furthermore, it shows how the function value 𝑓 (𝑥)
depends on 𝑥’s projection into the convex and concave subspaces, and its contribution in
each. These results help in building an understanding of how 𝑄 operates on 𝑥.

5.2.2 Directional Concavity

At the heart of our branch and cut algorithm is the concept of directional concavity.
Directional concavity asserts whether a particular direction of a nonconcave function is
known to be concave. In other words, the 𝑢 = 𝑥 − 𝑦 direction is concave if

𝑓 (𝑥) − ℎ(𝑥, 𝑦) = ⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ = ⟨𝑄𝑢, 𝑢⟩ ≤ 0
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holds, where ℎ(𝑥, 𝑦) denotes the tangent plane of 𝑓 at 𝑦. The following results establish
this concept, and formulate sufficient conditions based on the existence of some auxiliary
vectors. The existence of these vectors helps to determine whether 𝑥 − 𝑦 is a concave
direction of 𝑄.

Lemma 25. Let 𝑄, 𝑥, 𝑦 be defined as above. If there exists a 𝑤 ∈ ℝ𝑛 such that

1. ⟨𝑄𝑤, 𝑤⟩ ≥ 0,

2. ⟨𝑄𝑤, 𝑥 − 𝑦⟩ = 0, and

3. 𝑤+ = (𝑥 − 𝑦)+,

then 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).

Proof. Firstly, observe that 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦) is equivalent to ⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0 and hence
it suffices to prove ⟨𝑄𝑧, 𝑧⟩ ≤ 0 where 𝑧 = 𝑥 − 𝑦. Aggregating condition 1 with −2 times
condition 2 yields

0 ≤ ⟨𝑄𝑤, 𝑤⟩ − 2 ⟨𝑄𝑤, 𝑧⟩ = ⟨𝑄𝑤, 𝑤⟩ − 2 ⟨𝑄𝑤, 𝑧⟩ + ⟨𝑄𝑧, 𝑧⟩ − ⟨𝑄𝑧, 𝑧⟩ ,

which can be factorised and rearranged to achieve

⟨𝑄𝑧, 𝑧⟩ ≤ ⟨𝑄(𝑤 − 𝑧), 𝑤 − 𝑧⟩ .

Then from Remark 24.6 we have that

⟨𝑄𝑧, 𝑧⟩ ≤ ⟨𝑄+(𝑤 − 𝑧)+, (𝑤 − 𝑧)+⟩ + ⟨𝑄−(𝑤 − 𝑧)−, (𝑤 − 𝑧)−⟩ .

However from condition 3, 0 = 𝑤+ − 𝑧+ = (𝑤 − 𝑧)+ and hence

⟨𝑄+(𝑤 − 𝑧)+, (𝑤 − 𝑧)+⟩ = ⟨𝑄+0, 0⟩ = 0.

Finally, given 𝑄− is negative semi-definite it follows that

⟨𝑄−(𝑤 − 𝑧)−, (𝑤 − 𝑧)−⟩ ≤ 0.

Therefore, ⟨𝑄𝑧, 𝑧⟩ ≤ 0 as required.

Theorem 26. Let 𝑢1, … , 𝑢𝑘 ∈ ℝ𝑛 be a set of 𝑘 vectors that all satisfy conditions 1 and 2 of
Lemma 25. If

1. ⟨𝑄𝑢𝑖, 𝑢𝑗⟩ = 0 for all 𝑖 ≠ 𝑗, and

2. (𝑥 − 𝑦)+ ∈ span{𝑢+1 , … , 𝑢+𝑘 }

then 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).
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Proof. If (𝑥 − 𝑦)+ ∈ span{𝑢+1 , … , 𝑢+𝑘 } then there exists 𝛼1, … , 𝛼𝑘 ∈ ℝ such that (𝑥 − 𝑦)+ =
∑𝑘

𝑖=1 𝛼𝑖𝑢
+
𝑖 . Suppose 𝑤 = ∑𝑘

𝑖=1 𝛼𝑖𝑢𝑖, then we have that

1. ⟨𝑄𝑤, 𝑤⟩ = ∑𝑘
𝑖=1∑

𝑘
𝑗=1 𝛼𝑖𝛼𝑗 ⟨𝑄𝑢𝑖, 𝑢𝑗⟩ = ∑𝑘

𝑖=1 𝛼
2
𝑖 ⟨𝑄𝑢𝑖, 𝑢𝑖⟩ ≥ 0,

2. ⟨𝑄𝑤, 𝑥 − 𝑦⟩ = ∑𝑘
𝑖=1 𝛼𝑖 ⟨𝑄𝑢𝑖, 𝑥 − 𝑦⟩ = 0, and

3. 𝑤+ = ∑𝑘
𝑖=1 𝛼𝑖𝑢

+
𝑖 = (𝑥 − 𝑦)+.

Therefore 𝑤 satisfies conditions 1-3 of Lemma 25 and hence 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).

Corollary 27. Let 𝑢1, … , 𝑢𝑚 ∈ ℝ𝑛 be a set of 𝑚 vectors that all satisfy conditions 1 and 2 of
Lemma 25 and condition 1 of Theorem 26. If 𝑢+1 , … , 𝑢+𝑚 are linearly independent and nonzero
then 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).

Proof. If 𝑢+1 , … , 𝑢+𝑚 are linearly independent and nonzero then

span{𝑢+1 , … , 𝑢+𝑚} = span{𝑣+1 , … , 𝑣+𝑚 }

and hence we always have (𝑥 − 𝑦)+ ∈ span{𝑢+1 , … , 𝑢+𝑚}. Therefore, by Theorem 26,
𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).

Theorem 26 extends the principles of directional concavity, initially proposed in Chap-
ter 4, to matrices with any number of positive eigenvalues. This is achieved by identifying
sufficiently many auxiliary vectors that ensure the existence of a vector 𝑤 that fulfils the
conditions of Lemma 25. Interestingly, Theorem 26 reveals that finding 𝑚 helper vectors
is not always necessary. The key is that one only needs to find sufficiently many such that
Lemma 25 holds. If 𝐾 exhibited some special structure that meant (𝑥 − 𝑦)+ was restricted
in some predetermined way, then this result may be particularly helpful in identifying
directionally valid tangents. This information is not often known in advance, and hence
in many cases Corollary 27 becomes more useful. Even so, finding 𝑚 vectors that satisfy
condition 1 of Theorem 26 is challenging in its own right, particularly when 𝑚 is large.
We can avoid this challenge altogether by considering the special case where 𝑚 = 1
(thereby making this condition obsolete), and using the following sufficient conditions.

Proposition 28. If there exists a 𝑢 ∈ ℝ𝑛 such that

1. ⟨𝑄𝑢, 𝑢⟩ > 0,

2. ⟨𝑄𝑢, 𝑥 − 𝑦⟩ ≤ 0, and

3. ⟨𝑣𝑖, 𝑢⟩ ⟨𝑣𝑖, 𝑥 − 𝑦⟩ ≥ 0

for some 𝑖 ∈ {1, … , 𝑚}, then there exists a 𝑤 ∈ ℝ𝑛 such that
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4. ⟨𝑄𝑤, 𝑤⟩ > 0, and

5. ⟨𝑄𝑤, 𝑥 − 𝑦⟩ = 0

Proof. The first case to consider is when ⟨𝑣𝑖, 𝑥 − 𝑦⟩ = 0. In this case, simply let 𝑤 = 𝑣𝑖,
then ⟨𝑄𝑤, 𝑤⟩ = 𝜆𝑖 > 0 and ⟨𝑄𝑤, 𝑥 − 𝑦⟩ = 𝜆𝑖 ⟨𝑣𝑖, 𝑥 − 𝑦⟩ = 0 as required. Alternatively,
assume that ⟨𝑣𝑖, 𝑥 − 𝑦⟩ ≠ 0 and let 𝑤 = 𝑢 + 𝛼𝑣𝑖. From condition 5,

⟨𝑄𝑤, 𝑥 − 𝑦⟩ = ⟨𝑄𝑢, 𝑥 − 𝑦⟩ + ⟨𝑄𝛼𝑣𝑖, 𝑥 − 𝑦⟩ = ⟨𝑄𝑢, 𝑥 − 𝑦⟩ + 𝛼𝜆𝑖 ⟨𝑣𝑖, 𝑥 − 𝑦⟩ = 0

and hence let

𝛼 =
− ⟨𝑄𝑢, 𝑥 − 𝑦⟩
𝜆𝑖 ⟨𝑣𝑖, 𝑥 − 𝑦⟩

.

We now show that if 𝛼 satisfies the above, then condition 4 also holds. In other words, it
suffices to show

⟨𝑄𝑤, 𝑤⟩ = ⟨𝑄𝑢, 𝑢⟩ + 2𝛼 ⟨𝑄𝑣𝑖, 𝑢⟩ + 𝛼2 ⟨𝑄𝑣𝑖, 𝑣𝑖⟩ = ⟨𝑄𝑢, 𝑢⟩ + 2𝜆𝑖𝛼 ⟨𝑣𝑖, 𝑢⟩ + 𝛼2𝜆𝑖 (5.2)

is positive. Note that from condition 3 and the fact that ⟨𝑣𝑖, 𝑥 − 𝑦⟩ ≠ 0we have ⟨𝑣𝑖,𝑢⟩
⟨𝑣𝑖,𝑥−𝑦⟩

≥ 0.
Furthermore, given 𝜆𝑖 > 0 and − ⟨𝑄𝑢, 𝑥 − 𝑦⟩ ≥ 0 it follows that

𝛼 ⟨𝑣𝑖, 𝑢⟩ =
− ⟨𝑄𝑢, 𝑥 − 𝑦⟩
𝜆𝑖 ⟨𝑣𝑖, 𝑥 − 𝑦⟩

⟨𝑣𝑖, 𝑢⟩ ≥ 0.

Therefore from (5.2) we have ⟨𝑄𝑤, 𝑤⟩ > 0 as required and hence 𝑤 satisfies conditions 4
and 5.

Proposition 29. Suppose 𝑄 has exactly one positive eigenvalue, i.e., 𝑚 = 1 and let 𝑥, 𝑦 ∈ ℝ𝑛.
If there exists a 𝑢 ∈ ℝ𝑛 that satisfies conditions 1-3 of Proposition 28, then 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).

Proof. Given 𝑥, 𝑦 , 𝑢 satisfy Proposition 28, there exists a 𝑧 such that ⟨𝑄𝑧, 𝑥 − 𝑦⟩ = 0 and
⟨𝑄𝑧, 𝑧⟩ > 0. Note that ⟨𝑄𝑧, 𝑧⟩ > 0 implies 𝑧+ ≠ 0. Therefore, by Corollary 27 and the fact
that 𝑚 = 1, we have 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦) as required.

Note that condition 3 of Proposition 28 simply ensures that ⟨𝑣𝑖, 𝑢⟩ and ⟨𝑣𝑖, 𝑥 − 𝑦⟩ have
the same sign, with the inclusion of the case where either (or both) is zero. In other
words, it ensures that 𝑢 and 𝑥 − 𝑦 are in the same relative direction with respect to 𝑣𝑖.

While Proposition 28 does not specifically require 𝑚 = 1, it becomes particularly useful
in this case. Furthermore, finding realistic candidates for this proposition is far easier than
for Theorem 26, as we require only a single vector, and may settle for an inequality (rather
than the equality of condition 2 of Lemma 25). This makes the result very attractive for
algorithmic use, offering a simpler and more direct approach to directionally concavity.
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5.2.3 One-Positive Matrices

We now show how, when 𝑄 has one positive eigenvalue, we can combine directionally
concave tangent planes with convex over-envelopes to formulate a tight upper approxi-
mation of 𝑓 (𝑥). For the remainder of this subsection, assume 𝑄 has exactly one positive
eigenvalue, and let 𝑓 +(𝑥) = ⟨𝑄+𝑥, 𝑥⟩ = 𝜆1 ⟨𝑣1, 𝑥⟩

2 and 𝑓 −(𝑥) = ⟨𝑄−𝑥, 𝑥⟩. Furthermore,
let ℎ+(𝑥, 𝑦) and ℎ−(𝑥, 𝑦) be defined similarly. Finally, for the sake of brevity, let 𝜆 = 𝜆1
and 𝑣 = 𝑣1 denote the single positive eigenvalue and associated eigenvector.

Given a suitable 𝑢 ∈ ℝ𝑛 with ⟨𝑄𝑢, 𝑢⟩ > 0, Proposition 29 can be used to generate a
directionally concave tangent, as well as define a region where this tangent is known
to provide a valid upper approximation. Outside of this region, however, we cannot be
certain whether or not the tangent remains valid. Instead, we can use an over-envelop
of the convex component 𝑓 +(𝑥) = 𝜆 ⟨𝑣 , 𝑥⟩2, and use this to approximate the region not
covered by the tangent.

Lemma 30. Let 𝑙 , 𝑡 , 𝑢 ∈ ℝ be such that 𝑙 ≤ 𝑡 ≤ 𝑢. Then it follows that 𝑡2 ≤ 𝑂(𝑡, 𝑙, 𝑢) where

𝑂(𝑡, 𝑙, 𝑢) = 𝑡(𝑙 + 𝑢) − 𝑙𝑢.

Proof. Let 𝑡 = 𝛼𝑙 + (1 − 𝛼)𝑢 where 𝛼 ∈ [0, 1]. Then

𝑡2 ≤ 𝛼𝑙2 + (1 − 𝛼)𝑢2 = 𝛼 (𝑙2 − 𝑢2) + 𝑢2 = 𝛼(𝑙 + 𝑢)(𝑙 − 𝑢) + 𝑢2.

Substituting 𝛼 = 𝑡−𝑢
𝑙−𝑢

yields

𝑡2 ≤ 𝑡 − 𝑢
𝑙 − 𝑢(𝑙 + 𝑢)(𝑙 − 𝑢) + 𝑢2 = (𝑡 − 𝑢)(𝑙 + 𝑢) + 𝑢2 = 𝑡(𝑙 + 𝑢) − 𝑙𝑢,

as required.

Observe that the 𝑢 defined in Proposition 29 is not strictly dependent on 𝑥 or 𝑦. As
such, we can provide multiple candidates for 𝑢 in order to define a larger region. The
following result uses two candidates to define a region of directionally concave tangent
planes, and uses over-envelopes to approximate the remainder.

Proposition 31. Let 𝑥, 𝑦 ∈ ℝ𝑛 be such that 𝑣 𝑙 ≤ ⟨𝑣, 𝑥⟩ ≤ 𝑣𝑢 for some 𝑣 𝑙, 𝑣𝑢 ∈ ℝ. Furthermore,
suppose 𝑢, 𝑤 ∈ ℝ𝑛 are such that ⟨𝑄𝑢, 𝑢⟩ > 0, ⟨𝑄𝑤, 𝑤⟩ > 0, and ⟨𝑣 , 𝑢⟩ ⟨𝑣 , 𝑤⟩ ≥ 0. Then we
have that

𝑓 (𝑥) ≤
⎧⎪
⎨⎪
⎩

ℎ(𝑥, 𝑦), if ⟨𝑄𝑢, 𝑥 − 𝑦⟩ ⟨𝑄𝑤, 𝑥 − 𝑦⟩ ≤ 0,
ℎ−(𝑥, 𝑦) + 𝜆𝑂(⟨𝑣 , 𝑥⟩ , ⟨𝑣 , 𝑦⟩ , 𝑣𝑢), else if ⟨𝑣 , 𝑥 − 𝑦⟩ ≥ 0,
ℎ−(𝑥, 𝑦) + 𝜆𝑂(⟨𝑣 , 𝑥⟩ , 𝑣 𝑙, ⟨𝑣 , 𝑦⟩), else if ⟨𝑣 , 𝑥 − 𝑦⟩ < 0.

(5.3)

Proof. We will prove this by considering the cases defined in (5.3), beginning with case
one. If ⟨𝑄𝑢, 𝑥 − 𝑦⟩ ⟨𝑄𝑤, 𝑥 − 𝑦⟩ ≤ 0 then either
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(i) ⟨𝑄𝑢, 𝑥 − 𝑦⟩ ⟨𝑣 , 𝑢⟩ ⟨𝑣 , 𝑥 − 𝑦⟩ ≤ 0, or

(ii) ⟨𝑄𝑤, 𝑥 − 𝑦⟩ ⟨𝑣 , 𝑤⟩ ⟨𝑣 , 𝑥 − 𝑦⟩ ≤ 0

since ⟨𝑣 , 𝑢⟩ ⟨𝑣 , 𝑤⟩ ≥ 0. Without loss of generality, suppose (i) holds. Observe that this
condition is equivalent to one of

(iii) ⟨𝑄𝑢, 𝑥 − 𝑦⟩ ≤ 0, ⟨𝑣 , 𝑢⟩ ⟨𝑣 , 𝑥 − 𝑦⟩ ≥ 0, or

(iv) ⟨𝑄𝑢, 𝑥 − 𝑦⟩ ≥ 0, ⟨𝑣 , 𝑢⟩ ⟨𝑣 , 𝑥 − 𝑦⟩ ≤ 0.

For (iii), 𝑥, 𝑦 and 𝑢 all satisfy the conditions of Proposition 29 and hence 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦).
Alternatively, for (iv), notice that ⟨𝑄𝑢, 𝑦 − 𝑥⟩ ≤ 0 and ⟨𝑣 , 𝑢⟩ ⟨𝑣 , 𝑦 − 𝑥⟩ ≥ 0 and therefore
analogously we have 𝑓 (𝑦) ≤ ℎ(𝑦, 𝑥). This is equivalent to ⟨𝑄(𝑦 − 𝑥), 𝑦 − 𝑥⟩ ≤ 0 and
therefore it must also be true that ⟨𝑄(𝑥 − 𝑦), 𝑥 − 𝑦⟩ ≤ 0 and hence 𝑓 (𝑥) ≤ ℎ(𝑥, 𝑦). The
proof of the case where (ii) holds is analogous,

For condition 2 of (5.3), notice that ⟨𝑣 , 𝑦⟩ < ⟨𝑣 , 𝑥⟩ ≤ 𝑣𝑢. Therefore, by Lemma 30,
⟨𝑣 , 𝑥⟩2 ≤ 𝑂(⟨𝑣 , 𝑥⟩ , ⟨𝑣 , 𝑦⟩ , 𝑣𝑢) and hence 𝑓 +(𝑥) ≤ 𝜆𝑂(𝑥, 𝑙, 𝑢). This implies

𝑓 (𝑥) = 𝑓 +(𝑥) + 𝑓 −(𝑥) ≤ 𝑓 +(𝑥) + ℎ−(𝑥, 𝑦) ≤ 𝜆𝑂(𝑥, 𝑧 𝑙, 𝑦) + ℎ−(𝑥, 𝑦)

as required. The proof for condition 3 is analogous.
Finally, as the cases do not exclude any 𝑥 ∈ ℝ𝑛, we have that (5.3) holds everywhere.

We can think of (5.3) as effectively dividing ℝ𝑛 into three spaces, and providing a
linear upper approximation in each, either by directionally concave tangent planes, or by
tangent planes and over-envelopes. By focusing our search on one region at a time, we
can use the resultant upper plane to formulate a linear cutting plane model of (5.1).

5.2.4 Space Partitioning

As mentioned previously, our selection of 𝑢 and 𝑤 is not strictly dependent on 𝑥 or 𝑦,
but rather influences the size of the area defined by condition one of (5.3). Given our
only requirement is to have ⟨𝑄𝑢, 𝑢⟩ > 0, ⟨𝑄𝑤, 𝑤⟩ > 0, and ⟨𝑣 , 𝑢⟩ ⟨𝑣 , 𝑤⟩ ≥ 0, we could
simply choose 𝑢 = 𝑤 = 𝑣 (as ⟨𝑄𝑣, 𝑣⟩ = 𝜆 > 0). However, this means that condition
one becomes 𝜆2 ⟨𝑣 , 𝑥 − 𝑦⟩ ⟨𝑣 , 𝑥 − 𝑦⟩ ≤ 0 and therefore we can only use the directionally
concave tangent plane when ⟨𝑣 , 𝑥 − 𝑦⟩ = 0.

Where applicable, tangent planes generally offer a tighter approximation than those
provided by over-envelopes. As a result, it is advantageous to utilise case one of (5.3)
wherever possible, thereby minimising the reliance on over-envelopes. This can be
achieved by maximising the angle between the vectors 𝑄𝑢 and 𝑄𝑤. Let 𝜙 ∈ ℝ denote this
angle, then by the law of cosines,

cos(𝜙) = ⟨𝑄𝑤, 𝑄𝑢⟩
‖𝑄𝑤‖ ‖𝑄𝑢‖

.
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Therefore, to maximise 𝜙 we need to find the 𝑢 and 𝑤 that minimises this expression.
However, this represents a fairly challenging nonlinear programming problem.

An easier approach is to instead maximise the angle between 𝑄𝑢 and 𝑣, and then
determine 𝑤 by reflecting 𝑄𝑢 about 𝑣. Without loss of generality, suppose 𝑢 and 𝑤 are
such that ⟨𝑣 , 𝑢⟩ ≥ 0 and ⟨𝑣 , 𝑤⟩ ≥ 0 (since if case one of (5.3) holds for 𝑢, 𝑤 then it also
holds for −𝑢, −𝑤). Then the angle 𝜗 between 𝑄𝑢 and 𝑣 is given by

cos(𝜗) = ⟨𝑣 , 𝑄𝑢⟩
‖𝑣‖ ‖𝑄𝑢‖

=
𝜆 ⟨𝑣 , 𝑢⟩
‖𝑄𝑢‖

∝ ⟨𝑣 , 𝑢⟩
‖𝑄𝑢‖

.

Therefore, the best selection of 𝑢 can be found by solving the auxiliary nonlinear pro-
gramming problem

min
⟨𝑣 , 𝑢⟩
‖𝑄𝑢‖

s.t. ⟨𝑄𝑢, 𝑢⟩ > 0
⟨𝑣 , 𝑢⟩ ≥ 0
𝑢 ∈ ℝ𝑛.

Note that with respect to the Proposition 29, 𝑢 is scale invariant. Therefore, it may be
easier to instead solve the following quadratic programming problem

max ‖𝑄𝑢‖ (5.4)

s.t. ⟨𝑄𝑢, 𝑢⟩ ≥ 𝜖

⟨𝑣 , 𝑢⟩ =
1
𝜆

𝑢 ∈ ℝ𝑛,

where 𝜖 > 0. This problem can be solved to local optimality using an appropriate
nonlinear programming solver. Once we have found a solution for 𝑢, we can determine a
valid 𝑤 by reflecting 𝑄𝑢 about 𝑣. This reflection is given as

𝑄𝑤 = 2𝑣 − 𝑄𝑢 = 2
𝜆𝑄𝑣 − 𝑄𝑢 = 𝑄 (

2
𝜆𝑣 − 𝑢) ,

⟺ 𝑤 = 2
𝜆
𝑣 − 𝑢. (5.5)

Then, since ⟨𝑣 , 𝑢⟩ = 1
𝜆
, it follows that

1. ⟨𝑄𝑤, 𝑤⟩ = 4
𝜆2
𝜆 − 4

𝜆
𝜆 ⟨𝑣 , 𝑢⟩ + ⟨𝑄𝑢, 𝑢⟩ = 4

𝜆
− 4

𝜆
+ ⟨𝑄𝑢, 𝑢⟩ > 0, and

2. ⟨𝑣 , 𝑤⟩ = 2
𝜆
− 1

𝜆
≥ 0,

as required.
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5.2.5 Upper Plane Visualisation

We can visualise the upper plane defined in (5.3) by considering one-positive matrices
in ℝ2×2. Let 𝑤1, 𝑤2 ∈ [0, 1]2 be two vectors whose components are uniformly randomly
generated in the range [0, 1]. Then we can construct a one-positive matrix by finding

𝑄 = 𝑤1𝑤𝑇
1 − 𝑤2𝑤𝑇

2 .

This comes from the fact that the rank one matrices of 𝑤1𝑤𝑇
1 and𝑤2𝑤𝑇

2 are both positive
definite. Once we have generated 𝑄, we can calculate 𝑢 and 𝑤 using the procedure outlined
above and plot the nonlinear upper plane defined in (5.3).

Each row of Figure 5.1 shows a randomly generated 𝑄 and three unique cut generating
points 𝑦 ∈ [−1, 1]2. In green we show the directionally concave tangent planes (case one
of (5.3)) and in orange we show the tangent and over-envelope component (cases two
and three). The figure clearly outlines the effectiveness of (5.3). For example, in row one,
we achieve an angle between 𝑄𝑢 and 𝑄𝑤 of 168∘, allowing us to substantially improve
the approximation compared with using purely over-envelopes. Similarly, in row two
we achieve an angle of 101∘. However, in cases of dominating convex components, such
as in row three, we achieve a much smaller angle of just 6∘, leading to only a minor
improvement in approximation.

