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Abstract—This article presents our research in the prelaunch
phase of the Kanyini mission, which aims to implement an energy-
efficient, AI-based system onboard for early fire smoke detection
using hyperspectral imagery. Our approach includes three key
components: developing a diverse hyperspectral training dataset
from VIIRS imagery, groundwork in band selection and AI model
preparation, and developing an emulation system. We adapted and
evaluated our previously developed lightweight convolutional neu-
ral network model, VIB_SD, to meet the computational constraints
of satellite deployment. The emulation system tests various onboard
AI tasks and processes. Our comprehensive experiments demon-
strate the feasibility and benefits of employing onboard AI for
fire smoke detection, significantly improving downlink efficiency,
energy consumption, and detection speed.

Index Terms—Artificial intelligence (AI) onboard, fire smoke
detection, satellite emulation.

I. INTRODUCTION

W ITH the escalating threat of wildfires due to cli-
mate change, the need for early detection has become

paramount in minimizing their destructive impact on society,
ecosystems, and economy [1], [2]. Satellite remote sensing has
emerged as a cost-effective and reliable tool for fire detection,
benefiting from the growing deployment of satellites dedicated
to Earth monitoring [3], [4], [5], [6]. As smoke is usually the
first thing you can see from space before the fire gets hot
and big enough for sensors to detect fire heat, detecting fire
smoke becomes crucial for early warning and timely response
to mitigate potential risks and damages.

However, the prevalence of microsats and nanosats and the
increased spatial and spectral resolution of imagery captured
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by modern Earth observation sensors have greatly increased
bandwidth usage. This has led to research into optimizing
up/downlink bandwidth resources. For many sensor systems,
only a fraction of the data collected contains critical information
related to the specific purpose of a mission. To address this
issue, recent advances in low-power computing platforms and
the advent of artificial intelligence (AI) technology have paved
the way for the adoption of edge computing [7]. By leveraging
hardware accelerators and deploying efficient algorithms, such
as convolution neural networks (CNNs) onboard, tasks such as
early fire smoke detection can be performed, allowing for timely
alarm generation in the event of bushfires [8], [9], [10].

The Kanyini satellite mission [11] is a collaborative effort
between the South Australian Government, the SmartSat Coop-
erative Research Centre, and industry partners, including Inovor
Technologies and Myriota. The mission aims to launch a 6 U
CubeSat satellite into low Earth orbit to collect data on bushfire
preparedness, response, and resilience, as well as inland and
coastal water quality. Equipped with a hyperspectral imager
[HyperScout-2 (HS2) manufactured by Cosine], the satellite
sensor will capture reflected light from Earth in different wave-
lengths to generate detailed surface maps for various applica-
tions, including bushfire monitoring, water quality assessment,
and land management. The anticipated launch year is 2024, with
an estimated cost of $6.5 million. The collected data will be pub-
licly accessible and utilized by government agencies, businesses,
and researchers. This mission holds significance for the space
industry of South Australia, being the first state-based satellite
in Australia, and is expected to contribute to the state–space
sector growth. Moreover, the acquired data will aid in enhancing
bushfire and water resource management within South Australia.

Our research project, part of the Kanyini mission, aims to
provide a solution for energy-efficient AI-based onboard pro-
cessing of hyperspectral imagery for early fire smoke detection.
This work fills the gap of using a small AI model to detect
fire smokes in a cube sat with limited computation and data
downlinking capabilities. To the best of our knowledge, the
work [12] and [13] is the only one similar in settings to ours
but it is in the area of cloud detection. Our work is different
in the following aspects: our prelaunch study does not have
available hyperspectral dataset matching the bandwidths of the
sensor to be launched; and our work is for newer generation of
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VPUs whereby the development environment has been updated
and some functions available in the version used in Esposito
et al.’s [12] work are not available in the new version. We report
detailed hardware, software settings, and the performances of
not-only smoke model accuracy, but also results about bands
selection, and downlinking data sizes.

This project consists of two phases: prelaunch and postlaunch.
The prelaunch phase focuses on evaluating the feasibility and
benefits of onboard smoke detection, while the postlaunch phase
deploys and optimizes the AI-based fire smoke detection system
to Kanyini, leveraging real satellite data and refining onboard
processing capabilities to enhance accuracy and efficiency. This
article presents our work in the prelaunch phase.

To evaluate the feasibility of onboard smoke detection, we
have chosen our previously developed CNN-based model, vari-
ant input bands for smoke detection (VIB_SD) [14], as a suitable
lightweight AI model for the Kanyini/HS2 mission. VIB_SD
was originally designed and trained with Landsat-8 imagery, it
has not yet been tested for onboard tasks and was trained with
different number of bands to classify a different set of classes.
Therefore, it requires some adaptations, alongside retraining,
and comprehensive evaluation, to ensure its effective deploy-
ment on the Kanyini satellite.

Since the actual computing environment and real hyperspec-
tral imagery captured by HS2 onboard the Kanyini satellite were
not available during the early stage of the mission, we simulated
a comprehensive training dataset from VIIRS imagery, which
encompassed a wide range of generated hyperspectral imagery
and the dataset covers various fire smoke scenarios across Aus-
tralia. To evaluate the onboard performance, we developed an
emulation system to evaluate each step of onboard processes and
AI tasks using computational capabilities similar to those of the
Kanyini satellite.

