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Abstract. In this paper, we consider a general class of discrete-time optimal

control problems subject to all-time-step constraints on the state and control
variables. The derivations of the gradient formulas for the cost and constraint

functions for this constrained discrete-time optimal control problem are rather
involved. We present a simple approach to the derivations of these gradient

formulas based on reversed automatic differentiation. On this basis, a numeri-

cal algorithm is developed to solve this all-time-step constrained discrete-time
optimal control problem. We then consider a class of continuous-time optimal

control problems subject to continuous state inequality constraints. This con-

strained continuous-time optimal control problem is discretized into a discrete-
time optimal control problem with all-time-step constraints using the Euler

discretization method. Then, the algorithm developed for constrained discrete-

time optimal control problem is applied to solve this discretized optimal control
problem. Numerical examples are presented to verify the applicability of the

proposed methods.

1. Introduction. Optimal control theory has been applied to solve practical real-
world problems in various disciplines, such as engineering [6], environmental sciences
(see for example [11] and [5]), and bioprocessing [1]. However, due to the complexity
of these practical real-world problems, it is inevitable that they can only be solved
by numerical methods. There are various numerical methods that are available
in the literature for solving optimal control problems (see for example [9], [3], and
[8]). Control parameterization used in conjunction with the constraint transcription
method is a popular method for solving constrained optimal control problems.

For discrete-time optimal control problems, they can be solved as nonlinear opti-
mization problems. However, as the governing difference equations are regarded as
nonlinear equality constraints, the state and control variables are both considered
as decision variables. This will result in having many decision variables and many
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nonlinear equality constraints. In [16], a numerical method is proposed to solve
these discrete-time optimal control problems for which only the control variables
are regarded as decision variables. For a given control sequence, the corresponding
state variables are obtained through solving the difference equations. Then, the
gradient formulas for the cost and constraint functions of the problems are derived.
Therefore, the problems can be regarded as nonlinear optimization problems and
solved using gradient-based optimization methods. The gradient formulas are de-
rived based on the co-state method. Moreover, in [13], two approaches are proposed
for the calculation of gradient based on automatic differentiation. In [2], a gradient
formula of the cost function is derived based on the reverse automatic differentiation
techniques.

In this paper, we consider a general class of discrete-time optimal control prob-
lems governed by difference equations and subject to all-time-step inequality con-
straints. Using the constraint transcription method introduced in the chapter 5 of
[12], the all-time-step constraints are approximated by one inequality constraint in
the form of the cost function. Then the gradient formulas of the cost and constraint
functions can be derived in a unified manner using reversed automatic differentia-
tion [2]. On this basis, a gradient-based numerical algorithm is developed for solving
this class of constrained discrete-time optimal control problems.

The rest of the paper is organized as follows. In section 2, the discrete-time
optimal control problem subject to all-time-step inequality constraints is formally
described. Then, in section 3, through transformation and approximation, the all-
time-step inequality constraints are approximated by one terminal state inequality
constraint. The cost function is transformed into the cost of terminal state. In
section 4, the gradient formulas of the cost and constraint functions are derived
in a unified manner using reversed automatic differentiation. On this basis, a nu-
merical algorithm is developed in section 5. The approach is then extended to
the continuous-time optimal control problem with continuous state inequality con-
straints using Euler approximation. Simulation results are presented in section 7.
Finally in section 8, some concluding remarks are given.

