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Abstract 

 

Biomass pyrolysis is one of the processes for deriving fuel and value-added plaƞorm chemicals 
from a renewable carbonaceous feedstock having a carbon neutral to carbon posiƟve process 
potenƟal. Biomass pyrolysis has been studied for over 60 years, however it has started 
receiving greater scienƟfic and commercial interest in recent years, especially in lieu of subsea 
crude oil dependence and as an opƟon to aid the green energy transiƟon. 

The aim-objecƟve of this work was to gain a deeper understanding of the factors governing 
the phenomena of biomass pyrolysis to obtain consistent and relevant kineƟc parameters 
which would help facilitate the development of robust reactor and parƟcle scale models. 

One of the major challenges in kineƟc modelling as well as reactor design and product yield 
predicƟon is the inherently heterogeneous nature of biomass as a solid feedstock. This 
heterogeneity is not captured in most commonly used kineƟc methods. As a result, there is a 
general lack of robustness and fidelity when calculaƟng kineƟc parameters using convenƟonal 
methods for reactor and process design. Another source of inconsistencies and confusion is 
the difference in nature of slow pyrolysis and fast pyrolysis and a dearth of qualitaƟve and 
quanƟtaƟve understanding of factors determining it. Slow pyrolysis is characterized by lumped 
reacƟon mechanism as opposed to fast pyrolysis in which consƟtuent elements undergo 
discrete degradaƟon. The possibility and benefits of dynamic reactor control specifically in 
case of fast pyrolysis is also dealt with in our work. 

In this work, a series of experiments were performed to elucidate the nature of slow pyrolysis 
and fast pyrolysis and study the factors influencing the rate of pyrolysis. A criƟcal review of 
exisƟng methods for determinaƟon of kineƟc parameters and the limits of their applicability 
for biomass pyrolysis has also been addressed. Based on the understanding gained, 
biochemical chemical characterizaƟon of 10 locally sourced biomass samples was carried out 
and the composiƟon of their structural carbohydrates (viz. cellulose, hemicellulose, lignin etc) 
was determined. Since the inorganics present in biomass make biomass pyrolysis an 
inherently autocatalyƟc process, the inorganic and elemental composiƟon of all 10 samples 
was also calculated. TGA experiments were performed at various linear heaƟng rates and 
parƟcle sizes not just for the 10 biomass samples, but also for pure cellulose, hemicellulose 
and lignin samples.  

The generated experimental data was used to link the composiƟon of biomass to its relevant 
kineƟc parameters. Comparison between kineƟc parameters from convenƟonal methods and 
proposed method has shown to support our thesis. An aƩempt to combine model fiƫng 
method with model free methods to obtain Arrhenius type kineƟc parameters has also been 
made and shows some promise within applicable limits. Further, machine learning approaches 
such as arƟficial neural networks have been implemented to develop predicƟve models which 
not just capture the inherent heterogeneity of biomass but also give decent predicƟve 
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capabiliƟes across length and Ɵme scales. ElucidaƟon of the phenomena of biomass pyrolysis 
and factors governing it along with proposed predicƟve model makes it possible to integrate 
consistent kineƟcs with parƟcle scale and reactor scale models with improved fidelity. Lastly, 
this work hopes to be a contribuƟon which would help in realizing the commercial and 
operaƟonal potenƟal of biomass pyrolysis. 
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Chapter 1 Understanding Biomass Pyrolysis 
  
 In this chapter, the concept of biomass pyrolysis is introduced along with various 
engineering (physio-chemical) aspects related to the process. Historical development of 
scienƟfic and technological advancements brought about through various studies on biomass 
pyrolysis is also discussed. Factors influencing the modelling and experimental work necessary 
for commercialisaƟon and operability of biomass pyrolysis process are also reviewed. A short 
discussion regarding the major challenges inhibiƟng the general maturity of biomass pyrolysis 
as a viable technology is included. Despite the associated challenges, the potenƟal and 
promise shown by biomass pyrolysis and applicability that it finds in today’s global energy 
scenario has been summarized. The environmental aspects and techno-economic 
consideraƟons associated with biomass pyrolysis along with various conjugate and affiliated 
thermochemical processes has also been addressed. Finally, a brief literature review is given 
which discusses major contribuƟons by various authors/research groups, major phenomena 
which govern and determine the nature of biomass pyrolysis process and various engineering 
consideraƟons necessary for design and opƟmizaƟon of the process. 
 

 

1.1 IntroducƟon 
 

Biomass fast pyrolysis is one of the techniques of converƟng biomass into uƟlizable fuel forms 
or relevant plaƞorm chemicals. The process of pyrolysis can be explained as thermal 
treatment of a feedstock in an inert (oxygen free) atmosphere. Non-reacƟve gas such as 
Nitrogen, Argon or Helium is used to achieve inert condiƟons while simultaneously serving as 
carrier agent for the volaƟles produced during pyrolysis reacƟon. Pyrolysis of a carbonaceous 
feedstock is carried out to convert the feedstock into a crude-oil dominant fracƟon (+ char) as 
opposed to a syngas dominant fracƟon (+ char) which occurs during combusƟon. The quality 
and quanƟty of each of the said fracƟons is determined by the process condiƟons and 
composiƟon of biomass. In other words, the process condiƟons together with the 
composiƟon of biomass determine not just the kineƟcs of reacƟon process but also determine 
the yield of each fracƟon quanƟtaƟvely and qualitaƟvely1–3.  
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Process condiƟons are determined first and foremost by the reactor type and design. This 
determines the scale and physical boundary condiƟons of the process. Table 1 and  2 show 
some of the common reactor types in use and their details. Chapter 5 of this thesis deals with 
this aspect in more detail. The variables temperature, pressure and carrier gas flow rate 
determine the dynamic control of the process. In most common pyrolysis applicaƟons, 
pressure is kept constant. However, both vacuum and high-pressure pyrolysis operaƟons have 
been reported. Throughout our work, we have dealt only with constant pressure condiƟons.  
The temperature control of pyrolysis process can either be at isothermal (constant 
temperature) condiƟons or at non-isothermal (varying temperature) condiƟons. For 
isothermal processes, the temperature is kept constant at Tmax and pyrolysis kineƟcs is 
essenƟally the relaƟonship between degree of conversion and reacƟon Ɵme. Non-isothermal 
pyrolysis is performed either at a variable or a constant heaƟng rate. In our work, we have 
used mulƟple linear heaƟng-rates to elucidate the relaƟonship between temperature and 
degree of conversion. The reacƟon kineƟcs is then a funcƟon not just of Ɵme but also of 
temperature.  Effect of reactor temperature condiƟons on biomass pyrolysis and the methods 
associated with determinaƟon of reacƟon kineƟcs are discussed in detail in chapter 2 and 
chapter 3 of the thesis. The carrier gas flowrate essenƟally determines the residence Ɵme of 
parƟcle in reacƟon regime and as such also influences the degree of conversion/reacƟon of 
feedstock parƟcles.  

Feedstock composiƟon is determined both chemically and physically. A chemically 
homogenous feedstock (single compound or polymer) usually has uniform conversion profile 
under pyrolysis condiƟons. Biomass, however, is a highly heterogeneous feedstock 
composiƟonally. Its structure is depicted in Figure 1. Its main consƟtuent blocks are the 
polymers cellulose, hemicellulose and lignin. Protein, lipids and inorganics are the minor 
consƟtuents on biomass. Cellulose is a crystalline polysaccharide consisƟng of n-glucose 
monomers linked with 1,4- β glucoside bond. This provides cellulose with a degree of linearity 
in its structure. Cellulose, therefore, decomposes within a specific thermal range. 
Hemicellulose is an amorphous polysaccharide consisƟng of units of mainly xylose and 
arabinose. Lignin is three-dimensional cross-linked polymer consisƟng of units of phenyl 
propane. Both hemicellulose and lignin decompose over a broader range of temperature. It is 
easier to decompose hemicellulose than to decompose lignin.4,5  Conversion kineƟcs of 
biomass pyrolysis is closely linked to the composiƟonal make-up of each biomass feedstock. 
The complexity in modeling conversion kineƟcs arises due to disƟnct yet overlapping regimes 
of cellulose, hemicellulose and lignin conversion under heat treatment condiƟons.1,4 The 
complexity in predicƟon of yields is further compounded due to the primary and secondary 
reacƟons between gas phase products of the three polymers and the inherent autocatalyƟc 
nature of biomass at elevated temperature condiƟons.6,7 
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Figure 1 Structural representation of biomass sample 

 

The process condiƟons and the feed composiƟon are inƟmately linked to the yield quality and 
quanƟty of pyrolysis products. As such, the commercial applicaƟon of yield fracƟons and 
required upgrading is determined to a large extent by process condiƟons and composiƟon of 
biomass. There have been several aƩempts at modelling this relaƟonship between feedstock 
composiƟon, process condiƟons and yield distribuƟon for biomass pyrolysis over the years 
with varying degrees of saƟsfacƟon. There are several thermochemical techniques to convert 
biomass into uƟlizable fuel forms or value-added chemical. The current work focusses 
specifically on fast pyrolysis process for biomass conversion. A brief overview of biomass 
pyrolysis process along with some prevalent conjugate pathways is shown in Figure 2. Prior 
efforts and related work carried out by various authors and research groups is reviewed at the 
end of this chapter.  

Growing environmental concerns and problems associated with dependence on crude oil 
make it perƟnent to look at alternaƟve green energy sources. Biomass pyrolysis is one such 
technology. It has been around for almost 50 years but has started gaining more aƩenƟon 
recently.3,8 A brief overview of global energy producƟon and global energy consumpƟon is 
shown in Figures 3 and 4.  
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Figure 2 Overview of conversion processes for carbonaceous feedstock, specifically biomass 

 

 

Figure 3 Overview of global energy production9 
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1.2 Literature review 

There is abundance of literature available on thermochemical conversion of various feedstock. 
The process pyrolysis has been studied adjacent with studies delving into gasificaƟon. In the 
same vein, the study of kineƟcs of biomass pyrolysis is derived at least in part through the 
study into devolaƟlizaƟon of coal. However, there are specificiƟes which make biomass 
pyrolysis quite unique.  Biomass pyrolysis route can be adopted to produce char, crude-oil or 
gas depending upon process condiƟons.  

1.2.1 Process condiƟons 

Process condiƟons which determine and define pyrolysis are temperature, pressure, 
residence Ɵme/reacƟon Ɵme. The effect of pressure has not been included in this study and 
pressure is assumed to be constant (atmospheric pressure) for all our consideraƟons. There 
have been some invesƟgaƟons 10–12 into effect of pressure on biomass pyrolysis, but it is tricky 
to carry out and is beyond the scope of this study. Broadly speaking, low pressure condiƟons 
seem to favour devolaƟlizaƟon and higher pressures seem to favour charring. 

I. Temperature 

The effect of temperature is the most well studied and well understood aspect of biomass 
pyrolysis. For a given pyrolysis process, the temperature could either be constant (isothermal 
condiƟons) or variable (non-isothermal condiƟons). When biomass is introduced in a pre-
heated reactor at constant temperature, the process is considered isothermal. When biomass 
is fed to the reactor prior to heat ramping, the process is considered non-isothermal. It is 
important, however, to note that if the parƟcle size of biomass is large enough for a thermal 
gradient to be effecƟve within a parƟcle, the parƟcle scale process should be considered non-
isothermal. This aspect will be discussed again towards the end of the thesis.  The opƟmal 
operaƟng temperature for biomass pyrolysis intended for oil producƟon is ~500-600 oC range. 
Higher operaƟng temperatures than this lead to promoƟon of charring reacƟons and char + 
syngas is obtained. OperaƟng temperatures lower than this lead to persistence of a plasƟc 
phase which is ionized and promotes charring and cracking reacƟons.3,13,14  

In case of non-isothermal condiƟons, a heaƟng rate is employed to heat up the biomass 
sample to desired temperature. The heaƟng-rate is usually constant, and a lot of kineƟc 
studies have been performed using constant (mulƟple) heaƟng rates. There are number of 
studies which study the non-isothermal kineƟcs of biomass pyrolysis for a variety of samples 
which have been reviewed comprehensively.2,8,15–18 Slower heaƟng rates imply lower ΔT/Δt 
values, whereas faster heaƟng rates imply higher ΔT/Δt values. Generally speaking, slower the 
heaƟng rate, more lumped is the process. A review of literature reveals that most kineƟc 
studies have been performed for slow heaƟng rates, however fast pyrolysis has gained interest 
over recent years. TradiƟonally, biomass was thermally processed either via torrefacƟon or to 
generate low quality combusƟon oil and char. This had applicaƟons in electricity generaƟon 
as well. 
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GeneraƟon of pyrolysis oil (from biomass) with the intenƟon of integraƟon with petrochemical 
industry for fuel and value-added chemical generaƟon has found recent interest.19–21 Studies 
focused on this have increased over recent years. Published literature tells us that to ensure 
maximizing pyrolysis oil fracƟon quanƟtaƟvely and qualitaƟvely, it is necessary to ensure fast 
heaƟng rates, a kineƟcally controlled reacƟon regime and endothermic process control.22–25 
However, we also see that there are difficulƟes associated in achieving high quality oil yield. 
Especially for large scale operaƟons to be commercially viable. Another thing to note is that 
in most works, the conversion of biomass during pyrolysis is the funcƟon of Temperature 
(only). It is observed during the course of this work that while this temperature relaƟonship is 
largely okay in case of homogenous compounds, it can lead to erroneous results in case of 
biomass pyrolysis. IncorporaƟng the dependence of composiƟon along with temperature is 
beneficial for designing biomass pyrolysis reactors and is one of the contribuƟons of this work. 
The current work tries to address some these fast pyrolysis aspects along the way. 

II. Residence Ɵme 

In case there is a carrier gas transporƟng the volaƟles, the residence Ɵme is determined by 
the carrier gas flowrate. Wherein there is no carrier gas, usually a mechanical transport or 
batch process is assumed. In such cases, it is rather difficult to achieve short residence Ɵmes 
(~2-5 seconds) and such reactors are not suited for achieving fast pyrolysis condiƟons. An inert 
carrier gas provides for a decent control over vapour residence Ɵme and can be used to 
achieve vapour residence Ɵmes of ~2-5 seconds which are preferable for fast pyrolysis 
condiƟons.26–28 Residence Ɵme is usually not of concern in case of batch processes or slow 
pyrolysis processes.  