In higher dimension, we are not able to easily visualise these upper planes, however we
can still measure the angles between 𝑄𝑢 and 𝑄𝑤, and analyse the effect that the number
of negative eigenvalues has on this metric. Let 𝑙 ≥ 1 be the number of desired negative
eigenvalues. Similar to before, we can construct a randomly generated matrix in ℝ𝑛×𝑛

with one positive and 𝑙 ≤ 𝑛 − 1 negative eigenvalues by finding

𝑄 = 𝑤1𝑤𝑇
1 − 𝛼

𝑙+1
∑
𝑗=2

𝑤𝑗𝑤𝑇
𝑗

where each 𝑤𝑗 ∈ [0, 1]𝑛 for 𝑗 = 1, … , 𝑙 + 1 and where 𝛼 ≥ 0. Figure 5.2 shows the average
angle, in degrees, between 𝑄𝑢 and 𝑄𝑤 across 25 randomly generated matrices where
𝑛 = 10 for ranging values of 𝛼 and 𝑙. It clearly shows how increasing either 𝛼 or 𝑙 leads to
more dominating concave components and hence larger resultant angles. By the results
seen in Figure 5.1, these should lead to tighter upper planes from (5.3).

5.2.6 A Partial Cutting Plane Model

To formulate our cutting plane model, let us decompose 𝑄 into a set of matrices with at
most one positive eigenvalue. This can be achieved by writing 𝑓 (𝑥) as

𝑓 (𝑥) = 𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥)
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5 Directionally Concave Branch and Cut

Figure 5.1: Each row contains a randomly generated one-positive matrix (shown in blue) and the
resultant upper plane from (5.3) for three random generating points 𝑦. In green we
show the directionally concave tangent component, and in orange the over-envelope
component. The angles between 𝑄𝑢 and 𝑄𝑤 for each row are 168∘, 101∘ and 6∘ respec-
tively.
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Figure 5.2: Average angle in degrees between 𝑄𝑢 and 𝑄𝑤 across 25 randomly generates one-
positive matrices 𝑄 ∈ ℝ10×10 for ranging values of 𝛼 and 𝑙.
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where 𝑔(𝑥) = ⟨𝑊𝑥, 𝑥⟩ and 𝑊 is negative semi-definite, and 𝑓𝑖(𝑥) = ⟨𝑄𝑖𝑥, 𝑥⟩ where 𝑄𝑖 has
one positive eigenvalue. We can then use Proposition 31 to build an upper approximation
of each 𝑓𝑖(𝑥) functional component. Note that we can always choose 𝑔(𝑥) = 0 and
𝑓𝑖(𝑥) = 𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2 + 1
𝑚
⟨𝑄−𝑥, 𝑥⟩ as a valid decomposition. We discuss decomposition

strategies further in a later section.
Let 𝑢𝑖 be a solution of (5.4) for 𝑄𝑖 and let 𝑤𝑖 be given by (5.5). Then let us define the

following regions in ℝ𝑛,

𝐻 1
𝑖 (𝑦) = {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑄𝑖𝑢𝑖, 𝑥 − 𝑦⟩ ≤ 0, ⟨𝑄𝑖𝑤𝑖, 𝑥 − 𝑦⟩ ≥ 0} ,

𝐻 2
𝑖 (𝑦) = {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑄𝑖𝑢𝑖, 𝑥 − 𝑦⟩ ≥ 0, ⟨𝑄𝑖𝑤𝑖, 𝑥 − 𝑦⟩ ≤ 0} ,

𝐻 3
𝑖 (𝑦) = {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑄𝑖𝑢𝑖, 𝑥 − 𝑦⟩ ≥ 0, ⟨𝑄𝑖𝑤𝑖, 𝑥 − 𝑦⟩ ≥ 0} ,

𝐻 4
𝑖 (𝑦) = {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑄𝑖𝑢𝑖, 𝑥 − 𝑦⟩ ≤ 0, ⟨𝑄𝑖𝑤𝑖, 𝑥 − 𝑦⟩ ≤ 0} .

Note that 𝐻 1
𝑖 (𝑦) and 𝐻 2

𝑖 (𝑦) satisfy condition one of (5.3). Furthermore, we have from (5.5)
that

⟨𝑄𝑖𝑤𝑖, 𝑥 − 𝑦⟩ = 2 ⟨𝑣𝑖, 𝑥 − 𝑦⟩ − ⟨𝑄𝑖𝑢𝑖, 𝑥 − 𝑦⟩

⟺ ⟨𝑣𝑖, 𝑥 − 𝑦⟩ = 1
2
(⟨𝑄𝑖𝑤𝑖, 𝑥 − 𝑦⟩ + ⟨𝑄𝑖𝑢𝑖, 𝑥 − 𝑦⟩) .

Therefore, if 𝑥 ∈ 𝐻 3
𝑖 (𝑦) then ⟨𝑣𝑖, 𝑥 − 𝑦⟩ ≥ 0 (since ⟨𝑄𝑖𝑢𝑖, 𝑥 − 𝑦⟩ ≥ 0 and ⟨𝑄𝑖𝑤𝑖, 𝑥 − 𝑦⟩ ≥ 0).

Similarly if 𝑥 ∈ 𝐻 4
𝑖 (𝑦) then ⟨𝑣𝑖, 𝑥 − 𝑦⟩ ≤ 0. As such, 𝐻 3

𝑖 (𝑦) and 𝐻 4
𝑖 (𝑦), satisfy conditions

two and three of (5.3), respectively. This allows us to linearise the conditions of (5.3) into
the four spaces defined by 𝐻 1

𝑖 (𝑦), … , 𝐻 2
𝑖 (𝑦).

Let v𝑙 = (𝑣 𝑙1, … , 𝑣 𝑙𝑚) and v𝑢 = (𝑣𝑢1 , … , 𝑣𝑢𝑚) provide estimates of the lower and upper
bounds of ⟨𝑣𝑖, 𝑥⟩ for 𝑖 = 1, … , 𝑚. Then we can introduce the following epigraph sets that
relate the sets 𝐻 1

𝑖 (𝑦), … , 𝐻 4
𝑖 (𝑦) with their associated upper place from (5.3),

𝐸1𝑖 (𝑦) = {(𝜃, 𝑥) ∈ ℝ × 𝐻 1
𝑖 (𝑦) ∶ 𝜃 ≤ ℎ𝑖(𝑥, 𝑦)} , (5.6)

𝐸2𝑖 (𝑦) = {(𝜃, 𝑥) ∈ ℝ × 𝐻 2
𝑖 (𝑦) ∶ 𝜃 ≤ ℎ𝑖(𝑥, 𝑦)} , (5.7)

𝐸3𝑖 (𝑦) = {(𝜃, 𝑥) ∈ ℝ × 𝐻 3
𝑖 (𝑦) ∶ 𝜃 ≤ ℎ−𝑖 (𝑥, 𝑦) + 𝜆𝑂(⟨𝑣𝑖, 𝑥⟩ , ⟨𝑣𝑖, 𝑦⟩ , 𝑣𝑢𝑖 )} , (5.8)

𝐸4𝑖 (𝑦) = {(𝜃, 𝑥) ∈ ℝ × 𝐻 4
𝑖 (𝑦) ∶ 𝜃 ≤ ℎ−𝑖 (𝑥, 𝑦) + 𝜆𝑂(⟨𝑣𝑖, 𝑥⟩ , 𝑣 𝑙𝑖 , ⟨𝑣𝑖, 𝑦⟩)} . (5.9)

Provided the bounds given by v𝑙 and v𝑙 are valid, we have that for any 𝑥, 𝑦 ∈ ℝ𝑛 and
𝑖 ∈ {1, … , 𝑚}, there exists a 𝑘 ∈ {1, … , 4} such that (𝑓𝑖(𝑥), 𝑥) ∈ 𝐸𝑘𝑖 (𝑦). Furthermore, give 𝐾
is bounded, it is always possible to determine v𝑙 and v𝑙 that are valid for all 𝑥 ∈ 𝐾.

Our cutting plane model takes a set of points in ℝ𝑛, each assigned to a functional
component and epigraph set, and adds the associated upper plane and region constraints.
Let 𝐴𝑘

𝑖 ⊂ ℝ𝑛 give the set of points used to approximate 𝑓𝑖(𝑥) restricted to 𝑥 ∈ 𝐻 𝑘
𝑖 (𝑦),

and let A = (𝐴1
1, … , 𝐴4

𝑚). Note that in practice, since 𝐻 𝑘1
𝑖 ∩ 𝐻 𝑘2

𝑖 = ∅, we try to assure
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that 𝐴𝑘1
𝑖 ∩ 𝐴𝑘2

𝑖 = ∅ for all 𝑘1 ≠ 𝑘2. Then our partial cutting plane problem, denoted by
Γ(A, vl, vu), is given by the following quadratic concave maximisation problem,

Γ(A, vl, vu) = max 𝑔(𝑥) +
𝑚
∑
𝑖=1

𝜃𝑖 + ⟨𝑝, 𝑥⟩ (5.10)

s.t (𝜃𝑖, 𝑥) ∈ 𝐸𝑘𝑖 (𝑦), ∀𝑦 ∈ 𝐴𝑘
𝑖 , 𝑖 = 1, … , 𝑚, 𝑘 = 1, … , 4,

𝜃𝑖 ∈ ℝ, 𝑖 = 1, … , 𝑚,
𝑥 ∈ 𝐾.

Note that we call this a partial cutting plane model as the inclusion of 𝑥 ∈ 𝐻 𝑘
𝑖 (𝑦) means

we only approximate a subset of 𝐾. However, this restriction grants us the following
important result, which asserts that Γ(A, vl, vu) provides an upper bound of 𝑓 (𝑥) for all
𝑥 that are feasible for this problem.

Theorem 32. Let A = (𝐴1
1, … , 𝐴𝑘

𝑚) be defined as above, and consider the following
quadratic problem,

Φ(A) = max 𝑓 (𝑥) (5.11)

s.t 𝑥 ∈ 𝐻 𝑘
𝑖 (𝑦), ∀𝑦 ∈ 𝐴𝑘

𝑖 , 𝑖 = 1, … , 𝑚, 𝑘 = 1, … , 4,
𝑥 ∈ 𝐾.

If v𝑙 = (𝑣 𝑙1, … , 𝑣 𝑙𝑚) and v𝑢 = (𝑣𝑢1 , … , 𝑣𝑢𝑚) are such that 𝑣 𝑙𝑖 ≤ ⟨𝑣𝑖, 𝑥⟩ ≤ 𝑣𝑢𝑖 holds for all
𝑖 = 1, … , 𝑚 and 𝑥 that are feasible for (5.11), then Φ(A) ≤ Γ(A, vl, vu).

Proof. Let 𝑥 be optimal for Φ(A), then for all 𝑘 = 1, … , 4, 𝑖 = 1, … , 𝑚 and 𝑦 ∈ 𝐴𝑘
𝑖 we must

have 𝑥 ∈ 𝐻 𝑘
𝑖 (𝑦). Furthermore, given that 𝑣 𝑙𝑖 ≤ ⟨𝑣𝑖, 𝑥⟩ ≤ 𝑣𝑢𝑖 , we have by Proposition 31 that

(𝑓𝑖(𝑥), 𝑥) ∈ 𝐸𝑘𝑖 (𝑦). As this holds for all 𝑖 = 1, … , 𝑚 we have that (𝑓1(𝑥), … , 𝑓𝑚(𝑥), 𝑥) is a
feasible solution to (5.10), and therefore Φ(A) ≤ Γ(A, vl, vu) as required.

Therefore, our partial cutting plane problem provides a valid upper approximation of the
objective function, but only on its feasible domain, which is a subset of 𝐾. To then use
this result to solve (5.1), we must employ a branching strategy to ensure we search the
entire space.

5.2.7 Branch and Cut Algorithm

In order to use our partial cutting plane model to provide a linear approximation of the ob-
jective function everywhere, wemust employ a branch and cut algorithm. Whenever a cut
is added to the model to approximate an 𝑓𝑖(𝑥) functional component, the branch and cut
algorithm generates four child subproblems, one for each of the epigraph sets (5.6)-(5.9).
In this way, the feasible space is divided into four and an appropriate upper plane is
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5 Directionally Concave Branch and Cut

added to each. Given a cut generating point 𝑦 and functional component 𝑖, the process
of generating these four child nodes is shown in Algorithm 10. This child generating
algorithm is then used inside the branch and cut procedure shown in Algorithm 11.

Algorithm 10: Create the 4 child nodes associated with the tangent of 𝑦 on
functional component 𝑖.

1 function children (𝑦, 𝑖, A, v𝑙, v𝑢):
2 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← ∅
3 for 𝑘 = 1, … , 4 do
4 Child ← A
5 𝐶ℎ𝑖𝑙𝑑𝑘𝑖 ← 𝐶ℎ𝑖𝑙𝑑𝑘𝑖 ∪ {𝑦}
6 if 𝑘 = 3 then 𝑣 𝑙𝑖 ← ⟨𝑣𝑖, 𝑦⟩
7 if 𝑘 = 4 then 𝑣𝑢𝑖 ← ⟨𝑣𝑖, 𝑦⟩
8 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ {Γ(Child, v𝑙, v𝑢)}
9 return 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛

Theorem 33. Algorithm 11 converges to an optimal solution of (5.1).

Proof. We will prove this statement by showing the following two properties hold.
1. Every path in the search tree converges.
Let (𝑥1, 𝜃1), (𝑥2, 𝜃2), … , be the sequence of solutions along any descending path in the
search tree. Since the cut of a solution is tight at its generating point, the question is
whether the gap between each epigraph variable and its true function value closes, such
that 𝜃𝑖 = 𝑓𝑖(𝑥). Suppose, to the contrary, that the sequence does not converge. Then there
exists a functional component 𝑖 ∈ {1, … , 𝑚} and 𝜀 > 0 such that for all 𝑁 ≥ 1 there exists
an 𝑟 ≥ 𝑁 + 1 with

0 < 𝜀 ≤ ‖𝜃 𝑟𝑖 − 𝑓𝑖(𝑥 𝑟)‖ = 𝜃 𝑟𝑖 − 𝑓𝑖(𝑥 𝑟). (5.12)

Observe that for any previous solution 𝑥𝑞 (𝑞 ≤ 𝑟 − 1) and 𝑘 ∈ {1, … , 4} we have

𝜃 𝑟 ≤ max { ̃𝜃 ∶ ( ̃𝜃 , 𝑥 𝑟) ∈ 𝐸𝑘𝑖 (𝑥𝑞)} . (5.13)

For 𝑘 = 1, 2, the solution to (5.13) is given by a tangent and hence (5.12) becomes

𝜃 𝑟𝑖 − ⟨𝑄𝑖𝑥 𝑟, 𝑥 𝑟⟩ ≤ ℎ(𝑥 𝑟, 𝑥𝑞) − ⟨𝑄𝑖𝑥 𝑟, 𝑥 𝑟⟩
= ⟨𝑄𝑖𝑥𝑞, 𝑥𝑞⟩ + 2 ⟨𝑄𝑖𝑥𝑞, 𝑥 𝑟 − 𝑥𝑞⟩ − ⟨𝑄𝑖𝑥 𝑟, 𝑥 𝑟⟩
= ⟨𝑄𝑖(𝑥 𝑟 − 𝑥𝑞), 𝑥 𝑟 − 𝑥𝑞⟩
≤ ‖𝑄𝑖‖ ‖𝑥 𝑟 − 𝑥𝑞‖ , (5.14)

106



5.2 A Directionally Concave Branch and Cut Algorithm

Algorithm 11: An exact branch and cut method for solving (5.1).

1 function BranchAndCut (𝑄, 𝑝, 𝐾):
2 Decompose 𝑄 to get 𝑊,𝑄1, … , 𝑄𝑚 and 𝑣1, … , 𝑣𝑚
3 Solve (5.4) with 𝑄1, … , 𝑄𝑚 and 𝑣1, … , 𝑣𝑚 for 𝑢1, … , 𝑢𝑚
4 Use (5.5) to determine 𝑤1, … , 𝑤𝑚
5 Find v𝑙 = (𝑣 𝑙1, … , 𝑣 𝑙𝑚) such that 𝑣 𝑙𝑖 ≤ min𝑥∈𝐾 ⟨𝑣𝑖, 𝑥⟩
6 Find v𝑢 = (𝑣𝑢1 , … , 𝑣𝑢𝑚) such that 𝑣𝑢𝑖 ≥ min𝑥∈𝐾 ⟨𝑣𝑖, 𝑥⟩
7 Find heuristic 𝑥 ∈ 𝐾 and choose an 𝑖 ∈ {1, … , 𝑚}
8 𝐿𝐵 ← ⟨𝑄𝑥 + 𝑝, 𝑥⟩
9 A ← (∅,… , ∅)

10 𝑁𝑜𝑑𝑒𝑠 ← children(𝑥, 𝑖,A, v𝑙, v𝑢)
11 while 𝑁𝑜𝑑𝑒𝑠 ≠ ∅ do
12 Choose a Γ(A, v𝑙, v𝑢) ∈ 𝑁 𝑜𝑑𝑒𝑠
13 Solve Γ(A, v𝑙, v𝑢) for (𝜃, 𝑥)
14 𝐿𝐵 ← max{𝐿𝐵, ⟨𝑄𝑥 + 𝑝, 𝑥⟩}
15 if ∑𝑚

𝑖=1 𝜃𝑖 ≤ 𝐿𝐵 then continue
16 Choose an 𝑖 ∈ {1, … , 𝑚} with ⟨𝑄𝑖𝑥, 𝑥⟩ < 𝜃𝑖
17 𝑁𝑜𝑑𝑒𝑠 ← 𝑁𝑜𝑑𝑒𝑠 ∪ children(𝑥, 𝑖,A, v𝑙, v𝑢)
18 return 𝐿𝐵
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where ‖𝑄𝑖‖ is the Frobenious norm of 𝑄𝑖. If 𝑘 = 3, then (5.13) is given (5.8) and hence (5.12)
becomes

𝜃 𝑟𝑖 − ⟨𝑄𝑖𝑥 𝑟, 𝑥 𝑟⟩ ≤ ℎ−𝑖 (𝑥 𝑟, 𝑥𝑞) + 𝜆𝑂 (⟨𝑣𝑖, 𝑥 𝑟⟩ , ⟨𝑣𝑖, 𝑥𝑞⟩ , 𝑣𝑢𝑖 ) − ⟨𝑄𝑖𝑥 𝑟, 𝑥 𝑟⟩ (5.15)

≤ ℎ−𝑖 (𝑥 𝑟, 𝑥𝑞) + 𝜆𝑂 (⟨𝑣𝑖, 𝑥 𝑟⟩ , ⟨𝑣𝑖, 𝑥𝑞⟩ , 𝑣𝑢𝑖 ) − ⟨𝑄−
𝑖 𝑥 𝑟, 𝑥 𝑟⟩ − ⟨𝑄+

𝑖 𝑥 𝑟, 𝑥 𝑟⟩

= ℎ−𝑖 (𝑥 𝑟, 𝑥𝑞) − ⟨𝑄−
𝑖 𝑥 𝑟, 𝑥 𝑟⟩ + 𝜆 (𝑂 (⟨𝑣𝑖, 𝑥 𝑟⟩ , ⟨𝑣𝑖, 𝑥𝑞⟩ , 𝑣𝑢𝑖 ) − ⟨𝑣𝑖, 𝑥 𝑟⟩

2) .

Then analogous to (5.14),

ℎ−𝑖 (𝑥 𝑟, 𝑥𝑞) − ⟨𝑄−
𝑖 𝑥 𝑟, 𝑥 𝑟⟩ ≤ ‖𝑄−

𝑖 ‖ ‖𝑥 𝑟 − 𝑥𝑞‖ .

Furthermore,

𝑂 (⟨𝑣𝑖, 𝑥 𝑟⟩ , ⟨𝑣𝑖, 𝑥𝑞⟩ , 𝑣𝑢𝑖 ) − ⟨𝑣𝑖, 𝑥 𝑟⟩
2 = ⟨𝑣𝑖, 𝑥 𝑟⟩ (⟨𝑣𝑖, 𝑣𝑞⟩ + 𝑣𝑢𝑖 ) − ⟨𝑣𝑖, 𝑣𝑞⟩ 𝑣𝑢𝑖 − ⟨𝑣𝑖, 𝑥 𝑟⟩

2

= ⟨𝑣𝑖, 𝑥 𝑟 − 𝑣𝑞⟩ (𝑣𝑢𝑖 − ⟨𝑣𝑖, 𝑥 𝑟⟩)
≤ ⟨𝑣𝑖, 𝑥 𝑟 − 𝑣𝑞⟩ (5.16)

≤ ‖𝑣𝑖‖ ‖𝑥 𝑟 − 𝑣𝑞‖

where (5.16) comes from the fact 𝑣𝑢𝑖 ≥ ⟨𝑣𝑖, 𝑥 𝑟⟩. Therefore from (5.15) it follows that

𝜃 𝑟𝑖 − ⟨𝑄𝑖𝑥 𝑟, 𝑥 𝑟⟩ ≤ (‖𝑄−
𝑖 ‖ + |𝜆| ‖𝑣𝑖‖) ‖𝑥 𝑟 − 𝑥𝑞‖ .

The above holds analogously in the case where 𝑘 = 4. Therefore, we have that

‖𝑥 𝑟 − 𝑥𝑞‖ ≥
𝜀

min {‖𝑄𝑖‖ , ‖𝑄−
𝑖 ‖ + |𝜆| ‖𝑣𝑖‖}

> 0.

However this implies that the sequence of solutions contains no Cauchy subsequence,
which is impossible since 𝐾 is compact set. Therefore, the sequence must converge.
2. The algorithm locates an optimal solution.
Let 𝑥∗ be an optimal solution of (5.1), and suppose this solution is feasible for an arbitrary
node Γ(A, v𝑙, v𝑢) ∈ 𝑁 𝑜𝑑𝑒𝑠. Let (𝜃, 𝑥) be the solution to this node. Then either 𝑓 (𝑥) =
𝐿𝐵 = 𝑓 (𝑥∗), in which case an optimal solution has been located, or 𝑓 (𝑥) ≤ 𝐿𝐵 < 𝑓 (𝑥∗).
Since the cuts contained in Γ(A, v𝑙, v𝑢) are all valid and 𝑥∗ is a feasible solution, we
must have 𝑓 (𝑥∗) ≤ ∑𝑚

𝑖=1 𝜃𝑖 and hence 𝐿𝐵 < ∑𝑚
𝑖=1 𝜃𝑖. Therefore, this node is not pruned

and since 𝑓 (𝑥) = ∑𝑚
𝑖=1 ⟨𝑄𝑖𝑥, 𝑥⟩ < ∑𝑚

𝑖=1 𝜃𝑖, there must exist an 𝑖 with ⟨𝑄𝑖𝑥, 𝑥⟩ < 𝜃𝑖. But if
⟨𝑄𝑖𝑥, 𝑥⟩ < 𝜃𝑖 then 𝑥 ∉ 𝐴𝑘

𝑖 for 𝑘 = 1,… , 𝑚, since from (5.3) the cut of any 𝑦 ∈ 𝐴𝑘
𝑖 is tight

at 𝑦. Therefore, every child node in children(𝑥, 𝑖,A, v𝑙, v𝑢) gets a new unique cut not
present in Γ(A, v𝑙, v𝑢). As ⋃𝑘=1,…,4 𝐻

𝑘
𝑖 (𝑥) = ℝ𝑛 there must exist a child node that still

contains 𝑥∗. Finally, as 𝑥∗ is feasible for at least one of the root nodes generated by line 9
of Algorithm 11, we have that the algorithm locates an optimal solution.

108



5.2 A Directionally Concave Branch and Cut Algorithm

It is worth pointing out that in the case where a functional component has no concave
component, i.e., a rank 1 matrix with a positive eigenvalue, such as 𝑄 = 𝑣𝑣𝑇, the only
option for 𝑢 and 𝑤 is 𝑢 = 𝑤 = 𝑣. However, this results in only two child nodes, since there
is no concave component and hence no concave region. This reduces the methodology to
a more standard branch and bound approach for solving nonconcave quadratic programs.

Finally, a note regarding our chosen method to solve a node Γ(A, v𝑙, v𝑢) ∈ 𝑁 𝑜𝑑𝑒𝑠. While
this problem is concave and can therefore be solved to global optimality using any capable
mixed-integer nonlinear programming solver, we suggest the use of outer approximation
techniques. This is because the tangent planes used to approximate 𝑔(𝑥) are always valid,
since the function is concave, and hence may persist amongst all nodes. Additionally,
these techniques are globally convergent regardless of integrality of 𝐾. If 𝐾 is defined
by only a polyhedral set, and hence 𝑥 is continuous, then the node subproblem can
be solved using the extended cutting plane algorithm (Westerlund & Pettersson, 1995).
Alternatively, if 𝐾 is integer, we can use a branch and cut outer approximation framework
such as that defined in Duran and Grossmann (1986). In either case, the problem is solved
to global optimality by generating sufficiently many tangent planes. For the purposes of
of Algorithm 11, these tangents are always valid, and hence may be reused amongst all
nodes, rather than having to generate a new set every time. This can help in avoiding
unnecessary computation, and potentially speed up solve times of later nodes.