2. Problem statement. Consider a general class of discrete time dynamical sys-
tems described by difference equations in the form of

x(k + 1) = f(k,x(k),u(k)), k = 0, 1, ..., N − 1, (1a)

x(0) = x0, (1b)

where x = [x1, ..., xn]T ∈ Rn and u = [u1, ..., ur]T ∈ Rr are, respectively, the
state and control vectors, and x0 = [x01, ..., x

0
n]T ∈ Rn is a given constant vector

representing the initial state of the system. Moreover f = [f1, . . . , fn]T : Z×Rn×Rr

→ Rn is a continuously differentiable function with respect to x and u, where
Z denotes the set of all non-negative integers. For a control sequence u(k) =
[u1(k), ..., ur(k)]T ∈ Rr, k = 0, 1, ..., N − 1, suppose that the following conditions
are satisfied:

u ≤ u(k) ≤ u, k = 0, 1, ..., N − 1, (2)

where u = [u1, ..., ur]T ∈ Rr and u = [u1, ..., ur]T ∈ Rr are given constant vectors.
Then, this control sequence u(k) ∈ Rr, k = 0, 1, ..., N − 1, is referred to as an
admissible control sequence. Let U be the set which contains all such admissible
control sequences. A control u ∈ U is called a feasible control if it satisfies the
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following all-time-step inequality constraints:

hi(k,x(k),u(k)) ≤ 0, k = 0, 1, . . . , N − 1; i = 1, ...,m, (3)

where hi, i = 1, ...,m, are continuously differentiable functions with respect to x
and u. Let F denote the set which contains all such feasible controls. We may now
state the optimal control problem under consideration in this paper.

Given the dynamic system (1a)-(1b), find a control u ∈ F such that the following
cost function is minimized over F :

g0(u) =

N−1∑
k=0

L0(k,x(k),u(k)), (4)

where L0 : Z×Rn×Rr → R is a given function which is continuously differentiable
with respect to x and u. Let this problem be referred to as Problem (P).

3. Transformation and approximation. For the cost function (4), define

y(k + 1) =

k∑
t=0

L0(t,x(t),u(t)), k = 0, 1, ..., N − 1, (5a)

y(0) = 0, (5b)

which can be written as:

y(k + 1) = f0(k,x(k), y(k),u(k)), k = 0, 1, ..., N − 1, (6)

where
f0(k,x(k), y(k),u(k)) = y(k) + L0(k,x(k),u(k)), (6b)

Then, (4) is equivalent to
y(N), (7)

subject to (6).

We now consider the all-time-step inequality constraints (3). Clearly, it is equiv-
alent to

N−1∑
k=0

max{hj(k,x(k),u(k)), 0} = 0, j = 1, ...,m. (8)

Since max{·, 0} is non-smooth, we shall apply the constraint transcription technique
proposed in [7] and [4] to approximate the non-smooth function max{·, 0} as follows:

γj,ε(k,x(k),u(k)) =


0, if hj(k,x(k),u(k)) < −ε
(hj(k,x(k),u(k))+ε)2

4ε , if − ε ≤ hj(k,x(k),u(k)) ≤ ε
hj(k,x(k),u(k)), if hj(k,x(k),u(k)) ≥ ε

(9)

where ε is a sufficient small positive number. Define, for each j = 1, ...,m,

zj(k + 1) =

k∑
t=0

γj,ε(t,x(t),u(t)), k = 0, 1, ..., N − 1, (10a)

zj(0) = 0, (10b)

which can be written as

zj(k + 1) = fn+j,ε(k,x(k), zj(k),u(k)), k = 0, 1, ..., N − 1, (11a)

where

fn+j,ε(k,x(k), zj(k),u(k)) = zj(k) + γj,ε(k,x(k),u(k)), j = 1, ...,m. (11b)
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Now, in view of [4], it follows that the all-time-step inequality constraints (3) will
be satisfied if the following inequality constraints are satisfied.

zj(N)− ε

4
≤ 0, j = 1, ...,m. (12)

Now the discrete-time optimal control problem with all-time-step inequality con-
straints (3) is approximated by the discrete-time optimal control problem subject
to terminal state inequality constraints (12). More specifically, the approximate
discrete-time optimal control problem may be detailed as follows:

Given the dynamical system

X(k + 1) = F (k,X(k),u(k)), (13a)

X(0) = X0, (13b)

where X = [y, x1, ..., xn, z1, ..., zm]T , X0 = [0, x01, ..., x
0
n, 0, ..., 0]T , and F = [f0, f1,

..., fn, fn+1,ε, ..., fn+m,ε]
T , find a control u ∈ U such that the cost function (7) is

minimized subject to the terminal inequality constraints (12). Let this problem be
referred to as Problem (Q).