III. Feedstock properƟes 

Cellulose, hemicellulose and lignin along with protein and ash consƟtute the components of 
biomass responsible for determining the chemical interacƟons during pyrolysis and 
subsequently the composiƟon of bio-oil. Cellulose is a crystalline polysaccharide consisƟng of 
n-glucose monomers linked with 1,4- β glucoside bond. This provides cellulose with a degree 
of linearity in its structure. Cellulose, therefore, decomposes within a specific thermal range. 
Hemicellulose is an amorphous polysaccharide consisƟng of units of mainly xylose and 
arabinose. Lignin is three-dimensional cross-linked polymer consisƟng of units of 
phenylpropane. Both hemicellulose and lignin decompose over a broader range of 
temperature. It is easier to decompose hemicellulose than to decompose lignin. These 
individual thermal decomposiƟon characterisƟcs, their respecƟve gas-phase (volaƟle) 
chemistries and the interacƟons between the primary and secondary gas phase components 
play a significant role in determinaƟon of bio-oil composiƟon.2,4 
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Figure 4 Cellulose polysaccharide structure 

 

 

Figure 5 Xylan (hemicellulose) of hardwoods 

 

Figure 6 Major monosaccharides which constitute cellulose and hemicellulose polysaccharides 
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Figure 7 Lignin monomers 

 

 

Figure 8 Hardwood lignin structure 
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Figure 9 SoŌwood lignin structure 

Thus, in this work, TGA datasets will serve as the basis of training the predicƟve model and for 
calculaƟng the kineƟc parameters of biomass samples for fast pyrolysis. Comprehensive TGA 
analysis of ten biomass samples have been carried out. TGA experiments for each biomass 
sample were carried out at five heaƟng rates (250 K/min, 100 K/min, 50 K/min, 20 K/min, 5 
K/min), two sample sizes (1 mg and 0.25 mg) and three parƟcle size range (250 – 300 µm, 106 
– 150 µm and below 45 µm). The sample size and parƟcle size range were chosen to ensure 
that devolaƟlizaƟon occurs in purely kineƟcally controlled regime. Every sample was run in 
triplicates to check for repeatability. The generated 900 datasets will be used to 
comprehensively calculate the kineƟc parameters for biomass samples as well as for training 
the predicƟve model. 1 

 

1 Juxtaposing coal gasificaƟon and biomass gasificaƟon/pyrolysis to understand the context of 
early studies in biomass pyrolysis- The fundamental idea behind biomass pyrolysis could be 
found in the process of natural crude formaƟon and invesƟgaƟons in the process of coal 
gasificaƟon to generate energy/meet energy demand. The process of crude formaƟon is 
essenƟally the conversion of solid carbon-based maƩer into hydrocarbon fracƟons under 
natural condiƟons. This process is over extremely long-Ɵme scales, at higher than atmospheric 
pressure and with entropy controlled conversion kineƟcs. Biomass pyrolysis could also be 
considered as a process of converƟng solid carbon-based maƩer into liquid hydrocarbons (plus 
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1.2.2 KineƟc methods  

KineƟc studies for biomass pyrolysis follow either a lumped approach or follow an approach 
involving individual specie based discreƟsed yield models, both of which are based either on 
a mechanisƟc methodology or an empirical methodology. A mechanisƟc model is based on 
incorporaƟng as much knowledge about a reacƟon mechanism into it for determining reacƟon 
kineƟcs. It can have predicƟve capabiliƟes such as predicƟon of composiƟon and yield. The 
more knowledge about reacƟon pathways and interconnectedness can one incorporate into 
it the beƩer would be the predicƟve accuracy of mechanisƟc model. On the other hand, when 
the system under study is complex and hardly anything is known about its structural 
connecƟvity and funcƟonal mechanisms, yet one has to produce hypotheses about it one 
oŌen relies on empirical models. They may incorporate some mechanisƟc assumpƟons so that 
they may look realisƟc. 

The approach adopted in this work could be considered mechanisƟc but with transient nature 
on account of the dynamism of neural networks.  

Till date, majority of these approaches are derived from kineƟc invesƟgaƟons into thermal 
behaviour of wood, coal or syntheƟcally generated polymers for varied applicaƟons. Most 
approaches assume that the Arrhenius form parameterized in terms of acƟvaƟon energy and 
other factors is sufficient to describe the pyrolysis behaviour of biomass. Arrhenius equaƟon 
basically gives temperature dependence of a reacƟon. In this work, we see that the Arrhenius 
equaƟon and only temperature dependence is insufficient to accurately describe biomass 
pyrolysis over temperature and Ɵme scales. We also present a kineƟc approach suitable for 
biomass pyrolysis by incorporaƟng feedstock composiƟon dependence over Ɵme and 
temperature scale in kineƟc reacƟon model. 2 

 

 
some syngas and char), since it is most oŌen a high temperature process. The kineƟcs of this 
thermochemical conversion is enthalpy driven. Biomass pyrolysis process can be carried out 
over longer Ɵme scales (slow pyrolysis) or shorter Ɵme scales (fast pyrolysis). 

2 The Arrhenius equaƟon is analogous to its thermodynamic counterpart Eyring equaƟon. 
Eyring equaƟon is an analyƟcal model whereas Arrhenius equaƟon is an empirical model.  For 
solid state reacƟon, as temperature of system is increased the entropy of solid feedstock starts 
to increase. The entropy of solid feedstock increases unƟl it reaches the entropy of acƟvaƟon, 
at which the solid inert state undergoes phase change and a reacƟve plasƟc state or a fluid 
state is reached. This entropy of acƟvaƟon in thermodynamic theory is analogous to the 
acƟvaƟon energy in kineƟc theory. 
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1.2.3 Heat transfer and Mass transfer  

Heat transfer and mass transfer effects over temperature and Ɵme scale are one of the lesser 
understood aspects of biomass pyrolysis.29 The phenomena should be understood at parƟcle 
scale and also at reactor scale to develop comprehensive models accounƟng for mulƟscale 
aspects. Smaller parƟcles would have lesser internal thermal gradients and kineƟc control of 
reacƟon is possible. With larger parƟcle sizes, the internal thermal gradient is large and a 
diffusion reacƟon with secondary and terƟary cracking is present. One measure of gaining 
insight into these factors is to make use of dimensionless numbers. Three relevant 
dimensionless numbers and their significance is discussed here briefly. This is also touched 
upon in chapter 5. 

Biot number  𝐵𝑖 =  
௛஽

ఒ
         1.1 

Pyrolysis number 1  𝑃𝑦ଵ =
ఒ

௞஼೛஽మఘ
       1.2 

Pyrolysis number 2  𝑃𝑦ଶ =
௛

௞஼೛஽ఘ
       1.3 

Where, h: convecƟve heat transfer coefficient (Wm-2K-1) ; D: characterisƟc length (m) (either 
parƟcle diameter or length of reactor)   ; λ: thermal conducƟvity( Wm-1K-1)   ; 𝐶௣: specific heat 
capacity of biomass parƟcle (J Kg-1 K-)1 ; k: reacƟon rate coefficient (s-1)  ; ρ: density of parƟcle 
(kg m-3) 

The range and values of these dimensionless numbers determines the operaƟng regime of 
reacƟon. 

 

1.2.4 Down-streaming, UpgradaƟon, Process integraƟon 

Down-streaming, upgradaƟon and process integraƟon are crucial aspects of biomass pyrolysis 
process. However, these aspects are beyond the scope of the current work and are not dealt 
with in detail in this work. A brief overview of these aspects and their role in process is 
presented below. 

CollecƟon and phase separaƟon: Since pyrolysis vapours are reacƟve and vapour phase 
reacƟons are known to occur, it is important to condense the vapours, separate various phase 
fracƟons and inhibit reacƟvity of crude-oil. Condensable vapours are usually passed through 
a cyclone separator to remove solid char parƟcles from vapours. A shell and tube type heat 
exchanger is generally employed to condense the vapours and obtain crude fracƟon. Other 
approaches such as solvent quenching and in-situ catalyƟc treatment are also employed in 
certain cases. The non-condensable fracƟon is usually recycled to meet a porƟon of energy 
demand for the pyrolysis reactor, or it can be processed in a pressure swing adsorpƟon system 
to separate individual component gases.  
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The high amount of elemental oxygen in biomass leads to formaƟon of oxygenated 
compounds with poor fuel properƟes. CatalyƟc deoxygenaƟon or hydrogenaƟon is performed 
either in situ or ex situ to improve the fuel properƟes and make it petro-chemical compaƟble. 
Such an oil fracƟon could be processed within fluid catalyƟc cracking units of petrochemical 
infrastructure. 16,30,31 

A review of literature available on biomass pyrolysis throws light on the major challenges and 
possible soluƟons. Several authors have pointed towards the need for both concerted efforts 
at linking the available know how on biomass pyrolysis to help realise its commercial and 
technical promise and towards the need for adopƟng unique approaches to circumvent near 
certain piƞalls and difficulƟes associated in modelling biomass pyrolysis. 1, 4–6 

 

 

Figure 10 Overview of global energy consumption 33 

 

1.2.5 Promise and potenƟal of biomass pyrolysis 

One of the major reasons for interest in biomass pyrolysis is it the availability of feedstock and 
possibility of integraƟng the products into exisƟng crude oil processing infrastructure. Biomass 
is the only renewable source for liquid fuels and chemicals that can be integrated within the 
exisƟng crude processing infrastructure and oil-energy markets and has been studied now for 
decades. 29,32 Thermochemical conversion of biomass can technically uƟlise the enƟre plant 
as feedstock rather than uƟlise just the simple sugars which is the case with biological 
conversion. The reacƟon process Ɵmescale in case of thermochemical conversion ranges from 
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a few seconds to a few minutes, as compared to fermentaƟon based processes which occur 
over days. The US department of energy has set a goal of replacing around 30% of 
transportaƟon fuel with biofuel 32 (mainly bioethanol and biodiesel). 

As such, biomass pyrolysis has the potenƟal to assuage load on crude oil demand and use 
while being a carbon neutral process. Biomass pyrolysis is usually performed to convert 
lignocellulosic biomass into a bio-oil consisƟng of diverse chemicals (phenols, alcohols, furans, 
ketones, acids, etc.), bio-char, a solid product made up of residual carbon and syngas. Syngas 
is most oŌen used to meet the parƟal energy requirements of the pyrolysis process. Although 
bio –oil has commercially relevant chemicals, it is also used as fuel (aŌer necessary down-
streaming operaƟons) as it has a heaƟng value of around 20 MJ/kg. Bio-char has potenƟal to 
be used as soil-condiƟoner and commercial grade adsorbent.34,35 

Further, biomass pyrolysis systems are not as capital intensive as other non-convenƟonal 
renewable energy systems and the bio-oil obtained via pyrolysis can be blended with vacuum 
gas oil in fluid catalyƟc cracking units of oil refineries. Proper uƟlizaƟon of char for carbon 
sequestering purposes and eliminaƟon of NOx and SOx emissions would help reduce the 
adverse effects associated with producƟon of crude oil and other associated products. 
Furthermore, there is yet not completely explored potenƟal of co-pyrolysis, especially 
biomass and plasƟc-like waste.36,37 Lastly, there is also a potenƟal for hydrogen or lower 
hydrocarbons generaƟon using biomass pyrolysis.38,39 

Despite the need and promise held by biomass pyrolysis, it has found liƩle success at large 
scale commercial operaƟon due to a host of interlinked and difficult to overcome inherent 
issues associated with feedstock and process control. Some of the major challenges are 
discussed briefly in the next secƟon and the aspects covered within the scope of current work 
are highlighted. 

 

1.2.6 Factors impeding commercial and operaƟonal realizaƟon of biomass pyrolysis 

I. MulƟscale and mulƟphase nature of feedstock, process and products 
a. MulƟscale aspects  

One of the issues associated with biomass pyrolysis is the variance of phenomena as the scale 
of operaƟon changes.4 The mulƟscale nature of biomass pyrolysis is observed mainly in two 
aspects. First aspect is the mulƟscale nature of the feedstock and the second aspect is the 
mulƟscale nature of reacƟon process. The feedstock at microscopic/cellular level is inherently 
mulƟ-scale in nature. The length-scale of cellulose polymer/structural carbohydrates (along 
with its structure) is quite different from the length-scales and structures of hemicellulose and 
lignin. At the macroscopic level, that parƟcle size of feedstock is also important. 40 
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The mulƟscale nature at cellular level is beyond our control. However, pre-treatment and size 
reducƟon can help us control or miƟgate this effect a bit. Larger the parƟcle size, longer would 
be the required residence Ɵme for complete conversion/reacƟon. This leads to larger parƟcles 
undergoing charring and (secondary and terƟary) cracking reacƟons which contribute to a 
greater proporƟon of char and non-condensable gases. As such, in larger parƟcle sizes the 
reacƟon would be diffusion controlled and exothermic reacƟons would be promoted. When 
the parƟcle size is small enough for the reacƟon to be kineƟcally controlled, endothermic 
reacƟons would be promoted, and oil yield would be greater. This implies devolaƟzaƟon 
reacƟons as opposed to charring and cracking reacƟons. 

In terms of reactor, the mulƟscale aspect is observed during the scale up of process. The 
phenomena of biomass pyrolysis at a small-scale/lab-scale is different from the phenomena 
of biomass pyrolysis at commercial scale/large scale. It is because of these reasons that the 
reactor design and process opƟmizaƟon at lab scale cannot be extrapolated to large scale 
operaƟons and doing so would yield vastly different product profiles than as predicted. It can 
thus be said that biomass pyrolysis is essenƟally mulƟscale in nature due to the mulƟscale 
properƟes of its structural carbohydrates. This mulƟscale aspect can be either 
exemplified/magnified or it can be miƟgated and minimized based on feedstock pre-
treatment, size reducƟon and modelling and design consideraƟons. Developing models 
capable of such mulƟscale predicƟons is important especially when considering scale-up. Our 
work discusses these aspects in chapter 2 and 3 and chapter 4 discusses a novel modelling 
approach suited for such mulƟscale predicƟve modelling.  