Our experiments have demonstrated significant advantages of
integrating AI onboard for smoke detection in satellite imagery,
as compared to traditional methods. As detailed in Section IV-C,
for scenarios where 10% of the imagery contains fire smoke,
the AI onboard approach markedly reduces the data downlink
volume to just 16% of its original size (from 388 to 61 MB),
resulting in an 84% decrease in energy consumption (from 0.414
to 0.065 WH). Such efficiency is particularly advantageous con-
sidering the limited downlinking capacity during each satellite
pass, underscoring the effectiveness of onboard AI in optimizing
resource usage in satellite-based monitoring tasks.

In summary, the major contributions of our work presented in
this article are as follows.

1) Generation of a comprehensive hyperspectral training
dataset: We created a training dataset using the visible
infrared imaging radiometer suite (VIIRS) imagery that
encompasses diverse variations of fire smoke. The dataset
includes four fire smoke scene-related classes, namely
“Smoke,” “Cloud,” “Mixed,” and “Clear.” This dataset
provides a valuable resource for training and evaluating
fire smoke detection models.

2) Emulation system for onboard performance evaluation:
We developed an emulation system to evaluate the onboard

performance of different processes and AI tasks. This
system serves as a valuable tool for optimizing algorithms
and workflows before the deployment on actual satellite
systems, ensuring the efficiency and effectiveness of on-
board processing.

3) Adaptation and deployment of the VIB_SD model: We
adapted the VIB_SD model, a lightweight CNN-based
approach suitable to operate within the computational and
data transfer constraints of the HS2 sensor on the Kanyini
satellite. The VIB_SD model demonstrates a high predic-
tion accuracy and achieves a low false negative rate (FNR)
on the simulated dataset, indicating its effectiveness in
detecting fire smoke.

4) Comprehensive experimental evaluation: We conducted
comprehensive experiments to evaluate the various scenar-
ios of onboard processing, providing empirical evidence
on the feasibility and significance of AI onboard smoke
detection. These experiments validate the benefits of on-
board smoke detection in terms of downlink efficiency,
energy consumption, and detection speed.

The rest of this article is organized as follows. Section II
reviews the related work in AI onboard and fire/smoke detection.
in Section III, we provide an overview of the simulation process
for the training dataset, describe the architecture of VIB_SD, and
detail the design of the emulation system. Section IV presents
and discusses the experiments and results on the prediction accu-
racy of VIB_SD with different selected bands and the emulation
results of various onboard processes. Section IV-D discusses the
limitations and constraints of the research. Finally, Section V
concludes this article.

II. RELATED WORK

The advancement of AI in satellite systems has been marked
by substantial progress. Initially, research in this area was
concentrated on the application of AI algorithms and ma-
chine learning techniques for on-ground processing of satel-
lite imagery data. These applications span a range of fields
including land cover classification [15], [16], vegetation mon-
itoring [17], [18], water quality assessment [19], disaster re-
sponse [20], climate change monitoring [21], [22], and smoke
detection [5], [6].

More recently, the focus has shifted toward the onboard
deployment of AI in satellite systems. Implementing AI di-
rectly on satellites offers several distinct advantages such as au-
tonomous decision-making and real-time data analysis, thereby
significantly improving mission performance [23]. However,
deploying AI onboard also presents unique challenges, par-
ticularly constraints related to hardware and computational
capacity [8], [23].

To mitigate these constraints, several studies have explored
AI solutions in the context of onboard optical and multispectral
imaging. Salazar et al. [24] proposed a CNN to autonomously
prioritize RGB images based on cloud coverage levels, thereby
optimizing the limited bandwidth of small satellites. Similarly,
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Del Rosso et al. [25] focused on detecting volcanic erup-
tions through CNN designed specifically to work within the
computational constraints of aerospace applications. Mateo-
Garcia et al. [26] proposed “WorldFloods,” an in-orbit retrain-
able machine learning payload that not only processes optical
imagery for flood mapping but is also capable of “on-the-fly”
model updates. Moreover, work in multispectral sensing for
environmental monitoring has shown the capability of machine
learning algorithms to estimate variables, such as sea ice con-
centration and soil moisture [27], [28].

A specific focus within these developments is the use of AI for
hyperspectral imaging [12], [13], [29]. Hyperspectral data offer
richer informational content but at the cost of generating larger
datasets, which are challenging both to process onboard and
to transmit back to Earth. One notable study published in [12]
and [13] presents the first in-orbit demonstration of AI applied
to hyperspectral and thermal sensing using the HS2 imager.
Deployed in the φ-Sat-1 mission, it utilized a CNN for cloud
detection with an 95% accuracy. Esposito and Marchi’s [30]
work showcases the in-orbit demonstration of HyperScout-1,
the first hyperspectral imager for nanosatellites, with potential
applications in land cover classification, vegetation monitoring,
water quality assessment, and disaster response. AI has also
been applied for wildfire detection in the hyperspectral domain.
Thangavel et al. [31] conducted a case study using CNNs to
detect wildfires autonomously in hyperspectral imagery. Further,
Spiller et al. [32] investigated edge computing approaches to
perform wildfire segmentation analysis directly from satellite
platforms, discussing the feasibility of implementing CNNs on
various hardware accelerators, such as Intel Movidius Myriad 2
and Nvidia Jetson series for real-time alerting. These advance-
ments not only pave the way for more real-time applications but
also demonstrate the growing emphasis on using AI for complex
hyperspectral data analysis in an onboard setting.

With the promising benefits of current and upcoming CubeSat
missions equipped with hyperspectral sensors, a thorough inves-
tigation of the energy consumption associated with application-
specific AI onboard processing solutions during the prelaunch
phase is crucial. Such an emulation is essential for accurate
estimations of onboard performance and allows for the efficient
calibration of AI models postlaunch once real-world data are
available. This article focuses on the prelaunch phase.