4. Gradient computation. Problem (Q) can be solved by using gradient-based
optimization techniques, such as the sequential quadratic programming approach
(SQP). This family of methods require the gradient information of the cost function
(7) and the constraint functions (12). We note that the cost function and the
constraint functions are of the same form, and hence the derivations of their gradient
formulas can be carried out in a unified manner. The technique used in chapter
7 of [12] is rather involved. A simpler derivation based on reversed automatic
differentiation is given below. To derive the gradient formula for the cost function
(7), define the Lagrangian given below:

G0(k,X,u,Λ) = y(N)−
N−1∑
k=0

[F (k,X(k),u(k))−

X(k + 1)]
T

Λ(k + 1) + (X0 −X(0))Λ(0),

(14)

where

Λ = [Λ0,Λ1, ...,Λn,Λn+1, ...,Λn+m]T (15)

is the multiplier function, which is often referred to as the adjoint function.

Theorem 4.1 (Objective gradient). Consider Problem (Q). The gradient of the
cost function (7) is

∂y(N)

∂u(k)
=
∂G0(k,X(k),u(k),Λ(k + 1))

∂u(k)

=

[
∂F (k,X(k),u(k))

∂u(k)

]T
Λ(k + 1), k = 0, 1, ..., N − 1,

(16)

where the system of augmented state variables are obtained by solving the following
augmented state system,

X(k + 1) =
∂G0(k,X(k),u(k),Λ(k + 1))

∂Λ(k + 1)

= F (k,X(k),u(k))), k = 0, 1, ..., N − 1,

(17a)

X(0) = X0, (17b)
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and the corresponding adjoints are obtained by solving the following adjoint system,

Λ(k) =
∂G0(k,X(k),u(k),Λ(k + 1))

∂X(k)

=

[
∂F (k,X(k),u(k))

∂X(k)

]T
Λ(k + 1), k = 0, 1, ..., N − 1, (18a)

Λ(N) =
∂y(N)

∂X(N)
. (18b)

Proof. The dynamic system (13) is written in the equality constraints given below:

Φ(k + 1) = F (k,X(k),u(k))−X(k + 1) = 0, k = 0, 1, ..., N − 1, (19a)

Φ(0) = X0 −X(0) = 0, (19b)

where Φ = [Φy,Φx1
, ...Φxn

,Φz1 , ...,Φzm ]T ∈ Rm+n+1.
The Lagrangian for Problem (Q) is given below:

G0(k,X,u,Λ) = y(N)−
N−1∑
k=0

[F (k,X(k),u(k))

− X(k + 1)]
T

Λ(k + 1) + (X0 −X(0))Λ(0),

(20)

where Λ(k) is the Lagrangian multiplier of the objective function (7) with equality
constraints specified by (19). Taking the partial derivative of G0 with respect to
X(k), and then let it be equal to zero, i.e., ∂G0/∂X(k) = 0, we obtain:

Λ(k) =

[
∂F (k,X(k),u(k))

∂X(k)

]T
Λ(k + 1). (21a)

Clearly, the last multiplier is given by

Λ(N) =
∂y(N)

X(N)
, (21b)

Since the multiplier is accessible, the desired gradient at each time step can be
obtained by letting the partial derivative of G0 with respect to u(k) to be equal to
zero, i.e., ∂G0/∂u(k) = 0,

∂G0

∂u(k)
=
∂y(N)

∂u(k)
−
[
∂F (k,X(k),u(k))

∂u(k)

]T
Λ(k + 1) = 0, k = 0, 1, ..., N − 1. (22)

Rewritten (22) will give the gradient formula (16) and this completes the proof.