The physical pre-treatment (drying and size reducƟon) carried out for current work is 
discussed in later secƟon. 

b. MulƟphase aspects  

The phase change phenomena involved in biomass pyrolysis is relaƟvely less understood. 
There have been efforts to understand the phase change occurring during pyrolysis. During 
biomass pyrolysis, a solid feedstock is converted in three fracƟons (solid char, liquid oil and 
syngas) of different phases. The composiƟon and quanƟty of these said fracƟons is a result of 
process condiƟons and feedstock composiƟon and this dual dependence makes studying 
these phenomena concretely a challenge. 29 

As discussed earlier, exothermic control of reacƟon would promote charring and gasificaƟon 
products, meaning a greater yield of solid and gas phase products. Whereas an endothermic 
controlled process within the kineƟc regime would yield higher proporƟon of liquid phase 
products (condensed bio-oil). The phase change profiles for cellulose, hemicellulose and lignin 
are markedly different over Ɵme and temperature scales. The differenƟal phase change 
characterisƟc of biomass consƟtuents are not revealed to be of much importance during slow 
pyrolysis when highly lumped reacƟon assumpƟons work well. However, in case of fast 
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pyrolysis condiƟons, this differenƟal phase change profile comes to fore much more. We 
discuss this in further detail in chapter 2 and 3. KineƟc models capable of capturing this 
mulƟphase aspect with dynamic controlled have been recommended in this work to further 
uƟlize the potenƟal of fast pyrolysis.  

 

II.  Lack of consensus on reacƟon chemistry and mechanism 

Most works classically were focussed on obtaining overall char, oil and gas yields via lumped 
kineƟc modelling of biomass pyrolysis. These models gave liƩle to no informaƟon about the 
composiƟon and as such the quality of bio-oil. The speciaƟon arising from primary and 
secondary reacƟons was not delineated. To study the reacƟon mechanism of biomass 
pyrolysis are different temperature and heaƟng rate condiƟons to figure out the resulƟng oil 
yield composiƟons, a knowledge of thermal decomposiƟon mechanism of cellulose, 
hemicellulose and lignin is required. Also, the effect of inorganics on reacƟon process of these 
structural carbohydrates is preferred.  There is not a complete knowledge about reacƟon 
mechanism of pure cellulose, hemicellulose and lignin especially at fast pyrolysis condiƟons. 
Furthermore, their vapour phase chemistries and interacƟon are even less understood. These 
interacƟons are important to study since they determine the product composiƟon to a degree. 
IniƟal invesƟgaƟons about pyrolysis mechanisms of pure cellulose, hemicellulose and lignin 
were carried out by Patwardhan et al.41–43 The idenƟfied species from polysaccharide pyrolysis 
could be broadly classified into low-molecular weight compounds, furan/pyran ring 
derivaƟves and anhydro sugars. Major compounds detected from cellulose fast pyrolysis were 
formic acid (~7 wt%), glycoaldehyde (~7 wt%), levoglucosan compounds (~62 wt%) and char 
(~5 wt%). The work revealed that product formaƟon from primary pyrolysis reacƟons is 
compeƟƟve in nature rather than sequenƟal. The group also studied the effect of inorganic 
salts on pure cellulose pyrolysis and specie formaƟon. The study showed that inorganic salt 
concentraƟons as low as 0.005 mmoles/g of cellulose were sufficient to significantly alter 
pyrolysis product speciaƟon. Inorganic salts and ash catalysed primary reacƟons that led to 
formaƟon of lower molecular weight compounds (formic acid, acetol and glycoaldehyde in 
parƟcular). As a result of compeƟƟve reacƟons, lower levoglucosan yields were observed. 
Effect of certain caƟons and anions on pyrolysis of pure cellulose was also studied. The work 
showed that careful control of mineral content could be used to alter the composiƟon of bio-
oil.  

Studies on primary pyrolysis of hemicellulose show that the major products are CO2, formic 
acid, char, DAXP2, xylose, acetol, CO, 2-furaldehyde and AXP in decreasing order of 
abundance. Inorganic salts were found to increase the formaƟon of char and CO2 along with 
2-furaldehyde. This was accompanied by a decrease in yield of other dehydraƟon products. 
DecaboxylaƟon was observed to be one of the preliminary steps of hemicellulose 
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decomposiƟon. DehydraƟon products : DAXP1, DAXP2, AXP and 2-furaldehyde had highest 
yield ~350-450 oC.44,45 

Studies into lignin pyrolysis show that the primary reacƟon products are phenol, 4-vinyl 
phenol, 2-methoxy-4-vinyl phenol and 2,6-dimethoxy phenol. These compounds could be 
grouped together as monomeric phenolic compounds. CondensaƟon of lignin pyrolyƟc 
vapours showed re-oligomerizaƟon of monomeric products during condensaƟon which was 
facilitated by aceƟc acid. Temperature is shown to play a major role in determining the product 
speciaƟon. The study shows possibility of selecƟvely obtaining monomeric phenolic 
compounds from dynamic control of pyrolysis process.46–48 

Cracking reacƟons generate anhydro-oligosaccharides while subsequent reacƟons produce 
levoglucosan from these anhydro-oligosaccharides. Eventually, cracking of anhydro-
oligosaccharides is eclipsed by levoglucosan producing reacƟons. These reacƟons compete 
with other reacƟons that produce light oxygenates and non-condensable gases. IniƟal rate of 
cracking is much faster than levoglucosan generaƟon from end-chain LPRs. This result should 
not be surprising considering the plethora of potenƟal cracking sites in long-chain anhydro-
oligosaccharides (equal to DP minus two) compared to the small number of sites for end-chain 
reacƟons (two per anhydro-oligosaccharide molecule regardless of DP). 49,50 

 

 

Figure 11 Shafizadeh's scheme (1976) 
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Figure 12 Ranzi's scheme (2008) 

 

Figure 13 Briodo and Shafizadeh (1975) + Miller and Belan (1997) 
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1.2.7 Techno economic aspects 

Techno-economic assessment shows that fast pyrolysis fuel has the potenƟal to compete with 
and eventually replace petroleum based fuels in future. However, due to various difficulƟes 
as stated earlier, only a handful of fast pyrolysis plants are able to operate commercially over 
sustained Ɵme-scales.51 In terms of product fuel cost, fast pyrolysis has been reported to be 
compeƟƟve with biological and gasificaƟon conversion technologies.32 As far as 
thermochemical conversion processes are considered, pyrolysis chemistry is observable 
within gasificaƟon and combusƟon as well. The peculiarity of pyrolysis (fast and slow) is the 
conversion of solid biomass into a denser crude liquid form which is beƩer for transportaƟon, 
storage and integraƟon into consumable fuel forms. However, crude pyrolysis oil is not stable 
and without appropriate collecƟon and downstream treatment, it would conƟnue to react 
and change its viscosity, acidy and chemical composiƟon. The down-streaming, upgradaƟon 
and process integraƟon aspects are touched upon briefly in this chapter, however, their 
detailed study lies outside the scope of this thesis work. 

Some of the leading reactor technologies for pyrolysis are review by Perkins et al and 
presented in table below. The review covers relevant organizaƟons and their technologies 
aimed at realizing fast pyrolysis for specific commercial purposes. The reactors currently in 
use for fast pyrolysis are fluidized bed reactor, rotaƟng cone reactor and their modified 
versions. The pyrolysis oil derived from these reactors and processes is different from 
convenƟonal petroleum oil and requires significant upgrading to be compaƟble with 
petroleum based combusƟon system. Else, the pyrolysis oil finds use in industrial combusƟon 
processes. 

 

Organisation Technology 
supplier 

Location Reactor type Feed 
rate 
(tpd) 

Status 

RTI International RTI  USA  Bubbling 
fluidized bed  

1  Operational  

Ensyn  Ensyn  Canada  Circulating 
transported 

bed  

2  Operational  

Union Fenosa  RTI, University 
of Waterloo  

Spain  Fluidized bed  5  Shutdown  

PyTec  PyTec  Germany  Ablative 
reactor  

6    

DynaMotive  DynaMotive  Canada  Bubbling 
fluidized bed  

11   
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Karlsruhe 
Institute 

Technology  

KIT/Lurgi  Germany  Twin screw  12  Operational  

Genting  BTG  Malaysia  Rotating cone  48   
AbriTech  AbriTech  Canada  Auger reactor  50   
Pyrovac  Pyrovac  Canada  Vacuum  93  Shut down  
Empyro  BTG  Netherland  Rotating cone  120  Operational  
Fortum  VTT/Valmet  Finland  Circulating 

fluidized bed  
274  Operational  

Table 1.1 Selected commercial fast pyrolysis reactor systems51 

There have been efforts in commercializing biomass based producƟon systems to miƟgate the 
dependence on petroleum based energy producƟon systems with the view of to help reduce 
the cost of energy and for environmental purposes. However high operaƟng costs labour costs 
and lack of government subsidies plus the small scale of biomass based power systems make 
it more expensive and such commercial operaƟons have been very limited in the success that 
they have found. Some authors have reviewed and presented efforts and technologies 
dedicated to realizing this. Some of the earlier approaches or energy systems were for power 
(electricity) generaƟon via gasificaƟon and pyrolysis. 52 

 

 

1.2.8 Life cycle analysis 

The highly variable operaƟng range of biomass pyrolysis leading to vastly different product 
fracƟon yields dependent on process condiƟons. The down-streaming and further 
applicaƟons of the obtained products are also vastly different and have differing 
environmental impacts. As such defining the scope of the life cycle analysis (cradle to grave or 
cradle to gate) is important. RecommendaƟons for the same are discussed in some recent 
works. Due to a lack of uniformity in process condiƟons and associated energy and 
environmental impacts, it is reported that there is a lack of systemic standardized approach in 
dealing with life cycle analysis of biomass pyrolysis.53 The applicaƟon of char in carbon capture 
technologies plays a role in carbon negaƟve economy as well. The potenƟal of char for carbon 
sequestering has been noted as well. Such applicaƟons of char are looked upon favourably 
while assessing environmental impacts of the process. Wherein, pyrolysis oil is the major 
product, the process is comparable with coal gasificaƟon and convenƟonal petroleum 
technologies, in terms of its environmental impacts. MulƟple studies have found that in terms 
of greenhouse gas emissions (GHG impact factor), biomass pyrolysis is beƩer than coal 
gasificaƟon and similar petrochemical processes. Some studies have also found that biomass 
pyrolysis has potenƟal in reducing the global warming potenƟal (GWP) amongst related 
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energy producƟon systems. Although more systemic and detailed research into the same is 
advised. Amongst various biomass feedstocks, forest residues seem to fare beƩer than most 
other opƟons in terms of environmental impacts. Biomass co-pyrolysis with municipal solid 
waste or other waste streams (such as waste tyres) contribute negaƟvely in terms of 
environmental impacts. Whereas co-pyrolysis and integraƟon with processes such as 
anaerobic digesƟon improve the environmental impacts of the process.53–57 

Overall, it could be said that biomass pyrolysis is neither inherently beneficial nor detrimental 
in terms of environmental impact as compared to its conjugate thermochemical energy 
producƟon systems. That being said, biomass pyrolysis holds potenƟal to meet energy 
demand while reducing the environmental impacts. To realise this potenƟal, understanding 
the phenomena and designing reactors for opƟmized process control is essenƟal. This would 
also facilitate a more comprehensive understanding of the environmental impacts throughout 
the process of biomass pyrolysis.58,59 

 

 

Aim and objecƟve of current work 

The objecƟve of the current work is to gain a deeper understanding of biomass pyrolysis with 
the aim of developing kineƟc models suitable for fast pyrolysis reactor design and process 
control. 

Figure 14 gives a graphical overview of the work carried out for thesis. 

 

reactor Advantages Disadvantages Dominant 
mode of heat 
transfer 

Fluidized 
bed 
reactor 

Continuous operation. 
Reasonable heat-transfer and 
mixing. 
Accurate temperature control. 
Suitable for scale-up 

Blockage and accumulation issues 
during feeding and operation. 
Expensive pre-treatment process. 
Sophisticated equipment requiring 
high technical maintenance. 

Convection, 
conduction 

Auger 
reactor 

Higher control over residence 
time. 
Wide feedstock handling 
capacity. 
Resistant to clogging and 
winding. 
Robust and compact 
structurally. 
Carrie gas is not essential. 

Susceptible to wear and tear. 
Low heat transfer efficiency. 
Issues in scaling up. 

Conduction 
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Free-fall 
reactor 

Simple equipment. 
Decent scale-up range. 
No necessity of carrier gas. 

Low heat transfer efficiency. 
Difficult to control residence time. 

Convection, 
conduction 

Ablative 
reactor 

Can handle feedstock without 
extensive pre-treatment. 

Low heat transfer rates. 
Complex reactor design and 
structure. 

Conduction 

Rotating 
cone 
reactor 

Heat transfer driven. 
Carrier gas is not essential. 

Expensive and complicated design. 
Difficulties in scale-up. 

Conduction 

Fixed bed 
reactor 

Simlple reactor setup. 
Low cost and easy to operate. 
Can handle wide range of 
feedstock 

Not suited for continuous 
operation. 
Insufficient heat transfer rates. 
Severe scale-up limitation. 
Low liquid yield. 