III. MATERIALS AND METHODS

In this section, we present the procedures undertaken during
the prelaunch phase for AI onboard fire smoke detection, as
illustrated in Fig. 1. The workflow is divided into three main
components: 1) training dataset generation; 2) on-ground prepa-
ration; and 3) onboard emulation. The training dataset generation
component involves the synthesis of HS2 imagery. From this
synthesized data, we generate and prelabel a training dataset
over a wide range of fire smoke conditions, further detailed in
Section III-A. The second component, on-ground preparation,
encompasses a variety of tasks including band selection analysis,
AI model preparation, and the setup and tuning of the emulation
system. The details are elaborated in Sections III-B, III-C, and

Fig. 1. Overview of the prelaunch phase for AI onboard fire smoke detection.
There are three main components of the workflow. (a) Training dataset genera-
tion, where HS2 imagery is synthesized to create a prelabeled training dataset
covering a diverse range of fire smoke conditions. (b) On-ground preparation,
which involves tasks such as band selection analysis, AI model preparation, and
setting up and tuning the emulation system. (c) Onboard emulation, depicting
the emulation of onboard performance and the evaluation of the AI model in an
onboard setting.

III-D, respectively. The onboard emulation component includes
the emulation of onboard performance and the evaluation of the
AI model in an onboard setting. The details are presented in
Section III-D.

A. Training Dataset Generation

Due to the fact that the Kanyini satellite is yet to be launched,
a simulated imagery dataset was generated for training the
VIB_SD learning model through a series of steps outlined as
follows.

1) Generating HS2 Imagery: The HS2 hyperspectral imager
captures 45 spectral bands across the 400–1250 nanometre range
and three bands at thermal wavelengths between 8–14 μm. HS2
achieves a ground-sampling distance of 75 m/pixel at an orbit
of 500 m altitude [13], and an optimal resolution of 390 m
in the thermal infrared (TIR). The NASA/NOAA Suomi NPP
satellite carrying VIIRS was chosen to provide spectral data for
hyperspectral imagery simulation instead as it captures daily
imagery over the Australian continent. VIIRS however has a
coarser resolution of at best 375 m for visible—SWIR, and
1000 m for TIR. It also has a much coarser spectral resolution
being a multispectral instead of hyperspectral camera, and has
only 11 bands that provide a wavelength overlap to those of HS2.
Out of 48 spectral bands, this then left 27 HS2 spectral bands
that required simulation. It should be noted that VIIRS imagery
is captured with a radiometric resolution of 12 bits, in contrast
to the 16-bit resolution of HS2 [9]. Further information can be
found in Stefan et al.’s [33] work.

The VIIIRS products utilised for simulating HS2 imagery
were the VNP09GA daily surface reflectance L2 product at
500 m and 1 km resolution, and the VNP09CMG daily L3
product at 0.05 ◦ spatial resolution that provides surface emission
and brightness temperature. Both data products are corrected for
atmospheric conditions. The VIIRS reflectance imagery
(visible-SWIR wavelengths) was accessed via the Land
Processes Distributed Active Archive Center (LP DAAC)
APPEEARS data access tool [34] while the emission imagery
(thermal wavelengths) was accessed via direct download link
available from LP DAAC.
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HS2 simulated images were produced by first transform the
VIIRS imagery to the best expected resolution of HS2 image
resolution, using bilinear interpolation algorithm. This does not
infer any new spatial information, but merely upsamples the
image pixel grid to a higher resolution. Second bandgaps or
missing spectral information, of which there are 27, were filled
through a combination of i) duplicating spectral information,
where broader wavelength range VIIRS bands encompassed two
or more HS2 bands; and ii) applying spectrally averaging of two
VIIRS bands at a longer and shorter wavelength than the missing
wavelength band. Poissonian distributed random noise R(λ) was
multiplicatively added to each pseudoband as appropriate for
electromagnetic imagery [e.g., photon noise, (Syed et al. [35])].

2) Training Sample Acquisition: They are necessary for the
development of an accurate and smoke-biased detection model,
the proposed training dataset imagery acquisition followed three
principles.

a) Aim to distinguish four classes: smoke, cloud, mixtures of
aerosols, and with the remaining pixels being assigned to
background land-cover and land-use.

b) Aim to capture as much variance within each of those four
classes so that the model is robust in a real-life scenario.

c) Encompass as much generic variations in the image data
related to the HS2 satellite model, so that the model is
also robust to the variations in changes to image acquisi-
tion (e.g., scale, lighting changes, season, contrast, image
noise).

To produce the simulated imagery dataset, six regions of
interest were chosen across five Australian states and territories,
encompassing over 53 million hectares of land surface area.
Image dates were chosen to overlap historical fire events in each
state, resulting in the processing of over 500 VIIRS satellite
images over 200 dates, and bushfire events over three years
from 2018 to 2020. This broad range in spatial and temporal
characteristics in the training data is essential as it allows cap-
turing different seasonal bushfire events, occurring in different
climactic zones, with imagery captured at different times of
day, and viewing angles. This heterogeneity is crucial for the
robustness of an AI smoke detection model.