Remark 4.2 (Terminal condition of Λ(k)). Note that the augmented state vari-
ables contain y(k), xi(k), and zj(k), the correspondingly adjoint vector also has
three parts, namely Λ0(k), Λi(k), and Λn+j(k). Their terminal conditions are:

Λ(N) = [Λ0(N),Λ1(N), ...,Λn(N),Λn+1(N), ...,Λn+m(N)]

=

[
∂y(N)

∂y(N)
,
∂y(N)

∂x1(N)
, ...,

∂y(N)

∂xn(N)
,
∂y(N)

∂z1(N)
, ...,

∂y(N)

∂zm(N)

]
(23a)

=

1, 0, ..., 0︸ ︷︷ ︸
n

, 0, ..., 0︸ ︷︷ ︸
m

 . (23b)
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We now consider the j-th constraint function (12) of Problem (Q), where j =
1, ...,m. Define its Lagrangian given below:

G0(k,X,u,Ξ) =
(
zj(N)− ε

4

)
−

N−1∑
k=0

[F (k,X(k),u(k))

− X(k + 1)]
T

Ξ(k + 1) + (X0 −X(0))Ξ(0),

(24)

where

Ξj = [Ξj
0,Ξ

j
1, ...,Ξ

j
n,Ξ

j
n+1, ...,Ξ

j
n+m]T (25)

are the multiplier of the j-th constraints.

Theorem 4.3 (The gradient of the j-th constraint). Consider Problem (Q). The
gradient of the j-th constraint function (12) is given by

∂(zj(N)− ε
4 )

∂u(k)
=
∂Gj(k,X(k + 1),u(k + 1),Ξj(k + 1))

∂u(k)

=

[
∂F (k,X(k),u(k))

∂u(k)

]T
Ξj(k + 1), k = 0, 1, ..., N − 1,

(26)

where the system of the augmented state variables are obtained by solving the fol-
lowing augmented state system forward in time,

X(k + 1) =
∂G0(k,X(k),u(k),Ξ(k + 1))

∂Ξ(k + 1)

= F (k,X(k),u(k))), k = 0, 1, ..., N − 1,

(27a)

X(0) = X0, (27b)

and the corresponding adjoint variables are obtained through solving the following
adjoint system backward in time, i.e., from k = N to k = 0,

Ξj(k) =
∂Gj(k,X(k),u(k),Ξj(k + 1))

∂X(k)

=

[
∂F (k,X(k),u(k))

∂X(k)

]T
Ξj(k + 1), k = 0, 1, ..., N − 1, (28a)

Ξj(N) =
∂zj(N)

∂X(N)
. (28b)

The proof of Theorem 2 is similar to the proof of Theorem 1, and hence is omitted.

Remark 4.4 (Terminal condition of Ξj(k)). For the terminal of adjoint system
(28b) the adjoint vector for the j-th constraint function also contains three parts,

namely, Ξj
0(k), Ξj

i (k), Ξj
n+j(k). Their terminal conditions are:

Ξj(N) = [Ξj
0(N),Ξj

1(N), ...,Ξj
n(N),Ξj

n+1(N), ...Ξj
n+j(N), ...,Ξj

n+m(N)]

=

[
∂zj(N)

∂y(N)
,
∂zj(N)

∂x1(N)
, ...,

∂zj(N)

∂xn(N)
,
∂zj(N)

∂z1(N)
, ...,

∂zj(N)

∂zj(N)
, ...,

∂zj(N)

∂zm(N)

]
(29a)

=

0, ..., 0︸ ︷︷ ︸
n+j

, 1, 0, ..., 0︸ ︷︷ ︸
m−j

 , j = 1, ...,m (29b)
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5. Numerical algorithm. The augmented state variables for the cost function
(respectively, the constraint functions) are obtained by solving the augmented state
system (17a) (respectively, (27a)) with initial condition (17b) (respectively, (27b))
forward in time. The adjoint variables for the cost function (respectively, the con-
straint functions) are obtained by solving the adjoint system (18a) (respectively,
(28a)) with terminal condition (18b) (respectively, (28b)) backward in time.The
numerical partial differentiations of the dynamic functions with respected to state
and control can be carried out using automatic differentiation. Finally, the gradi-
ents for the cost function and the constraint functions are obtained by using the
gradient formulas (16) and (26). With these gradient formulas, the Problem (Q)
can be solved using any optimization method, such as SQP. The algorithm is given
below.