Conduction 

    
 

Table1-2Advantages and disadvantages of commonly used reactors for fast pyrolysis17 
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Order-based𝑓(𝛼) =

(1 − α)୬ 
First-order (𝑂𝑟1)𝑛 = 1 1 − 𝛼 −𝑙𝑛(1 − 𝛼) 

 First-order (𝑂𝑟2)𝑛 = 2 (1 − 𝛼)ଶ (1 − α)ିଵ − 1 
 First-order (𝑂𝑟3)𝑛 = 3 (1 − 𝛼)ଷ [(1 − α)ିଶ − 1]/2 
Diffusional 1-D diffusion (D1) 1/2𝛼 αଶ 
 2-D diffusion (D2) [−𝑙𝑛(1 − 𝛼)]ିଵ 𝛼 + (1 − 𝛼)𝑙𝑛(1 − 𝛼) 
 3-D diffusion-Jander (D3) [(3/2)(1 − 𝛼)ଶ/ଷ]

/[1 − (1

− 𝛼)ଵ/ଷ] 

[(1 − (1 − 𝛼)ଵ/ଷ]ଶ 

 Ginstling-Brounshtein 
(D4) 

[(3/2)(1 − 𝛼)ଵ/ଷ]

/[1 − (1

− 𝛼)ଵ/ଷ] 

(1 − 2𝛼/3) − (1 − 𝛼)ଶ/ଷ 

Nucleation Avrami-Erofeev (A2) 2(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]ଵ/ଶ [−𝑙𝑛(1 − 𝛼)]ଵ/ଶ 
 Avrami-Erofeev (A3) 3(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]ଵ/ଷ [−𝑙𝑛(1 − 𝛼)]ଵ/ଷ 
 Avrami-Erofeev (A15) 1.5(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]ଵ/ଷ [−𝑙𝑛(1 − 𝛼)]ଶ/ଷ 
 Avrami-Erofeev (A4) 4(1 − 𝛼)[−𝑙𝑛(1 − 𝛼)]ଷ/ସ [−𝑙𝑛(1 − 𝛼)]ଵ/ସ 
Geometrical 
contraction 

Contracting area (G2) 2(1 − 𝛼)ଵ/ଶ 1 − (1 − 𝛼)ଵ/ଶ 

 Contracting volume (G3) 3(1 − 𝛼)ଵ/ଷ 1 − (1 − 𝛼)ଵ/ଷ 
Power law 2/3-Power law (P23) (2/3)𝛼ିଵ/ଶ 𝛼ଷ/ଶ 
 2-Power law (P2) 2𝛼ଵ/ଶ 𝛼ଵ/ଶ 
 3-Power law (P3) 3𝛼ଵ/ଷ 𝛼ଵ/ଷ 
 4-Power law (P4) 4𝛼ଵ/ସ 𝛼ଵ/ସ 
Random scission 
model 

L=2 𝑓(𝛼) = 2(𝛼ଵ/ଶ − α) l 

Table 1-3 Various models for model fitting approach 60 
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Figure 14 Graphical overview of thesis work 
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Table 1-4 Model free or isoconversional approach 

No. Method Expression 

1 Friedman method 𝑙𝑛 ൬β
𝑑𝛼

𝑑𝑇
൰ = ln൫𝑘௢𝑓(𝛼)൯ −

𝐸௢

𝑅𝑇
 

2 FWO method 𝑙𝑛(β) = ln ൬
𝑘௢𝐸

𝑅𝑔(𝛼)
൰ − 5.331 − 1.052

𝐸

𝑅𝑇
 

3 KAS method 𝑙𝑛 ൬
β

Tଶ൰ = ln ൬
𝑘௢𝑅

𝐸𝑔(𝛼)
൰ −

𝐸

𝑅𝑇
 

4 Kissinger method 𝑙𝑛 ൬
β

Tଶ
୫ୟ୶

൰ = ln ൬
𝑘௢𝑅

𝐸
൰ −

𝐸

𝑅𝑇௠௔௫
 

5 Miura Maki method 𝑙𝑛 ൬
β

Tଶ
൰ = ln ൬

𝑘௢𝑅

𝐸)
൰ + 0.6045 −

𝐸௢

𝑅𝑇
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Chapter 2 Experimental work and preliminary invesƟgaƟons 
 

In this chapter, sample collecƟon and pre-treatment are discussed followed by 
descripƟon of experimental methods and results. This later serves as basis for kineƟc 
calculaƟons and predicƟve model training. The influence of various parameters such as 
parƟcle-size, temperature, heaƟng rate, residence Ɵme, composiƟon and reacƟon Ɵme-scale 
on weight loss kineƟcs and nature of process have also been invesƟgated for collected biomass 
samples. TGA and DTG modelling results based on experiments performed are also presented 
along with its theoreƟcal and mathemaƟcal basis.  

 

2.1 Sample collecƟon and pre-treatment 

All the samples were collected from Perth, Western Australia. Malleewood samples were 
predominantly tree barks. The wood samples were obtained as pieces of blocks.  Pinecone 
and pine-needles were from CurƟn university campus. Lupin shells were given by GRDC CurƟn 
university. The sample size reducƟon was performed using rotaƟng knife mill. The milled 
samples were kept in an oven at 110 oC for 24 hours. The samples were then passed through 
a vibraƟng sieve machine. ParƟcle size within the ranges of 250 µm – 300 µm; 106 µm – 150 
µm; <45 µm were chosen for TGA runs. ParƟcle size of < 60 µm was chosen for analyƟcal 
experiments. The samples were chosen based on global and regional availability of woody 
biomass and other samples were chosen to add variability to aid with predicƟve model 
training. Such a sample selecƟon ensures a closer fidelity to real case scenarios in predicƟve 
models as opposed to predicƟve models trained on simulated data. ParƟcle size and sample 
size were chosen in order to limit mass transfer and heat transfer limitaƟons and ensure that 
the process occurs under kineƟc (reacƟon) control regime.  The physical pre-treatment was 
done to ensure moisture free basis and kineƟc control within TGA mass loss reacƟons. Pure 
cellulose was purchased from Sigma Aldrich (<85 µm parƟcle size). Hemicellulose was xylan 
separated from coƩon (parƟcle size <65 um). Lignin (alkali) was purchased from Sigma Aldrich. 

 

2.2 Feedstock characterizaƟon 

The inherent heterogeneity of biomass and its implicaƟons in reacƟon modelling and process 
design have been reviewed in chapter 1. As such it is crucial to develop models which would 
account for this inherent heterogeneity. For developing such models, we need reliable 
feedstock characterizaƟon. In the current work, 10 locally sourced naturally occurring biomass 
samples have been characterized. The elemental composiƟon and structural carbohydrate 
composiƟon of these biomass samples has been determined experimentally (Table 2.1 and 
Table 2.2). A comprehensive analysis of feedstock composiƟon would facilitate the integraƟon 
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of biomass heterogeneity into newer pyrolysis models, which has been one of the 
shortcomings of exisƟng kineƟc models describing biomass fast pyrolysis. Figure 2.2, 
presented later, shows the biochemical composiƟonal cluster of selected biomass samples. 

There are some works dedicated specifically for analysing and determining the composiƟon 
of lignocellulosic biomass samples.1–4 

In our work we determine the composiƟon of structural carbohydrates and lignin of the 10 
biomass samples. The laboratory analyƟcal procedure prescribed by NREL is followed 
determining the composiƟon.5,6 This procedure uses two-step acid hydrolyses to break the 
carbohydrates into their sugars which are then quanƟfied using HPLC. Cellulose is calculated 
from the amount of glucose in the hydrolysate, whereas xylose and arabinose quanƟƟes are 
indicaƟve of hemicellulose.6 The hydrolysate stream also contains acid soluble lignin, thus 
measuring its UV absorbance at a wavelength specified by NREL (in this case 240nm) helps in 
determining the acid soluble lignin part. Insoluble fracƟon of biomass aŌer two stage acid 
hydrolysis majorly is the acid insoluble lignin. Acid insoluble fracƟon of lignin also contains ash 
and protein which too were determined using an NREL specified method. The ash content of 
biomass samples was also determined using the NREL prescribed laboratory analyƟcal 
procedures. 6–9,9,10 

 

2.3 TGA runs 

Biomass pyrolysis is essenƟally the conversion of solid feedstock into condensable, non-
condensable and solid products. The study of the rate of this conversion gives us insights into 
the kineƟcs of the said reacƟon. Thermogravimetric analyser is an analyƟcal instrument which 
is capable of minutely tracking the mass loss of a sample over variable Ɵme-scales and 
temperature scales. TGA is commonly used to study the mass loss behaviour of biomass and 
other solid state fuel precursors since it generates mass loss curves in relaƟvely short Ɵme 
(depending upon the heaƟng program) and can reproduce the phenomena of pyrolysis with 
reasonable fidelity given proper sample preparaƟon and TGA reacƟon condiƟons.11–15 For the 
current work Perkin Elmer TGA 8000 was used for performing all mass loss experiments. Argon 
was used as the inert sweeping gas at 20 ml/min flowrate. Alumina ceramic pan with size ~100 
µL or ɸ7.2×8.6mm dimensions are used for the TGA runs. TGA runs of well measured and well 
prepared samples produces good quality mass loss data with respect to Ɵme and 
temperature.16–19  

The specific benefit of using TGA is the ability to subject the sample to a series of isothermal 
and non-isothermal regimes and study the effect of those on mass loss properƟes. General 
overview of heaƟng programs used for the current work is given below.  
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 The TGA was programmed to run with following steps with the intenƟon of achieving steady 
state in separate temperature regimes during heat ramp up and to ensure pyrolysis process is 
iniƟated on moisture free basis: 

1. Hold for 2 min at 35oC 
2. Heat from 20oC to 100oC at 25oC/min 
3. Hold for 10 min at 100oC 
4. Heat from 100oC to 850oC at the decided heaƟng rate ( 5oC/min - 250oC/min) 
5. Hold for 20 min at 850oC 
6. Cool from 850oC to 50oC at 200oC/min 
7. Hold for 10 min at 50oC 

MulƟple heaƟng rates of 5oC/min, 20oC/min, 50oC/min, 100oC/min and 250oC/min within 
temperature range 100oC -  850oC are used for this work. This provides mass loss data for a 
wide range of heaƟng rates. MulƟple heaƟng rates also aid in improving the consistency of 
kineƟc calculaƟons. 

 

2.4 KineƟc theory 

Arrhenius equaƟon is an empirical correlaƟon that relates the reacƟon co-efficient (or 
constant in cases) with the acƟvaƟon energy and frequency factor. This co-relaƟon is based 
on the TransiƟon state theory, which in turn is an advancement of the collision theory.20 

For a thermally sƟpulated solid state reacƟon, according to collision theory, as the 
temperature is increased, the amount of energy being provided to (and such being absorbed 
by) the solid reactant increases. As the energy absorbed increases, so does the energy of 
atoms consƟtuƟng the material. This increases the frequency of collision between consƟtuƟng 
atoms. This conƟnues unƟl the frequency of collisions of consƟtuent and the energy contained 
in them is so large that a phase change and/or a chemical reacƟon occurs. The point at which 
this conversion is about to occur is called as the transiƟon state point. The energy barrier 
between reactant state and transiƟon state is considered as the acƟvaƟon energy for that 
reacƟon.21 There is no direct method to calculate the frequency or pre-exponenƟal factor. It 
is largely a theoreƟcal concept with valid physical jusƟficaƟon. It is usually resolved to obtain 
sensible acƟvaƟon energy and reacƟon coefficient values.22  

For homogenous feedstock having simple reacƟon mechanism, resolving kineƟc parameters 
and obtaining sensible kineƟc data is well established.23 In case of heterogenous cross-linked 
complex feedstock with mulƟple parallel, simultaneously compeƟng inter-reacƟve  reacƟon 
systems the validity of Arrhenius kineƟc parameters jusƟfied via collision and transiƟon state 
theory has been quesƟoned but not disproved.21,24,25 
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In our work, to study the reacƟon kineƟcs of biomass pyrolysis we use a hybrid approach in 
which both model-free /isoconversional approach and model fiƫng approach are used to gain 
insights into reacƟon kineƟcs and mechanism. Methods using model-fiƫng approach 26–28, 
model-free approach29–33 or a combinaƟon of the two methods34–37 can be found in 
literature.27,38 We present the understanding, use and limitaƟons of these methods (current 
chapter) and propose a novel approach with predicƟve capabiliƟes suited for reactor design 
and process control (chapter 4). 
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EquaƟon 2.1 shows the basic form of reacƟon order based relaƟonship,: 
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= 𝑘் × 𝐶௡ 

2.3 
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Whereas, 
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2.4 

Where   𝑚଴ → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 ;  𝑚௙ → 𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 

Similarly, for concentraƟon3 

 
3 1. Assuming reacƟon model to be a funcƟon of conversion implies that at different conversions there will be 
different acƟvaƟon energies. 2: TGA gives mass loss data which needs to be converted to degree of conversion, 
ref fig 2.14 
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𝛼 =
𝐶଴ − 𝐶

𝐶଴
 

2.5 

IsolaƟng C from equaƟon 2.5 and subsƟtuƟng in equaƟon 2.3, 

𝑑𝛼

𝑑𝑡
= 𝑘்

ᇱ (1 − 𝛼)௡ 

2.6 

Where   𝑘்
ᇱ =  𝐶଴

௡ିଵ𝑘் 

EquaƟon 2.6 is the basic equaƟon of homogenous kineƟcs. Comparing it against equaƟon 
2.1 suggests that homogenous kineƟcs can be described by simple reacƟon model, 

𝑓(𝛼) = (1 − 𝛼)௡ 

2.7 

This is the reacƟon order model approach. Table 1.3 shows a variety of commonly used 
reacƟon order model forms. 

 

Under isothermal condiƟons, Temperature T is a constant. 

As such, in equaƟon 2.1, the rate of reacƟon is directly proporƟonal to 𝑓(𝛼): 

𝑑𝛼

𝑑𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑓(𝛼) 

2.8 

 It may be assumed that 𝑘்  → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for homogenous feedstock and isothermal 
temperature condiƟon.However, 

Under non-isothermal condiƟons, when temperature changes linearly with Ɵme, 

𝛽 =
𝑑𝑇

𝑑𝑡
=

∆𝑇

∆𝑡
 

2.9 

For model-fiƫng approach, it is found that experimental data does not always follow a pre-
defined model and efforts spent in fiƫng a given data to a model does not yield meaningful 
results nor does it help in idenƟfying the reacƟon model.27,39,40 IdenƟficaƟon of reacƟon 
model becomes almost impossible when model fiƫng approach is used on data obtained 
under non-isothermal condiƟons with a single heaƟng rate. 12,41–43 
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As both α and 𝑇 vary simultaneously, a clean separaƟon of 𝑓(𝛼) and 𝑘் is not possible in 
equaƟon 2.1. As such, whenever equaƟon 2.1 is fiƩed to non-isothermal data, it is assumed 
that any inaccuracy in selecƟng the reacƟon model is compensated by the resulƟng inaccuracy 
in the rate constant.31 As such, for a given experimental data, more than one set of 𝑓(𝛼) and 
𝑘் can fit the data, staƟsƟcally speaking. The resulƟng rate constants give widely different 
pairs of Arrhenius parameters, E and A. They are considered to be linked via the so-called 
compensaƟon effect, 

ln 𝐴௝ = 𝑎𝐸௝ + 𝑏 

2.10 

Where ‘j’ denotes a parƟcular reacƟon model 𝑓௝(𝛼)that is used in model fiƫng method. A set 

of ൛𝑓௝(𝛼), 𝐸௝ , 𝐴௝  ൟ is obtained as the kineƟc triplet. 

It has been recommended that single heaƟng rates should be avoided for kineƟc analysis of 
thermal processes while using model fiƫng as well as Isoconversional methods.42,43 

Iso-conversional methods are called model-free approaches as Isoconversional kineƟcs takes 
its origin in the Isoconversional principle that allows one to eliminate the reacƟon model from 
kineƟc computaƟons.31 

The principle states that the process rate at constant extent of conversion is only a funcƟon of 
temperature. 

Taking logarithmic derivaƟve of rate term in equaƟon 2.1 at a specific(α,t)points gives, 

ቐ
𝜕 ቂln

𝑑𝛼
𝑑𝑡 ቃ

𝜕𝑇ିଵ ቑ

ఈ

= ቊ
𝜕[ln 𝑘்]

𝜕𝑇ିଵ ቋ
ఈ

+ ቊ
𝜕[ln 𝑓(𝛼)]

𝜕𝑇ିଵ ቋ
ఈ

 

2.11 

Since, the value of α is constant, the right most term equals zero in equaƟon 2.11 

Therefore, from equaƟon 2.2 

ቐ
𝜕 ቂln

𝑑𝛼
𝑑𝑡

ቃ

𝜕𝑇ିଵ ቑ

ఈ

=
−𝐸௔

𝑅
 

2.12 

Thus, from equaƟon 2.12 it is clear that acƟvaƟon energy can be determined without the need 
for assumpƟon of reacƟon model. 