5.2.8 Functional Decomposition and Branching Strategies

The functional decomposition of 𝑓 (𝑥) should attempt to generate one-positive matrices
with large angles between 𝑄𝑖𝑢𝑖 and 𝑄𝑖𝑤𝑖, as this allows us to approximate more of the
function via tangent planes, rather than over-envelopes. Recall from Figure 5.2 that we
can achieve large angles by either including more negative eigenvalues, or by placing
more weight on the concave component. In line with this motivation, we suggest three
potential strategies to decompose 𝑓 (𝑥). For each strategy, let

𝜆1 ≥ ⋯ ≥ 𝜆𝑚 > 0 > 𝜆𝑚+1 ≥ ⋯ ≥ 𝜆𝑚+𝑙

be the nonzero eigenvalues and let 𝑣1, … , 𝑣𝑚+𝑙 be the associated eigenvectors. Then the
strategies are as follows, and their validity is proved in Appendix A.2.

1. Basic: The most basic decomposition is to simply set 𝑔(𝑥) = 0 and

𝑓𝑖(𝑥) = 𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + 1

𝑚
⟨𝑄−𝑥, 𝑥⟩ , 𝑖 = 1, … , 𝑚.

2. Greedy: In a greedy approach, we attempt to create functional components by
pairing the largest eigenvalue with the smallest and so on, until we run out of either
positive or negative eigenvalues. If there are remaining negative eigenvalues, these
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all get combined and incorporated into 𝑔(𝑥). Alternatively, if there are remaining
positive eigenvalues, these becomes their own functional components that have
no negative eigenvalues. Hence, the decomposition results in

𝑓𝑖(𝑥) = {
𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2 + 𝜆𝑚+𝑙+1−𝑖 ⟨𝑣𝑚+𝑙+1−𝑖, 𝑥⟩
2 , if 𝑖 ≤ 𝑙

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 , if 𝑖 > 𝑙

, 𝑖 = 1, … , 𝑚,

and

𝑔(𝑥) = {
∑𝑙

𝑖=𝑚+1 𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 , if 𝑚 < 𝑙,

0, otherwise.

3. Stratified: Our last strategy considers a more stratified approach to eigenvalue
pairings. Rather than pairing the largest eigenvalue with the smallest, this approach
attempts to pair the largest eigenvalue with the 𝑙th eigenvalue if it is negative, or
otherwise the 𝑚 + 1 eigenvalue. The decomposition results in

𝑓𝑖(𝑥) = {
𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2 + 𝜆max{𝑚,𝑙}+𝑖 ⟨𝑣max{𝑚,𝑙}+𝑖, 𝑥⟩
2 , if 𝑖 ≤ 𝑙

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 , if 𝑖 > 𝑙

, 𝑖 = 1, … , 𝑚,

and

𝑔(𝑥) = {
∑𝑙

𝑖=𝑚+1 𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 , if 𝑚 < 𝑙,

0, otherwise.

Another vitally important point to consider is the branching strategy used. This deter-
mines which 𝑖, or functional component, to branch off in line 16 of Algorithm 11. We
suggest one of three branching strategies. For each, the idea is to favour producing
approximations on a certain functional component, based on some metric.

1. Favour gap. Choose the 𝑖 that has the largest value of 𝜃𝑖 − ⟨𝑄𝑖𝑥, 𝑥⟩.

2. Favour contribution. Choose the 𝑖 that has the largest value of ⟨𝑄𝑖𝑥, 𝑥⟩, such that
𝜃𝑖 > ⟨𝑄𝑖𝑥, 𝑥⟩.

3. Favour angle. Choose the 𝑖 that has the largest angle between 𝑄𝑖𝑢𝑖 and 𝑄𝑖𝑤𝑖, such
that 𝜃𝑖 > ⟨𝑄𝑖𝑥, 𝑥⟩.

The chosen strategy can then be used to determine 𝑖 on lines 7 and 16 of Algorithm 11.

5.3 Numerical Results

We now evaluate the performance of Algorithm 11 across a range of quadratic program-
ming test problems, including both continuous and discrete instances. The algorithm
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was implemented in Julia version 1.10.0 using Gurobi version 11.0.1 as its lower-level
solver. The angle maximisation auxiliary problem (5.4) was solved to local stationarity
using the Ipopt solver using all default settings (Wachter & Biegler, 2006).

For continuous problems, the node subproblems were solved using Gurobi’s concave
quadratic programming solver using all default settings. For integer problems, each
concave quadratic subproblem was solved using an outer approximation methodology,
for the reasons motivated earlier. The tangents of 𝑔(𝑥) used to solve the node subproblems
are propagated to the root node, and hence persist throughout the branch and cut search
tree. These concave tangents are added using the lazy constraint callback functionality,
allowing them to be introduced during the branch and bound process. As such, only one
MIP search tree is formulated at each node.

We benchmark our methodology against Gurobi’s nonconcave quadratic programming
solver, using all default settings. All tests were conducted on a machine with a 2.3 GHz
AMD EPYC processor with 64GB RAM, using a single thread and a ten minute time limit.

Throughout our experimentation, we attempt to control the number of positive eigen-
values of 𝑄. In addition, we ensure the matrix contains majority nonnegative elements,
thereby avoiding the situation where the zero vector is in fact the optimal solution. To
randomly generate a matrix with 𝑚 positive and 𝑙 negative eigenvalues, we find 𝑉 ∈ ℝ𝑛×𝑚

and 𝑊 ∈ ℝ𝑛×𝑙 by uniformly randomly generating each element in the range [0, 1]. We
then set

𝑄 = 𝑙𝑉 𝑉 𝑇 − 𝑚𝑊𝑊 𝑇.

From computational experience, when 𝑚 + 𝑙 ≤ 𝑛, this matrix always contains 𝑚 posi-
tive eigenvalues, and has mostly positive elements. We use this generation procedure
throughout this section.

5.3.1 Functional Decompositions

We begin by exploring of the effectiveness of each of the proposed decomposition strate-
gies by measuring the angle between each 𝑄𝑖𝑢𝑖 and 𝑄𝑖𝑤𝑖, similar to the analysis outlined
in Section 5.2.8. To do so, we randomly generated 16 matrices using the generation proce-
dure outlined above, where 𝑚 = 25, 𝑙 = 25 and 𝑛 = 50. Then, using each of the functional
decomposition strategies from Section 5.2.8, we calculate the angle between 𝑄𝑖𝑢𝑖 and 𝑄𝑖𝑤𝑖
for each 𝑖 = 1, … , 25. Figure 5.3 shows a frequency plot of the angles achieved across
each of the 16 randomly generated matrices. For the basic strategy, we see some fairly
poor performance, with a majority of angles found being less than 10∘. Interestingly, the
greedy approach has a notable cluster around 90∘, but achieves very few large angles,
with only 2 above 150∘. Finally, while the stratified approach as a fairly even spread, it is
able to achieve the most large angles, including several close to 180∘.
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5 Directionally Concave Branch and Cut

Figure 5.3: Angle between 𝑄𝑢 and 𝑄𝑤 for each one matrix after functional decomposition, aggre-
gated across 16 randomly generated matrices with 𝑚 = 25, 𝑙 = 25 and 𝑛 = 50.

112



5.3 Numerical Results

5.3.2 Continuous Problems

For continuous instances, we examine two specific problem formulations. The first is the
straightforward box constrained quadratic programming problem, given by

max ⟨𝑄𝑥, 𝑥⟩
s.t. 𝑥 ∈ [0, 1]𝑛.

The matrix defining each instance is randomly generated using the procedure outlined
previously. We generate five instances of 𝑛 = 50 and five of 𝑛 = 100, with 𝑚 = 1, 2, or 3
and 𝑙 = 10, making for a total of 30 test problems. In addition, we look at the continuous
quadratic knapsack problem, following an identical formulation to the box constrained
quadratic programming problem, except for the addition of a single knapsack constraint.
This constraint is constructed in line with Gallo et al. (1980), whereby we randomly
generate each integer weight 𝑤𝑖 ∈ [1, 100] and set the capacity to a random integer in the
range [50,∑𝑛

𝑖=1 𝑤𝑖]. As before, we generate five instances of 𝑛 = 50 and five of 𝑛 = 100,
with 𝑚 = 1, 2, or 3 and 𝑙 = 10, making for a total of 30 test problems.

The results from continuous test instances, using a 600 second time limit, are shown
in Table 5.1. Note that for 𝑚 = 1, the branching rule is redundant, as there is only one
functional component to choose. For 𝑚 = 1, we get very good performance, with all
setups able to solve all problems with ease. However, increasing to 𝑚 = 2, we begin
to see the importance of good branching rules. Only the gap branching rule was able
to solve all ten instances, performing well. Interestingly, it appeared that the basic
decomposition approach performed the best across the two problem types. Finally, at
𝑚 = 3, we see a continued trend of decreasing performance with increasing number of
positive eigenvalues. That said, using a gap branching rule meant all decomposition
strategies were able to solve almost all instances.

Figure 5.4 shows a performance profile of the three functional decomposition strategies
using a largest gap branching rule. This figure also includes the performance of the Gurobi
benchmark. While no setup is able to improve on Gurobi across the entire test set, they
all perform comparably. Additionally, as seen in the previous table, poor performance
is often due to going down misleading branches, as branching rules play an important
role in overall performance. Given it’s mature status, Gurobi has very sophisticated and
optimised branching rules, and hence even a comparable performance indicates that the
key idea of directionally concave tangent planes is effective on these problems.

5.3.3 Binary Problems

We now explore the case where 𝐾 ⊂ {0, 1}𝑛, i.e., problems where all decision variables
are binary, beginning with the unconstrained binary quadratic programming problem,
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𝑚 Decomposition
Branching

Rule

Quadratic
Box Problem

Continuous
Quadratic
Knapsack

Ave Solve
Time (sec)

Num
Solved

Ave Solve
Time (sec)

Num
Solved

1 BASIC - 0.165 10 0.120 10
1 GREEDY - 0.345 10 0.212 10
1 STRATI. - 0.342 10 0.213 10

2 BASIC GAP 2.932 10 3.004 10
2 BASIC CONTRI. 600.228 0 600.178 0
2 BASIC ANGLE 540.580 1 495.843 3
2 GREEDY GAP 10.363 10 10.388 10
2 GREEDY CONTRI. 542.789 1 488.377 2
2 GREEDY ANGLE 542.649 1 488.293 2
2 STRATI. GAP 10.973 10 9.628 10
2 STRATI. CONTRI. 486.898 2 497.913 2
2 STRATI. ANGLE 543.897 1 434.822 3

3 BASIC GAP 28.569 10 17.464 10
3 BASIC CONTRI. 600.476 0 600.239 0
3 BASIC ANGLE 600.627 0 600.321 0
3 GREEDY GAP 103.558 10 116.902 9
3 GREEDY CONTRI. 600.204 0 600.166 0
3 GREEDY ANGLE 600.263 0 600.335 0
3 STRATI. GAP 126.799 9 100.012 10
3 STRATI. CONTRI. 546.232 1 600.307 0
3 STRATI. ANGLE 600.422 0 600.426 0

Table 5.1: Average solve time in seconds, and number of problems out of 10 solved (5 of 𝑛 = 50
and 5 of 𝑛 = 100) across the continuous instances using a 600 second time limit. We
separate by number of positive eigenvalues, decomposition and branching strategy.
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5.3 Numerical Results

Figure 5.4: Performance profile on continuous instances, broken down by number of positive
eigenvalues. We show performance of Gurobi, and the Directional Concave Branch
and Cut method (DCBNC) with each of the three decomposition strategies, using the
largest gap branching strategy.
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given by

max ⟨𝑄𝑥, 𝑥⟩
s.t. 𝑥 ∈ [0, 1]𝑛.

As before, we randomly generate five matrices with 𝑛 = 50 and five with 𝑚 = 100, with
𝑚 = 1, 2, or 3, and 𝑙 = 10, making for a total of 30 test instances. In addition to the
unconstrained problem, we tested the algorithm on the diversity problem, whereby a
single cardinality constraint is included. We set the cardinality to 𝑝 = ⌊0.1𝑛⌋. Finally, we
also look at the standard quadratic knapsack problem, whereby the knapsack constraint
is generated using the same procedure as the previous section.

The results from the binary test instances, over a 600 second time limit, are shown
in Table 5.2. Many of the observations are similar to those of the continuous instances.
As before, the choice of branching rule plays an important role, as poor decisions can
lead to branching down unhelpful subtrees, thereby exaggerating runtime. Furthermore,
the number of positive eigenvalues has a major effect on runtime, with the algorithm
experiencing many timeouts at 𝑚 = 3.

Rather interestingly, there appears to be a better performance, in general, on the binary
instances compared to the continuous instances. Each node subproblem is essentially
an easy integer program with a lazy constraint callback. Gurobi is especially good at
these problems, and hence has no challenge solving node-level subproblems to integer
optimality. The improvement on the binary test instances comes from the solution
diversity between a node and its children. In the continuous case, child nodes can have
solutions very close to the cut of its parent, yet still pass the bounding rules and hence
the algorithm must dive further down this subtree, even though all solutions are very
similar. However, on binary instances this is not always the case. The solution of a child
node will either return the same solution as its parent, in which case the bounding rules
fail and hence the branch is pruned, or a new solution is generated that has at least one
𝑥𝑖 that has changed from 0 to 1 (or vice versa). As such, there is less chance of fully
exploring an unhelpful subtree.

Figure 5.5 compares the performance of Algorithm 11 using the gap branching on
the binary instances, broken down by number of positive eigenvalues. Additionally, it
includes the results fromGurobi as a benchmark. For low𝑚, all functional decompositions
perform far better than Gurobi. In fact, even when𝑚 = 3, there remains a large number of
problems solved by our branch and cut algorithm that were unable to be solved by Gurobi
within the time limit. This represents an impressive performance by Algorithm 11.

As we have seen, the correct choice in functional decomposition and branching strategy
can lead to substantial improvements in runtime. However, our implementation has
focused primarily on the key concepts of directionally concave upper planes, and less on
the overall performance of our branch tree. Gurobi, on the other hand, is a very mature

116



5.3 Numerical Results

Unconstrained
Binary

Diversity
Problem

Quadratic
Knapsack

𝑚 Decomposition
Branching

Rule
Ave Solve
Time (sec)

Num
Solved

Ave Solve
Time (sec)

Num
Solved

Ave Solve
Time (sec)

Num
Solved

1 BASIC - 0.184 10 0.234 10 0.160 10
1 GREEDY - 0.212 10 0.134 10 0.167 10
1 STRATI. - 0.194 10 0.138 10 0.155 10

2 BASIC GAP 1.298 10 1.608 10 2.587 10
2 BASIC CONTRI. 70.351 9 124.214 8 210.968 7
2 BASIC ANGLE 182.582 7 34.670 10 187.984 7
2 GREEDY GAP 123.324 8 1.592 10 182.834 7
2 GREEDY CONTRI. 136.030 8 4.023 10 292.258 6
2 GREEDY ANGLE 136.344 8 4.005 10 292.407 6
2 STRATI. GAP 2.896 10 1.508 10 3.799 10
2 STRATI. CONTRI. 17.804 10 2.910 10 52.109 10
2 STRATI. ANGLE 43.572 10 6.162 10 80.889 9

3 BASIC GAP 67.529 9 8.939 10 14.640 10
3 BASIC CONTRI. 600.083 0 600.165 0 494.161 2
3 BASIC ANGLE 600.161 0 499.628 2 424.897 3
3 GREEDY GAP 540.826 1 14.044 10 82.269 9
3 GREEDY CONTRI. 600.328 0 579.572 1 439.58 3
3 GREEDY ANGLE 600.140 0 466.657 3 434.82 3
3 STRATI. GAP 34.697 10 8.843 10 49.171 10
3 STRATI. CONTRI. 600.207 0 481.235 3 446.654 3
3 STRATI. ANGLE 600.188 0 478.313 3 428.38 3

Table 5.2: Average solve time in seconds, and number of problems out of 10 solved (5 of 𝑛 = 50
and 5 of 𝑛 = 100) across the binary instances over a 600 second time limit. We separate
by number of positive eigenvalues, decomposition and branching strategy.
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5 Directionally Concave Branch and Cut

Figure 5.5: Performance profile on binary instances, broken down by number of positive eigenval-
ues. We show performance of Gurobi, and the Directional Concave Branch and Cut
method (DCBNC) with each of the three decomposition strategies, using the largest
gap branching strategy.
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and state-of-the-art software with sophisticated branching, node selection and heuristic
tools under the hood. While these tools do not affect the global convergence, they do
have a significant impact on overall runtime.

To therefore conduct a fairer comparison, we show in Table 5.3 the best runtime for
each binary instance of size 𝑛 = 100 tested, as well as which decomposition and branching
rule achieved this result. We compare these best case run times with the results from
Gurobi. Firstly, it is interesting to note that while basic functional decomposition and
gap branching are most often the best performer, every decomposition and branching
strategy contributes to the best runtime in at least one instance. For the unconstrained
binary quadratic problem Gurobi performs particularly well, consistently outperforming
our proposed algorithm. However, this is not the case on the diversity problem instances,
where it timed out without solving a single instance. Algorithm 11 performs very well
on these instances, with several problems solved in less than a second. On the knapsack
instances the performance comparison is varied. While Gurobi performs better in most
cases, the branch and cut algorithm improves in several instances (see 40, 41 and 44).
This all indicates that the key ideas underpinning our algorithm are effective, and with
improved branching, node selection and heuristics tools they should be competitive with
Gurobi across a wider range of test instances.

Table 5.3: Best achieved runtime over the various decomposition and branching strategies across
binary test instances with 𝑛 = 100.

Problem
Type

Instance 𝑚
Best Solve
Time (sec)

Best
Decomposition

Best
Branch

Solve Time
Gurobi (sec)

unconstrained 1 1 0.283 GREEDY GAP 0.017
unconstrained 2 1 0.207 BASIC ANGLE 0.023
unconstrained 3 1 0.152 BASIC ANGLE 0.021
unconstrained 4 1 0.215 BASIC ANGLE 0.023
unconstrained 5 1 0.256 BASIC GAP 0.023
unconstrained 6 2 1.105 BASIC CONTRI. 0.019
unconstrained 7 2 2.052 BASIC GAP 0.019
unconstrained 8 2 1.168 BASIC GAP 0.021
unconstrained 9 2 2.756 BASIC GAP 0.019
unconstrained 10 2 0.744 BASIC GAP 0.017
unconstrained 11 3 86.987 STRATI. GAP 0.019
unconstrained 12 3 16.878 BASIC GAP 0.018
unconstrained 13 3 24.886 BASIC GAP 0.019
unconstrained 14 3 4.655 BASIC GAP 0.021
unconstrained 15 3 9.023 BASIC GAP 0.021
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Problem
Type

Instance 𝑚
Best Solve
Time (sec)

Best
Decomposition

Best
Branch

Solve Time
Gurobi (sec)

diversity 16 1 0.237 GREEDY ANGLE 600.001
diversity 17 1 0.158 GREEDY ANGLE 600.001
diversity 18 1 0.133 BASIC GAP 600.001
diversity 19 1 0.185 GREEDY CONTRI. 600.012
diversity 20 1 0.210 GREEDY ANGLE 600.014
diversity 21 2 1.267 STRATI. GAP 600.013
diversity 22 2 1.818 STRATI. GAP 600.024
diversity 23 2 1.245 STRATI. GAP 600.013
diversity 24 2 1.673 BASIC GAP 600.013
diversity 25 2 2.775 BASIC GAP 600.023
diversity 26 3 15.941 STRATI. GAP 600.013
diversity 27 3 11.301 STRATI. GAP 600.016
diversity 28 3 11.976 BASIC GAP 600.013
diversity 29 3 7.973 STRATI. GAP 600.023
diversity 30 3 7.008 BASIC GAP 600.014

knapsack 31 1 0.296 BASIC CONTRI. 0.012
knapsack 32 1 0.126 STRATI. GAP 0.019
knapsack 33 1 0.215 STRATI. CONTRI. 0.003
knapsack 34 1 0.211 BASIC CONTRI. 0.002
knapsack 35 1 0.174 GREEDY GAP 0.016
knapsack 36 2 1.002 BASIC GAP 0.043
knapsack 37 2 1.803 BASIC ANGLE 0.168
knapsack 38 2 1.222 BASIC GAP 0.003
knapsack 39 2 9.970 BASIC GAP 0.003
knapsack 40 2 8.241 BASIC GAP 268.255
knapsack 41 3 86.500 BASIC GAP 372.621
knapsack 42 3 8.588 BASIC GAP 0.331
knapsack 43 3 11.027 BASIC GAP 4.353
knapsack 44 3 6.992 BASIC GAP 10.694
knapsack 45 3 17.512 BASIC GAP 11.850

5.3.4 Performance Analysis

To better understand the overall performance of Algorithm 11, we now examine how
functional decomposition, achieved angles, and the number of positive eigenvalues affects
run time. Figure 5.6 shows, for each binary instance tested, the average angle achieved
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Figure 5.6: Average angle achieved after functional decomposition and resultant solve time in
seconds across the binary test instances with a 600 second time limit.

after functional decomposition, and the resultant runtime. Firstly, we notice that the
angles achieved by each decomposition align with the results seen in Figure 5.3. However,
rather interestingly, there seems to be no discernible trend between measured angle and
run time. There are clearly examples of low average angle instances that achieve a good
runtime, as well as high angle instances with poor run times. This suggests the achieved
angle is not necessarily a key indicator of algorithm performance.

In Figure 5.7 we plot the average runtime for each of the strategy combinations for the
three values of 𝑚 on the binary instances. The trend here is much clearer, indicating a
strong positive relation between number of positive eigenvalues and average runtime.
This is somewhat expected, as this increases the number of branching directions, and
hence branches, of Algorithm 11. Therefore, without more sophisticated node selection
and branching rules, this trend will likely remain.

121



5 Directionally Concave Branch and Cut

Figure 5.7: Number of positive eigenvalues against average run time for the binary test instances,
broken down by decomposition and branching strategy.
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Problem
Type

𝑛
Average
Positive
Evals (𝑚)

DCBNC Gurobi
Num
Solved

Ave Solve
Time (sec)

Ave
Gap (%)

Num
Solved

Ave Solve
Time (sec)

Ave
Gap (%)

boolean 50 25.0 0 600.136 4339.5 7 207.191 3.096
boolean 100 50.0 0 601.048 9283.51 0 600.011 13.752
diversity 50 22.3 0 600.017 13143.7 10 119.803 0.000
diversity 100 46.2 0 600.095 20026.1 0 600.007 290.104
knapsack 50 22.6 0 600.016 718.371 10 2.925 0.000
knapsack 100 46.5 0 600.087 639.524 4 375.42 7.511

Table 5.4: Number solved out of ten, average solve time (seconds) and average gap (%) on the highly
convex instances. Additionally, we show the average number of positive eigenvalues 𝑚
of each instance.

5.3.5 Highly Convex Instances

Thus far we have only experimented with matrices with 1, 2 or 3 positive eigenvalues.
However, majority of literature on the test problemsmentioned do not assume the number
of positive eigenvalues, and hence may take any value. We finish this section with a
repeat of the binary variable experiments from before, altering the way we generate the
matrix so as not to control the number of positive eigenvalues. For the unconstrained
quadratic programming problem, each element of 𝑄 gets a uniformly randomly generated
integer in the range [−100, 100], aligning with the procedure from Pardalos and Rodgers
(1990). For the diversity and knapsack problems, each integer element of 𝑄 is randomly
generated in the range [0, 100]. All other parameters are kept the same.

The results over a 10 minute time limit are shown in Table 5.4. As we can see, with
a large 𝑚 these instances become incredibly difficult for Algorithm 11 to solve. In fact,
the algorithm is unable to solve a single instance within the time limit, and on average
achieves a very poor objective bound. However, this poor objective bound more likely due
to poor branching rules and tree formulation, rather than weak cuts. On the other hand,
Gurobi performs similarly to the previous experiments, and is able to solve a majority of
instances.

5.4 Conclusion

In this chapter, we introduced a newmethod for solving quadratic programming problems
through a unique algorithm that focuses on the concept of directional concavity. This
concept allows us to determine whether the tangent plane of 𝑦 is valid at an 𝑥, even when
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5 Directionally Concave Branch and Cut

𝑓 (𝑥) is nonconcave. We outlined the key mechanisms to assert directional concavity
on general matrices and showed how, when 𝑄 contains one positive eigenvalue, we
can combine directionally concave tangent planes with convex over-envelopes to form
an upper approximation of 𝑓 (𝑥) everywhere. By dividing ℝ𝑛 into four subspaces, this
approximation can be linearised and then used in our globally convergent branch and
cut algorithm.