Algorithm 1 Optimization routine

Step 1. Initialize a smoothing parameter ε (where ε > 0) and choose an initial
control sequence u0.
Step 2. Solve the augmented system (17) forward in time to obtain the aug-
mented state X(k), k = 0, ..., N .
Step 3. Solve the adjoint system (18) backward in time to give the adjoint state
Λ(k), k = 0, ..., N .
Step 4. For j = 1, ...,m, solve the adjoint system (28) to have the adjoint state
Ξ(k), k = 0, ..., N .
Step 5. Use (16) to calculate the gradient of the cost function (7) with respect
to u(k).
Step 6. For j = 1, ...,m, use (26) to compute the gradient of the j-th constraint
function (12) with respect to u(k).
Step 7. Apply symbolic partial differentiation to calculate ∂F

∂X and ∂F
∂u .

Step 8. Implement an SQP solver (such as the MATLAB Optimization Toolbox,
fmincon) to compute the optimal controls and the states.

6. Extension to continuous problems. In this section, we consider a general
class of continuous-time optimal control problems governed by the following ordi-
nary differential equation defined on the fixed time interval (0, T ],

dx(t)

dt
= f(t,x(t),u(t)), (30)

where x ∈ Rn and u ∈ Rr are, respectively, the state and control vectors, and
moreover, x0 is a given constant vector representing the initial state of the system.
f : [0, T ]× Rn × Rr → Rn is a continuously differentiable function with respect to
all its arguments. A control function is said to be an admissible control if it satisfies
the box constraints specified by (2). Suppose that an admissible control is such that
the following continuous state inequality constraints are satisfied.

hj(t,x(t),u(t)) ≤ 0, t ∈ [0, T ]; j = 1, ...,m, (31)

where hj , j = 1, ...,m are real-valued continuously differentiable functions defined
on [0, T ]×Rn×Rr. Let F be the set which consists of all the feasible controls. We
now state the constrained continuous-time optimal control problem as given below.
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Given the dynamical system (30), find a control u ∈ F such that the following
cost function

g0(u) =

∫ T

0

L0(t,x(t),u(t))dt, (32)

is minimized over F . Let this problem be referred to as Problem (CP).
We now apply the Euler scheme to discrete Problem (CP). Let the time interval

(0, T ] be partitioned into N equal length subintervals. The time grids are ti =
(i− 1)h, i = 1, ..., N + 1 and the step length h is

h =
T − 0

N
. (33)

The discretized version of system (30) is given by

x(k + 1)− x(k)

h
= f(kh,x(k),u(k)), k = 0, ..., N − 1. (34)

By using the left rule of Riemann summation method, the cost function (32) is
approximated by

g0(u) =

N−1∑
k=0

L0(kh,x(k),u(k))h. (35)

Furthermore, the continuous state inequality constraints are approximated by the
following all-time-step inequality constraints specified at the grid points,

hj(kh,x(k),u(k)) ≤ 0, k = 0, 1, . . . , N − 1; j = 1, ...,m. (36)

The discretized system (34) can be rearranged as follows:

x(k + 1) = x(k) + hf(kh,x(k),u(k)), k = 0, ..., N − 1. (37)

To be in the same form as in the system dynamics of discrete-time optimal control
problem, we let f(k,x(k),u(k)) = x(k) + hf(kh,x(k),u(k)) . Then, (37) can be
rewritten as

x(k + 1) = f(kh,x(k),u(k)), k = 0, ..., N − 1. (38)

So, the discretized version of Problem (CP) may be stated as: Given the system
(38), find a control sequence u(k), k = 0, 1, ..., N, such that the cost function (35) is
minimized subject to the all-time-step inequality constraints (36). Let this problem
be referred to as Problem (DP).