Imagery tiles were produced by partitioning the simulated
HS2 imagery (derived by methods described previously from
the VIIRS satellite images), at 75 m/pixel resolution, 48 spectral
bands, and one additional band consisting of a “smoke,” “cloud,”
“smoke cloud mixtures” mask derived from the Hyperscout-2
smoke detection algorithm (HSSDA), into square grids contain-
ing 256 × 256 pixels (in the x-y dimensions). Each tile covers
a region of 19.2 × 19.2 km (36 864 ha) on the ground. The
square grids, or tiles, were arranged so that they had 50% overlap
in both the x and y direction. Tiles were only retained if all
256 × 256 pixels in each dimension contained valid spectral
information. The final neural network training dataset comprised
189 964 labeled hyperspectral tiles with classes differentiating
“smoke,” “cloud,” and “mixtures of smoke, haze, cloud, and
other aerosols” for the specific purpose of training an AI smoke
detection model for hyperspectral data.

The HSSDA was developed using a risk-adverse approach,
broadly adapted from Lu et al.’s [36] work and refined via em-
pirical research whereby pixels very unlikely belonging to one

of the following three aerosol classes of interest were removed.
The formula for the HSSDA, and the method for assigning pixels
to classes, is as follows.

1) If (NDVI ≤ 0.51) or (NDBR ≤ 0.2) or (RNIRB ≤ 4.5) or
(NDVNIR ≤ 0.31) then: Pixel mask value = 0, Class 0,
“no aerosol.”

2) If (SLOPE2 < 5000) and (B16 < 1500) then: Pixel mask
value = 1, Class 1, “smoke endmembers.”

3) If (B16 > 3000) then: Pixel mask value = 3, Class 3,
“cloud endmembers.”

4) Otherwise: Pixel mask value = 2, Class 2, “aerosol mix-
els.”

The spectral indices are defined as follows, both in general
wavelength regions, and in comparison to HS2 band numbers.

1) Normalized difference vegetation index (NDVI): NDVI =
(NIR–RED)/(NIR + RED) = (B30–B16)/ (B30 + B16).

2) Normalized difference red blue (NDBR): NDBR= (RED–
BLUE)/(RED + BLUE) = (B16–B6)/ (B16 + B6).

3) Ratio NIR to blue (RNIRB): RNIRB = NIR / BLUE =
HB30/B6.

4) Normalized difference violet NIR (NDVNIR): NDVNIR
= (VIOLET–NIR)/(VIOLET + NIR) = (B1–B29)/ (B1 +
B29).

5) Smoke-cloud spectral slope index 1 (SLOPE1): SLOPE1
= (REDE–RED)/(0.744–0.648) = (B22–B16)/(0.744–
0.648).

6) Smoke-cloud spectral slope index 2 (SLOPE2).
The SLOPE1 and SLOPE2 indices were developed here as

they were found to differentiate key spectral features of clouds
and smoke. Although the SLOPE1 index is not used explicitly
in the classification of pixels values for smoke detection it was
found to provide useful information postclassification in smoke-
plume characteristics, particularly in identification of the near-
source (fire) end of the plume.

B. VIB_SD Model

Our previously proposed fire smoke detection model,
VIB_SD [14], is a lightweight AI model designed specifically
for fire smoke detection using multispectral satellite imagery.
VIB_SD integrates two key modules, respectively the inception-
attention module and the inception-residual module, to facilitate
residual learning and feature extraction at multiple scales, allow-
ing an accurate detection of fire smoke in various scenarios from
satellite imagery, even if the fire smoke is mixed with other types
of aerosols, such as cloud or dust.

We chose VIB_SD as the onboard AI model for our emu-
lation experiments for two primary reasons. First, VIB_SD is
resource-efficient, featuring approximately 1.6 million param-
eters, in contrast to other state-of-the-art models that can have
over 50 million parameters. This lightweight architecture makes
it well-suited for onboard satellite detection. Second, VIB_SD
has demonstrated high prediction accuracy in fire smoke de-
tection tasks using multispectral satellite imagery. In a previ-
ous study [14], VIB_SD achieved an accuracy rate of 93.57%
when using 368 Landsat-8 imagery with 256 × 256 resolution,
classified into three categories: “Clear,” “Other_aerosol,” and
“Smoke.” Moreover, on synthetic HS2 hyperspectral imagery,
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Fig. 2. Comparative visualization of band importance as determined by COR to the smoke mask, PCA, and RF methods in the context of band selection for AI
onboard fire smoke detection. The three methods effectively identify the 11 original bands from VIIRS imagery but with different prioritization of bands by each
method.

VIB_SD reached a prediction accuracy of 95.7% and had a FNR
of only 2.3%. Readers can refer to Zhao et al.’s [14] work for
more details about the VIB_SD model.

C. Band Selection

The HS2 sensor employed in the Kanyini satellite captures im-
ages comprising 45 visible and near-infrared (VNIR) bands and
three thermal bands. However, when implementing AI onboard
for fire smoke detection, the satellite does not have the capability
to support a large AI model that utilizes input from all 48 bands.
To address this limitation, we conduct on-ground based band
selection to identify the bands that have the most significant
impact on distinguishing between smoke and nonsmoke tiles.
Only the identified bands are extracted from the tiles during AI
inference onboard before being fed into the AI model.

To explore the effectiveness of different band selection tech-
niques, we employed three commonly used techniques: Pearson
correlation (COR), principal component analysis (PCA) [37],
and random forest (RF) [38], [39]. Among these, PCA operates
as an unsupervised method, utilizing all available data points
irrespective of their labels. For COR, despite its typical cate-
gorization as an unsupervised technique, we adapted it for a
supervised context by correlating features with the pixel classes,
as described in Section III-A2. RF is a supervised method.
Therefore, both COR and RF require labeled data for band
selection. Band selection using COR and RF was conducted
only using the training set.