Extensive numerical results proved the effectiveness of this new approach. When 𝑄
contains few positive eigenvalues and thus a small convex component, our proposed
algorithm is effective and can solve many large scale quadratic programming problems.
In particular, on diversity problem instances, the approach proved very efficient and
presented significant improvements compared to the state-of-the-art Gurobi benchmark.
However, on matrices with many positive eigenvalues, the algorithm generally struggled
due to the large number of branching directions and functional components.

124



6 Application: Bayer Digestion
Maintenance Optimisation1

This final chapter describes a maintenance scheduling model for digester banks. Digester
banks are network-connected assets that lie on the critical path of the Bayer process, a
chemical refinement process that converts bauxite ore into alumina. The banks require
different maintenance activities at different due times. Furthermore, the maintenance
schedule is subject to production-related constraints and resource limitations. Given the
complexity of scheduling maintenance for large fleets of digester banks, a continuous-
time, mixed-integer linear program is formulated to find a cost-minimising maintenance
schedule that satisfies all required constraints. A solution approach that employs lazy
constraints and Benders decomposition is proposed to solve the model. Unlike generic
implementations of Benders decomposition, we show that the subproblems can be solved
explicitly using a specialist algorithm. We solve the scheduling model for realistic
scenarios involving two Bayer refineries based in Western Australia.

6.1 Introduction

Refining operations are, by their nature, asset-intensive endeavours. Under harsh en-
vironmental and operational conditions, all assets and equipment inevitably face some
form of degradation. Without maintenance interventions, degrading asset health can
lead to safety concerns, equipment failure, and loss of production. Maintenance opera-
tions were once considered retroactive tasks conducted after a failure, but now proactive
maintenance strategies have become mainstream within the resources industry and make
up a substantial proportion of the operating costs of large-scale refineries (de Jonge &
Scarf, 2020). Determining the optimal maintenance strategy can reduce running costs and
enable more sustainable production, giving organisations a vital competitive advantage.
This chapter looks at building a maintenance scheduling model for digester banks, a
critical asset used in the Bayer process.

The Bayer process is a chemical refinement process that converts bauxite ore into
alumina. In the digestion phase of the Bayer process, bauxite slurry is mixed with hot
caustic liquor in large banks of pressure vessels that act like pressure cookers (Li et al.,

1This chapter is based on Spiers, Bui, Loxton, et al. (2023).
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2015). Once processed, the slurry leaves the bank as supersaturated alumina in solution,
also known as green liquor. This liquor is then passed on to the production units, where
the Bayer process is continued.

In this chapter, we outline the practical scheduling requirements for digester bank
maintenance and formulate an appropriate scheduling model. We use a continuous time
framework to ensure timing accuracy and robustness to increasing time horizons. To
assist in solving the model at large dimensions, a Benders decomposition algorithm is
introduced where the subproblems are solved using a specialist algorithm. Additionally,
lazy constraints are used to better handle a proportion of the constraint set. Finally,
model performance is evaluated on two real-life case studies involving Bayer refineries
in Western Australia, as well as several test instances.

6.1.1 Digester Bank Maintenance Activities

Routine preventative maintenance activities are crucial to maintaining the health of
the digester banks. The maintenance activities generally fall into two categories: bank
cleanings and bank services. Due to a chemical reaction in the Bayer process, scale builds
up on the digester equipment. Scale build-up is unavoidable and is often thick and very
hard (Cheng et al., 2021). To manage scale build-up, digester banks require frequent
cleanings. A cleaning activity involves taking a bank offline and mechanically removing
the scale until it is all removed. Bank cleanings are relatively small maintenance activities
that must be planned frequently to sustain bank health and avoid unplanned failures.
Furthermore, due to some physical requirements regarding scale build up, a cleaning
must be scheduled immediately after a bank is take offline, regardless of how long the
bank was previously in operation for. On the other hand, a bank service is a major activity
that may only occur following a bank cleaning. During a bank service, worn or broken
components may be replaced or repaired. In practice, it is common for digester banks to
be cleaned several times in between services.

Scale only builds up when a bank is operational, meaning maintenance due times are
calculated based on operational time, not elapsed time. As services are major activities
that occur less frequently than cleanings, it is common for a bank to be cleaned several
times between services, and therefore have several distinct operational periods. Changing
the schedule of cleanings affects a bank’s operational time and hence changes when its
next service is due. This presents a significant challenge for schedulers, as minor changes
in the schedule of cleaning activities can lead to significant changes in the operational
time of a bank, and hence when its next service should occur.

A service can only occur immediately after a cleaning, meaning aligning these activities
so they are due at similar times is beneficial. The best alignment of maintenance activities
is a common challenge found in the resources sector, where assets may be subject to
different levels of maintenance activities that are based on different cycle times (Seif
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Subsystem 1
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Figure 6.1: Example digester setup with eight digester banks feeding five production units, split
into three subsystems.

et al., 2020). A trade-off must be made when the due times of two activities that must
be scheduled together are misaligned. This compromise is often encountered when
scheduling digester bankmaintenance, as cleaning and service activities are rarely aligned,
but must be completed together.

Digester banks sit on the refineries’ critical path of production, meaning unplanned
failures or downtimes can significantly impact site-wide production. To mitigate the risk
of production loss due to digester bank failure, redundant digester banks are introduced.
In a redundancy-based system, the number of available assets in a system exceeds the
minimum required (Olde Keizer et al., 2016; Siopa et al., 2015). This allows production
to be kept at full capacity, even when a bank is offline and receiving maintenance.
Moreover, in the event of a failure of an operational bank, a standby bank can be brought
online to rectify any potential production loss quickly. To demonstrate this, consider
the example shown in Figure 6.1, where the entire digestion system is split into several
independent subsystems. In each subsystem, the number of available banks is more
than production units, and hence not every bank is required to be operational at all
times. From a scheduling perspective, managing the redundant digester banks is crucial.
The redundant units allow the production load to be shared across all banks. This is a
cost-effective strategy for refineries, as bank utilisation can be maximised without halting
production. However, finding the optimal operational balance between banks and usage
of the redundant bank is a challenging task.

Digester bank maintenance should align with the maintenance activities of the down-
stream production units, the most important of which is known as a valve change. Valve
changes are relatively small activities that are essential to the operations of the entire
refinery and are planned well in advance. After a valve change has been completed, the
associated production unit must connect to a freshly cleaned digester bank. The difficulty
with valve changes is that they are not always consistent, and are planned at fixed times.
It is therefore very challenging to find a stable, repeatable maintenance pattern, as the
schedule may be affected by an upcoming valve change. Subsequently, we need the
maintenance schedule for digester banks to align with these significant activities.
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Generally speaking, the revenue from production far outweighs the cost of preventative
maintenance, meaning schedulers may be willing to over maintain to avoid the possibility
of an unexpected failure. The tendency to over maintain is often exacerbated when the
maintenance schedule is governed by complex or difficult-to-satisfy restrictions. This
chapter aims to build an optimisation model to plan the maintenance activities for a fleet
of digester banks. Given the importance of digestion in the Bayer process, improvements
in its maintenance strategy can lead to cost savings and improved sustainability of
production.

6.1.2 Scheduling Optimisation

The application of optimisation techniques to maintenance scheduling problems is a
well-studied subject in the literature. For a recent review on maintenance optimisation
including maintenance scheduling, the reader is directed to de Jonge and Scarf (2020).
The vast majority of maintenance scheduling models can be separated into discrete or
continuous-time models. In a discrete-time model, the desired planning or time horizon
is broken up into many time windows or intervals. This allows for constraints to be
formulated easily, as the schedule takes on a grid-like structure, thereby giving control
to each discrete time point (Floudas & Lin, 2004). Discrete-time modelling has been
successfully applied to many optimisation problems, such as job shop scheduling (Manne,
1960), the resource-constrained scheduling problem (Kopanos et al., 2014) and more
complex parallel machine scheduling (Heydar et al., 2021). A significant challenge in
discrete-time modelling is managing the dimension growth of time-indexed variables
when the time horizon increases, or when greater time precision is required (Hooker,
2007). One method to overcome this difficulty is to move to a continuous-time model
with discrete events.

Continuous-time models have often been proposed to overcome the challenges of
their discrete-time counterparts (Kopanos et al., 2014). In continuous-time models, the
decision variables are the continuous start times for the set of discrete events (Maravelias
& Grossmann, 2003). This makes continuous time models more robust to increasing
time horizons and can provide greater precision on event start times. Continuous-
time modelling has been successfully applied to general problems such as the resource-
constrained scheduling problem (Kopanos et al., 2014) and themulti-product batch process
scheduling problem (Floudas & Lin, 2004; Maravelias & Grossmann, 2003), as well as to
more complicated assign and schedule problems (Hooker, 2007). The continuous-time
framework has recently been extended to event-based models. In event-based modelling,
the time horizon is broken up into a set of events. Each event is then given a continuous
variable denoting its start time, and binary variables are used to match activities to
events. Koné et al. (2011) formulate two event-based models for the resource-constrained
project scheduling problem and show that these models outperform others on a specific
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set of test instances. While continuous-time and event-based models are more stable
when increasing the desired planning horizon, their scale increases with the number
of discrete events that are to be scheduled. Furthermore, to attain the same level of
control on the timing of events as discrete-time models, continuous-time models may
require the inclusion of big-M constraints, which create poor LP relaxations (Maravelias
& Grossmann, 2003). Overcoming these challenges can be achieved through the use of
an appropriate solution approach.

A suitable solution approach can allow the model to be solved faster and at larger
scales. The selection of solution approach often depends on the specific model structure,
and the attributes that can be exploited. Lazy constraints are one such approach that
can help solve problems that contain large constraint sets (Pearce & Forbes, 2018). The
technique selects a subset of constraints called the lazy constraints, which are removed
from the original problem to form a reduced problem and a set of lazy constraints. The
reduced problem is then solved using a generic procedure, and whenever a solution is
found, it is checked to see which lazy constraints are violated. Violated lazy constraints
are then returned to the original problem. When the constraint set of the problem is large,
but only a small portion are active in the optimal solution, the use of lazy constraints
can substantially reduce the problem size and complexity. If only a tiny portion of lazy
constraints must be reintroduced to the problem, then the solver benefits from a far
simpler problem. This technique has successfully been applied to the classical travelling
salesman problem (Miller et al., 1960), the resource-constrained scheduling problem (Lerch
& Trautmann, 2019) and a network maintenance scheduling problem (Pearce & Forbes,
2018). For an in-depth analysis of the benefits of lazy constraints, the reader is directed
to the PhD thesis Pearce (2019).

Another solution approach commonly used to assist in solving large scale scheduling
problems is Benders decomposition. Benders decomposition is a partitioning technique
that can break up a complex mixed-integer linear program (MILP) into easier to solve
problems (Benders, 1962). Using Benders decomposition, the original problem is broken
up into a mixed-integer master problem and several potentially independent continuous
subproblems. The technique has been successfully applied to a wide range of optimisation
problems. For an in-depth review of Benders decomposition, the reader is directed to
Rahmaniani et al. (2017). When the subproblems are independent and easy to solve,
Benders decomposition can lead to significant computational advantages. For example,
in Fischetti et al. (2016), the Benders subproblem of the uncapacitated facility location
problem were shown to reduce to the continuous knapsack problem, which permits a
closed-form solution. Similarly, in Pearce and Forbes (2018), the subproblem of a network
maintenance scheduling problem was shown to be equivalent to the minimum cut prob-
lem, for which many solution algorithms already exist. In some cases, the subproblems
may exhibit a unique structure that can be solved using a specialist algorithm, thereby
circumventing the need for an LP solver. Contreras et al. (2011) show that the subprob-
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lems of the uncapacitated hub location problem were semi-assignment problems that
could be solved efficiently with a specialist algorithm. Similarly, in Naoum-Sawaya and
Buchheim (2016), the subproblems of a critical node selection problem were solved using
a specialist algorithm derived from the Floyd Warshall algorithm. Specialist algorithms
such as these can provide significant computational improvements when solving the
subproblems.

6.2 Problem Formulation

The digester scheduling model should plan cleaning and service activities for a fleet of
digester banks such that maintenance cost is minimised and all maintenance, operational
and production-related constraints are adhered to. We now describe the key constraints
in detail, and outline the assumptions made for the scheduling model.

For this model, we assume that the digestion system consists of multiple independent
subsystems, as in Figure 6.1. Within each subsystem, we assume that there is always one
redundant bank, i.e., the number of banks is one more than the number of production
units. This means that exactly one bank is to be offline in each subsystem at all times.
Additionally, we assume that a bank can only enter a standby period after completing
a maintenance activity. Therefore, if a bank is to be taken offline for maintenance, the
activity should be commenced immediately.

The due times for cleaning and service activities are based on operational time, not
elapsed time. To ensure the model conducts maintenance on time, it must keep track
of each bank’s operational time and periods. In the case of cleaning activities, taking
a bank offline requires that it immediately receives a cleaning and therefore, there is
only ever one operational period between consecutive cleaning activities. However, this
is not the case for service activities. A service is a significant activity that can only
occur immediately after a cleaning activity, and has a longer operational due time than a
cleaning activity. Therefore there will be several operational periods between consecutive
service activities. The number of cleanings, and therefore operational periods, between
consecutive service activities is unknown and may vary greatly depending on the specific
bank and the required due times.

To demonstrate the complexity of operational due times, consider the example main-
tenance schedule for a single bank shown in Figure 6.2. The green represents periods
where the bank is operational, yellow represents cleaning activities, purple represents
services, and grey represents periods where the bank is on standby. The due time of the
cleaning at 𝑡5 is not calculated as the elapsed time since the previous cleaning at 𝑡3, but
instead the period where the bank is operational, which is given as 𝑡4 to 𝑡5. Similarly,
the service activity planned at 𝑡7 is calculated based on the previous three operational
periods since the last service at 𝑡1, which are 𝑡2 to 𝑡3, 𝑡4 to 𝑡5 and 𝑡6 to 𝑡7. To ensure these
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Figure 6.2: Example schedule for a single digester bank. Green represents operational periods,

whereas yellow and purple represent cleaning and services activities respectively. Grey
represents periods where the bank is on standby.

activities are conducted on time, the model should keep track of each bank’s operational
time at all points in time.

The maintenance activities should be scheduled such that production levels are always
satisfied, and resourcing restrictions are adhered to. To ensure required production levels
are always met, exactly one bank must be offline in each subsystem at all times. This
means that whenever a bank commences a maintenance activity, the offline bank in
that subsystem must come back online to ensure that production levels are satisfied.
However, a bank may not come back online until all its planned maintenance activities
are completed.

We assume the labour force restrictions for both cleanings and services take two forms;
overlap penalties and maximum available resources. A cost penalty is incurred whenever
two cleanings (or services) are planned simultaneously. This is known as an overlap
penalty. The penalty is incurred only for the period where the two activities overlap.
Additionally, we assume that three or more simultaneous cleaning or service activities
are not permitted, as this exceeds the maximum available resources. While the model
can easily be extended to consider a larger number of maximum available resources, this
is considered beyond the scope necessary for practical implementations.

6.2.1 Model Setup

The digester scheduling model is a continuous-time, mixed-integer linear program. For
the schedule to be practical, it must plan a considerable amount into the future and decide
on the start times with a high level of accuracy. For this reason, a discrete-time model
is inappropriate, as the number of discrete time points required would be vast. Rather
than being burdened by the enormous scale of a discrete-time model, a continuous-time
model can span the same duration and provide a greater degree of accuracy with far
fewer decision variables.

Given a set of available maintenance activities, the model should decide on the start
time of each activity, which bank is to receive maintenance and whether the activity
should be a cleaning or a service. For the entire digestion system, let 𝐵 and 𝑃 be the set

131



6 Application: Bayer Digestion Maintenance Optimisation

of banks and production units respectively. We let 𝑆 be the set of subsystems and hence,
for every 𝑠 ∈ 𝑆, 𝐵𝑠 ⊂ 𝐵 gives the subset of banks and 𝑃𝑠 ⊂ 𝑃 gives the subset of production
units within that subsystem. Note that as each subsystem 𝑠 ∈ 𝑆 has exactly one extra bank,
the cardinality of 𝐵𝑠 is one more than 𝑃𝑠. The model should determine the maintenance
schedule up to a given time horizon, denoted by 𝜏. To do so, let 𝐼 = {0, 1, … , 𝑛} be the set
of available maintenance activities. The model need not use all available maintenance
activities, in fact, we intentionally provide an overestimate of the number of maintenance
activities needed, allowing the model to decide exactly how many are required. The
decision variables and remaining parameters are defined as required when formulating
the constraint set, which is done in the remainder of this section. All sets, parameters
and decision variables are summarised in Table 6.1.

6.2.2 Scheduling Maintenance Activities

Let 𝑡𝑖 be a continuous variable that gives the start time of maintenance activity 𝑖 ∈ 𝐼.
As the set 𝐼 is an overestimate of the number of activities required, let binary decision
variable 𝑢𝑖 equal 1 if maintenance activity 𝑖 ∈ 𝐼 is required, and 0 otherwise. Let binary
decision variable 𝑥𝑖,𝑏 equal 1 if activity 𝑖 ∈ 𝐼 is a cleaning on bank 𝑏 ∈ 𝐵. As a service can
only ever occur immediately after a cleaning activity, we group these into one variable.
Hence, let binary decision variable 𝑦𝑖,𝑏 equal 1 if activity 𝑖 ∈ 𝐼 is a service on bank 𝑏 ∈ 𝐵.
Within this activity, the cleaning is completed first and immediately after it the service is
commenced. To track a bank’s operational periods, let binary variable 𝑧𝑖,𝑏 equal 1 if bank
𝑏 has not yet been restarted by activity 𝑖 ∈ 𝐼, following a recently completed maintenance
activity.

The timing of the maintenance activities should be such that the schedule starts at
zero, activities are completed in order, and the schedule lasts the time horizon, i.e.,

𝑡0 = 0, 𝑡𝑖 ≥ 𝑡𝑖−1, 𝑡𝑛 ≥ 𝜏 , 𝑖 = 1, … , 𝑛. (6.1)

The use of 𝑡0 = 0 ensures the schedule commences immediately, and thus by having
𝑡𝑛 ≥ 𝜏, the schedule is guaranteed to last for the desired time horizon. The model should
decide exactly how many maintenance activities it requires, and use these up in order
until no more are required. This is formulated as

𝑢𝑖 ≤ 𝑢𝑖−1, 𝑖 = 1, … , 𝑛. (6.2)

Hence, once 𝑢𝑖 = 0, none of the remaining activities will be used. If 𝑢𝑖 = 1, then a
maintenance activity must be started, therefore,

∑
𝑏∈𝐵

(𝑥𝑖,𝑏 + 𝑦𝑖,𝑏) = 𝑢𝑖, ∀𝑖 ∈ 𝐼 . (6.3)

At any point in time, the number of banks offline, either receiving maintenance or on
standby, is equal to number of subsystems (as there is one extra bank in each subsystem).
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Sets
𝐼 Set of available maintenance activities.
𝑆 Set of subsystems.
𝐵 Set of digester banks.
𝑃 Set of production units.
𝐷 Set of pairs of banks that lead to a double bank change.
Parameters
𝜏 Time horizon
𝛼 Time to complete a cleaning.
𝛽 Time to complete a service.
Θ Operational due time of a cleaning.
Φ Operational due time of a service.
𝐴 Cost of completing a cleaning.
𝐵 Cost of completing a service.
𝐿 Penalty per day when planning simultaneous cleaning activities.
𝑀 Penalty per day when planning simultaneous service activities.
Δ Largest time between consecutive maintenance start times.
Continuous Decision Variables
𝑡𝑖 Start time of maintenance activity 𝑖 ∈ 𝐼.
𝜃𝑖,𝑏 Cleaning operational time for bank 𝑏 ∈ 𝐵 at the start of activity 𝑖 ∈ 𝐼.
𝜙𝑖,𝑏 Service operational time for bank 𝑏 ∈ 𝐵 at the start of activity 𝑖 ∈ 𝐼.
𝜆𝑖 Amount of cleaning overlap for activity 𝑖 ∈ 𝐼.
𝜇𝑖 Amount of service overlap for activity 𝑖 ∈ 𝐼.
Binary Decision Variables
𝑢𝑖 1 if maintenance activity 𝑖 ∈ 𝐼 is required.
𝑥𝑖,𝑏 1 if maintenance activity 𝑖 ∈ 𝐼 is a cleaning on bank 𝑏 ∈ 𝐵
𝑦𝑖,𝑏 1 if maintenance activity 𝑖 ∈ 𝐼 is a service on bank 𝑏 ∈ 𝐵
𝑧𝑖,𝑏 1 if bank 𝑏 ∈ 𝐵 is remaining offline at the start of activity 𝑖 ∈ 𝐼.

Table 6.1: Sets, parameters and decision variables.
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Therefore, whenever an activity is started, there will be several banks remaining offline,
either continuing a maintenance activity, or on standby after a recently completed activity.
As these banks are offline, this period should not count towards their operational due times.
To keep track of the periods that a bank remains offline after beginning maintenance, but
before restarting, let binary variable 𝑧𝑖,𝑏 equal 1 if bank 𝑏 is yet to be restarted following
a recent maintenance, at the start of activity 𝑖 ∈ 𝐼. Then 𝑧𝑖,𝑏 may be updated with the
following constraints,

𝑧𝑖,𝑏 + 𝑥𝑖,𝑏 + 𝑦𝑖,𝑏 ≤ 1, ∀𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼 , (6.4)

𝑧𝑖,𝑏 ≤ 𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏 + 𝑧𝑖−1,𝑏, ∀𝑏 ∈ 𝐵, 𝑖 = 1, … , 𝑛, (6.5)

𝑧𝑖,𝑏 ≤ 1 − ∑
𝑏′∈𝐵𝑠

(𝑥𝑖,𝑏′ + 𝑦𝑖,𝑏′) , ∀𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼 , (6.6)

𝑥𝑖,𝑏 + 𝑦𝑖,𝑏 ≤ 1 − 𝑥𝑖−1,𝑏 − 𝑦𝑖−1,𝑏, ∀𝑏 ∈ 𝐵, 𝑖 = 1, … , 𝑛, (6.7)

∑
𝑏∈𝐵

𝑧𝑖,𝑏 = |𝑆| − 𝑢𝑖, ∀𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼 . (6.8)

Constraint (6.4) ensures that each bank is in at most one state in each period and (6.5)
ensures that 𝑧𝑖,𝑏 = 0 if in the previous period bank 𝑏 was not cleaned, serviced or
remaining offline. Constraint (6.6) ensures that a bank cannot remain on standby if a new
maintenance activity is planned in the same subsystem (and therefore forcing the bank
to come online). Constraint (6.7) ensures that the same bank does not have maintenance
activities planned in consecutive activities. Lastly, constraint (6.8) ensures that the correct
number of banks are chosen to have 𝑧𝑖,𝑏 = 1.

Note that for the purpose of our model, the schedule is assumed to start immediately,
with the first activity planned at 𝑡0 = 0. However, in practice, the scheduling of the first
maintenance activity is often influenced by the current state of the bank setup. This
includes situations where the schedule should begin with banks on standby, rather than
immediately starting a maintenance activity. In such cases, constraints (6.3) and (6.8) can
be modified to exclude the case where 𝑖 = 0 and thus allow 𝑥0,𝑏 = 𝑦0,𝑏 = 0 for all 𝑏 ∈ 𝐵.
Additionally, the values of 𝑧0,𝑏 can be constrained appropriately to match the banks that
are currently offline. This allows the model to begin with the correct banks on standby,
without affecting subsequent maintenance intervals.

Let 𝛼 be the time to complete a cleaning activity, and let 𝛽 be the time to complete a
full service, including the cleaning. As a service is a major activity that has a cleaning as
one of its subtasks, we assume that 𝛼 < 𝛽. Maintenance activities must be timed such
that there is only ever one bank in each subsystem offline at any time, thus ensuring
production levels are always maintained. Additionally, across all banks there may never
be three or more simultaneous cleanings or services. Finally, the timing of maintenance
activities should account for overlapping activities, such that the overlap can be included
in the objective function as a penalty.
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Consider first the timing of cleaning activities. As a service always begins with a
cleaning activity, a cleaning is undergone at the start of every used maintenance activity.
Therefore, to avoid three simultaneous cleanings, whenever an activity 𝑖 is planned for
maintenance, we must have 𝑡𝑖+2 ≥ 𝑡𝑖 + 𝛼, as this ensures the cleaning in 𝑖 has finished,
before the cleaning in 𝑖 + 2 starts. This can formulated as so,

𝑡𝑖 ≥ 𝑡𝑖−2 + 𝛼𝑢𝑖−2, 𝑖 = 2, … , 𝑛. (6.9)

To avoid overlapping cleanings within the same subsystem, consecutive activities may
not overlap if they are planned for the same subsystem. This can be formulated as,

𝑡𝑖 ≥ 𝑡𝑖−1 + 𝛼(∑
𝑏∈𝐵𝑠

(𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏 + 𝑥𝑖,𝑏 + 𝑦𝑖,𝑏) − 1) , ∀𝑠 ∈ 𝑆, 𝑖 = 1, … , 𝑛. (6.10)

Whenever consecutive maintenance activities are planned for the same bank subsystem,
i.e.,∑𝑏∈𝐵𝑠

(𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏 + 𝑥𝑖,𝑏 + 𝑦𝑖,𝑏) = 2, constraint (6.10) becomes 𝑡𝑖 ≥ 𝑡𝑖−1+𝛼. Therefore,
the cleaningmust be completed before the next one is started, thusmaintaining production
levels.