Clearly, Problem (DP) is in the same form of Problem (P). Thus, the proposed
transformation and approximation as well the the corresponding algorithm can be
applied to solve Problem (DP).

7. Simulation results.

7.1. Discrete optimal control problems with simple terminal conditions.
This example is taken from [12]. It describes the vertical ascent of a rocket, where
the process is represented by a set of difference equations. x1, x2, and x3 are the
gross mass of the rocket, the altitude above the surface and the vertical velocity
of the rocket, respectively. u represents the mass flow rate, and in each time step,
it will not be allowed to exceed the maximum consumption rate of 0.04, nor be
allowed the engine to shut down. The unit of distance is per kilometer and the
unit of time is in the second. Rockets gain upward lift by burning their own fuel.
Assuming that other than the fuel carried by the rocket, the mass of other parts
which weigh 20% of the gross mass does not change in the process. In order for the
rocket to be able to climb to the maximum altitude while carrying a certain mass
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of fuel, the rate of mass flow needs to be precisely controlled. Constant gas nozzle
velocity and gravity acceleration are set to be 2 and 0.01km/s2, respectively.

x1(k + 1) = x1(k), (39a)

x2(k + 1) = x2(k) + x3(k), (39b)

x3(k + 1) = x3(k) +
[V u(k)−Q(x(k)]

x1(k)
. (39c)

Q(x2(k), x3(k)) = 0.05e(0.01x2(k)·x3(k))
2

, k = 0, 1, ..., N − 1. (40)

As the rocket rises, the height and velocity of the rocket satisfy the aerodynamic
drag function defined by (39). The initial state of the rocket is stationary on the
ground and the fuel is full, meaning that x1(0) = 1, x2(0) = x3(0) = 0. Fuel will
be fully consumed when the rocket reaches to the peak. The objective is to find a
control such that the maximum altitude is achieved. The problem may be stated
more specifically as follows: Given the dynamic system (39), find a control sequence
such that the following objective function:

x2(N), (41)

is maximized subject to the following terminal state constraint

x1(N)− 0.2 = 0. (42)

The problem is easily solved by the newly developed algorithm. The results
obtained are shown in Table 1. The control and state trajectory are displaced in
Figure 1. After running our algorithm, the simulation approximate the rocket under
the given initial state will reach the peak altitude at 36.4515km with a final vertical
velocity of 0.112546km/s. The execute time of the algorithm on this example is
1.192085 seconds. The overall experimental results of the proposed algorithm are
slightly better than the result given by [12], namely a higher peak altitude and a
slightly reduced calculation time.

N x1(N)/(g1) x2(N)/(g0) x3(N) Execution Time(s)
100 0.2 36.4541 0.1125 1.192085

Table 1. Results for Example 7.1

Figure 1. State trajectories for Example 7.1
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7.2. Discrete optimal control problem with all-time-step inequality con-
straint. The original problem is taken from [10] and it has also been considered in
[12]. The dynamic process is described by the following difference equations with
initial state x1(0) = 0, x2(0) = −1:

x1(k + 1) = x1(k) + 0.02x2(k), (43a)

x2(k + 1) = 0.98x2(k) + 0.02u(k), k = 0, 1, ..., N − 1. (43b)

The objective is to minimize the performance indicator

z(k) =

N−1∑
k=0

[
(x1(k))2 + (x1(k))2 + 0.005(u(k))2

]
, (44)

subject to an all-time-step inequality constraint

h(k, x2(k)) = −8(0.02k − 0.05)2 + x2(k) + 0.5 ≤ 0, k = 0, 1, ..., N − 1. (45)

After carrying out the transformation and approximation, the approximate ver-
sion of the above optimal control problem is in the form of Problem (Q). Thus, the
algorithm developed in Section 4 is applicable. The results obtained are shown be-
low. Compared with the results given in [10], the algorithm proposed in this paper
significantly shortens the calculation time and obtains more optimized calculation
results. The calculation time of the proposed algorithm only takes 1/4 of the one
shown in the [12] with more accurate results are given.