The band importance derived from COR, PCA, and RF
methods is depicted in Fig. 2. All three methods effectively
identify the 11 original bands from the VIIRS imagery with
higher importance for smoke detection, demonstrating the gen-
eral effectiveness of these band selection techniques. A notable

observation is the varying degrees of band prioritization across
the methods. The RF method exhibits the largest variation
in band importance, indicating a more distinct differentiation
among bands. Conversely, the PCA method results in the least
variation, suggesting a more uniform importance across the
bands. This variation in the band importance show an impact on
the performance of smoke detection (discussed in Section IV-B).

To evaluate the smoke detection performance of the VIB_SD
model using various selected band sets, experiments were con-
ducted with datasets comprising different band combinations.
In addition to the three aforementioned band selection methods,
two additional approaches were implemented: the ground truth
(GT) method and the low band importance (LBI) method. The
GT method involves selecting bands that are used to generating
the pixel classes for labeling the tiles. Specifically, bands B16,
B22, B29, B1, B6, and B30 were chosen for in the GT method, as
detailed in Section III-A. This approach serves to benchmark the
effectiveness of the band selection methods against an optimal
scenario. The LBI method, on the other hand, includes bands
consistently identified as of low importance by all three selection
methods, providing insight into the potential impact of poor band
selection on smoke detection performance. A summary of the
bands selected by each of the five methods is provided in Table I.
The smoke detection performance using different selected bands
are analyzed and discussed in Section IV-B.

D. Emulation System

To assess the efficacy of onboard processes, we have con-
structed an emulation system that approximates the computa-
tional environment of the Kanyini satellite. On the hardware
front, the system employs a Raspberry Pi (RPi) 4 Model B, fea-
turing a Cortex-A72 (ARM v8) 64-bit SoC running at 1.5 GHz
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TABLE I
TOP BANDS IDENTIFIED BY THE FIVE METHODS

Fig. 3. Illustration of the emulation system hardware setup, featuring the
Raspberry Pi as the HS2 sensor emulator and the Intel NCS2 as the AI module
emulator.

with four cores, along with 4 GB of RAM. In addition, we utilize
an Intel Neural Compute Stick 2 (NCS2), which is equipped with
16 SHAVEs and incorporates Intel Myriad X chip.

For software alignment, we configured the system to closely
emulate the satellite specifications. The operation system of the
Raspberry Pi is Raspberry Pi OS (Buster). We implemented a
software pipeline that incorporates OpenVINO toolkit version
2021 [40]. This setup enables the evaluation of various per-
formance metrics, such as execution time, memory consump-
tion, and power usage across a broad spectrum of onboard
tasks. Importantly, while the emulation system is tailored to the
Kanyini satellite, it is architected to be flexible, thus allowing
easy adaptation for other mission profiles.

1) Hardware of the Emulation System: A satellite computing
environment typically consists of three levels: spacecraft, imager
(or sensor), and AI module. In the Kanyini satellite, the imager
employed is HS2, and the AI module utilizes the eyes of things
(EOT) board developed by Ubotica.

The emulation system, designed to replicate the computing
environment of a satellite, is composed of hardware compo-
nents that simulate the imager and AI module. For the imager
emulation, we use a Raspberry Pi to represent the HS2 sensor.
The AI module is emulated using an Intel NCS2, simulating the
functionality of the EOT board. Fig. 3 illustrates this hardware
setup.

In configuring the emulation system, we selected hardware
devices with specifications closely resembling or slightly su-
perior to those anticipated in the satellite environment. The
CPU frequency, number of CPU cores, RAM, and VPU cores
of the emulation setup are carefully tuned to align with the
expected Kanyini satellite environment via software configu-
rations during the emulation experiments. It is important to
note that discrepancies in the system might lead to marginally
over- or underestimated performance results for the Kanyini
satellite. However, these mismatches do not significantly impact

Fig. 4. Schematic representation of the emulation system software archi-
tecture, highlighting the four key modules: Performance measuring, resource
constraint, onboard processing, and results analysis and model optimization.

the relative differences between results and will be addressed
during a later phase of calibration.

2) Software of the Emulation System: The software architec-
ture of the emulation system comprises four distinct modules,
as illustrated in Fig. 4: 1) performance measuring; 2) resource
constraint; 3) onboard processing; and 4) results analysis and
model optimization. Together, these modules establish a com-
plete pipeline for evaluating the performance of various onboard
processing steps in the emulation environment.

The performance measuring module is designed to assess
the running time, memory footprint, and power consumption
of different onboard processes. Currently, power consumption
measurements are conducted manually due to the lack of a
software interface with the USB power monitor. Future research
phases may include hardware upgrades to facilitate software-
based power consumption measurement. The resource con-
straint module imposes hardware limitations on the emulation
system to closely mimic the Kanyini satellite environment.
These constraints include the CPU frequency, the number of
CPU cores, and the RAM of RPi, as well as the number of
VPU cores (SHAVES) of the NCS2. The onboard processing
module executes various onboard tasks, encompassing both AI
and non-AI processes. Finally, the results analysis and model
optimization module collates and examines the test results,
offering insights and recommendations for optimizing the AI
model.

An exemplary emulation workflow begins by matching the
hardware resources, and proceeds with the onboard processing
sequence, which could include the following steps: 1) tiling
and extracting specific bands from an image, 2) conducting
AI inference, 3) creating a mask based on the AI inference
results, 4) combining tiles with detected features, 5) compressing
the merged image, and 6) dividing the compressed image into
smaller segments in preparation for downlink transmission.