To introduce the overlap penalties for cleaning activities, let 𝜆𝑖 be a continuous variable
that gives the amount of overlap between the cleaning activities in 𝑖 − 1 and 𝑖. Then

0 ≤ 𝜆𝑖 ≤ 𝛼, ∀𝑖 ∈ 𝐼 . (6.11)

The model may decide howmuch cleaning overlap to accept with the following constraint,

𝑡𝑖 ≥ 𝑡𝑖−1 + 𝛼𝑢𝑖−1 − 𝜆𝑖, 𝑖 = 1, … , 𝑛. (6.12)

Whenever the cleaning component of activities 𝑖 and 𝑖 − 1 overlap, 𝜆𝑖 will get the amount
of overlap. This is then included as a penalty in the objective function.

Avoiding clashes in service activities is slightly more challenging as a service activity
may span several maintenance activities, however the constraints can be formulated in
an analogous way to (6.9), (6.10) and (6.12), and are give as

𝑡𝑗 ≥ 𝑡𝑖 + 𝛽(∑
𝑏∈𝐵𝑠

(𝑦𝑖,𝑏 + 𝑥𝑗,𝑏 + 𝑦𝑗,𝑏) − 1) , ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐼 ∶ 𝑖 < 𝑗, (6.13)

𝑡𝑗 ≥ 𝑡𝑖 + 𝛽(∑
𝑏∈𝐵𝑠

(𝑦𝑖,𝑏 + 𝑦𝑗,𝑏) − 1) − 𝛼 − 𝜇𝑗, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐼 ∶ 𝑖 < 𝑗, (6.14)

𝑡𝑘 ≥ 𝑡𝑖 + 𝛽(∑
𝑏∈𝐵𝑠

(𝑦𝑖,𝑏 + 𝑦𝑗,𝑏 + 𝑦𝑘,𝑏) − 2) − 𝛼, ∀𝑠 ∈ 𝑆, 𝑖, 𝑗, 𝑘 ∈ 𝐼 ∶ 𝑖 < 𝑗 < 𝑘. (6.15)

Constraint (6.13) ensures that no activity is commenced in a subsystem until enough time
has passed since the last conducted service in that subsystem, similar to constraint (6.10).
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Constraint (6.14) ensures that whenever two activities have services that overlap, 𝜇𝑗 is
forced to get the amount of overlap, which can then be included in the objective function
as a cost penalty. As a service includes the cleaning at the start of the activity, and goes
into the service immediately afterwards, this should be offset by 𝛼 such that the overlap
only considers the service component. Finally, constraint (6.15) ensures three or more
services are never planned simultaneously. While the number of constraints introduced
here is large, few are expected to be binding in the optimal solution, as services are major
activities that are sparsely scheduled.

6.2.3 Maintenance Due Times

To ensure banks are maintained on time, the model should count the time each bank is
operational for. Let 𝜃𝑖,𝑏 and 𝜙𝑖,𝑏 be bank 𝑏’s operational time since its last cleaning and
service respectively, at the start of activity 𝑖 ∈ 𝐼. Then, let Θ and Φ be the operational due
times of a cleaning and service activity, respectively. As a service is a major activity, we
assume that Θ < Φ. In practice, we expect Φ to be several times greater than Θ. Lastly,
let ̃𝜃𝑏 and ̃𝜙𝑏 give the starting operational time for bank 𝑏 ∈ 𝐵 since its last cleaning or
service respectively, and let Δ be a parameter such that Δ ≥ 𝑡𝑖 − 𝑡𝑖−1 for 𝑖 = 1, … , 𝑛. Note
that we can always choose Δ = Θ.

Observe that themodel does not require the exact values of 𝜃 and 𝜙 at everymaintenance
activity, it only requires that maintenances are scheduled on time. Furthermore, the
model has no benefit from having large values of 𝜃 and 𝜙, as this leads to more required
maintenance activities due to longer bank runtimes. For this reason, rather than forcing
the model to calculate the exact values of 𝜃 and 𝜙, we can instead provide exact lower
bounds. For 𝜙, this can be achieved with,

𝜙0,𝑏 = ̃𝜙𝑏, ∀𝑏 ∈ 𝐵, (6.16)

𝜙𝑖,𝑏 ≥ 𝜙𝑖−1,𝑏 + 𝑡𝑖 − 𝑡𝑖−1 − (Φ + Δ) 𝑦𝑖−1,𝑏 − Δ (𝑥𝑖−1,𝑏 + 𝑧𝑖−1,𝑏) , ∀𝑏 ∈ 𝐵, 𝑖 = 1, … , 𝑛, (6.17)

𝜙𝑖,𝑏 ≥ 𝜙𝑖−1,𝑏 − Φ𝑦𝑖−1,𝑏, ∀𝑏 ∈ 𝐵, 𝑖 = 1, … , 𝑛, (6.18)

0 ≤ 𝜙𝑖,𝑏 ≤ Φ, ∀𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼 . (6.19)

Any feasible solution satisfies (6.17) to (6.19), and therefore

𝜙𝑖,𝑏 ≥ max {𝜙𝑖−1,𝑏 + 𝑡𝑖+1 − 𝑡𝑖 − (Φ + Δ) 𝑦𝑖−1,𝑏 − Δ (𝑥𝑖−1,𝑏 + 𝑧𝑖−1,𝑏) , 𝜙𝑖−1,𝑏 − Φ𝑦𝑖−1,𝑏, 0}

for 𝑖 = 1, … , 𝑛. If, during the previous activity, the bank was operational, then 𝑥𝑖−1,𝑏 +
𝑦𝑖−1,𝑏 + 𝑧𝑖−1,𝑏 = 0 and hence

𝜙𝑖,𝑏 ≥ max {𝜙𝑖−1,𝑏 + 𝑡𝑖+1 − 𝑡𝑖, 𝜙𝑖−1,𝑏, 0} = 𝜙𝑖−1,𝑏 + 𝑡𝑖+1 − 𝑡𝑖,

as required. Alternatively, if the bank was cleaned or on standby, then 𝑥𝑖−1,𝑏 + 𝑧𝑖−1,𝑏 = 1
and 𝑦𝑖−1,𝑏 = 0 and hence

𝜙𝑖,𝑏 ≥ max {𝜙𝑖−1,𝑏 + 𝑡𝑖+1 − 𝑡𝑖 − Δ, 𝜙𝑖−1,𝑏, 0} = 𝜙𝑖−1,𝑏,
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as required. Finally, if the bank was serviced, then 𝑥𝑖−1,𝑏 + 𝑧𝑖−1,𝑏 = 0 and 𝑦𝑖−1,𝑏 = 1 and
hence

𝜙𝑖,𝑏 ≥ max {𝜙𝑖−1,𝑏 + 𝑡𝑖+1 − 𝑡𝑖 − Φ − Δ, 𝜙𝑖−1,𝑏 − Φ, 0} = 0,

as required. The same logic can then be applied to 𝜃,

𝜃0,𝑏 = ̃𝜃𝑏, ∀𝑏 ∈ 𝐵, (6.20)

𝜃𝑖,𝑏 ≥ 𝜃𝑖−1,𝑏 + 𝑡𝑖 − 𝑡𝑖−1 − (Θ + Δ) (𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏) − Δ𝑧𝑖−1,𝑏, ∀𝑏 ∈ 𝐵, 𝑖 = 1, … , 𝑛, (6.21)

0 ≤ 𝜃𝑖,𝑏 ≤ Θ, ∀𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼 . (6.22)

This provides an appropriate formulation to update the exact lower bounds on 𝜃 and 𝜙,
and thus ensure banks are maintained on time.

6.2.4 Double Bank Changes

Bank switching may only take place between banks that can connect to the same produc-
tion unit. For example, consider subsystem 1 of Figure 6.1. Bank 1 may not be switched
with bank 3, as they do not share a common production unit. However bank 1 may be
switched with bank 2. Switching banks 1 and 3 is known as a double bank switch, and
must be avoided. Let 𝐷𝑠 be the set of pairs of banks in subsystem 𝑠 ∈ 𝑆 that cannot connect
to the same production unit. For instance, (𝑏1, 𝑏2) ∈ 𝐷𝑠 if 𝑏1, 𝑏2 ∈ 𝐵𝑠 and they cannot
connect to the same production unit. To avoid a double bank change, their maintenance
activities should not take place in consecutive intervals. Hence,

𝑥𝑖,𝑏1 + 𝑦𝑖,𝑏1 ≤ 1 − 𝑥𝑖−1,𝑏2 − 𝑦𝑖−1,𝑏2 − 𝑧𝑖−1,𝑏2 , ∀𝑠 ∈ 𝑆, (𝑏1, 𝑏2) ∈ 𝐷𝑠, 𝑖 = 1, … , 𝑛. (6.23)

6.2.5 Estimating Number of Required Maintenance Activities

An appropriate upper bound for the number of maintenance activities required to span a
time horizon is given by total number of activities that could potentially be scheduled.
This is given by the schedule that assumes constant cleaning activities with full overlap.
Let 𝑓 ∶ ℝ → ℤ be an integer-valued function that determines an upper bound on the
number of activities required to span a given time horizon. Then,

𝑓 (𝑡) ∶= 2 ⌊
𝑡
𝛼⌋ , (6.24)

where 𝑡 ≥ 0 is the time frame the schedule should span.

6.2.6 Valve Changes

On every valve change, the schedule requires that a freshly cleaned digester bank is
connected to the associated production unit. To account for valve changes, we can break
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the schedule up into distinct time windows, separated by the planned valve changes.
Within each window a set of maintenance activities are provided that can be used to
schedule activities. As before, this set of activities is an over-estimate of the number
required. The model should then use these maintenance activities to find a schedule that
starts exactly on a valve change, and finishes at the next.

Let 𝑉 = (𝑣1, … , 𝑣𝑚) be a vector of 𝑚 planned valve changes, such that 𝑣1 < 𝑣2 < ⋯ <
𝑣𝑚 < 𝜏 and let 𝑃 = (𝑝1, … , 𝑝𝑚) denote the associated production unit of each valve change.
The time horizon can be broken up into 𝑚 + 1 distinct time windows, denoted by the set
𝑊 = {1, … , 𝑚 + 1}. The first 𝑚 time windows end at the next valve change, while the last
window ends at 𝜏. Let 𝑛1 = 𝑓 (𝑣1), 𝑛𝑤 = 𝑓 (𝑣𝑤−𝑣𝑤−1) for 𝑤 = 2,… , 𝑚, and 𝑛𝑚+1 = 𝑓 (𝜏 −𝑣𝑚)
be the number of activities required to span each time window. Let 𝐼 = {0, … , 𝑛} be defined
as before, except now let 𝑛 = ∑𝑤∈𝑊 𝑛𝑤. Lastly, let 𝐽 = {0, 𝑛1, 𝑛1 + 𝑛2, … , 𝑛1 + ⋯ + 𝑛𝑚} be
the set that denotes the starting activity of each time window. Whereas in the previous
formulation the model used up maintenance activities until no more were required over
the entire time horizon, this should be amended to within each time window. To formulate
this, constraint (6.2) should be updated to the following,

𝑢𝑖 = 1, ∀𝑖 ∈ 𝐽 , (6.25)

𝑢𝑖 ≤ 𝑢𝑖−1, ∀𝑖 ∈ 𝐼 ∖ 𝐽 . (6.26)

Therefore 𝑢𝑖 = 1 for the first activity of every time window, given by 𝑖 ∈ 𝐽. Within each
time window, activities are used up until no more are required.

Now that it is known what activities are to be planned at valve changes, the following
constraints ensure the schedule adheres to the valve change,

𝑡𝑖 = 𝑣𝑤, 𝑤 = 1, … , 𝑚, 𝑖 =
𝑤
∑
𝑗=1

𝑛𝑗, (6.27)

∑
𝑏∈𝐵𝑝𝑤

(𝑥𝑖,𝑏 + 𝑦𝑖,𝑏) ≥ 1, 𝑤 = 1,… , 𝑚, 𝑖 =
𝑤
∑
𝑗=1

𝑛𝑗, (6.28)

∑
𝑏∈𝐵𝑝𝑤

(𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏 + 𝑧𝑖−1,𝑏) ≥ 1, 𝑤 = 1,… , 𝑚, 𝑖 =
𝑤
∑
𝑗=1

𝑛𝑗, (6.29)

where 𝐵𝑝𝑤 ⊂ 𝐵 gives the subset of banks that can connect to production unit 𝑝𝑤 ∈ 𝑃.
Constraint (6.27) ensures that the activities associated with valve changes are time
appropriately. Constraint (6.28) ensures that the bank planned for maintenance in 𝑖 ∈ 𝐽
can connect to the appropriate production unit. Similarly, constraint (6.29) ensures that
in the previous activity the bank offline can also connect to the appropriate production
unit. In tandem, these constraints ensure a bank switch is occurring on the production
unit, thus meeting the requirements of a valve change.
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6.2.7 Objective Function

The objective of this model is to determine the maintenance schedule that optimises
cost. This cost is made up of planned maintenance activities as well as overtime cost
from overlapping activities. Let 𝐴 and 𝐵 be the cost of a cleaning and service activity
respectively and let 𝐿 and 𝑀 be the additional cost per day of operating two cleaning and
service activities respectively. The full model, denoted by 𝑂𝑃, can then be formulated as
so,

[𝑂𝑃] min ∑
𝑖∈𝐼

(∑
𝑏∈𝐵

(𝐴𝑥𝑖,𝑏 + 𝐵𝑦𝑖,𝑏) + 𝐿𝜆𝑖 + 𝑀𝜇𝑖) ,

subject to (6.1),(6.3) - (6.23),(6.25)-(6.29),
𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵,
𝑢𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 ,
𝜃𝑖,𝑏, 𝜙𝑖,𝑏 ≥ 0, ∀𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵,
𝑡𝑖, 𝜆𝑖, 𝜇𝑖 ≥ 0, ∀𝑖 ∈ 𝐼 ,

6.3 Solution Algorithm

The original problem 𝑂𝑃 is solved using a combination of lazy constraints and Benders
decomposition. Additionally, valid inequalities are introduced to further tighten the
problem formulation.
Lazy constraints are a modelling technique that removes a subset of constraints from

the original problem to form a reduced problem. The lazy constraints are then added
back to the reduced problem only when the solver deems that the constraint is necessary.
If only a small fraction of the lazy constraints are required to be added back in order to
find the optimal solution, then the solver benefits from a far simpler problem, as a large
number of unnecessary constraints have been removed.

Services are significant activities that are expected to be planned infrequently. In many
practical examples, the total number of services planned may be as little as one-fifth
of the total number of cleaning activities. However, the constraints required to ensure
service clashes, in particular (6.15), represent a significant proportion of total constraints
for the model. As only a few services are expected to be scheduled, the number of active
constraints in this set is small. Therefore, by formulating (6.15) as lazy constraints, we
are able to reduce the constraint set to only those that are necessary.

Benders decomposition is a partitioning technique that can break up the original prob-
lem into a mixed-integer master problem and several potentially independent continuous
subproblems. Once a solution to the master problem is found, this solution is used to
construct dual subproblems. By solving the dual subproblems, feasibility and optimality
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cuts may be generated and added to the master problem to either remove this solution,
or improve the objective value.

By applying Benders decomposition to the variables 𝜃 and 𝜙, we construct the lifetime
subproblems using the maintenance due time constraints (6.16)-(6.22). These subproblems
are used to identify periods in which a bank is overrun with respect to its cleaning and
service lifetimes. As such, the lifetime subproblems are purely feasibility problems. The
subproblems can be solved independently by separating them into each bank’s cleaning
and service lifetime subproblem. If a subproblem is infeasible, i.e., a bank is overrun,
appropriate feasibility cuts are added to the master problem to remove this solution and
ensure the bank is maintained on time. Finally, to tighten the master problem formulation,
a set of valid inequalities based on practical assumptions of the problem is introduced.

6.3.1 Master Problem

The master problem (denoted by 𝑀𝑃) follows a natural interpretation. It determines a
candidate maintenance schedule that minimises the total cost due to planned maintenance
activities and overlap penalties. The schedule should avoid double bank changes and be
aligned with the planned valve changes. Additionally, the problem should satisfy a set of
valid inequalities, added to tighten the master problem formulation. Lazy constraints are
added to 𝑀𝑃 whenever a solution that violates a constraint in (6.15) is found. Finally, fea-
sibility cuts are added whenever a schedule does not maintain a bank on time. Therefore,
the master problem can be formulated as so,

[𝑀𝑃] min ∑
𝑖∈𝐼

(∑
𝑏∈𝐵

(𝐴𝑥𝑖,𝑏 + 𝐵𝑦𝑖,𝑏) + 𝐿𝜆𝑖 + 𝑀𝜇𝑖) ,

𝑠.𝑡 . (6.1),(6.3)-(6.14),(6.23),(6.25)-(6.29),
Lazy Constraints,
Feasibility Cuts,
Valid Inequalities,
𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵,
𝑢𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 ,
𝑡𝑖, 𝜆𝑖, 𝜇𝑖 ≥ 0, ∀𝑖 ∈ 𝐼 ,

where the feasibility cuts and valid inequalities are described in the following sections.

6.3.2 Lifetime Subproblems

The lifetime subproblems determine whether a candidate solution of 𝑀𝑃 overruns any
of the banks with respect to either cleaning or service activities. If a bank is overrun, a
feasibility cut is generated and added to 𝑀𝑃 to remove this solution. The subproblems
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are broken up into cleaning lifetimes (associated with variable 𝜃) and service lifetimes
(associated with variable 𝜙) and then separated further by each bank 𝑏 ∈ 𝐵. Therefore the
number of lifetime subproblems is 2 × |𝐵|. In general, feasibility cuts require using an LP
solver to determine an extreme ray. Here, we show that the extreme rays of the lifetime
subproblems can be generated using the exact operational time of each bank, thereby
circumventing the need for an LP solver.

We begin this section by formulating the dual of the cleaning and service lifetime
subproblems. We then show how the candidate schedule from the master problem can
be used to calculate the exact operational time of each bank. The exact operational time
of each bank is then used as a candidate solution for its lifetime subproblems. Notably,
we show how a subproblem is feasible if and only if the exact operational time is feasible.
Furthermore, this candidate solution can then be used to generate extreme rays, and thus
feasibility cuts.

Given a fixed schedule (𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖) for all 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼, the cleaning lifetime subprob-
lems attempt to find values for 𝜃𝑏 ∈ ℝ𝑛+1 such that constraints (6.20)-(6.22) are satisfied
for each bank 𝑏 ∈ 𝐵. The cleaning lifetime subproblem of bank 𝑏 ∈ 𝐵 (denoted by 𝜃𝑏-𝑆𝑃)
is formulated as follows,

[𝜃𝑏-𝑆𝑃] min 0 (6.30)

𝑠.𝑡 . 𝜃0 ≥ ̃𝜃, (6.31)

𝜃𝑖 − 𝜃𝑖−1 ≥ 𝑡𝑖 − 𝑡𝑖−1 − (Θ + Δ) (𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏) − Δ𝑧𝑖−1,𝑏, 𝑖 = 1, … , 𝑛,
(6.32)

𝜃𝑖 ≤ Θ, 𝑖 = 0, … , 𝑛, (6.33)

𝜃𝑖 ≥ 0, 𝑖 = 0, … , 𝑛. (6.34)

The dual problem of 𝜃𝑏-𝑆𝑃 can be written in terms of dual variables 𝛾 ∈ ℝ𝑛+1 and 𝜂 ∈ ℝ𝑛+1

and is denoted by 𝜃𝑏-𝐷𝑃,

[𝜃𝑏-𝐷𝑃] max ̃𝜃𝛾0 +
𝑛
∑
𝑖=1

(𝑡𝑖 − 𝑡𝑖−1 − (Θ + Δ) (𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏) − Δ𝑧𝑖−1,𝑏) 𝛾𝑖 +
𝑛
∑
𝑖=0

Θ𝜂𝑖

𝑠.𝑡 . 𝛾𝑖 − 𝛾𝑖+1 + 𝜂𝑖 ≤ 0, 𝑖 = 0, … , 𝑛 − 1,
𝛾𝑛 + 𝜂𝑛 ≤ 0,
𝛾𝑖 ≥ 0, 𝑖 = 0, … , 𝑛,
𝜂𝑖 ≤ 0, 𝑖 = 0, … , 𝑛.

Similarly, the service lifetime subproblems attempt to find values for 𝜙𝑏 ∈ ℝ𝑛+1 such that
constraints (6.16)-(6.19) are satisfied for each bank 𝑏 ∈ 𝐵. The service lifetime subproblem
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of bank 𝑏 ∈ 𝐵 (denoted by 𝜙𝑏-𝑆𝑃) is formulated as follows,

[𝜙𝑏-𝑆𝑃] min 0 (6.35)

𝑠.𝑡 . 𝜙0 ≥ ̃𝜙, (6.36)

𝜙𝑖 − 𝜙𝑖−1 ≥ 𝑡𝑖 − 𝑡𝑖−1 − (Φ + Δ) 𝑦𝑖−1,𝑏 − Δ (𝑥𝑖−1,𝑏 + 𝑧𝑖−1,𝑏) , 𝑖 = 1, … , 𝑛,
(6.37)

𝜙𝑖 − 𝜙𝑖−1 ≥ −Φ𝑦𝑖−1,𝑏, 𝑖 = 1, … , 𝑛, (6.38)

𝜙𝑖 ≤ Φ, 𝑖 = 0, … , 𝑛, (6.39)

𝜙𝑖 ≥ 0, 𝑖 = 0, … , 𝑛. (6.40)

The dual problem of 𝜙𝑏-𝑆𝑃 can be written in terms of dual variables 𝜋 ∈ ℝ𝑛+1, 𝜎 ∈ ℝ𝑛 and
𝜌 ∈ ℝ𝑛+1 and is denoted by 𝜙𝑏-𝐷𝑃,

[𝜙𝑏-𝐷𝑃] max Γ𝑏 = ̃𝜙𝜋0 +
𝑛
∑
𝑖=1

(𝑡𝑖 − 𝑡𝑖−1 − (Φ + Δ) 𝑦𝑖−1,𝑏 − Δ (𝑥𝑖−1,𝑏 + 𝑧𝑖−1,𝑏)) 𝜋𝑖

− Φ
𝑛
∑
𝑖=1

𝑦𝑖−1,𝑏𝜎𝑖 +
𝑛
∑
𝑖=0

Φ𝜌𝑖

𝑠.𝑡 . 𝜋0 − 𝜋1 − 𝜎1 + 𝜌0 ≤ 0,
𝜋𝑖 − 𝜋𝑖+1 + 𝜎𝑖 − 𝜎𝑖+1 + 𝜌𝑖 ≤ 0, 𝑖 = 1, … , 𝑛 − 1,
𝜋𝑛 + 𝜎𝑛 + 𝜌𝑛 ≤ 0,
𝜋𝑖 ≥ 0, 𝑖 = 0, … , 𝑛,
𝜎𝑖 ≥ 0, 𝑖 = 1, … , 𝑛,
𝜌𝑖 ≤ 0, 𝑖 = 0, … , 𝑛.

If for bank 𝑏 ∈ 𝐵, either 𝜃𝑏-𝑆𝑃 or 𝜙𝑏-𝑆𝑃 are infeasible, then the schedule generated by 𝑀𝑃
does not service the bank on time, and therefore feasibility cuts should be added to 𝑀𝑃
to remove this solution. To generate a feasibility cut, the exact operational times of each
bank can be calculated, and provide all information required about 𝜃𝑏-𝑆𝑃 and 𝜙𝑏-𝑆𝑃.

Definition 34. Let 𝜃∗𝑏 ∈ ℝ𝑛+1 be the exact operational time of bank 𝑏 ∈ 𝐵 since its’ last
cleaning, based on the schedule determined by 𝑀𝑃. This is the operational time of the
bank at every 𝑖 ∈ 𝐼, if the schedule was followed in practice. Hence, the operational time
increases whenever the bank is in operation, and resets to 0 whenever it is cleaned. Then
𝜃∗𝑏 can be calculated recursively as follows,

𝜃∗𝑖,𝑏 ∶= {
̃𝜃𝑏, 𝑖 = 0,
(𝜃∗𝑖−1,𝑏 + 𝑡𝑖 − 𝑡𝑖−1) (1 − 𝑥𝑖−1,𝑏 − 𝑦𝑖−1,𝑏 − 𝑧𝑖−1,𝑏) , 𝑖 = 1, … , 𝑛.