Slope of 𝛼 𝑣𝑠 𝑇 𝑐𝑢𝑟𝑣𝑒 𝑎𝑡 𝑇ఈ will give values of  ቀ
ௗఈ

ௗ்
ቁ

ఈ
 that can be converted into iso-

conversional rate, 
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൬
𝑑𝛼

𝑑𝑡
൰

ఈ
= ൬

𝑑𝛼

𝑑𝑇
൰

ఈ
× 𝛽 

2.13 

The conversion (α) range recommended for kineƟc studies from TGA based data is α = 0.05 to 
α = 0.95 with a step size of 0.05.27 

In our work we have used Isoconversional methods to gain insights into the reacƟon 
mechanism and nature of biomass pyrolysis phenomena. We have also used a modified 
model-fiƫng approach. The details of iso-conversional methods and modified model fiƫng 
approach are discussed in chapter 3 and chapter 4 respecƟvely. 

All the TGA data for this work has been acquired over a Ɵme step of 0.125 seconds per mass 
data point. TGA 8000 by Perkin Elmer operated according to the program menƟoned earlier 
generatedwith a small Ɵme step produces fine mas loss data curvesfor further mathemaƟcal 
modelling work. Figure 2.1 gives a graphical overview of pretreatment and other analyƟcal 
experiments performed for biomass samples.  

 

 

 

Figure 2.1 Sample preparation overview; C:cellulose; H:hemicellulose; L:lignin (alkali); PSD:particel size 
distribution; HR:heating rate; PS: particle size; S:sample-size 
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Biomass Carbon Hydrogen Nitrogen Total 
(O & 

inorganics) 
H/C raƟo 

Malleewood 45.0 5.3 0.19 50.5 49.4 1.4 

Jarrah 48.1 5.3 0.06 53.5 46.4 1.3 

Pinewood 46.2 5.7 0.11 52.0 47.9 1.5 

Merbau 47.2 5.3 0.15 52.6 47.3 1.3 

Silvertop 46.2 5.2 0.09 51.5 48.5 1.3 

Spotgum 44.7 5.2 0.16 50.1 49.8 1.4 

Kapur 46.6 5.4 0.13 52.2 47.8 1.4 

Lupin 40.7 5.9 1.32 48.0 51.9 1.7 

Pinecone 48.4 5.4 0.84 54.6 45.3 1.3 

Pineneedle 46 .9 5.9 1.25 54.1 45.9 1.5 

Table 2-1 Elemental analysis of biomass samples. Values represented are wt%. 

 

 

Biomass Glucose (wt%) Xylose (wt%) Arabinose (wt%) 

Malleewood 32.49 17.27 1.16 

Jarrah 36.65 9.77 0.10 

Pinewood 44.32 20.82 1.38 

Merbau 49.44 8.15 0.34 

Silvertop 39.14 12.44 0.23 

Spotgum 40.49 20.18 0.49 

Kapur 45.14 9.25 0.10 

Lupin 33.41 18.50 6.02 

Pinecone 29.87 18.05 1.82 
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Pineneedle 17.88 10.77 2.43 

Table 2-2 Composition of cellulose and hemicellulose constituents for biomass samples 

 

Biomass 
Cellulose 

(wt%) 
Hemicellulose 

(wt%) 
AIL 

(wt%) 
ASL 

(wt%) 
Protein 
(wt%) 

Ash 
(wt%) 

Malleewood 29.24 16.22 26.39 5.76 1.24 5.68 

Jarrah 32.98 8.69 45.60 3.73 0.41 0.33 

Pinewood 39.89 19.54 29.01 1.70 0.70 0.24 

Merbau 44.50 7.47 40.63 3.65 0.94 1.05 

Silvertop 35.23 11.15 33.82 13.40 0.59 0.04 

Spotgum 36.44 18.19 31.41 6.81 1.03 0.90 

Kapur 40.63 8.23 36.89 5.13 0.86 0.57 

Lupin 30.07 21.57 3.76 3.19 8.25 2.46 

Pinecone 26.89 17.49 39.79 2.02 5.26 1.04 

Pineneedle 16.09 11.61 33.34 8.12 7.84 7.50 

Table 2-3 Strucutural carbohydrates and lignin composition of biomass samples; AIL:aicd insluble 
lignin; ASL:acid soluble lignin 
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Figure 2.2 Spatial distribution of cellulose, hemicellulose and lignin content of biomass samples 

 

2.5  Preliminary invesƟgaƟon and enquiry 

2.5.1 Mallee wood 

Figures 2.3 - 2.5 show the mass loss curves and derivaƟve mass loss curves for mallee wood 
at 250 K/min heaƟng rate. Mallee shows the first signs of decomposiƟon around 250 oC, which 
corresponds to the iniƟaƟon temperature for decomposiƟon of lignin. This is a significant DTG 
peak, since mallee has significant amount of lignin. Lignin decomposiƟon conƟnues Ɵll 470 oC 
and coincides with hemicellulose decomposiƟon range (~220 oC to 350 oC). There is a decrease 
in rate of mass loss in the temperature range of 300 to 350 oC, which corresponds to complete 
devolaƟlizaƟon of hemicellulose around 350 oC. The next and most significant mass loss peak 
coincides with cellulose decomposiƟon range of ~320 oC to 450 oC. As evident from the mass 
loss curves, the major porƟon of devolaƟlizaƟon is complete with the decomposiƟon of 
cellulose around 450 oC. The slight mass loss aŌer that is the gradual decomposiƟon of lignin 
which conƟnues over the enƟre temperature range of process. The lower degree of 
decomposiƟon of samples with parƟcle size below 45 µm could be due to the presence of 
higher amount of inorganics in lower parƟcle sizes due to sieving effects. 
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Figure 2.3 Mass loss and derivative mass loss curves for mallee wood 

 

 

Figure 2.4 Mass loss and derivative mass loss curves for mallee wood 
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Figure 2.5 Mass loss and derivaƟve mass loss curves 

2.5.2 Jarrah wood 

 

Figure 2.6 Mass loss and derivative mass loss curves for jarrah wood 
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Figure 2.6 and Figure 2.7 show the mass loss curves and derivaƟve mass loss curves for jarrah 
wood at 250 K/min heaƟng rate. Jarrah shows the first signs of decomposiƟon around 250 oC, 
which corresponds to the iniƟaƟon temperature for decomposiƟon of lignin. This is a 
significant DTG peak, since jarrah has significant amount of lignin. Jarrah has considerably 
lower amount of hemicellulose as compared to mallee and as such the rate of mass loss does 
not slow down, since hemicellulose isn’t a significant contributor to the mass loss profile. As 
evident from the mass loss curves, majority of devolaƟlizaƟon occurs between 350 to 450 oC 
which is the range of cellulose decomposiƟon. As is the case with mallee, the samples of 
parƟcle size below 45 µm, devolaƟlize to a lesser extent in jarrah. 

 

Figure 2.7 Mass loss and derivative mass loss curves for jarrah wood 

2.5.3 Pine wood 

Figure 2.8 and figure 2.9 show the mass loss characterisƟcs of pinewood. Unlike mallee and 
jarrah, pinewood shows a sharp mass loss regime due to low composiƟon of lignin in it. The 
mass loss starts with hemicellulose decomposiƟon around 220 oC and conƟnues steadily unƟl 
~320 oC. There is a sharp increase in % mass loss between 320 oC to 450 oC which coincides 
enƟrely with cellulose decomposiƟon regime. The negligible mass loss aŌer 450 oC and 
insignificant difference between the amount of final mass loss between different parƟcle sizes, 
point towards a possible connecƟon with lignin composiƟon. 

Figure 2.10 and figure 2.11 show the mass loss characterisƟcs of merbau. Merbau has the 
highest cellulose content amongst the ten chosen biomass samples. Merbau also has a high 
lignin composiƟon and a low hemicellulose composiƟon. As a result, merbau has the first mass 
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loss peak around 220 oC which marks the starƟng temperature lignin decomposiƟon, followed 
by another significant peak around 350 oC to coincide with cellulose decomposiƟon. This mass 
loss conƟnues sharply Ɵll 450 oC, aŌer which there is a slight and steady mass loss 
corresponding to the remaining lignin decomposiƟon aŌer 470 oC. The overall decomposiƟon 
of merbau is lesser than the previous biomass samples, which again point towards the role of 
lignin in determining the final mass loss percent. 

 

Figure 2.8 Mass loss and derivative mass loss curves for mallee wood 
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Figure 2.9  Mass loss and derivative mass loss curves for pinewood 

 

 

2.5.4 Pinecone 

Figure 2.10 shows the mass loss and derivaƟve mass loss curves for pinecone. Pinecone has a 
comparaƟvely high amount of lignin and low amount of cellulose. The amount of 
hemicellulose in pinecone is comparaƟvely on the higher side. As such, there is a DTG peak at 
220 oC followed by a steep increase in % mass loss Ɵll 350 oC which is precisely the range for 
hemicellulose decomposiƟon. This is comparable to the contribuƟon of cellulose in 
devolaƟlizaƟon in the case of pinecone. Since pinecone also contains a significant amount of 
lignin, the DTG peaks for % mass loss are comparaƟvely broader in width. 

Figure 2.11 shows the variaƟon in mass loss and differenƟal mass loss curves for pinecone at 
different heaƟng rates. A comprehensive discussion on the effect of heaƟng rates on TGA and 
DTG curves of biomass will be presented in future as part of a manuscript. 
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Figure 2.10 Mass loss and derivative mass loss curves for pinecone 
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Figure 2.11 Mass loss and derivative mass loss curves for pinecone at different heating rates 

2.5.5 Pine needle 

Figure 2.12 shows the decomposiƟon curves for pine needle. Pine needle has the least amount 
of cellulose amongst the selected biomass samples. As a result, the effect of hemicellulose 
and lignin on the decomposiƟon curves is more pronounced in the case of pine needle. The 
DTG peak at 220 oC is more significant and so is the plateau at ~350 oC corresponding to 
hemicellulose degradaƟon. The peak for cellulose decomposiƟon is visibly less pronounced 
and there isn’t a sharp slope corresponding to cellulose decomposiƟon at 450 oC as is the case 
for other biomass samples. The effect of high proporƟon of lignin in biomass composiƟon is 
evident from the wider width of the DTG peaks and by smaller DTG peaks corresponding to 
conƟnuing lignin decomposiƟon even aŌer 450 oC.  
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Figure 2 Mass loss and derivative mass loss curves for pine-needle 

 

 

 

Figure 2.13 Comparing mass loss profile of various wood samples 



 

54 
 

 

 

 

Figure 2.14 mass loss and conversion relationship 

 

 

Figure 2.15 Comparison between rate of mass loss and rate of conversion 
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2.6 Effect of ParƟcle size on rate of reacƟon 

 

 

Figure 2.16 Effect of particle size on rate of mass loss; Malleewood 100 K/min 

 

Figure 2.17 Effect of particle size on rate of mass loss, Jarrah 100 K/min 

 

2.7 Effect of Temperature scale on progress of reacƟon  

2.7.1 Slow pyrolysis 
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Figure 2.18 Rate of mass loss @ 5 k/min or slow pyrolysis condition 
 

2.7.2 Fast pyrolysis 

 

 

Figure 2.19 Rate of mass loss at 250 K/min or (close to) fast pyrolysis conditions 
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2.8 Effect of Time scale of reacƟon progression 

 

 

Figure 2.20 Rate of reactions at different heating rates 

 

 

 

Figure 2.21 effect of heating rates over temperature scale 
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Figure 2.22 Rate of reaction across temperature scale 

 

 

 

Figure 2.23 Rate of reaction across time-scale 
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Figure 2.24 Rate of mass loss across time scale 

 

 

 

 

 

Figure 2.25 rate of mass loss for slower heating rates on time scale 
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2.9 Effect of heaƟng rate – Heat transfer on pyrolysis reacƟon 

 

 

Figure 2.26 Effect of heating rates on malleewood across temperature scale 

 

2.10 Effect of ComposiƟon and heterogeneity 

 

Figure 2.27 Rate of mass loss for different biomass samples over time scale 
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Figure 2.28 mass loss and rate of mass loss curves for merbau 

 

 

 

Figure 2.29 mass loss and rate of mass loss curves for pinecone 
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2.11 Mass balance tables 
 

Δt (sec) Δm (mg) % mass loss ΔT (oK) 

RT-100 hold 855.8 0.06 6.79 63.8 
100 - 200 C 60.6 -0.02 -2.84 100.2 
200 - 250 C 11.3 0.016 1.84 50.1 
250 - 300 C 10.8 0.08 8.78 50.1 
300 - 380 C 17.2 0.28 32.17 79.8 
380 - 500 C 26.5 0.27 31.03 119.8 
500 -600 C 22.6 0.027 3.18 99.9 
600 - 700 C 23.1 0.02 2.42 100.4 
700 -800 C 23.1 0.01 1.21 99.6 
800 - 850 C 89.3 0.02 1.87 49.9 
850 C hold 474.8 0.12 13.53 0 

Table 2.4 Mass balance for Jarrah @ 250 K/min H.R; 106-150 µm ps, 1 mg sample 

 
 

Δt (sec) Δm (mg) % mass loss ΔT (oK) 

RT-100 hold 855.8 0.06 6.95 64.2 
100 - 200 C 1236.6 0.00 0 100 
200 - 250 C 598.1 0.03 3.51 50 
250 - 300 C 598.4 0.13 15.25 50 
300 - 380 C 957.7 0.39 45.33 80 
380 - 500 C 1437.7 0.06 6.51 120 
500 -600 C 1198.9 0.04 4.47 100 
600 - 700 C 1199 0.02 2.93 100 
700 -800 C 1199.1 0.02 1.93 100 
800 - 850 C 605.2 0.01 0.84 50 
850 C hold 1025.6 0.01 1.48 0 

Table 2.5 Mass balance for Jarrah @ 5 K/min H.R; 106-150 µm ps, 1 mg sample 

 

 Δt (sec) Δm (mg) % mass loss ΔT (oK) 