In order to facilitate onboard inference, the AI model needs
to be converted into the intermediate representation (IR) format.
This conversion is accomplished using the open visual infer-
ence and neural network optimization (OpenVINO) toolkit [41].
OpenVINO is a versatile open-source toolkit designed for op-
timizing deep learning models from various frameworks and
deploying them across a wide range of Intel processors and
hardware platforms, including the NCS2 used in our emulation
system.

Fig. 5 illustrates the three-step process of preparing the AI
model for onboard inference: model training, model converting,
and model inference. The first two steps, model training and
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Fig. 5. Schematic representation of the AI model preparation process for
onboard inference, detailing the steps of model training, model converting using
OpenVINO optimizer, and model inference on the NCS2.

converting, are carried out on the ground. During model training,
a model is trained and then saved on a host computer. In the
model converting step, this trained model is transformed into
the IR format using the OpenVINO optimizer. This process
results in two files: an XML file (.xml), which represents the
network topology, and a binary file (.bin) containing the network
parameters. These files are then deployed onto the NCS2 for
performing onboard inferences.

We have implemented the following onboard processes during
the prelaunch phase.

1) Compress imagery: the emulation system supports the
following compression methods: LZMA, LZW, Pack-
Bits, Deflate, PIXTIFF, LERC, Zstd, JPEG, JPEG2000,
JPEGXL, and PNG.

2) Split imagery into small files for downlinking.
3) Partition imagery into tiles: the default tile dimension is

256 × 256, which is configurable.
4) Extract specified bands from imagery or tiles.
5) Merge specific tiles into the original imagery and mask

the other tiles.
6) Onboard inference using VIB_SD model.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experiments in this study aim to validate the feasibility
and benefits of onboard fire smoke detection, supported by
experimental results. The experiments consist of two parts: 1) in-
vestigating the prediction accuracy of the VIB_SD model using
different sets of selected bands, and 2) evaluating the onboard
performance of various processes, including both non-AI and
AI tasks.

A. Data Preparation

In the experiments, we use the simulated imagery described
in Section III-A. The imagery is partitioned into tiles of a
dimension of 256 × 256 pixels, consisting of 49 bands, which
include 45 VNIR bands, three thermal bands, and a mask band.
The mask band contains pixel-level labels, assigning each pixel
to one of four classes: Zero for clear, one for smoke, two for
mixed, and three for cloud.

As the VIB_SD model works to predict whether a tile contains
smoke, the pixel-level label needs to be converted into a tile-level
label. The tile-level labels consist of two classes: smoke and
nonsmoke. If a tile contains any smoke pixels, it is categorized
as smoke. Otherwise, it is identified as nonsmoke.

To generate datasets for our experiments, we sample 1600
tiles for each set of selected bands, as outlined in Section III-C.
These 1600 tiles are evenly split between the two classes (smoke
and nonsmoke), with 800 tiles in each. The sampling strategy

aims to ensure a balanced distribution of tiles, covering a variety
of scenarios and minimizing dataset bias. Consequently, a total
of 21 distinct datasets are generated.

During the experiments, each dataset is randomly partitioned
into a training set (comprising 60% of the tiles), a validation set
(20%), and a test set (another 20%). Then, a VIB_SD model
is trained on the training set and evaluated on the test set. This
entire process is repeated ten times for each dataset, resulting in
210 trained models and their corresponding prediction results.
From the ten prediction results obtained for each dataset, we
report the average accuracy and FNR.

Accuracy is calculated using the formula: Accuracy = (TP +
TN) / (TP + TN + FP + FN), where TP denotes true positives
(correctly detected tiles with smoke), TN denotes true negatives
(correctly identified tiles without smoke), FP denotes false pos-
itives (incorrectly detected tiles as having smoke when there
is not), and FN denotes false negatives (incorrectly identified
tiles as not having smoke when there is). This metric reflects
the proportion of correctly identified tiles (both with smoke and
without smoke) among the total number of tiles. For calculating
the FNR, the formula is: FNR = FN / (FN + TP), which is a
critical metric in this context as it indicates the rate of missed
smoke detection events, essential for assessing the efficacy of
the model.

B. Prediction Results

As discussed in Section III-C, we employed five band selec-
tion methods: COR, PCA, RF, GT, and LBI. In this section,
we present and analyse the smoke detection performance using
various selected band sets. Applying these five methods, we
generated 21 distinct sets of bands by selecting 2–6 bands from
each method (where applicable). These band sets were used
to create corresponding datasets, named according to the band
selection method and the number of bands selected, as indicated
in Table I. For instance, COR4 refers to the dataset generated by
selecting the top four bands from the COR method, i.e., B3-M2-
Violet, B16-I1-Red, B29-I2-NIR, and B22-M6-RedEdge. Note
that band selection was conducted only using the tiles in the
training set.

The experimental results, summarized in Table II, are grouped
by the number of bands selected, ranging from 2 to 6. In each
group, the best results are highlighted in bold. Overall, selecting
the top four bands demonstrated the highest performance, with
COR and RF achieving the best accuracy and FNR, or close to
it. A detailed analysis of each method reveals the following.

1) LBI consistently shows the poorest accuracy, indicating
the necessity of band selection.

2) The GT method consistently performs well across all
groups, as expected, confirming the importance of se-
lecting the right bands for smoke detection. The highest
performance from GT, an accuracy of 0.957 and FNR of
0.21 with four bands, was also achieved by COR and RF
with certain band selections.