(6.41)

Similarly, let 𝜙∗𝑏 ∈ ℝ𝑛+1 be the exact operational time of bank 𝑏 ∈ 𝐵 since its’ last service,
based on the schedule determined by 𝑀𝑃. Then 𝜙∗𝑏 can be calculated recursively as
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follows,

𝜙∗𝑖,𝑏 ∶= {
̃𝜙𝑏, 𝑖 = 0

𝜙∗𝑖−1,𝑏 (1 − 𝑦𝑖−1,𝑏) + (𝑡𝑖 − 𝑡𝑖−1) (1 − 𝑥𝑖−1,𝑏 − 𝑦𝑖−1,𝑏 − 𝑧𝑖−1,𝑏) , 𝑖 = 1, … , 𝑛.
(6.42)

Lemma 35. Let 𝜙𝑏 ∈ ℝ𝑛+1 be such that it satisfies (6.36) - (6.38) and (6.40), and let 𝜙∗𝑖,𝑏 be
defined as in (6.42). Then 𝜙𝑖,𝑏 ≥ 𝜙∗𝑖,𝑏 for all 𝑖 ∈ 𝐼.

Proof. We prove 𝜙𝑖 ≥ 𝜙∗𝑖,𝑏 for all 𝑖 ∈ 𝐼 by induction on dimension 𝑖. The base case 𝑖 = 0
holds because 𝜙0,𝑏 satisfies (6.36) and therefore 𝜙0,𝑏 ≥ ̃𝜙𝑏 = 𝜙∗0,𝑏. Suppose 𝜙𝑖,𝑏 ≥ 𝜙∗𝑖,𝑏 holds
for 𝑖 ≤ 𝑛 − 1. We now prove that 𝜙𝑖+1,𝑏 ≥ 𝜙∗𝑖+1,𝑏 holds by considering three cases. From
constraint (6.4) of 𝑀𝑃 either 𝑥𝑖,𝑏 = 𝑦𝑖,𝑏 = 𝑧𝑖,𝑏 = 0, or 𝑥𝑖,𝑏 + 𝑧𝑖,𝑏 = 1 and 𝑦𝑖,𝑏 = 0, or finally
𝑦𝑖,𝑏 = 1 and 𝑥𝑖,𝑏 + 𝑧𝑖,𝑏 = 0. As 𝜙𝑖,𝑏 satisfies (6.37), (6.38) and (6.40) we have that

𝜙𝑖+1,𝑏 ≥ max {0, 𝜙𝑖,𝑏 + 𝑡𝑖+1 − 𝑡𝑖 − (Φ + Δ) 𝑦𝑖,𝑏 − Δ (𝑥𝑖,𝑏 + 𝑧𝑖,𝑏) , 𝜙𝑖,𝑏 − Φ𝑦𝑖,𝑏} . (6.43)

Suppose firstly that 𝑥𝑖,𝑏 = 𝑦𝑖,𝑏 = 𝑧𝑖,𝑏 = 0, then from (6.43),

𝜙𝑖+1,𝑏 ≥ max {0, 𝜙𝑖,𝑏 + 𝑡𝑖+1 − 𝑡𝑖, 𝜙𝑖,𝑏}
= 𝜙𝑖,𝑏 + 𝑡𝑖+1 − 𝑡𝑖
≥ 𝜙∗𝑖,𝑏 + 𝑡𝑖+1 − 𝑡𝑖
= 𝜙∗𝑖+1,𝑏.

Alternatively, suppose 𝑥𝑖,𝑏 + 𝑧𝑖,𝑏 = 1 and 𝑦𝑖,𝑏 = 0, then from (6.43),

𝜙𝑖+1,𝑏 ≥ max {0, 𝜙𝑖,𝑏 + 𝑡𝑖+1 − 𝑡𝑖 − Δ, 𝜙𝑖,𝑏}
= 𝜙𝑖,𝑏
≥ 𝜙∗𝑖,𝑏
= 𝜙∗𝑖+1,𝑏.

Finally, suppose 𝑦𝑖,𝑏 = 1 and 𝑥𝑖,𝑏 + 𝑧𝑖,𝑏 = 0, then from (6.43),

𝜙𝑖+1,𝑏 ≥ max {0, 𝜙𝑖,𝑏 + 𝑡𝑖+1 − 𝑡𝑖 − (Φ + Δ) , 𝜙𝑖,𝑏 − Φ}
= 0
= 𝜙∗𝑖+1,𝑏.

Therefore, by induction, 𝜙𝑖,𝑏 ≥ 𝜙∗𝑖,𝑏 for all 𝑖 ∈ 𝐼.

Lemma 36. Let 𝜃𝑏 ∈ ℝ𝑛 be such that it satisfies (6.31), (6.32), and (6.34), and let 𝜃∗𝑖,𝑏 be
defined as in (6.41). Then 𝜃𝑖,𝑏 ≥ 𝜃∗𝑖,𝑏 for all 𝑖 ∈ 𝐼.

Proof. The proof follows analogously from the proof of Lemma 35.

143



6 Application: Bayer Digestion Maintenance Optimisation

We now show how 𝜃∗𝑏 and 𝜙∗𝑏 can be used to precisely determine the feasibility of 𝜃𝑏-𝑆𝑃
and 𝜙𝑏-𝑆𝑃. The proofs are shown to hold for 𝜙∗ first, as this is the more complicated
subproblem and the proofs for 𝜃∗ follow analogously.

Proposition 37. 𝜙𝑏-𝑆𝑃 is feasible if and only if 𝜙∗𝑖,𝑏 ≤ Φ for all 𝑖 ∈ 𝐼.

Proof. We first prove the forward statement. If 𝜙𝑏-𝑆𝑃 is feasible, then there exists a feasible
solution 𝜙𝑖,𝑏 that satisfies (6.36) - (6.40). From Lemma 35 we therefore have 𝜙𝑖,𝑏 ≥ 𝜙∗𝑖,𝑏 for
all 𝑖 ∈ 𝐼. As 𝜙𝑖,𝑏 satisfies (6.39), we have that 𝜙𝑖,𝑏 ≤ Φ for all 𝑖 ∈ 𝐼 and therefore 𝜙∗𝑖,𝑏 ≤ Φ for
all 𝑖 ∈ 𝐼.

We now prove the reverse statement, by showing that if 𝜙∗𝑖,𝑏 ≤ Φ for all 𝑖 ∈ 𝐼, then 𝜙∗𝑖,𝑏 is a
feasible solution to 𝜙𝑏-𝑆𝑃. Firstly, if 𝜙∗𝑖,𝑏 ≤ Φ for all 𝑖 ∈ 𝐼, then 𝜙∗𝑏 satisfies (6.39). From (6.42),
we have that 𝜙∗0,𝑏 ≥ ̃𝜙𝑏, thereby satisfying (6.36). We now prove that 𝜙∗𝑖,𝑏 satisfies (6.40)
by induction on dimension 𝑖. The base case 𝑖 = 0 holds because 𝜙∗0,𝑏 ≥ ̃𝜙𝑏 ≥ 0. Suppose
𝜙∗𝑖,𝑏 ≥ 0 holds for 𝑖 ≤ 𝑛 − 1. We now prove that 𝜙∗𝑖+1,𝑏 ≥ 0 also holds. Recall from (6.42),

𝜙∗𝑖+1,𝑏 = 𝜙∗𝑖,𝑏 (1 − 𝑦𝑖,𝑏) + (𝑡𝑖+1 − 𝑡𝑖) (1 − 𝑥𝑖,𝑏 − 𝑦𝑖,𝑏 − 𝑧𝑖,𝑏) . (6.44)

From constraint (6.1) we have 𝑡𝑖 − 𝑡𝑖−1 ≥ 0. Additionally, from constraint (6.4) of 𝑀𝑃, we
can see that 1 − 𝑥𝑖,𝑏 − 𝑦𝑖,𝑏 − 𝑧𝑖,𝑏 ≥ 0 and 1 − 𝑦𝑖,𝑏 ≥ 0. Therefore, from (6.44) we can see
that 𝜙∗𝑖+1,𝑏 ≥ 0 as 𝜙∗𝑖,𝑏 ≥ 0. Thus, by induction, we have proved 𝜙∗𝑖,𝑏 ≥ 0 holds for 𝑖 ≤ 𝑛 and
hence 𝜙∗𝑖,𝑏 satisfies (6.40). Recall from (6.42), for 𝑖 = 1, … , 𝑛,

𝜙∗𝑖,𝑏 = 𝜙∗𝑖−1,𝑏 (1 − 𝑦𝑖−1,𝑏) + (𝑡𝑖 − 𝑡𝑖−1) (1 − 𝑥𝑖−1,𝑏 − 𝑦𝑖−1,𝑏 − 𝑧𝑖−1,𝑏) ,

= 𝜙∗𝑖−1,𝑏 − 𝜙∗𝑖−1,𝑏𝑦𝑖−1,𝑏 + 𝑡𝑖 − 𝑡𝑖−1 − (𝑡𝑖 − 𝑡𝑖−1) (𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏 + 𝑧𝑖−1,𝑏) ,

≥ 𝜙∗𝑖−1,𝑏 − Φ𝑦𝑖−1,𝑏 + 𝑡𝑖 − 𝑡𝑖−1 − Δ (𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏 + 𝑧𝑖−1,𝑏) ,

as 𝜙∗𝑖−1,𝑏 ≤ Φ and 𝑡𝑖 − 𝑡𝑖−1 ≤ Δ, hence 𝜙∗𝑖,𝑏 satisfies (6.37). Similarly for 𝑖 = 1, … , 𝑛,

𝜙∗𝑖,𝑏 = 𝜙∗𝑖−1,𝑏 (1 − 𝑦𝑖−1,𝑏) + (𝑡𝑖 − 𝑡𝑖−1) (1 − 𝑥𝑖−1,𝑏 − 𝑦𝑖−1,𝑏 − 𝑧𝑖−1,𝑏) ,

≥ 𝜙∗𝑖−1,𝑏 − 𝜙∗𝑖−1,𝑏𝑦𝑖−1,𝑏,

≥ 𝜙∗𝑖−1,𝑏 − Φ𝑦𝑖−1,𝑏,

and therefore 𝜙∗𝑖,𝑏 satisfies (6.38). As 𝜙∗𝑏 satisfies (6.36) - (6.40) it is a feasible solution to
𝜙𝑏-𝑆𝑃, meaning the problem is feasible.

Proposition 38. 𝜃𝑏-𝑆𝑃 is feasible if and only if 𝜃∗𝑖,𝑏 ≤ Θ for all 𝑖 ∈ 𝐼 .

Proof. Both forward and reverse proofs follow analogously from the proofs of Proposi-
tion 37.

We now show that in addition to determining the feasibility of the lifetime subproblems,
𝜃∗𝑏 and 𝜙∗𝑏 can outline periods of bank overruns, which can in turn be used to generate
valid feasibility cuts.
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Definition 39 (Cleaning Overruns). Let 𝑋𝑏 denote the set of maintenance activities
where bank 𝑏 ∈ 𝐵 was operational at the previous activity,

𝑋𝑏 ∶= {𝑖 ∈ 𝐼 ∶ {
𝑥𝑖−1,𝑏 + 𝑦𝑖−1,𝑏 + 𝑧𝑖−1,𝑏 = 0, if 𝑖 ≥ 1,
𝑥𝑖,𝑏 + 𝑦𝑖,𝑏 + 𝑧𝑖,𝑏 = 0, if 𝑖 = 0,

} . (6.45)

This gives the set of activities where the cleaning operational time is non-decreasing.
Then, the set of overrun cleaning lifetimes is given as 𝐶𝑏, where

𝐶𝑏 ∶= {(𝑖, 𝑗) ∈ 𝐼 × 𝐼 ∶ ∀𝑘 ∈ [𝑖, 𝑗] , 𝑘 ∈ 𝑋𝑏, 𝑖 − 1 ∉ 𝑋𝑏, 𝜃∗𝑗,𝑏 > Θ} . (6.46)

If (𝑖, 𝑗) ∈ 𝐶𝑏, then from activity 𝑖 to activity 𝑗, bank 𝑏 is always operational and at activity
𝑗, the bank is overdue for a cleaning.

Definition 40 (Service Overruns). Let 𝑌𝑏 be the set of maintenance activities where bank
𝑏 ∈ 𝐵 was not serviced in the previous activity,

𝑌𝑏 ∶= {𝑖 ∈ 𝐼 ∶ {
𝑦𝑖−1,𝑏 = 0, if 𝑖 ≥ 1,
𝑦𝑖,𝑏 = 0, if 𝑖 = 0.

} . (6.47)

This gives the set of activities where the service operational time is non-decreasing. The
set of overrun service lifetimes is given as 𝑉𝑏, where

𝑉𝑏 ∶= {(𝑖, 𝑗) ∈ 𝐼 × 𝐼 ∶ ∀𝑘 ∈ [𝑖, 𝑗] , 𝑘 ∈ 𝑌𝑏, 𝑖 − 1 ∉ 𝑌𝑏, 𝜙∗𝑗,𝑏 > Φ} . (6.48)

If (𝑖, 𝑗) ∈ 𝐶𝑏, then from activity 𝑖 to activity 𝑗, bank 𝑏 is never serviced and at activity 𝑗, the
bank is overdue for a service.

Definition 41 (Standby Periods). Let 𝑂𝑏 be the set of activities where bank 𝑏 ∈ 𝐵 was
either receiving a cleaning, or on standby at the previous activity,

𝑂𝑏 ∶= {𝑖 ∈ {1, … , 𝑛} ∶ 𝑥𝑖−1,𝑏 + 𝑧𝑖−1,𝑏 = 1} . (6.49)

Proposition 42. 𝑉𝑏 = ∅ if and only if 𝜙𝑏-𝑆𝑃 is feasible.

Proof. We first prove the forward statement. From constraint (6.7) of 𝑀𝑃, there always
exists an 𝑖 ∈ 𝐼 whereby 𝑦𝑖,𝑏 = 0, and therefore 𝑌𝑏 ≠ ∅. If 𝑌𝑏 ≠ ∅, then for any 𝑗 ∈ {1, … , 𝑛}
such that 𝜙∗𝑗,𝑏 > 0, we must have 𝑦𝑗−1,𝑏 = 0 and therefore from (6.47), 𝑗 ∈ 𝑌𝑏. As 𝑗 ∈ 𝑌𝑏,
there always exists an 𝑖 ≤ 𝑗 such that ∀𝑘 ∈ [𝑖, 𝑗] we have 𝑘 ∈ 𝑌𝑏 and 𝑖 − 1 ∉ 𝑌𝑏. However, if
𝑉𝑏 = ∅, then for all 𝑗 ∈ 𝑌𝑏 such that 𝜙∗𝑗,𝑏 > 0, we must have 𝜙∗𝑗,𝑏 ≤ Φ, otherwise there exists
an 𝑖 such that (𝑖, 𝑗) ∈ 𝑉𝑏. Therefore 𝜙∗𝑖 ≤ Φ for all 𝑖 ∈ 𝐼, and hence from Proposition 37,
𝜙𝑏-𝑆𝑃 must be feasible.

The reverse statement is trivial. If 𝜙𝑏-𝑆𝑃 is feasible then from Proposition 37 we have
𝜙∗𝑖 ≤ Φ for all 𝑖 ∈ 𝐼, and hence there is no 𝑗 ∈ 𝐼 such that 𝜙∗𝑗,𝑏 > Φ, therefore 𝑉𝑏 = ∅.
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Proposition 43. 𝐶𝑏 = ∅ if and only if 𝜃𝑏-𝑆𝑃 is feasible.

Proof. Both forward and reverse proofs follow analogously from the proof of Proposi-
tion 42.

Definition 44 (Unbounded Direction). Let 𝐿𝑃 = max {𝑎𝑇𝑥 ∶ 𝐴𝑥 ≤ 0, 𝑥 ∈ ℝ𝑛} be a linear
program, where 𝑎 ∈ ℝ𝑛 and 𝐴 ∈ ℝ𝑚×𝑛. Then 𝑣 ∈ ℝ𝑛 is an unbounded direction of 𝐿𝑃 if
𝐴𝑣 ≤ 0 and 𝑎𝑇𝑣 > 0.

Proposition 45. Fix a schedule (𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖) for all 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼. Suppose further that
𝜙𝑏-𝑆𝑃 is infeasible with respect to the schedule (𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖). Then, for all (𝑖, 𝑗) ∈ 𝑉𝑏, define
𝜋∗, 𝜌∗ ∈ ℝ𝑛+1 as

𝜋∗𝑘 = {
1, if 𝑘 ∈ [𝑖, 𝑗] and 𝑘 ∈ 𝑋𝑏,
0, otherwise,

𝜌∗𝑘 = {
−1, if 𝑘 = 𝑗,
0, otherwise,

for 𝑘 = 0, … , 𝑛, and define 𝜎∗ ∈ ℝ𝑛 as

𝜎∗𝑘 = {
1, if 𝑘 ∈ [𝑖, 𝑗] and 𝑘 ∈ 𝑂𝑏,
0, otherwise,

for 𝑘 = 1, … , 𝑛. Then (𝜋∗, 𝜎∗, 𝜌∗) is an unbounded direction of 𝜙𝑏-𝐷𝑃.

Proof. From Proposition 42, if 𝜙𝑏-𝑆𝑃 is infeasible with respect to the schedule given by
(𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖) then 𝑉𝑏 is non-empty, and therefore the vector (𝜋∗, 𝜎∗, 𝜌∗) exists. Moreover,
the problem 𝜙𝑏-𝐷𝑃 is of the form max {𝑎𝑇𝑥 ∶ 𝐴𝑥 ≤ 0, 𝑥 ∈ ℝ𝑛}, and therefore matches that
in Definition 44. We now prove (𝜋∗, 𝜎∗, 𝜌∗) is feasible solution to 𝜙𝑏-𝐷𝑃. The schedule
generated by the master problem must satisfy constraint (6.4) and hence 𝑥𝑖,𝑏+𝑦𝑖,𝑏+𝑧𝑖,𝑏 ≤ 1
for all 𝑖 ∈ 𝐼. Therefore from (6.45) and (6.49) we have that 𝑋𝑏 ∩ 𝑂𝑏 = ∅ and hence for all
𝑘 ∈ [𝑖, 𝑗] we have 𝜋∗𝑘 + 𝜎∗𝑘 = 1. Therefore the only non-zero constraints are,

𝜋𝑘 + 𝜎𝑘 − 𝜋𝑘+1 − 𝜎𝑘+1 + 𝜌𝑘 = 1 − 1 + 0 = 0 ≤ 0, 𝑘 = 𝑖, … , 𝑗 − 1,
𝜋𝑗 + 𝜎𝑗 − 𝜋𝑗+1 − 𝜎𝑗+1 + 𝜌𝑗 = 1 − 0 − 1 = 0 ≤ 0,

which are all satisfied and hence (𝜋∗, 𝜎∗, 𝜌∗) is feasible solution 𝜙𝑏-𝐷𝑃.
The objective value Γ𝑏 is given as,

Γ𝑏 = ̃𝜙𝜋∗0 +
𝑛
∑
𝑘=1

(𝑡𝑘 − 𝑡𝑘−1 − (Φ + Δ) 𝑦𝑘−1,𝑏 − Δ (𝑥𝑘−1,𝑏 + 𝑧𝑘−1,𝑏)) 𝜋∗𝑘

− Φ
𝑛
∑
𝑘=1

𝑦𝑘−1,𝑏𝜎∗𝑘 + Φ
𝑛
∑
𝑘=0

𝜌∗𝑘 . (6.50)
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From (6.47) we have that 0 ∈ 𝑌𝑏 if and only if 1 ∈ 𝑌𝑏. Therefore from (6.48), for all (𝑖, 𝑗) ∈ 𝑉𝑏,
either 𝑖 = 0 or 𝑖 ≥ 2. If 𝑖 ≥ 2, then (6.50) can be re-written with non-zero components,

Γ𝑏 = ∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑋𝑏

(𝑡𝑘 − 𝑡𝑘−1 − (Φ + Δ) 𝑦𝑘−1,𝑏 − Δ (𝑥𝑘−1,𝑏 + 𝑧𝑘−1,𝑏)) − Φ ∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑂𝑏

𝑦𝑘−1,𝑏 − Φ. (6.51)

Now, from (6.49), for all 𝑘 ∈ 𝑂𝑏 we have 𝑥𝑘−1,𝑏+𝑧𝑘−1,𝑏 = 1 and hence from constraint (6.4)
of 𝑀𝑃 we have that 𝑦𝑘−1,𝑏 = 0. Furthermore, if 𝑥𝑘−1,𝑏 + 𝑧𝑘−1,𝑏 = 1, then from (6.42),
𝜙∗𝑘,𝑏 − 𝜙∗𝑘−1,𝑏 = 0 = 𝑦𝑘−1,𝑏. Additionally, from (6.45), for all 𝑘 ∈ 𝑋𝑏 we have 𝑥𝑘−1,𝑏 =
𝑦𝑘−1,𝑏 = 𝑧𝑘−1,𝑏 = 0 and therefore from (6.42) we have 𝜙∗𝑘 − 𝜙∗𝑘−1 = 𝑡𝑘 − 𝑡𝑘−1. Then (6.51)
can be simplified as follows,

Γ𝑏 = ∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑋𝑏

(𝑡𝑘 − 𝑡𝑘−1) + ∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑂𝑏

(𝜙∗𝑘,𝑏 − 𝜙∗𝑘−1,𝑏) − Φ,

= ∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑋𝑏

(𝜙∗𝑘 − 𝜙∗𝑘−1) + ∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑂𝑏

(𝜙∗𝑘,𝑏 − 𝜙∗𝑘−1,𝑏) − Φ. (6.52)

Given 𝑋𝑏 ∩ 𝑂𝑏 = ∅ we can simplify (6.52) as follows,

Γ𝑏 = ∑
𝑘∈[𝑖,𝑗]

(𝜙∗𝑘 − 𝜙∗𝑘−1) − Φ,

=𝜙∗𝑗 − 𝜙∗𝑖−1 − Φ,

=𝜙∗𝑗 − Φ > 0,

as 𝜙∗𝑖−1 = 0 and 𝜙∗𝑗 > Φ. Therefore (𝜋∗, 𝜎∗, 𝜌∗) is an unbounded direction of 𝜙𝑏-𝐷𝑃. The
proof for the case where 𝑖 = 0 follows analogously.

Proposition 46. Fix a schedule (𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖) for all 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼. Suppose further that
𝜃𝑏-𝑆𝑃 is infeasible with respect to the schedule (𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖). Then, for all (𝑖, 𝑗) ∈ 𝐶𝑏, define
𝛾∗, 𝜂∗ ∈ ℝ𝑛+1 as

𝛾∗𝑘 = {
1, if 𝑘 ∈ [𝑖, 𝑗] ,
0, otherwise,

𝜂∗𝑘 = {
−1, if 𝑘 = 𝑗,
0, otherwise,

for 𝑘 = 0, … , 𝑛. Then (𝛾∗, 𝜂∗) is an unbounded direction of 𝜃𝑏-𝐷𝑃.

Proof. The proof follows analogously from the proof of Proposition 45.

Proposition 47. Fix a schedule (𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖) for all 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼. For all banks 𝑏 ∈ 𝐵 where
𝜙𝑏 − 𝑆𝑃 is infeasible,

∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑋𝑏

(𝑡𝑘 − 𝑡𝑘−1 − (Φ + Δ) 𝑦𝑘−1,𝑏 − Δ (𝑥𝑘−1,𝑏 + 𝑧𝑘−1,𝑏)) − Φ ∑
𝑘∈[𝑖,𝑗]
𝑘∈𝑂𝑏

𝑦𝑘−1,𝑏 ≤ Φ,

∀(𝑖, 𝑗) ∈ 𝑉𝑏 ∶ 𝑖 ≥ 2, (6.53)
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̃𝜙 + ∑
𝑘∈[1,𝑗]
𝑘∈𝑋𝑏

(𝑡𝑘 − 𝑡𝑘−1 − (Φ + Δ) 𝑦𝑘−1,𝑏 − Δ (𝑥𝑘−1,𝑏 + 𝑧𝑘−1,𝑏)) − Φ ∑
𝑘∈[1,𝑗]
𝑘∈𝑂𝑏

𝑦𝑘−1,𝑏 ≤ Φ,

∀(𝑖, 𝑗) ∈ 𝑉𝑏 ∶ 𝑖 = 0, (6.54)

are valid feasibility cuts for 𝑀𝑃.

Proof. These cuts are derived from the unbounded directions outlined in Proposition 45,
and so from Benders (1962), they are valid cuts that remove this infeasible solution.
Furthermore, the cuts only remove solutions that cause unbounded directions, and
therefore infeasible subproblems. As such, the cuts do not remove other feasible solutions.
Hence, they are valid feasibility cuts.