RT-100 hold 687 0.06 5.92135036 63.87 
100 - 200 C 228.5 0.00 0 100.4 
200 - 250 C 10.9 0.07 6.87 49.7 
250 - 300 C 10.6 0.13 13.93 50 
300 - 380 C 17.1 0.26 26.88 80.2 
380 - 500 C 26.5 0.17 17.04 120 
500 -600 C 22.7 0.03 3.51 100 
600 - 700 C 23.1 0.02 1.86 100 
700 -800 C 23.2 0.03 2.75 100 
800 - 850 C 18.2 0.03 3.35 50 
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850 C hold 987 0.15 14.82 0 
Table 2.6 Mass balance for Pine needle @ 250 K/min H.R; 106-150 µm ps, 1 mg sample 

 

 Δt (sec) Δm (mg) % mass loss ΔT (oK) 

RT-100 hold 687.1 0.05 5.93 63.8 
100 - 200 C 1405.5 0.02 2.52 100 
200 - 250 C 598.1 0.08 8.91 50 
250 - 300 C 598.4 0.13 15.14 50 
300 - 380 C 957.7 0.24 27.84 80 
380 - 500 C 1437.9 0.1 11.27 120 
500 -600 C 1198.7 0.03 3.51 100 
600 - 700 C 1199.1 0.03 3.65 100 
700 -800 C 1199.1 0.08 9.00 100 
800 - 850 C 604.7 0.06 6.61 50 
850 C hold 1185.1 0.02 2.83 0 

Table 2.7 Mass balance for Pine needle @ 5 K/min H.R; 106-150 µm ps, 1 mg sample 

 

 Δt (sec) Δm (mg) % mass loss ΔT (oK) 

RT-100 hold 684 0.06 6.62 63.9 
100 - 200 C 231.6 0 0 100 
200 - 250 C 10.9 0.01 1.71 50 
250 - 300 C 10.6 0.06 6.27 50 
300 - 380 C 17.1 0.29 31.60 80 
380 - 500 C 26.5 0.34 37.78 120 
500 -600 C 22.7 0.02 2.19 100 
600 - 700 C 23.1 0.01 1.47 100 
700 -800 C 23.2 0.01 0.87 100 
800 - 850 C 18 0.01 0.79 50 
850 C hold 422.9 0.10 11.54 0 

Table 2-8 Mass balance for Pine wood @ 250 K/min H.R; 106-150 µm ps, 1 mg sample 

 

 Δt (sec) Δm (mg) % mass loss ΔT (oK) 
RT-100 hold 683.9 0.06 6.97 64 
100 - 200 C 1408.9 0.00 -0.02 100 
200 - 250 C 598.1 0.02 2.50 50 
250 - 300 C 598.2 0.12 13.42 50 
300 - 380 C 957.7 0.48 53.89 80 
380 - 500 C 1437.9 0.05 5.40 120 
500 -600 C 1198.9 0.03 2.93 100 
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600 - 700 C 1199 0.02 2.28 100 
700 -800 C 1199.1 0.01 1.66 100 
800 - 850 C 605.1 0.01 1.01 50 
850 C hold 800.1 0.01 1.66 0 

Table 2.9 Mass balance for Pine wood @ 5 K/min H.R; 106-150 µm ps, 1 mg sample 

 

 Δt (sec) Δm (mg) % mass loss ΔT (oK) 

RT-100 hold 739.5 0.06 6.58 63.8 
100 - 200 C 177.2 -0.02 -2.09 100 
200 - 250 C 11.4 0.02 2.41 50 
250 - 300 C 10.9 0.09 9.11 50 
300 - 380 C 17.2 0.34 34.45 80 
380 - 500 C 26.6 0.2 20.28 120 
500 -600 C 22.6 0.03 3.34 100 
600 - 700 C 23 0.02 2.52 100 
700 -800 C 23.2 0.02 1.65 100 
800 - 850 C 109.2 0.03 2.96 50 
850 C hold 864 0.18 18.21 0 

Table 2-10 Mass balance for Merbau @ 250 K/min H.R; 106-150 µm ps, 1 mg sample 

 Δt (sec) Δm (mg) % mass loss ΔT (oK) 

RT-100 hold 739.4 0.06 6.66 63.65 
100 - 200 C 1353.2 0.00 0.15 100 
200 - 250 C 598.2 0.03 3.34 50 
250 - 300 C 598.2 0.12 13.33 50 
300 - 380 C 957.8 0.33 36.66 80 
380 - 500 C 1437.9 0.06 6.88 120 
500 -600 C 1198.7 0.04 4.33 100 
600 - 700 C 1199.1 0.02 2.5 100 
700 -800 C 1199.1 0.02 2.5 100 
800 - 850 C 604.6 0.02 2.23 50 
850 C hold 786.5 0.03 3.42 0 

Table 2-11 Mass balance for Merbau @ 5 K/min H.R; 106-150 µm ps, 1 mg sample 

 

Results and discussions 

The elemental analysis of biomass pyrolysis points towards some of the inherent limitaƟons 
associated with pyrolysis crude oil quality. The amount of elemental oxygen present in woody 
samples is quite high ~45 wt%. The presence of high elemental oxygen leads to formaƟon of 
bio-oil with high cross linking and is marked by presence of large quanƟƟes of polyaromaƟc 
hydrocarbons.44–46 These highly crosslinked compounds and PAHs affect the combusƟon 
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quality of fuel negaƟvely. In-situ or ex-situ catalyƟc treatment for deoxygenaƟon to improve 
the quality of product has been prescribed in literature to deal with the said issue.47–50 

The structural carbohydrates present in biomass samples is shown in table 2.2 and table 2.3. 
The role of these structural carbohydrates in determinaƟon of reacƟon mechanism and 
pyrolysis product distribuƟon is relaƟvely less explored. Cellulose, hemicellulose and lignin are 
three main structural carbohydrates of biomass samples. The variable devolaƟlizaƟon profiles 
of these components is one of the reasons for inability to get an accurate dynamic control of 
biomass fast pyrolysis processes. The samples chosen for this study have a relaƟvely well 
grouped cluster of Cellulose : Hemicellulose : Lignin distribuƟon. This will ensure specific limits 
to model predicƟon. The samples are majorly woody samples along with pure cellulose, 
hemicellulose and lignin.  

The effects of parƟcle size and sample size on the rate of reacƟon are measured over Ɵme-
scale and temperature scale. Time-scale measurements reveal variaƟons along the x-axis as 
well as the y-axis. Temperature scale measurements reveal that rate of reacƟon has no 
significant variaƟons with respect to temperature along the x-axis. The parƟcle size selected 
for TGA runs ensure that the reacƟon occurs predominantly in kineƟcally controlled regime. 
As the parƟcle size is reduced, a slight reducƟon in maximum rate of reacƟon is observed in 
the regime dominated by cellulose decomposiƟon. Rate of reacƟon dominated by 
hemicellulose breakdown is relaƟvely less affected by parƟcle and sample size. Sample size of 
1 mg and parƟcle size of 250-300 µm show the maximum rate of reacƟon. Similar trends are 
shown by mallewood, jarrah and pinewood samples. The effect of parƟcle size is most clear 
with pineneedle and pinewood samples. A minor lateral shiŌ along with a significant verƟcal 
shiŌ is observed in rate of reacƟon profiles for pinewood samples. CatalyƟc effects are known 
to contribute to either promoƟon or inhibiƟon of reacƟon rates. 

At lower heaƟng rates, conversion occurs slowly and proceeds to maximum conversion at a 
lower final temperature. At faster heaƟng rates, the conversion occurs rapidly and is 
completed at a higher final temperature. This points to the effect of (high) specific heat 
capacity of biomass consƟtuents during the reacƟon. The effect of heaƟng rate on rate of 
reacƟon for biomass pyrolysis is studied over a temperature scale and Ɵme scale. Comparing 
rate of reacƟons at different heaƟng rates over Ɵme and temperature scales reveals that as 
the heaƟng rate is decreased, the reacƟon becomes progressively more lumped and vice-
versa. At faster heaƟng rates, the reacƟon can be observed in two discrete and disƟnct 
regions; whereas at slower heaƟng rates, the reacƟon is revealed to be highly lumped with no 
discrete and disƟnct reacƟon regimes.  

Further, comparing reacƟon profiles of different biomass samples at same heaƟng rates and 
parƟcle size reveals that composiƟonal heterogeneity is also a factor influencing progress of 
biomass pyrolysis reacƟon.  

Studies unƟl now have majorly focussed on deriving kineƟc parameters for closely grouped 
slow heaƟng rate condiƟons at fixed or variable parƟcle sizes. To the best of authors’ 
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knowledge no significant work has reported incorporaƟon of composiƟonal heterogeneity 
into reacƟon kineƟc model for biomass pyrolysis. Also, there is a lack of significant literature 
on models that can be applicable over slow to fast (wide range of) heaƟng rates. The current 
work incorporates composiƟonal heterogeneity of biomass for predicƟve kineƟc modelling. 
Further, the said predicƟve kineƟc model can be extended to heaƟng rates ranging from slow 
pyrolysis condiƟons (~1-5 C/min) to faster pyrolysis condiƟons (~250-300 C/min).  

 

Conclusion 

It is in this chapter that we first observe that the mass loss curve funcƟon for the same sample 
of biomass changes from slow pyrolysis condiƟons to fast pyrolysis condiƟons. At slow 
pyrolysis condiƟons the mass loss funcƟon could be assumed to be a straight line since the 
reacƟons are lumped together. At slow pyrolysis condiƟons, for the complete conversion of 
biomass sample, ΔT/Δt is << than ΔT/Δt at fast pyrolysis condiƟons.  
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Chapter 3 ReacƟon kineƟcs of biomass pyrolysis 
 

In this chapter, the difference in nature of reacƟon phenomena at slow heaƟng rates (slow 
pyrolysis condiƟon) and faster heaƟng rates (approaching fast pyrolysis condiƟons) is expound 
upon. The effect of heterogeneity inherent in composiƟon of biomass and the effect it has on 
reactor-process design consideraƟons and product yield predicƟon is then discussed. The 
exisƟng approaches used for determining kineƟc parameters, their historical development, 
philosophies, applicability, and limitaƟons for biomass pyrolysis are then criƟcally reviewed. 
Model-free approach has been used to gain some insights into nature of pyrolysis reacƟon. 
We show how they fail to capture both the composiƟonal heterogeneity and difference in 
nature of slow and fast pyrolysis which might lead to criƟcal errors in modelling and designing 
fast pyrolysis reactor-process. 

 

Study of reacƟon kineƟcs is the study of rate of reacƟon and its parameterizaƟon.1 The rate 
of reacƟon is usually the measure of rate of mass change or concentraƟon change and the 
parameterizaƟon is terms of acƟvaƟon energy, frequency factor and order of reacƟon related 
by Arrhenius form. Fair amount of literature and consensus is available on slow pyrolysis 2–7, 
whereas fast pyrolysis remains relaƟvely less explored.8–13 

Once temperature dependence is established through a series of different linear heaƟng rates 
then isoconversional rate (linear/constant heaƟng rate) can be determined by 
parameterizaƟon and combinaƟon of equaƟons 2.1 and 2.2, 1 

ln ൬
𝑑𝛼

𝑑𝑡
൰

ఈ,௜
= ln[𝐴ఈ𝑓(𝛼)] −

𝐸௔

𝑅𝑇ఈ,௜
  

3.1 

EquaƟon 3.1 is the base equaƟon for Friedman method14 

 EquaƟon 3.1 can be used to check whether 𝐸௔varies significantly with respect to 
conversion(α). If it doesn’t – it’s a single step reacƟon. If 𝐸௔ varies significantly then it is 
reacƟon having two or more steps with different acƟvaƟon energies. Looking at  results (refer 
figures 3.1 – 3.6) for biomass pyrolysis a high variability is observed, suggesƟng mulƟtude of 
reacƟons with varying acƟvaƟon energies. What is meaning of variable acƟvaƟon energy? 
What is its physical significance? These quesƟons do not have saƟsfactory explanaƟons within 
the classical schema of transiƟon state theory and Arrhenius parameters for rate esƟmaƟon. 
Nevertheless, occurrence of mulƟstep processes hasn’t inhibited authors from using fair 
approximaƟons at slow heaƟng rates within close range to describe lumped reacƟon kineƟcs 
using mulƟple single step kineƟc equaƟons. When the heaƟng rate range is low and the 
difference between mulƟple heaƟng rates is low, straight line lumped assumpƟons can be 
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valid. However, when the heaƟng range is wide and the difference between heaƟng rates is 
high (extrapolaƟng slow pyrolysis kineƟcs to fast pyrolysis condiƟon), the linearity is absent 
and such assumpƟons do not hold true.Another approach that is someƟmes suggested is 
when the number of steps is known and inter relaƟon between them i.e. the mechanism is 
known, then mulƟ-step model fiƫng would certainly secure best possible soluƟon15. However, 
for biomass fast pyrolysis this mechanism and the number of steps is not completely known, 
although work has been performed in this regard by some groups.16–18 

The first use of iso-conversional method was in 1925 by19,20. Mass loss data was fiƩed to an 
empirical equaƟon under isothermal condiƟons.  

log 𝑡 =
𝑄

𝑇
− 𝐹(𝑤) 

3.2 

𝑤 → 𝑚𝑎𝑠𝑠 𝑙𝑜𝑠𝑠 𝑖𝑛 % 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒;  𝑡

→ 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑒𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝑤 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛; 𝑄

→  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

The slope of log t v/s T-1 is expected to be a straight line 

The basic kineƟc equaƟon can be wriƩen as, 

𝑑𝛼

𝑑𝑡
= 𝐴 × 𝑒𝑥𝑝ቂ

ିாೌ
ோ் ቃ × 𝑓(𝛼) 

3.3 

IntegraƟng equaƟon 3.3 for isothermal condiƟons, 

𝑔(𝛼) ≡ න
𝑑𝛼

𝑓(𝛼)
=

ఈ

଴

𝐴 × 𝑒𝑥𝑝ቂ
ିாೌ
ோ் ቃ × 𝑡 

3.4 

𝑔(𝛼) 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑜𝑟𝑚 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑑𝑜𝑒𝑙 

Solving equaƟon 3.4 for ‘t’ and taking decimal log gives, 

log 𝑡 =
𝐸

2.303𝑅𝑇
− log ቈ

𝑔(𝛼)