3) COR achieves the highest accuracy with three and four
band selections, albeit with a slightly higher FNR than the
optimal 0.21. However, its accuracy drops to 0.897 with
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TABLE II
SMOKE DETECTION RESULTS USING VIB_SD WITH DIFFERENT SELECTED

BANDS

only two bands. It is noted that COR is the one method
attaining top accuracy with fewer than four bands.

4) While PCA does not reach the highest accuracy, it per-
forms best (tied with GT) in the two-band group and
maintains good results across all groups.

5) The performance of RF performance appears more sen-
sitive to the number of selected bands, showing the best
accuracy and FNR with four bands, but performing poorly
(except when compared to LBI) with two bands.

In summary, these results suggest that while COR is generally
a robust choice, PCA is a safer option across different scenarios.
However, when using RF, the number of bands selected should
be carefully considered.

C. Emulation Results

Emulation experiments were conducted using various param-
eters, including different numbers of pixels across the track for
visual and near-infrared bands (selected from 3072 to 2560),
different numbers of bands (selected from 45 to 48), and different
numbers of tiles (selected from 5, 10, 20, and 40). The results of
different onboard processes with these different configurations
are presented Table III.

To evaluate the benefit with AI onboard, we use an example
to compare the two scenarios: traditional smoke detection with
AI on-ground and smoke detection with AI onboard. The input
image has a resolution of 3072 × 1856 pixels and contains 45

Fig. 6. HS2 simulated image over a fire event near the Coorong in South
Australia on December 31st, 2020. Left: A “natural color” composite in red–
green–blue wavelengths. Here the smoke plume appears in blueish gray tones
near source, and white higher in the plume (visibly similar to cloud in other parts
of the image). Burn scars are also hard to visibly separate from dark vegetation.
Right: The HSSDA mask over the “natural color” composite. Here the two
classes containing smoke are shown in red and orange. The plume is clearly
detected, with the densest smoke near source classified as “smoke endmember.”
Smoke is not confused as being cloud. False detections occur near the shoreline.

bands. This image is simulated from a fire event near the Coorong
in South Australia on December 31st, 2020. Approximately one-
third of the image is covered by water, and about 5% shows fire
smoke over land. Corresponding RGB and HSSDA figures are
presented in Fig. 6.

Using the developed emulation system, we measure the run-
ning time, memory footprint, and power consumption associated
with each step of the process workflow in the two scenarios. As
illustrated in Fig. 7, this process of AI on-ground scenario begins
with the compression of a captured image, having dimensions
of 3072 × 1856 pixels and consisting of 45 bands (excluding
thermal bands). The LZMA compression is then applied to
reduce the original image size of 489 MB to a compressed
file of approximately 388 MB. Our emulation reveals that this
compression step takes about 656 s, consumes an average of
23 MB of memory with a peak at 530 MB, and has a power
consumption of around 0.5 W.

Subsequently, the compressed image is divided into 778
smaller files, each 512 KB in size, to facilitate transmission
(downlinking) to the ground station. The file splitting process is
relatively fast, taking about 7 s, and requires an average memory
of 22 MB with a peak at 83 MB. The power consumption
during this step remains around 0.5 W. Once all these split files
are successfully downlinked to the ground station, the smoke
detection analysis is performed on the ground.

Fig. 8 showcases the simulated onboard smoke detection
process using AI. In this setup, the process begins with tiling
and band extraction from the input imagery, resulting in 84 tiles.
Each tile, with dimensions of 256 × 256 pixels and comprising
three selected bands, has a file size of about 0.38 MB. The tiling
and band extraction step takes approximately 3.5 s, utilizes an
average memory of 33 MB (peaking at 325 MB), and consumes
around 0.5 W of power.

These 84 tiles then undergo AI model inference. This step
of the process requires about 1.6 s, with an average memory
usage of 29 MB, a peak memory usage of 54 MB, and a power
consumption of 1.31 W. Assume that the AI model identifies ten
tiles containing smoke. These detected tiles are then merged back
into a single image, which retains the dimensions of the original
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TABLE III
EMULATION RESULTS OF ONBOARD PROCESSES

Fig. 7. Simulation results showcasing the workflow of traditional smoke detection (AI on-ground), including the compression and downlinking steps prior to
ground-based smoke detection analysis.

imagery, band selection, and georeferencing information. The
merging process consumes 6.2 s, an average memory of 26 MB,
peaks at 519 MB, and requires approximately 0.5 W of power.

Following the merging, the next step is the compression of this
merged image from sized at 489–61 MB. The compressed file
is then segmented into 122 smaller files, each of 512 KiB, ready
for downlinking to the ground station. For data downlinking,

assuming the downlinking data rate is 28.7 Mbps, and the down-
link power is 13.8 W (derived from the Φ-Sat-1 mission [13]),
the energy consumption for data downlinking in the example of
the AI onboard scenario is 0.065 WH, while the AI on-ground
scenario requires 0.414 WH.

Table IV compares the resource consumption between the
two scenarios, AI onboard and AI on-ground. The traditional
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Fig. 8. Simulation of the onboard smoke detection process using AI, detailing the steps of tiling, band extraction, AI model inference, image merging, compression,
and file segmentation for downlinking, along with their respective time, memory, and power requirements.