Proposition 48. Fix a schedule (𝑥𝑖,𝑏, 𝑦𝑖,𝑏, 𝑧𝑖,𝑏, 𝑡𝑖) for all 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼. For all banks 𝑏 ∈ 𝐵 where
𝜃𝑏 − 𝑆𝑃 is infeasible,

𝑡𝑗 − 𝑡𝑖−1 −
𝑗

∑
𝑘=𝑖

((Θ + Δ) (𝑥𝑘−1,𝑏 + 𝑦𝑘−1,𝑏) + Δ𝑧𝑘−1,𝑏) ≤ Θ, ∀(𝑖, 𝑗) ∈ 𝐶𝑏 ∶ 𝑖 ≥ 2,

𝑡𝑗 + ̃𝜃𝑏 −
𝑗

∑
𝑘=1

((Θ + Δ) (𝑥𝑘−1,𝑏 + 𝑦𝑘−1,𝑏) + Δ𝑧𝑘−1,𝑏) ≤ Θ, ∀(𝑖, 𝑗) ∈ 𝐶𝑏 ∶ 𝑖 = 0.

are valid feasibility cuts for 𝑀𝑃.

Proof. The proof follows analogously from the proof of Proposition 47.

6.3.3 Valid Inequalities

Entirely removing the operational due time constraints from the master problem has the
potential to make its formulation weak. In such cases, it is common to introduce a set
of valid inequalities to tighten the master problem. Doing so can reduce the number of
feasibility cuts required, thereby leading to faster convergence. However, if the valid
inequalities are weak then the model may perform worse due to the large number of
unnecessary constraints included. Hence, having strong valid inequalities is highly
desirable. We now formulate a set of valid inequalities based on practical assumptions of
the problem, in hopes of tightening the master problem formulation.

The valid inequalities are based on the assumption that at any time, exactly one bank
is offline in every subsystem. Consider the following formulation for the service due
time for a single bank. Let intervals 𝑖, 𝑗 ∈ 𝐼 be such that 𝑖 < 𝑗. Then the operational time
for bank 𝑏 ∈ 𝐵 between intervals 𝑖 and 𝑗 is given as

𝑗−1
∑
𝑘=𝑖

𝑥𝑘,𝑏+𝑦𝑘,𝑏+𝑧𝑘,𝑏=0

(𝑡𝑘+1 − 𝑡𝑘) . (6.55)
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In other words, it is the sum of the length of intervals between 𝑖 and 𝑗 where the bank is
operational. Then, to ensure a bank is serviced on time, we must have

𝑗−1
∑
𝑘=𝑖

𝑥𝑘,𝑏+𝑦𝑘,𝑏+𝑧𝑘,𝑏=0

(𝑡𝑘+1 − 𝑡𝑘) ≤ Φ(1 +
𝑗−1
∑
𝑘=𝑖

𝑦𝑘,𝑏) . (6.56)

While this formulation ensures banks are serviced on time, the conditional sum makes
it inappropriate for use in a mixed-integer linear model, and hence we proposed the
formulation shown in Section 6.2.3. However, recall that a practical assumption of the
model is that at any time, exactly one bank is offline in each subsystem. Therefore, if we
sum (6.55) over all 𝑏 ∈ 𝐵𝑠 where 𝑠 ∈ 𝑆, we get

∑
𝑏∈𝐵𝑠

𝑗−1
∑
𝑘=𝑖

𝑥𝑘,𝑏+𝑦𝑘,𝑏+𝑧𝑘,𝑏=0

(𝑡𝑘+1 − 𝑡𝑘) = (|𝐵𝑠| − 1) (𝑡𝑗 − 𝑡𝑖) ,

where | ⋅ | denotes the cardinality. Applying this to (6.56), we get the valid inequality

(|𝐵𝑠| − 1) (𝑡𝑗 − 𝑡𝑖) ≤ Φ(|𝐵𝑠| + ∑
𝑏∈𝐵𝑠

𝑗−1
∑
𝑘=𝑖

𝑦𝑘,𝑏) , ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐼 ∶ 𝑖 < 𝑗, (6.57)

and similarly, for cleanings we get

(|𝐵𝑠| − 1) (𝑡𝑗 − 𝑡𝑖) ≤ Θ(|𝐵𝑠| + ∑
𝑏∈𝐵𝑠

𝑗−1
∑
𝑘=𝑖

𝑥𝑘,𝑏) , ∀𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝐼 ∶ 𝑖 < 𝑗. (6.58)

These inequalities can then be added to the master problem to tighten its formulation.

6.4 Numerical Results and Discussion

We now explore the effectiveness of the proposed solution method using two case studies
and several test instances. The case studies aim to provide the reader with a realistic
problem setting by examining the scheduling requirements of two Bayer refineries based
inWestern Australia. The schedules generated in these case studies outline some common
characteristics found in practical digester maintenance schedules. Using several test
instances, we then assess the sensitivity of the model and solution method to various
problem components, with the aim of identifying the factors that contribute to challeng-
ing instances. Specifically, we investigate how desired time horizon, service due time,
and operational setup impact the model’s performance. Furthermore, we analyse the
contribution that Benders decomposition, valid inequalities, and lazy constraints make
to overall algorithmic performance.
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The scheduling model and solution algorithm was implemented in Gurobi version
10.0.1, using the lazy constraint callback feature. This feature allows the lazy constraints
and Benders feasibility cuts to be integrated into the branch and cut framework. The
program was run on a machine with a 2.3GHz AMD EPYC processor with 32 GB of RAM,
using a single thread.

6.4.1 Case Study

Alcoa of Australia operates two bauxite mines and three alumina refineries within West-
ern Australia, producing a total of 9 million tonnes of alumina annually, making up
approximately 7% of total production worldwide (Alcoa of Australia Limited, 2019). In
this case study, we apply the digester scheduling model to the digestion setups in the
Wagerup and Pinjarra refineries. The case study aims to provide readers with a realistic
parameter selection and demonstrate some of the characteristics of a practical schedule.

In both case studies, the maintenance-related parameters are chosen as follows;

𝛼 = 35 days, 𝛽 = 80 days,
Θ = 220 days, Φ = 680 days,
𝐴 = $10, 𝐵 = $40.

The cleaning overlap cost 𝐿 was set at 10% the cost per day of a cleaning activity, and
the service overlap cost 𝑀 was set at 25% the cost per day of a service activity. Each
bank’s starting operational time since its last cleaning, ̃𝜃𝑏 is chosen randomly such that
̃𝜃𝑏 ∈ [0, Θ]. Similarly, each bank’s starting operational time since its last service, ̃𝜙𝑏 is

chosen randomly such that ̃𝜙𝑏 ∈ [0, Φ]. A practical schedule should last for approximately
three years. During this time, there are expected to be two valve changes for each
production unit.

6.4.1.1 Alcoa Wagerup

Alcoa Wagerup uses three digester banks set up in a single subsystem to complete the
digestion phase of the Bayer process. Figure 6.3 outlines an example of this setup. For
this setup 𝑆 = {1} and 𝐵 = {1, 2, 3}. A double bank switch occurs when bank 1 is switched
with bank 3, and vice versa, hence 𝐷1 = {(1, 3), (3, 1)}.

Table 6.2 summarises the performance of the original model and the decomposition
approach proposed in Section 6.3 on the Wagerup case study. The original model was
solved in 14 seconds using Gurobi. The use of Benders decomposition and valid inequali-
ties resulted in a nearly 50% reduction in solve time, indicating a substantial improvement
due to the application of Benders decomposition.

Figure 6.4 displays the optimal three-year maintenance schedule for the Wagerup case
study, which includes fifteen cleanings and three services while meeting all four planned
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B1 B2 B3

P1 P2

Figure 6.3: Wagerup digestion system with three banks feeding two production units.

Original Decomposed
Case
Study

Time (sec) Gap (%)
Objective
Value

Time (sec) Gap (%)
Objective
Value

Wagerup 14.00 0.00 240.0 7.46 0.00 240.0
Pinjarra 7200.02 32.30 1011.0 7200.02 7.52 1010.0

Table 6.2: Performance of the original model and Benders decomposition solution algorithm on
the Wagerup and Pinjarra case studies.

valve change days. Notably, to prevent double bank changes, the schedule frequently
cleans bank 2. Consequently, the average duration of an operational period for banks 1
and 3 is significantly longer than for bank 2. This is a common characteristic of digester
maintenance schedules.

6.4.1.2 Alcoa Pinjarra

The Alcoa Pinjarra refinery contains eight digester banks split into three subsystems.
Figure 6.1 outlines an example of this setup. For this setup, 𝑆 = {1, 2, 3} with 𝐵1 = {1, 2, 3},
𝐵2 = {4, 5, 6} and 𝐵3 = {7, 8}. Double bank switching occurs when bank 1 is switched
with bank 3 or bank 4 is switched with bank 6 and vice versa, hence 𝐷1 = {(1, 3), (3, 1)},
𝐷2 = {(4, 6), (6, 4)} and 𝐷3 = ∅.

Table 6.2 presents the performance of the Benders decomposition approach and the
original model for the Pinjarra case study model. Apart from Benders decomposition
and valid inequalities, a lazy constraint formulation of constraint (6.15) can be utilised,
given the presence of multiple subsystems in the Pinjarra setup. Despite two hours
of solve time, neither the original model nor Benders decomposition could attain the
optimal solution, indicating that the larger and more complex operational setup poses a
significantly more challenging problem. Nevertheless, Benders decomposition yields an
improved objective value and considerably reduces the optimality gap.

Figure 6.5 displays the best-known three-year maintenance schedule for the Pinjarra
setup, which includes a total of 39 cleanings, 7 services and meets all ten planned valve
changes. To avoid double bank changes, the schedule frequently plans cleanings for
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Figure 6.4: Optimal three-year maintenance schedule for Wagerup case study. Green represents
operational periods, yellow represents cleaning activities, purple represents service
activities and grey represents standby time. Valve changes are shown as red dashed
lines that cross over their associated banks. For instance, the valve change on day 212
occurs on production unit 1, as it can connect to banks 1 and 2.

152



6.4 Numerical Results and Discussion

1

2

3
B
a
n
k
s
S
1

4

5

6

B
a
n
k
s
S
2

0 200 400 600 800 1000

7

8

B
a
n
k
s
S
3

Time

Figure 6.5: Best known three-year maintenance schedule for the Pinjarra case study.

banks 2 and 5. Moreover, we observe that no more than two cleanings or services occur
concurrently, and efforts are made to minimise any potential clashes.

6.4.2 Test Instances

The analysis in the previous case study was limited to only two problem settings and
only compared the proposed solution algorithm from Section 6.3 with the original model.
To provide a more comprehensive understanding of the model’s sensitivities and com-
plexities, we introduce several test instances. These instances aim to explore how time
horizon, service due time and operational setups impact model performance. Additionally,
we investigate the contribution that Benders decomposition, valid inequalities, and lazy
constraints make to overall algorithmic performance and attempt to determine which
approach better tackles the model complexities.

6.4.2.1 Time Horizon

To explore the effect time horizon has on model performance, we solve the Wagerup and
Pinjarra case study models with varying time horizons. Furthermore, we use different
combinations of Benders decomposition, valid inequalities, and lazy constraints to gain
insights into the most effective technique for handling increasing time horizons.

Table 6.3 outlines the performance of the different solution strategies for the Wagerup
scheduling model with time horizons ranging from two to five years. The results show
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𝜏
Benders

Decomposition
Valid

Inequalities
Time
(sec)

Gap (%)
Objective
Value

Best
Bound

Cleaning
Cuts

Service
Cuts

730 ✓ ✓ 0.93 0.00 170.0 170.0 61 217
730 ✓ 0.89 0.00 170.0 170.0 76 212
730 ✓ 0.61 0.00 170.0 170.0
730 0.50 0.00 170.0 170.0

1095 ✓ ✓ 7.46 0.00 240.0 240.0 92 570
1095 ✓ 19.25 0.00 240.0 240.0 93 1068
1095 ✓ 21.58 0.00 240.0 240.0
1095 14.00 0.00 240.0 240.0

1460 ✓ ✓ 324.80 0.00 340.0 340.0 151 6122
1460 ✓ 325.66 0.00 340.0 340.0 167 8312
1460 ✓ 392.17 0.00 340.0 340.0
1460 276.95 0.00 340.0 340.0

1825 ✓ ✓ 7200.04 6.98 430.0 400.0 159 34362
1825 ✓ 7200.11 13.95 430.0 370.0 240 56812
1825 ✓ 7200.01 9.30 430.0 390.0
1825 7200.01 11.63 430.0 380.0

Table 6.3: Performance of various solution approaches for the Wagerup case study for varying
time horizons (two to five years) with a two-hour time limit. We report the solve time in
seconds, optimality gap, objective value and best bound for each approach. For Benders
decomposition, we also report the number of cleaning and service cuts added.
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𝜏
Benders

Decomposition
Valid

Inequalities
Lazy

Constraints
Time
(sec)

Gap (%)
Objective
Value

Best
Bound

Cleaning
Cuts

Service
Cuts

Lazy
Added

730 ✓ ✓ ✓ 142.73 0.00 690.0 690.0 560 2524 375
730 ✓ ✓ 209.58 0.00 690.0 690.0 598 2515
730 ✓ ✓ 105.90 0.00 690.0 690.0 772 2543 651
730 ✓ 190.70 0.00 690.0 690.0 604 2738
730 ✓ 850.65 0.00 690.0 690.0
730 ✓ 128.84 0.00 690.0 690.0 90
730 310.39 0.00 690.0 690.0

1095 ✓ ✓ ✓ 7200.02 7.52 1010.0 934.0 979 16965 47
1095 ✓ ✓ 7200.06 10.81 1010.0 901.0 1299 17800
1095 ✓ ✓ 7200.01 20.42 1087.0 865.0 1321 32947 63
1095 ✓ 7200.03 19.33 1080.0 871.0 1311 27691
1095 ✓ 7200.05 34.99 1011.0 657.0
1095 ✓ 7200.00 24.58 1011.0 763.0 290
1095 7200.02 32.30 1011.0 684.0

1460 ✓ ✓ ✓ 7200.01 - - 1088.0 952 29158 85
1460 ✓ ✓ 7200.05 - - 1057.0 953 25492
1460 ✓ ✓ 7200.05 - - 775.0 1616 79313 64
1460 ✓ 7200.13 - - 834.0 1707 69396
1460 ✓ 7200.06 39.73 1407.0 848.0
1460 ✓ 7200.01 43.10 1385.0 788.0 16
1460 7200.06 60.88 1568.0 613.0

Table 6.4: Performance of various solution approaches for the Pinjarra case study for varying
time horizons (two to four years) with a two-hour time limit. We report the solve time
in seconds, optimality gap, objective value, best bound and number of each type of cut
added.

that all solution approaches are highly sensitive to increasing time horizons. While all
approaches solved the two-year schedule in under a second, the solve time increased
exponentially with an increase in time horizon. No solver was able to prove optimality
within two hours of solve time for a five-year schedule. For the 𝜏 = 730 and 𝜏 = 1460, the
original model solved the fastest. However, for 𝜏 = 1095, Benders decomposition with
lazy constraints solved in half the time of the original model. Interestingly, for 𝜏 = 1095
and 𝜏 = 1460, the introduction of valid inequalities appeared to slow the original model,
indicating they may have been ineffective and weighed down the solver. In contrast,
valid inequalities improved the performance of Benders decomposition substantially. For
instance, for the case where 𝜏 = 1095, valid inequalities reduced the number of service
cuts by 50%, leading to a far better runtime.

Table 6.4 outlines the performance of the different solution strategies for the Pinjarra
scheduling model with time horizons ranging from two to four years. As this problem is
more difficult than the Wagerup problem, it is more sensitive to increasing time horizons,
with no approach able to solve the three-year schedule within a two-hour time limit.
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For 𝜏 = 730, the best performance was achieved by Benders decomposition with lazy
constraints, solving in 106 seconds. Additionally, the use of lazy constraints appears very
effective in this case. For the four-year schedule, Benders decomposition was not able to
find an integer feasible solution after two hours. Remarkably, Benders decomposition
with valid inequalities achieved a far tighter best bound than any other approach, despite
not finding an integer feasible solution. Finally, valid inequalities were highly effective for
the larger time horizon, significantly reducing the number of added service and cleaning
cuts and tightening the best bound.

Overall, we can conclude that the scheduling model is highly sensitive to the time
horizon, with all solution approaches struggling to solve longer schedules within a
reasonable time limit. However, the use of valid inequalities and Benders decomposition
leads to far tighter best bounds at large time horizons, although these approaches can
struggle to find good quality feasible solutions. Furthermore, the use of lazy constraints
appears very effective when combined with Benders decomposition.

6.4.2.2 Service Due Time

The case study highlighted the challenges associated with planning services, as oper-
ational periods can vary significantly in length, making it difficult to determine when
to service a bank. To better understand the effect of this complexity, we explore how
different service due times impact model performance. Using the Wagerup operational
setup over a three-year time horizon, we set Φ = 𝑝Θ where 𝑝 = 0, 2, 3, 4. For each value
of 𝑝, we then examine the performance of the various solution approaches. Note that
when 𝑝 = 0, we assume no servicing is required.

Table 6.5 summarises the performance of various solution approaches for each value
of 𝑝. The findings indicate that the performance of the different solution strategies varies
significantly depending on the service due time. For example, when no servicing is
required (𝑝 = 0), the model is easily solved in under 10 seconds, with Benders decompo-
sition proving particularly effective, solving the model to optimality in less than a second.
However, when Φ = 2Θ, Benders decomposition becomes vastly ineffective, achieving
only a 9.76% gap after two hours of solve time, whereas the original model solved to
optimality in under 400 seconds. On the other hand, when Φ = 3Θ, the proposed method
of Benders decomposition and valid inequalities was the best performer, improving on the
original model by 400 seconds. The use of valid inequalities appears very effective in this
case, reducing the number of service cuts by almost half. However, when increasing to
Φ = 4Θ, Benders decomposition once again performs worse, and when used without valid
inequalities, it is not able to prove optimality in two hours. Finally, when Φ = 5Θ, the
optimal solution contained no services across the three-year time horizon. Nevertheless,
Benders decomposition was able to prove optimality far quicker, requiring only 22 service
lifetime cuts when used with valid inequalities.
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𝑝
Benders

Decomposition
Valid

Inequalities
Time
(sec)

Gap (%)
Objective
Value

Best
Bound

Cleaning
Cuts

Service
Cuts

0 ✓ ✓ 1.90 0.00 190.0 190.0 136
0 ✓ 0.60 0.00 190.0 190.0 153
0 ✓ 9.76 0.00 190.0 190.0
0 5.66 0.00 190.0 190.0

2 ✓ ✓ 7200.01 9.76 410.0 370.0 121 22691
2 ✓ 7200.01 24.39 410.0 310.0 176 32540
2 ✓ 1100.55 0.00 410.0 410.0
2 387.05 0.00 410.0 410.0

3 ✓ ✓ 315.90 0.00 280.0 280.0 157 7082
3 ✓ 1964.08 0.00 280.0 280.0 172 13007
3 ✓ 388.61 0.00 280.0 280.0
3 716.07 0.00 280.0 280.0

4 ✓ ✓ 2399.56 0.00 260.0 260.0 151 10049
4 ✓ 7200.01 3.85 260.0 250.0 174 23275
4 ✓ 1802.64 0.00 260.0 260.0
4 1159.70 0.00 260.0 260.0

5 ✓ ✓ 1.89 0.00 190.0 190.0 120 22
5 ✓ 0.66 0.00 190.0 190.0 156 83
5 ✓ 36.60 0.00 190.0 190.0
5 16.66 0.00 190.0 190.0

Table 6.5: Performance of various solution approaches for varying service due timeswhereΦ = 𝑝Θ.
For each Φ and solution approach, we report the solve time in seconds, optimality gap,
objective value, best bound and number of each type of cut added.
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Service due time represents a complicated and sensitive part of the model. The perfor-
mances of all solution algorithms vary dramatically when service due time changes with
respect to the cleaning due time. Therefore, the decision of which solution algorithm
to use should depend on the ratio. Further analysis and research is necessary to better
understand this trend and find ways of overcoming this sensitivity.

6.4.2.3 Operational Setup

The previous experiments were limited to the operational setups introduced in the case
study. However, upon comparing the results presented in Tables 6.3 and 6.4, it is apparent
that there is a significant difference in problem complexity between the Wagerup and
Pinjarra setups. To further understand the impact of varying the size and layout of
the operational setup, we introduce several new test instances. Specifically, for each
instance, we assume there are 𝑚 subsystems, and within each subsystem, there are 𝑛
banks, resulting in a total of 𝑚𝑛 banks. We set up the banks such that there are no double
bank changes and assume no planned valve change days. All other maintenance-related
parameters are identical to those in the Pinjarra case study. The problem is then solved
over a two-year time horizon.

The performance of the various solution approaches on different operational setups
are presented in Table 6.6. Interestingly, in all examples where there were two banks per
subsystem, the decomposition approach yielded significantly better results. For instance,
when two banks were spread across four subsystems, Benders decomposition with valid
inequalities achieved optimality in 465 seconds, while the original model only achieved a
75% gap after two hours of solve time. Moreover, including more banks within the same
subsystem creates a much more difficult problem. For example, the problem of two banks
per subsystem spread across four subsystems (totalling eight banks) was easily solved in
under 500 seconds. However, if the eight banks were split across only two subsystems,
the performance was far worse, with the best-performing model achieving only a 36%
gap after two hours of solve time. Furthermore, for these large and very challenging
models, the decomposition approach with valid inequalities consistently outperformed
in terms of both objective value and best bound.

6.5 Conclusion

In this chapter, we formulated a maintenance scheduling model for digester banks, a
critical asset used in the Bayer process. Our research was motivated by the importance
digestion plays in the Bayer process and the difficulty of determining cost-efficient
maintenance schedules for fleets of digester banks. Due to the network nature of digestion
systems and complex maintenance requirements, scheduling bank maintenance manually
can be challenging. Therefore, we propose a scheduling model that can find the cost-
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𝑛 𝑚
Benders

Decomposition
Valid

Inequalities
Lazy

Constraints
Time
(sec)

Gap (%)
Objective
Value

Best
Bound

Cleaning
Cuts

Service
Cuts

Lazy
Added

2 2 ✓ ✓ ✓ 9.67 0.00 60.0 60.0 562 2 0
2 2 ✓ ✓ 15.04 0.00 60.0 60.0 583
2 2 ✓ 47.32 0.00 60.0 60.0 2371 22
2 2 ✓ 5690.25 0.01 60.0 60.0
2 2 ✓ 2111.90 0.00 60.0 60.0 0
2 2 2896.40 0.01 60.0 60.0

2 3 ✓ ✓ ✓ 76.14 0.00 90.0 90.0 1000 1 0
2 3 ✓ ✓ 97.12 0.00 90.0 90.0 754
2 3 ✓ 161.85 0.00 90.0 90.0 3653 39
2 3 ✓ 7200.01 35.66 90.0 58.0
2 3 ✓ 7200.00 52.52 90.0 43.0 0
2 3 7200.01 57.64 90.0 38.0

2 4 ✓ ✓ ✓ 678.22 0.00 120.0 120.0 1277 1 0
2 4 ✓ ✓ 465.63 0.00 120.0 120.0 1112 2
2 4 ✓ 1931.50 0.01 120.0 120.0 4759 48
2 4 ✓ 7200.01 52.40 120.0 57.0
2 4 ✓ 7200.00 69.18 120.0 37.0 0
2 4 7200.01 73.18 120.0 32.0

3 2 ✓ ✓ ✓ 7200.01 25.30 120.0 90.0 1701 10 0
3 2 ✓ ✓ 7200.01 21.96 120.0 94.0 1486 10
3 2 ✓ 7200.01 24.21 120.0 91.0 4006 40
3 2 ✓ 7200.01 39.39 120.0 73.0
3 2 ✓ 7200.00 65.92 120.0 41.0 0
3 2 7200.01 71.33 120.0 34.0

3 3 ✓ ✓ ✓ 7200.01 41.46 205.0 120.0 2351 9 0
3 3 ✓ ✓ 7200.02 36.62 190.0 120.0 1923 9
3 3 ✓ 7200.01 44.43 205.0 114.0 6012 60
3 3 ✓ 7200.01 46.78 205.0 109.0
3 3 ✓ 7200.00 85.92 235.0 33.0 0
3 3 7200.01 86.26 205.0 28.0

4 2 ✓ ✓ ✓ 7200.01 36.84 190.0 120.0 2574 20 0
4 2 ✓ ✓ 7200.03 41.46 205.0 120.0 2954 20
4 2 ✓ 7200.02 43.99 205.0 115.0 5589 56
4 2 ✓ 7200.02 41.91 205.0 119.0
4 2 ✓ 7200.00 82.05 205.0 37.0 0
4 2 7200.01 84.17 205.0 32.0

4 3 ✓ ✓ ✓ 7200.04 68.14 565.0 180.0 4390 29 0
4 3 ✓ ✓ 7200.02 69.49 590.0 180.0 4462 28
4 3 ✓ 7200.01 74.86 590.0 148.0 8369 82
4 3 ✓ 7200.02 69.72 590.0 179.0
4 3 ✓ 7200.00 94.21 580.0 34.0 5
4 3 7200.01 95.31 600.0 28.0

Table 6.6: Performance of various solution approaches for varying operational setup. Each setup
consists of 𝑛 banks per subsystem, with 𝑚 subsystems. For each setup and solution
approach, we report the solve time in seconds, optimality gap, objective value, best
bound and number of each type of cut added.
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optimised maintenance schedule that satisfies all required constraints. While this research
focuses on Bayer digestion, many maintenance scheduling problems in refinery settings
exhibit similar challenges.