𝐴
቉ 

3.5 

For any constant value of α, the log term in equaƟon 3.5 will be a constant. Therefore, 𝐸௔can 
be determined from the slope of log t vs T-1 without idenƟfying the form of reacƟon model. 
An assumpƟon here is that, so long as the total mass loss in percentage is independent of 
temperature, a constant value of ‘w’ is equivalent to a constant value of α. In case of biomass 
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pyrolysis, the rate of mass loss is a funcƟon of conversion α. The dα/dt values are different at 
different temperatures and vary over temperature ranges. This is exemplified in parƟcular by 
the fact that at slower heaƟng rate, the deviaƟons are not as significant for isoconversional 
predicƟons as they are in case of higher heaƟng rates. In the case when temperature is low 
and the heaƟng rate is very gradual/slow, i.e. ΔT is low and Δt is high, then the assumpƟon 
that mass loss in percentage is independent of temperature can be considered sensible. This 
assumpƟon is held throughout isoconversional methods including FWO approach and perhaps 
foreshadows the piƞalls of extending isoconversional principle over wide heaƟng rate ranges 
(slow to fast). Another assumpƟon common to all Isoconversional methods is that at a specific 
(α,t) point, the rate of reacƟon is a funcƟon of temperature only. We see later on, how 
extending this assumpƟon to biomass fast pyrolysis can lead to erroneous results as biomass 
fast pyrolysis reacƟon is funcƟon of its composiƟon as well.}21 

Comparing equaƟons 3.2 and 3.5, it can be suggested that 𝑄 =  
ா

ଶ.ଷ଴ଷ
 𝑎𝑛𝑑 𝑓(𝑤) =

 log ቂ
௚(ఈ)

஺
ቃ 

 

It is of significance to note that Kujirai and Akahira (1925), later rediscovered by Dakin (1948), 
both bypassed the need for models in kineƟc calculaƟons as they were both dealing with 
decomposiƟon of complex materials, i.e. materials that are nearly impossible to represent 
adequately using models.1 

Earlier works shows that isocoversional methods were used also for isothermal kineƟcs, albeit 
with approximaƟons22,23. Isothermal kineƟcs have been mostly dealt with using model-fiƫng 
approach. Development and proliferaƟon of high accuracy and high fidelity TGA machines led 
to generaƟon of non-isothermal data with linear heaƟng rates. Isocoversional methods were 
rediscovered in a way to gain insights into non-isothermal kineƟcs from TGA data. 24 

The first isoconversional methods proposed for treatment of non-isothermal kineƟcs was in 
1960s by Friedman14 (equaƟon 3.1) (differenƟal method) and integral methods of Ozawa 
Flynn and Wall25.  

From equaƟon 3.1, for any value of α, Eα is esƟmated from slope of a plot of  

ln ൬
𝑑𝛼

𝑑𝑡
൰

ఈ,௜
𝑣/𝑠

1

𝑇ఈ,௜
  

For integral isoconversional methods, integraƟng equaƟon 3.3 yields, 

𝑔(𝛼) = 𝐴 න ൬𝑒ቀ
ିா௔
ோ் ቁ

൰ 𝑑𝑡

௧

଴
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Raising temperature at constant heaƟng rate, 

𝑇 = 𝑇଴ + 𝛽 × 𝑡 

3.7 

Replacing integraƟon over Ɵme with integraƟon over temperature,, 

𝑔(𝛼) =
𝐴

𝛽
න ൬𝑒ቀ

ିா
ோ் ቁ

൰ 𝑑𝑇 ≡
𝐴

𝛽
𝐼[𝐸, 𝑇]

்

బ்

 

3.8 

The temperature integral here has no analyƟcal soluƟon.15 Various opƟmizaƟon methods can 
be found in literature to obtain the best approximaƟon of the temperature integral.26,27 
However, that is a mathemaƟcal rigorous process which does not greatly contribute to the 
understanding of pyrolysis mechanism or for obtaining kineƟcs results suitable for reactor 
design and process control. As such the opƟmizaƟon techniques won’t be discussed in this 
thesis. 

Some of the earlier applicaƟons of isoconversional or model free approaches are found in the 
works of Kissinger, Akahira, Sunose, Doyle, Flynn, Wall, Ozawa and others.28–32  A review of 
these papers brings forth some of the latent aspects and assumpƟons embedded in these 
model-free approaches. They are discussed below. 

Kissinger (1957)31 studied the relaƟonship between differenƟal temperature and reacƟon 
rate. The heaƟng rates were constant and the materials used to study were magnesite, calcite 
and brucite. A major takeaway from this work, relevant for us in current Ɵmes with the 
purpose of gaining kineƟc insights into reacƟon for the sake of designing reactors is the 
assumpƟon that ‘the temperature of maximum deflecƟon in differenƟal thermal analysis is 
also the temperature at which the reacƟon rate is maximum’. A detailed discussion of the 
validity of this assumpƟon is given the paper. This assumpƟon for our case, gives us the Ɵme 
and temperature at which maximum rate of reacƟon for biomass pyrolysis is achieved. For 
achieving fast pyrolysis condiƟons, this is important; and its implicaƟons in reactor design are 
discussed in chapter 5. 

Doyle (1961, 1962)22,23 carried out studies to check the potenƟal of Thermogravimetric 
analyser in studying thermal decomposiƟon of octamethylcyclotetrasiloxane (1961, 
organosilicon compound) and polytertrafluoroethylene (1962, similar to Teflon). Useful 
takeaway from the work were to ensure that sample temperature is considered for kineƟc 
calculaƟons rather than reactor temperature and to ensure enough dwell Ɵme (or rapid data 
point extracƟon) at each temperature. The inaccuracies associated with using isoconversional 
methods to calculate kineƟc data over wide heaƟng rate range is touched upon in this paper. 
The works were however carried out at single heaƟng rate of 3oC/min which is really slow 
compared to fast pyrolysis of biomass case. 
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Friedman (1964)14 studied the thermal degradaƟon of glass reinforced phenol-formaldehyde 
(phenolic resin) at mulƟple slow heaƟng rates (50, 100, 180 and 360 oC/hr). We see that the 
early use of model-free approach arose from studying large samples of complex cross-linked 
polymers over long Ɵme scales. Over such long Ɵme scales and slow heaƟng rates, the 
assumpƟon of ‘w’ being independent of T temperature perhaps holds true, at least for the 
sake of mathemaƟcal treatment. An important observaƟon made in this work is the tendency 
of curves being displaced to higher temperatures with increased heaƟng rate, as would be 
predicted theory. We see this in our mulƟple heaƟng rate isoconversional graphs for biomass 
samples. It is important to note that the polymer being studied was sƟll homogenous (unlike 
biomass which is heterogeneous – composed of different cross-linked polymers) and yet 
showed a fiŌh-order dependence, which the author aƩributed to the reacƟon complexity 
rather than any real physical significance. The triviality of kineƟc parameters from this 
approach for Arrhenius type kineƟc interpretaƟon was underlined in some of these early 
papers. The advantage of this approach is the possibility of acƟvaƟon energy calculaƟon for 
the main lumped degradaƟon process without any knowledge of the form of the kineƟc 
equaƟon. It is also useful for deriving semi-empirical rate law.  

Coats and Redfern (1964)33 approach is based on assuming the order of reacƟon and 
performing best fit calculaƟons. Summarizing briefly, for a reacƟon expressed as  

𝑑𝛼

𝑑𝑡
= 𝑘(1 − 𝛼)௡ 

3.9 

Where α: fracƟon of reactant decomposed at Ɵme t; n:  order of reacƟon and k: rate constant 
of the reacƟon.  

The plot of either logଵ଴ ቂ
ଵି(ଵିఈ)భష೙

்మ(ଵି௡)
ቃ against ଵ

்
  

Or, where n= 1, logଵ଴ ቂ
ି୪୭୥భబ(ଵିఈ)

்మ ቃ against ଵ
்

 

Should result in a straight line of slope –E/2.3R for the correct value of n. A priori knowledge 
about the order of reacƟon could make this approach useful. However, despite being used for 
determining kineƟc parameters, this approach has been rightly criƟqued by other authors for 
producing erroneous results.15 Its validity for biomass pyrolysis relies on a priori knowledge of 
order of reacƟon which is absent for the biomass pyrolysis reacƟon. 

[4 

Ozawa (1965)21 delineated the differenƟal approach and integral approach in processing TGA 
data for calculaƟng kineƟc parameters. An approximate integral method was presented to 
study the decomposiƟon of calcium-oxate into calcium carbonate and carbon monoxide, and 

 
4 The term ‘rate constant’ is used here instead of ‘rate coefficient’. For biomass pyrolysis, the value of K is 
largely variable over reacƟon regime and as such the term rate coefficient for ‘k’ would be more appropriate. 
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the degradaƟon of nylon-6. The integral method was applied over slow heaƟng hates and 
long-Ɵme scales to perform straight line fits for determining acƟvaƟon energy as is 
characterisƟc of model free methods. The most important contribuƟon for biomass pyrolysis 
would be the limitaƟon of this approach arƟculated - “However, if the weight changes in the 
manner of parallel reacƟons or consecuƟve reacƟons (in other words, if the weight-change is 
governed by two or more acƟvaƟon energies), the curves of the weight versus the reciprocal 
absolute temperature at different heaƟng rates cannot be superposed, and the analysis 
menƟoned cannot be applied. This is also the case for the other methods analysing 
thermogravimetric data.”  

This makes it clear that the kineƟc parameters data obtained from model-free methods must 
be treated with cauƟon. This becomes rather exemplified when the calculaƟons are going to 
be used for training machine learning algorithms or for designing reactors and will have real 
life consequences. The limitaƟons of model-fiƫng approach are discussed elsewhere34,35 

Flynn and Wall (1966)28 reiterated the need to use several heaƟng rates rather than using a 
single rate and fiƫng it based on an oŌen spuriously assumed reacƟon order. They introduced 
their model as an alternaƟve to the noise amplified in differenƟal method. Their approach is 
based on the assumpƟon that A, f(α), and E are independent of T and that A and E are 
independent of α. Use of Doyle’s approximaƟon was used in calculaƟons. 

J Sestak discussed the thermodynamic aspects and links to kineƟc aspects in thermos-physical 
experiments.36 He also addressed certain unresolved aspects about non-isothermal kineƟcs 
and the consequences of dynamic experiments. The classical kineƟc procedures do not 
saƟsfactorily describe the reality of heterogeneous reacƟons. The interdependence of kineƟc 
parameters and ways to resolve them in a manner in order to get meaningful insights into 
heterogeneous reacƟons is discussed.37 

Vyazovkin (1997)38 jusƟfies the use of Arrhenius equaƟon not only in terms of a raƟonal 
parametrizaƟon, but also its use and physical interpretaƟon, since they are supported by a 
sound theoreƟcal foundaƟon. Model fiƫng method produces highly variable kineƟc 
parameters with liƩle reliability or consistency. Also, for a parƟcular reacƟon, more than one 
model could saƟsfy the fit leading to mulƟple kineƟc parameters for same condiƟons which is 
highly problemaƟc. As such, Vyazovkin makes the case for model-free method since these 
methods are not based on an assumpƟon of a reacƟon model. However, Vyazovkin reiterates 
the basic assumpƟon of isoconversional methods – the reacƟon model is not dependent on 
temperature or heaƟng rate. 

It is in this assumpƟon that roots of inapplicability or limitaƟons of isoconversional methods 
for biomass fast pyrolysis. 

As such, we have presented a novel kineƟc approach in chapter 4 of the thesis. 
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Results and discussion 

 

Figure 3 Representative activation energy distribution for malleewood using Friedman method 

 

Figure 4 Activation energy distribution for jarrah using Friedman method 
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Figure 5  Activation energy distribution for pinewood using Friedman method 

 

Figure 6 Activation energy distribution for pinecone using Friedman method 
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Figure 7 Activation energy distribution for malleewood using Kissinger Akahira Sunose (KAS) method 

 

 

Figure 8 Activation energy distribution for pinecone using (KAS) method 
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Figure 9 Activation energy distribution for cellulose using Friedman method 

 

 

Figure 10 Activation energy distribution for hemicellulose using Friedman method 
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Figure 3.9 Activation energy distribution for lignin using Friedman method 

 

 

Figure 3.10 Activation energy distribution for cellulose using KAS method 
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Figure 3.11 Activation energy distribution for hemicellulose using KAS method 

 

 

Figure 3.12 Activation energy distribution for lignin using KAS method 

 

 

 

-14

-12

-10

-8

-6

-4

-2

0
0.09 0.14 0.19 0.24 0.29

ln
(β

/T
2 )

 

(1/RT) x 10-3

KAS - hemicellulose

250 K/min

100 K/min

50 K/min

20 K/min

5 K/min

-14

-12

-10

-8

-6

-4

-2

0
0.09 0.14 0.19 0.24

ln
(β

/T
2 ) 

(1/RT) x 10-3

KAS Lignin

250 K/min

100 K/min

50 K/min

20 K/min

5 K/min



 

83 
 

 

 

 

Figure 3.13 Representative linear fit for slope determination at various conversions using KAS method 
for Jarrah; particle size 106-150 µm and 1 mg sample size 

 

Figure 3.14 Representative activation energy distribution at various conversions using KAS method 
for Jarrah; particle size 106-150 µm and 1 mg sample size 
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Figure 3.15 Representative linear fit for slope determination at various conversions using KAS method 
for Jarrah; particle size 250-300 µm and 1 mg sample size 

 

 

Figure 3.16 Representative activation energy distribution at various conversions using KAS method 
for Jarrah; particle size 250-300 µm and 1 mg sample size 
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Figure 3.17 Representative linear fit for slope determination at various conversions using KAS method 
for malleewood; particle size <45 µm and 1 mg sample size 



 

86 
 

 

 

Figure 3.18 Representative activation energy distribution at various conversions using KAS method 
for malleewood; particle size <45 µm and 1 mg sample size 

 

 

 

Figure 3.19 Representative linear fit for slope determination at various conversions using KAS method 
for malleewood; particle size 106-150 µm and 1 mg sample size 
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Figure 3.20 Representative activation energy distribution at various conversions using KAS method 
for malleewood; particle size 106-150 µm and 1 mg sample size 

 

 

Figure 3.21 Representative linear fit for slope determination at various conversions using KAS method 
for malleewood; particle size 250-300 µm and 1 mg sample size 
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Figure 3.22 Representative activation energy distribution at various conversions using KAS method 
for malleewood; particle size 250-300 µm and 1 mg sample size 

 

Figure 3.23 Representative linear fit for slope determination at various conversions using KAS method 
for pinecone; particle size 106-150 µm and 1 mg sample size 



 

89 
 

 

Figure 3.24 Representative activation energy distribution at various conversions using KAS method 
for pinecone; particle size 106-150 µm and 1 mg sample size 

 

Figure 3.25 Representative linear fit for slope determination at various conversions using FWO 
method for pinewood; particle size 106-150 µm and 1 mg sample size 



 

90 
 

 

Figure 3.26 Representative activation energy distribution at various conversions using FWO method 
for pinewood; particle size 106-150 µm and 1 mg sample size 

 

Figure 3.27 Representative linear fit for slope determination at various conversions using KAS method 
for pinewood; particle size 106-150 µm and 1 mg sample size 
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Figure 3.28 Representative activation energy distribution at various conversions using KAS method 
for pinewood; particle size 106-150 µm and 1 mg sample size 

 

 

Figure 3.29 Comparative activation energy distribution for jarrah, malleewood, pinecone, pinewood 
using KAS method at various conversions; 1 mg sample size and 250 – 300 µm particle size 
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Figure 3.30 Comparative activation energy distribution for jarrah, malleewood, pinecone, pinewood 
using FWO method at various conversions; 1 mg sample size and 250 – 300 µm particle size 

 

Results and discussion 

ApplicaƟon of model free or isoconversional methods to biomass pyrolysis helps to gain 
insights into nature of biomass pyrolysis. Using Friedman method for mallewood (Figure 3.1) 
there arises a possibility of two acƟvaƟon energies. A.E 1 as obtained from slope of line 
passing through 5 C/min alpha values and 250 C/min alpha values. A.E 2 as obtained from 
slope of line passing through 20 C/min, 50 C/min and 100 C/min. AlternaƟvely, an arbitrary 
best fit slope could be assumed for generalizaƟon. However, this linearity is completely lost 
within the reacƟon regime conversion points. In the case of jarrah and pinewood using 
Friedman method (figure 3.2 and figure 3.3), there is a certain degree of approximate fit 
between conversion points 0.2 to 0.6. However, the problem of mulƟple acƟvaƟon energy 
persists, and between conversion points 0.6 - 0.9, the linearity is lost. The improbability of 
obtaining a sensible acƟvaƟon energy value via straight line fit (linear assumpƟon) is seen 
clearly in case of pinecone (figure 3.6). 