N x1(N) x2(N) g0/y(N) g1/z1(N) Execution Time(s)
100 -0.22766 0.00824 0.1758267 0 2.208033

Table 2. Results for Example 7.2

Figure 2. State trajectories for Example 7.2

7.3. Continuous problems. In this section, we consider a continuous-time op-
timal control problem taken from [15]. This problem was solved by the adaptive
dynamic programming approach proposed in [15]. The same example has also been
studied in [14]. The van der Pol oscillator exhibits a limit cycle oscillation phenom-
enon found in vacuum tube amplifiers, which is a non-conservative oscillator with
nonlinear damping. Such system is described as a second-order differential equation
with initial state condition of x(0) = 1.5 evolving over time,

ẍ(t)− ẋ(t)(1− x(t)) + x(t)− u(t).
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Let x2 be introduced to describe the velocity. Then the above system is transformed
into the system described by the first-order differential equations.

dx1(t)

dt
= x2(t), (46a)

dx2(t)

dt
= x2(t)(1− x21(t))− x1(t) + u(t). (46b)

Here, x1 and x2 are, respectively, displacement and velocity functions of time t.
They are referred to as state variables. The control u is a scalar parameter rep-
resenting the nonlinearity of damping strength. The initial conditions of the state
variables are x = [1.5, 1.5]T .

The objective is to find a control such that the following cost function is mini-
mized,

J(u) =
1

2

∫ 5

0

(
x21(t) + x22(t) + u2(t)

)
dt. (47)

For the cost function (47), it can be written in the form given below:

J(u) =
1

2
y(5), (48)

where

dy(t)

dt
= (x21 + x22 + u2), (49a)

y(0) = 0. (49b)

As the discretization process of continuous-time problem detailed in the Section 6,
all the differential equations are now discretized by applying the Euler discretization
scheme with the step size h = (Tfinal − Tstart)/N = (5 − 0)/N and the original
interval is partitioned into 100 subintervals, i.e., h = 0.05 and N = 100. The cost
function is discretized using left rule of Riemann summation method. Then the
transformation and approximation process detailed in Section 3 is carried out to
obtain the following discrete-time optimal control problem.

min
u

{J(u) =
1

2
y(N)}, (50a)

s.t.

x1(k + 1) = hx2(k) + x1(k),

x2(k + 1) = h[x2(k)(1− x21(k))− x1(k) + u(k)] + x2(k),

y(k + 1) = y(k) + h[x21(k) + x22(k) + u2(k)],

x1(0) = 1.5, x2(0) = 1.5, y(0) = 0,

(50b)

k = 0, 1, ..., N − 1. (50c)

This discrete-time optimal control problem can be solved by the algorithm detailed
in Section 4. The results obtained are given below. When the oscillator reaches
the terminal point, its displacement will be −0.186942 and it will also have a small
velocity of 0.00664405, which is in the same direction of its displacement. The results
presented here for the optimal control of the van der Pol oscillator computed by the
proposed algorithm are slightly better than the one given in [14], which is 4.338120.

N x1(N) x2(N) g0/y(N) Execution Time(s)
100 -0.186942 -0.0664405 4.333878 0.52917

Table 3. Results for Example 7.3
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Figure 3. State trajectories for Example 7.3

7.4. Continuous problems with continuous state inequality constraints.
Consider the following problem taken from the Chapter 9 of [12], which is a gen-
eralized expression of a continuous mixed state and control inequality constrained
Rayleigh problem. For a given system:

dx1(t)

dt
= x2(t), x1(0) = −5, (51a)

dx2(t)

dt
= −x1(t) + x2(t)(1.4− p(x2(t))2) + 4u(t), x2(0) = −5, (51b)

in which, p = 0.14, find a control sequence u such that the following performance
indicator

g0(u) =

∫ 4.5

0

((u(t))2 + (x1(t))2)dt, (52)

is minimized subject to a continuous inequality constraint

u(t) +
x1(t)