TABLE IV
COMPARISON OF RESOURCE CONSUMPTION IN AI ONBOARD VERSUS AI

ON-GROUND SCENARIOS

scenario wit AI on-ground, requires downlinking the entire
compressed image, sized at 388 MB. This process incurs sig-
nificant resource usage for data downlinking, notably a transfer
time of 108 s and an energy expenditure of 0.414 WH. In
contrast, the AI onboard scenario demonstrates a marked ef-
ficiency improvement, which reduces the downlink data volume
to 61 MB with downlink time to 17 s and energy consumption
to 0.065 WH. Notably, this reduced data volume is particularly
advantageous given the constraints on downlinking capacity
during each satellite pass over a ground station, potentially
avoiding delays inherent in waiting for subsequent passes for
data transmission.

Although the introduction of AI onboard introduces additional
steps, such as tiling, band extraction, and AI inference, these
steps are executed relatively fast (3.5 and 1.6 s, respectively)
and with small power consumption. The most time-consuming
step, compression, remains constant in both scenarios, ensuring
that the overall processing time and energy consumption are
only marginally increased (from 663 to 668 s, from 0.092 to

0.093 WH) when AI is onboard. The slight increase in process-
ing time is outweighed by the substantial benefits in downlink
efficiency.

In summary, the implementation of AI onboard for smoke de-
tection exhibits clear advantages over traditional methods. These
benefits primarily manifest in reduced downlink requirements,
leading to significant savings in processing time and energy.

D. Discussion

This discussion delves into the deeper implications, limita-
tions, and practical applicability of our findings. The VIB_SD
model has demonstrated high prediction accuracy and a low
FNR in simulated datasets. However, its true effectiveness will
be more accurately evaluated when applied to actual satellite
data from the Kanyini mission.

Real-world conditions present several challenges that could
potentially affect the model performance. These include atmo-
spheric variability, cloud cover, and sensor noise. Implementing
atmospheric correction onboard satellites could significantly
increase timing and energy consumption. Conversely, omitting
this step might impair the model accuracy. Although the onboard
data handling system of the Kanyini satellite being equipped
with coarse georeferencing and atmospheric correction capabil-
ities, there remains a potential for discrepancies in accuracy and
energy efficiency. Future research should focus on validating
the model performance under varying and unpredictable envi-
ronmental conditions.

In addition, while our emulation results are indicative, they
are subject to variables, such as hardware and software discrep-
ancies, and coding practices. Notably, the difference in VPU
chips could cause variations in AI model performance. This
necessitates a meticulous calibration of the emulation system to
better align with the satellite computing environment. Gaining
access to the satellite or its engineering model will be crucial for
this calibration, ensuring our results more accurately reflect the
operational realities of the Kanyini satellite.
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An important finding of our study is the significant reduction
in downlink time and energy consumption achieved by inte-
grating AI onboard. This improvement is crucial for enhancing
data transmission efficiency in satellite operations. However, it
is accompanied by an increased demand for onboard processing
time due to AI inference. Balancing downlink efficiency with the
additional onboard processing requirements is important, espe-
cially for missions with limited power resources or downlink
opportunities.

Furthermore, our study highlights another significant benefit
of onboard AI: the early detection of fire smoke. Traditional
methods typically yield smoke detection results only after the
imagery is downlinked and processed on the ground, which can
delay response times. In contrast, AI onboard enables imme-
diate fire smoke detection directly on the satellite, a capability
that is particularly advantageous in satellite constellations. This
enables rapid transmission of detection results between satel-
lites, facilitating early warning systems for wildfires and other
urgent environmental monitoring tasks. This proactive detection
capability enhances the responsiveness of satellite-based mon-
itoring systems and contributes to timely decision-making and
intervention in emergencies.

In conclusion, our research presents valuable insights into
the potential of AI-enhanced fire smoke detection for satel-
lite applications. However, it also highlights the imperative
of rigorous real-world testing and calibration to fully real-
ize and optimize this technology for practical use in satellite
missions.

V. CONCLUSION AND FUTURE WORK

In conclusion, this research project has provided a solution
for energy-efficient AI-based onboard processing of hyperspec-
tral imagery for early fire smoke detection, especially for the
prelaunch stage. The deployment of the VIB_SD model, operat-
ing within the constraints of the HS2 sensor on the Kanyini satel-
lite, has demonstrated promising results in terms of high predic-
tion accuracy and low FNR. The simulation of a comprehensive
training dataset and the implementation of an emulation system
have further confirmed the feasibility and benefits of onboard
processing. The significant reduction in data downlink volume
and energy consumption, coupled with the increased speed of
fire smoke detection achieved through AI onboard, highlight the
practical advantages of onboard AI-based fire smoke detection.
The findings of this research not only contribute to advancing
satellite-based early fire smoke detection capabilities but also
hold promise for enhancing wildfire monitoring and response
efforts.

Future work in the postlaunch phase involves calibrating the
emulation system to match the actual environment of Kanyini. In
addition, there is a need for model implementation and stepwise
model updates using real Kanyini imagery training data after the
launch. Exploring alternative AI models, such as segmentation
models, can also be considered. Finally, conducting a compar-
ison between AI-based and deterministic (spectral index-based
smoke detection) onboard methods would provide valuable in-
sights.

Moreover, onboard change detection techniques utilizing time
series imagery have demonstrated promising outcomes [42],
[43], [44]. However, in our current study, the implementation
of such techniques was constrained by the limited power and
storage capacities of the satellite platform. Future research will
explore these advanced change detection methodologies, such
as [45] and [46], particularly for fire smoke detection.

Code and simulation results are available at1 (access can
be provided on request). More details can be found in Stefan
et al.’s [33] work.
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