Several strategies were introduced to assist in solving the problem at larger dimensions.
Benders decomposition was used to handle the complicated operational lifetime require-
ment of the banks. We showed how the Benders subproblems could be solved easily using
a specialist algorithm. Additionally, valid inequalities based on practical assumptions
were introduced to further tighten the master problem. Finally, lazy constraints were
used to handle service clash constraints, which make up a substantial proportion of the
constraint set, yet only a small proportion are ever active. These strategies were then
evaluated on two case studies involving real world digester setups. Several test instances
were also generated to further explore the effectiveness of each strategy as well as better
understand the key complexities of the problem.

Extensive numerical experiments highlight the key model sensitives and complexities.
Parameters such as time horizon, service due time and operational setup each have
significant impacts on the performance of the suggested solution strategies. Crucially,
the results show that no single strategy is better in all cases. The model’s sensitivities
mean that particular strategies perform better in particular settings.
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In this thesis, we introduced several innovative approaches to extend cutting plane
techniques - traditionally reserved for concave maximisation problems - to nonconcave
scenarios. We explored the complex questions of how and when such an extension can
be effectively applied, and demonstrated the improved performance that can arise from
its application. Our findings have helped to enhance our understanding of nonconcave
quadratic functions and the underlyingmechanisms of successful cutting plane algorithms.
Consequently, we have been able to develop several state-of-the-art algorithms for some
nonconcave quadratic maximisation problems.

The key analysis began in Chapter 2, where we showed how restricting the search
domain to regions of concavity allows us to easily apply cutting plane methodologies. In
particular, we showed that the Euclidean distance matrix has the interesting property
of being conditionally negative definite. This means that the quadratic objective can
be effectively treated as concave when we restrict our search to points with the same
cardinality. This discovery enables the direct application of cutting plane methods to the
Euclidean max-sum diversity problem, even though the problem is inherently nonconcave.

Our resultant algorithm proved to be very efficient, making it the current state-of-the-
art for this particular class of problem. It is able to solve large, two-coordinate diversity
problem instances of more than 80000 variables. This impressive performance is in
part due to the resultant cutting plane model (Θ𝐴) being fairly easy to solve, as binary
variables are subject to a single cardinality constraint. Given (Θ𝐴) has a tight linear
programming relaxation, mixed-integer solvers can solve this subproblem at large scales
with relative ease. This represents a great example of one of the benefits of using cutting
plane methodologies over general nonlinear programming. As the resultant cutting
plane model is easy to handle and tangent planes provide tight approximations of the
objective function, we can easily implement a cutting plane algorithm within an integer
programming solver and are likely to see impressive overall performance.

Moreover, this chapter introduced the novel approach of analysing the concavity of a
quadratic function within the problem’s feasible domain, rather than the entire functional
domain. Conventionally, a problem’s nonconcavity is assessed based on the objective
or constraint functions alone. However, from an optimisation standpoint, our primary
interest lies in feasible solutions of the problem, or more specifically, feasible and optimal
solutions. Thus, it is more useful to evaluate the properties of the quadratic objective on
only feasible solutions. This innovative approach could potentially lead to substantial
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improvements in solving other quadratic programming problems. Historically, some
of the most significant improvements to solution methods for quadratic programming
problems have come from the research of classical problems. Future work should look to
re-evaluate some of these classical problems with the new perspective of assessing the
concavity of the objective within the feasible domain.

One of the downfalls of cutting plane methods is their reliance on tangent planes to
provide good approximations of the objective function. If tangents are weak, especially
at an optimal solution, then the approach can perform poorly. This was frequently
observed on high-coordinate instances of the Euclidean max-sum diversity problem,
as seen in Chapter 2.4. In Chapter 3, we conducted an in-depth instance analysis to
better understand why the number of coordinates of original locations has a noticeable
effect on cut tightness. By examining the effectiveness of a tangent’s ability to remove
nonoptimal solutions, we showed how these planes are unable to effectively and accurately
approximate the objective contribution of locations towards the exterior of the cluster.
As such, the cuts become weaker when the interior density decreases. This observation
led to the introduction of a new class of challenging instances, where locations are spread
around the circumference of a ball, and thus have no interior points.

Instance analysis not only highlights the key complexities of the problem, but can
also identify the failings of an algorithm and suggest potential remedies. As a result of
our analysis, we developed an improved cutting plane algorithm that uses coordinate
partitioning to improve the linear approximation provided by tangent planes. By recon-
structing a set of points whose squared Euclidean distances equal that of the original,
the objective function becomes separable with respect to each new coordinate space.
This allows us to form functional components whose location clusters have high interior
densities, and therefore expected to have tighter cuts. Furthermore, we introduced sev-
eral partitioning strategies. The resultant partitioned Euclidean diversity cut algorithm
proved to be very efficient, improving on the original algorithm from Chapter 2.

The application of functional decomposition, such as with coordinate partitioning, is
not a new practice, however it has been previously undervalued in the existing literature.
One possible reason for this is that developing effective decomposition strategies is, in
general, challenging and problem specific. The coordinate partitioning of Chapter 3 is
specific to Euclidean distance matrices and hence is not applicable to general problems. A
promising avenue for future work is in identifying and developing functional decomposi-
tion methods for other nonlinear programming problems. Moreover, quadratic functions
can always be decomposed into their eigenvalues and eigenvectors. For instance, let
𝑄 ∈ ℝ𝑛×𝑛 be a square symmetric matrix and let 𝜆1, … , 𝜆𝑛 ∈ ℝ and 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑛 be its
eigenvalues and orthonormal eigenvalues, respectively. Using eigenvalue decomposition
we can write

𝑄 =
𝑛
∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣𝑇𝑖 ,
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which is effectively the sum of 𝑛 rank one matrices. Developing an effective functional
decomposition method using this basic result could therefore be applied to any quadratic
programming problem. If achieved, this could lead to substantial algorithmic improve-
ments across almost all types of quadratic programming problem.

The Euclidean diversity problem highlighted the fact that we can restrict our feasible
space to achieve concavity in the objective function. In Chapter 4 we extended this idea by
showing how we can augment our search strategy to always stay on concave directions.
This is achieved through the development of the novel concept of directional concavity,
which asserts whether the tangent plane of 𝑦 provides a valid upper approximation
at a point 𝑥. Looking specifically at the Euclidean max-sum problem, we developed
several sufficient conditions to assert whether directional concavity holds by exploiting
various properties of Euclidean distance matrices, such as one positive eigenvalue or
being conditionally negative definite. These conditions proved very useful, and allowed
us to develop an exact algorithm that searches the entire feasible domain while always
staying on concave directions. As such, we can once again extend cutting plane methods
to this class of nonconcave maximisation problem.

The algorithms introduced in this chapter could be improved in future research. In
particular, Algorithm 8 may benefit for a more sophisticated binary search tree structure.
This should allow for more efficient evaluation of the problem at different cardinality
levels, as opposed to only searching in a decreasing direction. Furthermore, we note a
significant gap in the literature on the application of the (EMSP) to real-world problems.
The tests used in this chapter provide interesting conceptual frameworks and future
work should expand on these results by applying the methods to real-world datasets and
problems. In addition to identifying practical (EMSP) models, we should also attempt to
identify difficult instances of these problems. In Chapter 3 we showed how the diversity
problem becomes more challenging with a larger number of coordinates. That difficulty
was not observed for the CDP or GDP problems, and hence more work is required
to identify other difficult instances of the (EMSP). These problems can also help to
understand and decide on which algorithm to use in which scenario.

In Chapter 5, we then relaxed the requirement of the objective being a Euclidean
distance matrix and extended directional concavity to a general matrix. This involved
extending the functional decomposition methodology from Chapter 3 and relaxing some
of the original conditions for directional concavity from Chapter 4. By combining direc-
tionally concave tangent planes with convex over-envelopes, we formulated an upper
approximation of the quadratic objective function everywhere. However, this upper plane
is piecewise linear. Therefore, to use it in a linear cutting plane model, the conditions
were linearised and a branch and cut algorithm was proposed that allowed us to search
the entire space. Extensive numerical experiments proved the validity of this idea and
presented it as a promising avenue for future research.

We suggest two key avenues of future improvements for our directionally concave
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7 Conclusion and Future Work

branch and cut algorithm. The first is to improve the decomposition, branching and
node selection rules used. Our numerical results showed varied performance based on
which strategy was chosen. In particular, poor branching and node selection rules meant
the algorithm often wasted time exploring unhelpful subtrees. However, the algorithm
achieved very promising best-case results, and hence more work is required to improve
the formulation of the branch and cut tree, thereby improving overall performance and
robustness.

Furthermore, although the number of positive eigenvalues had a great effect on runtime,
the average angle after functional decomposition seemed to have very little effect on
overall performance. In fact, there weremany examples of large achieved angles with poor
run times. Moreover, in Figure 5.3 there is an obvious pattern between decomposition
strategy and achieved angle, yet the runtime these strategies achieved showed little
pattern. This suggests that theremay be some other phenomena effecting the performance
of this approach, for which we currently have no explanation. Additionally, future
work should look to extend the results of our directionally concave tangent planes to
matrices with several positive eigenvalues. Although such a result may mean less space is
approximated by tangents, it should reduce the number of potential branching directions,
possibly leading to run time improvements.

Finally, in Chapter 6 we highlight the importance of pragmatic optimisation solutions
by developing a maintenance scheduling model for digester banks, a critical path as-
set used in the Bayer process. Motivated by the complexity of creating cost-efficient
schedules for these assets, our model aims to optimise maintenance costs while adhering
to all constraints. We employ several strategies to tackle large-scale problems, includ-
ing Benders decomposition for managing operational lifetimes, a specialised algorithm
for Benders subproblems, and valid inequalities to strengthen the master problem. Ad-
ditionally, lazy constraints address service clash constraints, prevalent yet minimally
active, enhancing our model’s efficiency. Our evaluation includes extensive numerical
experiments, including a real-world case study, highlighting the model’s sensitivities
and complexities. Variables like the time horizon, service due times, and operational
setups significantly affect performance. This research not only advances maintenance
scheduling in the Bayer process but also sheds light on similar challenges across refinery
operations.

Our results demonstrate that no single strategy universally excels, but specific strategies
may perform better under certain conditions, underscoring the need to tailor approaches
to individual scenarios. As such, future work should look to refine some of the decision
making regarding which solution strategy to use for a given problem. Furthermore, it
may be the case that there is significant symmetry present in the model, whereby the
cleaning and service schedule of a bank subsystem could be swapped without impacting
the feasibility or objective value. Finally, a discrete time model could be explored, which
may provide a tighter formulation for certain digester bank setups.

164



In summary, this thesis has successfully demonstrated the application of cutting plane
methodologies to quadratic programming problems, notably through the integration of
novel concepts like directional concavity and functional decomposition. Our research
has opened new pathways for enhancing the efficiency and applicability of cutting
plane techniques, particularly in the realm of quadratic programming. As we look
forward, there is significant potential to expand upon these foundations. Investigating the
application of our approaches to a broader range of quadratic programming challenges,
optimising decomposition strategies, and refining our algorithms to harness the full
potential of directional concavity will be crucial. These endeavours not only promise to
advance the theoretical framework of cutting plane methods but also improve practical
outcomes in solving complex real-world optimisation problems, such as in Chapter 6. By
continuously pushing the boundaries of what is feasible with cutting plane techniques,
we can contribute to the development of more robust, scalable, and efficient optimisation
tools that meet the growing demands of its diverse application areas.
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A Appendix

A.1 Proof of Proposition 16

Proof. Firstly, observe that 𝐻(𝑗1) ⊂ ⋯ ⊂ 𝐻(𝑗𝑝) and hence Proposition 15 is equivalent to

|𝐼 (𝑥) ∩ 𝐻(𝑗𝑘)| ≥ 𝑘, for all 𝑘 = 1, … , 𝑝.

For 𝑘 ≥ 2, this can be rewritten as

|𝐼 (𝑥) ∩ (𝐻(𝑗𝑘) ∖ 𝐻(𝑗𝑘−1))| + |𝐼 (𝑥) ∩ 𝐻(𝑗𝑘−1)| ≥ 𝑘. (A.1)

Hence, let

ℎ(𝑘) = {
𝐻(𝑗1), if 𝑘 = 1,
𝐻(𝑗𝑘) ∖ 𝐻(𝑗𝑘−1), otherwise .

Then for all 𝑘1, 𝑘2 such that 1 < 𝑘1 < 𝑘2, we have that

ℎ(𝑘1) ∩ ℎ(𝑘2) = (𝐻(𝑗𝑘1) ∖ 𝐻(𝑗𝑘1−1)) ∩ (𝐻(𝑗𝑘2) ∖ 𝐻(𝑗𝑘2−1))
⊂ 𝐻(𝑗𝑘1) ∩ (𝐻(𝑗𝑘2) ∖ 𝐻(𝑗𝑘2−1))
= (𝐻(𝑗𝑘1) ∩ 𝐻(𝑗𝑘2)) ∖ 𝐻(𝑗𝑘2−1) (A.2)

= 𝐻(𝑗𝑘1) ∖ 𝐻(𝑗𝑘2−1) = ∅ (A.3)

where (A.2) comes from the set identity 𝐴 ∩ (𝐵 ∖ 𝐶) = (𝐴 ∩ 𝐵) ∖ 𝐶 and (A.3) comes from
𝐻(𝑗𝑘1) ⊆ 𝐻(𝑗𝑘2−1) ⊂ 𝐻(𝑗𝑘2). Note this proof holds analogously for the case where 𝑘1 = 1.
Therefore all ℎ(𝑘) are independent from one another. We can use the independent sets
ℎ(1), … , ℎ(𝑝) to rewrite (A.1) as

|𝐼 (𝑥) ∩ ℎ(1)| ≥ 1, (A.4)

|𝐼 (𝑥) ∩ ℎ(𝑘)| ≥ 𝑘 −
𝑘−1
∑
𝑙=1

|𝐼 (𝑥) ∩ ℎ(𝑙)| , 𝑘 = 2, … , 𝑝, (A.5)

where (A.5) comes from the fact

|𝐼 (𝑥) ∩ 𝐻(𝑗𝑘−1)| = |𝐼 (𝑥) ∩ (
𝑘−1
⋃
𝑙=1

ℎ(𝑙))| =
𝑘−1
∑
𝑙=1

|𝐼 (𝑥) ∩ ℎ(𝑙)| .

177



A Appendix

We can therefore determine the number of solutions that satisfy Proposition 15 by
counting the number of possible combinations of selecting elements from the independent
sets ℎ(1), … , ℎ(𝑝) such that (A.4) and (A.5) hold. This can be achieved with the following
recursive sum,

𝑅(𝑦, 𝐿𝐵) ≥
min{|ℎ(1)|,𝑝}

∑
𝑤1=1

min{|ℎ(2)|,𝑝−𝑤1}
∑

𝑤2=max{2−𝑤1,0}
⋯

min{|ℎ(𝑝)|,𝑝−∑𝑝−1
𝑘=1 𝑤𝑙}

∑
𝑤𝑝=max{𝑝−∑𝑝−1

𝑙=1 𝑤𝑙,0}

𝑝
∏
𝑘=1

(
|ℎ(𝑘)|
𝑤𝑘

) ,

which provides a valid lower bound for the number of solutions removed by the tangent
plane of 𝑦.
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A.2 Proofs of Validity of Decomposition Strategies

The following results prove 𝑓 (𝑥) = 𝑔(𝑥) + ∑𝑚
𝑖=1 𝑓𝑖(𝑥) for each decomposition strategy

listed in Section 5.2.8.

1. Basic: For the basic decomposition, we get that

𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥) = 0 +
𝑚
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 +

𝑚
∑
𝑖=1

1
𝑚
⟨𝑄−𝑥, 𝑥⟩ ,

= 0 + ⟨𝑄+𝑥, 𝑥⟩ + ⟨𝑄−𝑥, 𝑥⟩ = 𝑓 (𝑥),

as required.

2. Greedy: If 𝑚 < 𝑙 we have that

𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥) =
𝑙

∑
𝑖=𝑚+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 +

𝑚
∑
𝑖=1

(𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + 𝜆𝑚+𝑙+1−𝑖 ⟨𝑣𝑚+𝑙+1−𝑖, 𝑥⟩

2)

=
𝑙

∑
𝑖=𝑚+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + ⟨𝑄+𝑥, 𝑥⟩ +

𝑚+𝑙
∑
𝑖=𝑙+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2

= ⟨𝑄+𝑥, 𝑥⟩ +
𝑚+𝑙
∑

𝑖=𝑚+1
𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2

= ⟨𝑄+𝑥, 𝑥⟩ + ⟨𝑄−𝑥, 𝑥⟩ = 𝑓 (𝑥).

If 𝑚 = 𝑙 then

𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥) = 0 +
𝑚
∑
𝑖=1

(𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + 𝜆𝑚+𝑙+1−𝑖 ⟨𝑣𝑚+𝑙+1−𝑖, 𝑥⟩

2)

=
𝑚
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 +

𝑙
∑
𝑖=1

𝜆𝑚+𝑙+1−𝑖 ⟨𝑣𝑚+𝑙+1−𝑖, 𝑥⟩
2

= ⟨𝑄+𝑥, 𝑥⟩ +
𝑚+𝑙
∑

𝑖=𝑚+1
𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2

= ⟨𝑄+𝑥, 𝑥⟩ + ⟨𝑄−𝑥, 𝑥⟩ = 𝑓 (𝑥).

Finally, if 𝑚 > 𝑙, then

𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥) = 0 +
𝑙

∑
𝑖=1

(𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + 𝜆𝑚+𝑙+1−𝑖 ⟨𝑣𝑚+𝑙+1−𝑖, 𝑥⟩

2) +
𝑚
∑
𝑖=𝑙+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2

=
𝑚
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 +

𝑙
∑
𝑖=1

𝜆𝑚+𝑙+1−𝑖 ⟨𝑣𝑚+𝑙+1−𝑖, 𝑥⟩
2

= ⟨𝑄+𝑥, 𝑥⟩ +
𝑚+𝑙
∑

𝑖=𝑚+1
𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2

= ⟨𝑄+𝑥, 𝑥⟩ + ⟨𝑄−𝑥, 𝑥⟩ = 𝑓 (𝑥),
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as required.

3. Stratified: If 𝑚 < 𝑙, then

𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥) =
𝑙

∑
𝑖=𝑚+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 +

𝑚
∑
𝑖=1

(𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + 𝜆max{𝑚,𝑙}+𝑖 ⟨𝑣max{𝑚,𝑙}+𝑖, 𝑥⟩

2)

=
𝑙

∑
𝑖=𝑚+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + ⟨𝑄+𝑥, 𝑥⟩ +

𝑚
∑
𝑖=1

𝜆𝑙+𝑖 ⟨𝑣𝑙+𝑖, 𝑥⟩
2

=
𝑙

∑
𝑖=𝑚+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + ⟨𝑄+𝑥, 𝑥⟩ +

𝑚+𝑙
∑
𝑖=𝑙+1

𝜆𝑙 ⟨𝑣𝑙, 𝑥⟩
2

= ⟨𝑄+𝑥, 𝑥⟩ + ⟨𝑄−𝑥, 𝑥⟩ = 𝑓 (𝑥).

If 𝑚 = 𝑙 then

𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥) = 0 +
𝑚
∑
𝑖=1

(𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + 𝜆max{𝑚,𝑙}+𝑖 ⟨𝑣max{𝑚,𝑙}+𝑖, 𝑥⟩

2)

= ⟨𝑄+𝑥, 𝑥⟩ +
𝑙

∑
𝑖=1

𝜆𝑚+𝑖 ⟨𝑣𝑚+𝑖, 𝑥⟩
2

= ⟨𝑄+𝑥, 𝑥⟩ +
𝑚+𝑙
∑

𝑖=𝑚+1
𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2

= ⟨𝑄+𝑥, 𝑥⟩ + ⟨𝑄−𝑥, 𝑥⟩ = 𝑓 (𝑥).

Finally, if 𝑚 > 𝑙 then

𝑔(𝑥) +
𝑚
∑
𝑖=1

𝑓𝑖(𝑥) = 0 +
𝑙

∑
𝑖=1

(𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 + 𝜆max{𝑚,𝑙}+𝑖 ⟨𝑣max{𝑚,𝑙}+𝑖, 𝑥⟩

2) +
𝑚
∑
𝑖=𝑙+1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2

=
𝑚
∑
𝑖=1

𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩
2 +

𝑙
∑
𝑖=1

𝜆𝑚+𝑖 ⟨𝑣𝑚+𝑖, 𝑥⟩
2

= ⟨𝑄+𝑥, 𝑥⟩ +
𝑚+𝑙
∑

𝑖=𝑚+1
𝜆𝑖 ⟨𝑣𝑖, 𝑥⟩

2

= ⟨𝑄+𝑥, 𝑥⟩ + ⟨𝑄−𝑥, 𝑥⟩ = 𝑓 (𝑥).

180



A.3 Attribution

A.3 Attribution

Attribution for Chapter 2, which is based off Spiers, Bui, and Loxton (2023b).

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Sandy Spiers ✓ ✓ ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Hoa Bui ✓ ✓ ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Ryan Loxton ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

181



A Appendix

Attribution for Chapter 3, which is based off Spiers, Bui, and Loxton (2023a).

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Sandy Spiers ✓ ✓ ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Hoa Bui ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Ryan Loxton ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

182



A.3 Attribution

Attribution for Chapter 4, which is based off Bui et al. (2024)

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Sandy Spiers ✓ ✓ ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Hoa Bui ✓ ✓ ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Ryan Loxton ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

183



A Appendix

Attribution for Chapter 6, which is based off Spiers, Bui, Loxton, et al. (2023).

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Sandy Spiers ✓ ✓ ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Hoa Bui ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

Ryan Loxton ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

184



A.3 Attribution

Attribution for Chapter 6 continued.

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Moussa Mansour ✓ ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

185



A Appendix

Attribution for Chapter 6 continued.

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Kylie Hollins ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

186



A.3 Attribution

Attribution for Chapter 6 continued.

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Richard Francis ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

187



A Appendix

Attribution for Chapter 6 continued.

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Chistopher
Martindale

✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

188



A.3 Attribution

Attribution for Chapter 6 continued.

Conception
and Design

Mathematical
Development

Results,
Data Analysis and
Implementation

Write-up
Editing and
Reviewing

Yogesh Pimpale ✓ ✓

I acknowledge that these represent my contribution to the above research output
and I have approved the final version.

Signed:

189


	Pages from thesis
	Spiers S 2024 Public
	Introduction
	Motivation and Background
	Solving Optimisation Problems
	Exact Quadratic Programming
	Concave Problems
	Nonconcave Problems

	Thesis Overview

	The Max-Sum Diversity Problem
	Introduction
	Euclidean Distance Geometry
	The Euclidean Diversity Cut Algorithm
	Numerical Results
	Conclusion

	Coordinate Partitioning for Difficult Diversity Problems
	Introduction
	Geometric Insights into Cutting Planes
	Methodology
	Location Recovery
	Coordinate Partitioning
	Principal Component Analysis
	Partition Strategies
	Illustrative Example

	Numerical Results
	Cube Instances
	Ball Instances

	Conclusion

	Euclidean Max-Sum Problems
	Introduction
	Methodology
	Directional Concavity
	Cutting Plane Algorithms

	Numerical Results
	Capacitated Diversity Problem
	Generalised Diversity Problem
	Cardinality and Cut Strength
	Multi-threaded Tests
	Max-sum Diversity Problem

	Conclusion

	Directionally Concave Branch and Cut
	Introduction
	A Directionally Concave Branch and Cut Algorithm
	Directional Notation
	Directional Concavity
	One-Positive Matrices
	Space Partitioning
	Upper Plane Visualisation
	A Partial Cutting Plane Model
	Branch and Cut Algorithm
	Functional Decomposition and Branching Strategies

	Numerical Results
	Functional Decompositions
	Continuous Problems
	Binary Problems
	Performance Analysis
	Highly Convex Instances

	Conclusion

	Application: Bayer Digestion Maintenance Optimisation
	Introduction
	Digester Bank Maintenance Activities
	Scheduling Optimisation

	Problem Formulation
	Model Setup
	Scheduling Maintenance Activities
	Maintenance Due Times
	Double Bank Changes
	Estimating Number of Required Maintenance Activities
	Valve Changes
	Objective Function

	Solution Algorithm
	Master Problem
	Lifetime Subproblems
	Valid Inequalities

	Numerical Results and Discussion
	Case Study
	Test Instances

	Conclusion

	Conclusion and Future Work
	Bibliography
	Appendix
	Proof of Proposition 16
	Proofs of Validity of Decomposition Strategies
	Attribution