6
≤ 0, t ∈ [0, 4.5]. (53)

The cost function can be written as

J(u) = y(4.5), (54)

where

dy(t)

dt
= u2 + x21, (55a)

y(0) = 0. (55b)

We apply the discretization procedure described in Section 6 to discrete this prob-
lem. All differential equations are discretized into difference equations by apply-
ing the Euler discretization scheme with a step size of h = (Tfinal − Tstart)/N =
(4.5−0)/N . The original interval is divided into 100 subintervals, which is h = 0.045
and N = 100. After discretizing the cost function using the left rule of Riemann
summation method, we convert the continuous inequality constraint on state and
control to the inequality constraint for cost and constraint at all the discretized time
grid points. The transformation and approximation procedures detailed in Section
3 are then utilized to obtain the following constrained discrete-time optimal control
problem,

min
u

{J(u) = y(N)}, (56a)
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s.t.

x1(k + 1) = h · x2(k) + x1(k),

x2(k + 1) = h · [−x1(k) + x2(k)(1.4− p(x2(k))2) + 4u(k)] + x2(k),

y(k + 1) = y(k) + h · [(u(k))2 + (x1(k))2],

z(k + 1) = z(k) + γε

(
u(k) +

x1(k)

6

)
,

x1(0) = −5, x2(0) = −5, y(0) = 0,

(56b)

k = 0, 1, ...N − 1. (56c)

where

γε

(
u(k) +

x1(k)

6

)
=


0, if u(k) + x1(k)

6 < −ε(
u(k)+

x1(k)
6 +ε

)2

4ε , if − ε ≤ u(k) + x1(k)
6 ≤ ε(

u(k) + x1(k)
6

)
, if u(k) + x1(k)

6 ≥ ε

(57)

and ε is a sufficient small positive number.
This transformed constrained discrete-time optimal control problem is now able

to be solved by the algorithm detailed in Section 4. The results obtained are given
below. The optimal solution attained by the proposed algorithm is 46.01737, and the
computational speed is fast even in the presence of a mixed state-control constraint
over the entire time horizon. The trajectories presented here also share unique paths
with the one in [12]

N x1(N) x2(N) g0/y(N) Execution Time(s)
100 -0.35361 -1.34045 46.01737 2.36239

Table 4. Results for Example 7.4

Figure 4. State trajectories for Example 7.4

8. Conclusion. In this paper, a unified numerical algorithm has been carried out
to address the constrained optimal control problem in both discrete and contin-
uous cases. The presented method is developed on the basis of automatic differ-
entiation techniques, which is a systematical application of the chain rule in the
derivative calculation process. The proposed algorithm first is used to address the
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constrained discrete-time optimal control problem. The discretization of the con-
strained continuous-time problem and the application of the proposed algorithm on
the discretized constrained continuous-time problem have then been introduced.

The novelty of this approach is that it not only reconciles calculation speed
with numerical result accuracy for optimal control problems, but it also fully au-
tomates the most complicated gradient calculation process of solving the optimal
control problem regardless of whether complexity constraints appear or not. Aside
from the well-defined problem transformation and approximation techniques in the
algorithm, the vast computation requirement for gradient calculation is stored in
computer memory in the form of a mathematical expression for cost and constraints
function uniformly. It will keep the final result free of errors caused by manually
deriving the gradient formula, as was the case in some previous packages. It also
enables the iterative calculation procedure to have access to the unique calcula-
tion formula with the same precision in every step at the same time for cost and
constraints functions.

The proposed gradient formula’s theoretical foundation for both the cost and
constraints functions is demonstrated. To validate the computational aspect of the
proposed algorithm, four different optimal control problems are presented.
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