A closer cluster of heaƟng rate points on Y-axis for α values is obtained in case of KAS method. 
However, the problem of possibility of mulƟple acƟvaƟon energies sƟll persists. This can be 
seen in figure 3.5 and figure 3.6 for mallewood and pinecone respecƟvely. This lack of linearity 
is especially observed in the reacƟon regime. The problems associated with Friedman method 
and KAS method are also observed when Flynn-Wall-Ozawa (FWO) method is used for 
acƟvaƟon energy determinaƟon as shown in figure 3.25 and figure 3.26. To further illustrate 
the uncertainty in obtaining stable acƟvaƟon energy values, distribuƟon of acƟvaƟon energy 
values for various conversions can be compared using KAS and FWO method (Figure 3.22 -
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3.26). KAS method predicts lower acƟvaƟon energies as compared to FWO method for same 
conversion values and same process condiƟons. This variance in acƟvaƟon energy values 
based on the method used has been addressed in previous published works.  

AcƟvaƟon energy is a theoreƟcal concept which can be applied to pracƟcal process only when 
the requisite condiƟons are met. In case of feedstock with low degree of cross-linking or when 
there are no compeƟng and parallel reacƟons, a single acƟvaƟon energy value can represent 
the amount of energy needed for a reacƟon to occur. In case of complex reacƟons with 
mulƟple parallel and compeƟƟve reacƟons occurring simultaneously, a single acƟvaƟon 
energy value cannot saƟsfactorily describe the energy requirements of reacƟon progression. 
However, certain lumped assumpƟons can be made to obtain a distribuƟon of acƟvaƟon 
energies over the course of reacƟon. This approach can perhaps give some sensible insights 
into nature of reacƟon and its energeƟcs if the feedstock is homogenous. Biomass is a 
heterogeneous feedstock whose major consƟtuents are highly crosslinked polymers and 
varying degrees of further heterogeneity (primarily lignin).  

Cellulose is a crystalline polymer with d-glucopyranose (glucose) monomer units. Despite the 
high degree of polymerizaƟon (10,000-15,000 units), cellulose is homogenous. Using 
Friedman method (figure 3.7 ) and KAS method (figure 3.10 ) a distribuƟon of acƟvaƟon 
energies with good straight fit over wide heaƟng rates is observed. However, in case of 
hemicellulose, using Friedman method (figure 3.8 ) certain degree of linearity is maintained 
unƟl α = 0.5. For α = 0.6-0.9 any semblance of linearity is lost. The same is observed when KAS 
method is employed for hemicellulose (figure 3.11 ). This can be ascribed to hemicellulose 
being more heterogenous than cellulose. Hemicellulose, despite having a low degree of 
polymerizaƟon (100-200 units) is composed of heterogenous sugar monomer repeaƟng units 
such as xylose, arabinose, mannose, galactose and glucose. This heterogenous can be ascribed 
to lack of linearity over extended heaƟng rates in case of hemicellulose. Lignin is a highly 
heterogenous three-dimensional amorphous polymer consisƟng of aliphaƟc and aromaƟc 
compounds with varying degree of cross-linking of lignols and phenyl propane units.  
Employing Friedman method (figure 3.9) and KAS method (figure 3.12) for lignin pyrolysis, the 
high degree of heterogeneity is revealed in the lack of linearity over the range of temperature 
scale conversion.  

Biomass is physically and chemically consƟtuted of these three polymers. As such, the 
pyrolyƟc breakdown characterisƟcs of biomass are influenced and determined by the 
breakdown characterisƟcs of the consƟtuent polymers. Despite the issues associated with 
heterogeneity, isoconversional method have found ample applicaƟon in calculaƟng kineƟc 
parameters for biomass pyrolysis. This is driven mainly by pyrolysis processes at extremely 
slow heaƟng rates, including heaƟng rates appropriate for torrefacƟon. In these cases, the 
reacƟon is over such a wide Ɵme scale, that assumpƟon of a lumped approach becomes an 
efficient and Ɵme saving approach. Biomass pyrolysis process has been analysed over 
Ɵmescales of heat diffusion, heaƟng rate and reacƟon rate.39 As seen in Chapter 2 over a wider 
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Ɵme scale the reacƟon appears highly lumped and a general approximate straight line 
assumpƟon seems possible. At faster heaƟng and shorter Ɵme scale Chapter 2 the reacƟon is 
discrete having two well defined reacƟon regimes with individual peaks (maximum rate of 
reacƟon). This phenomenon limits the applicability of isoconversional methods over wider 
heaƟng rate ranges (from slow to fast).  

The acƟvaƟon energy distribuƟon for malleewood jarrah, pinecone and pinewood is shown in 
figure 3.29 and figure 3.30. The ambiguity associated with acƟvaƟon energy values for 
biomass using isoconversional methods coupled with the theoreƟcal basis for acƟvaƟon 
energy values make it improbable to obtain a reliable value appropriate for rector design. The 
convenƟonal approach to kineƟc modelling includes calculaƟon of kineƟc triplet consisƟng of 
acƟvaƟon energy, frequency factor (pre-exponenƟal factor) and order of reacƟon. These 
values and their comparaƟve analysis help in gaining insights into the nature of reacƟon and 
its associated energeƟcs.  These values however, especially in case of biomass as feedstock, 
do not contribute greatly to the design of a fast pyrolysis reactor. Using TGA and conducƟng 
pyrolysis runs at faster heaƟng rates reveals the presence of two discrete peaks, with a clear 
global maximum denoƟng the maximum rate of reacƟon (mass/Ɵme unit) over the course of 
reacƟon regime. With a controlled/known parƟcle size or mass, it is possible to link the Ɵme 
and temperature necessary for fast pyrolysis (kineƟcally controlled) reacƟon. The length of 
reactor is then a funcƟon of residence Ɵme of feedstock in reactor. These aspects are dealt 
with in further detail in chapter 4 and chapter 5. 

In conclusion, variable source and heterogenous nature of feedstock in case of biomass 
pyrolysis make it crucial that the reactor operaƟng condiƟons can be controlled with 
increasing accuracy and response Ɵme. To opƟmize desired crude oil yield, it is important to 
improve the responsiveness of reactor and process condiƟons to incoming feedstock 
composiƟonal variety. The exisƟng approaches of model free and model fiƫng methods can 
prove to be cumbersome in tackling this problem. They are useful in gaining insight into the 
underlying reacƟon mechanism of process. However, for quicker process control and ability 
to handle heterogeneous feedstock over wider heaƟng rate ranges a neural networks-based 
approach is presented in Chapter 4. 
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Chapter 4 Modelling approaches suitable for biomass 
pyrolysis 

In earlier chapters, we used the convenƟonal kineƟc approach to study the nature of biomass 
pyrolysis. While we saw that these methods are useful in gaining insight into the nature of 
biomass pyrolysis reacƟon, we also realized its limitaƟons in obtaining kineƟc models suitable 
for real world applicaƟons. The real-world problem of operaƟng a conƟnuous biomass 
pyrolysis plant for fast pyrolysis – crude oil maximizing condiƟon could be characterized by a 
conƟnuous heterogeneous feedstock and a lack of dynamic reactor control which takes this 
into account. (Apart from the associated techno-economics). In this chapter, we present an 
approach that is capable of accounƟng for this feedstock heterogeneity, and potenƟally for 
feedback control. To facilitate these requirements, we make use of arƟficial neural networks 
to predict mass loss profiles and kineƟcs of biomass samples having variable cellulose, 
hemicellulose, lignin composiƟons. The details of modelling work are presented in this chapter. 
Our approach shows promise in predicƟve modelling of biomass pyrolysis and enables the 
determinaƟon of consistent and relevant kineƟcs. A brief review of exisƟng work related to 
predicƟve modelling of biomass pyrolysis, its shortcomings and promises has also been 
presented. 

 

Background 

For thermal processes, kineƟcs studies the rates of processes in order to accomplish two 
major objecƟves. The first is to parameterize the process rate as a funcƟon of state variables 
so that it can be predicted for any combinaƟon of these variables. The second is to obtain 
insights into the process mechanisms.1 In classical approach, the rate of process is 
parameterized following Arrhenius relaƟonship expressed in terms of acƟvaƟon energy, 
frequency factor and Temperature (as show in equaƟon 3.1-3.) TheoreƟcal underpinnings of 
Arrhenius relaƟonship, transiƟon state theory and link between kineƟc approach and 
thermodynamic interpretaƟon have been discussed in chapter 3. In this chapter we present a 
model which captures the inherent heterogeneity of biomass and define biomass pyrolysis as 
a funcƟon of its composiƟon, along with Ɵme and temperature. We present first, a general 
modelling approach suitable for extended heaƟng rates for biomass pyrolysis (approaching 
fast pyrolysis regime). Consequently, we train and test the fidelity of models developed using 
this approach. We also discuss the efficacy of this approach for designing fast pyrolysis 
reactors and achieving dynamic process control for selecƟve product yield opƟmizaƟon. The 
details of modelling work are presented in this chapter. To the best of author’s knowledge, 
such an approach has not been presented in published literature Ɵll date. 

The issues associated with modelling as discussed in earlier chapters led us to develop a 
predicƟve kineƟc model which incorporates the inherent heterogeneity of biomass and links 
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its mass loss conversion over Ɵme and temperature scales. Earlier approaches assumed 
biomass pyrolysis to be a funcƟon only of Ɵme (and Ɵme – temp linear assumpƟon). The 
proposed model defines biomass pyrolysis as a funcƟon of composiƟon along with 
temperature and Ɵme. It also has the capacity to incorporate newer dimensions, given 
sufficient training with enough experimental data. The earlier models were also limited in 
their predicƟve capabiliƟes. They could be considered as staƟc models. IncorporaƟng neural 
networks to study kineƟcs enables the model to have dynamic properƟes as well as predicƟon 
capabiliƟes.  

In the current work, we develop a model which is applicable over wider heaƟng range (from 
slow to fast pyrolysis rates) and incorporates the dependence of feedstock composiƟon of 
biomass pyrolysis reacƟon kineƟcs. The model also has predicƟve capabiliƟes and can predict 
conversion profiles (and reacƟon rate profiles) for unknown samples.  

If dynamic control is to be achieved for real world applicaƟons of biomass fast pyrolysis it is 
perƟnent to aƩain insight into the reacƟon process and extract informaƟon useful/valuable 
for design of suitable pyrolysis reactor (and the process). We have discussed in chapter 2 and 
chapter 3 the usefulness and limitaƟons of exisƟng approaches at kineƟc modelling of biomass 
pyrolysis. The learning from that work prompted us to use neural networks to develop kineƟc 
models suitable for biomass pyrolysis. The modelling work is presented in subsequent 
secƟons. 

 

Figure 4.1 Overview of modelling approach and ANN knowledge cloud. 

What are Neural Networks? 

ArƟficial neural networks are developed to mimic the neural acƟvity of human brain. They 
make use of the universal approximaƟon theorem to approximate complex funcƟons and 



 

100 
 

correlaƟons. As such arƟficial neural networks hold the potenƟal to predict complex 
processes, which in our case is, biomass pyrolysis. Given sufficient data to establish a 
funcƟonal relaƟonship between input and out parameters, an ANN model should be able to 
learn enough to predict the output values for an unknown input sample. 

A computer program is said to learn from experience E with respect to some class of tasks T 
and performance measure P, if its performance at tasks in T, as measured by P, improves with 
experience E.2 The performance of model’s predicƟve capabiliƟes are tested on unknown 
samples to evaluate its reliability. Therefore, in our work, we have evaluated the predicƟve 
capabiliƟes/performance of the model using test data sets which are separate from the data 
used for training the machine system/ANN model. 

A brief review of arƟficial neural networks applicaƟon for biomass pyrolysis is presented here- 

ArƟficial neural networks have been looked at for modelling thermal decomposiƟons. 
3ArƟficial neural networks for thermochemical conversion of biomass was iniƟally concerning 
biomass gasificaƟon. 4,5 ANN technique for biomass pyrolysis has mainly involved predicƟng 
kineƟc parameters using ANN for different biomass samples. The problems discussed in 
chapter 3 get overlooked in such a machine learning approach. 6–11 Further, the range of model 
validity remains quesƟonable, and no insight is obtained in the nature of biomass pyrolysis 
reacƟon. ANN has been used a framework for autonomously discovering biomass pyrolysis 
kineƟc models from thermogravimetric analyzer (TGA) experimental data using the recently 
developed chemical reacƟon neural networks (CRNN).12 PredicƟve PBM-DAEM model for 
biomass to char producing pyrolysis for thermally thick (Biot number, Bi>1 ) parƟcle has also 
been presented.13 ApplicaƟon of machine learning for hydrodynamics, transport and reacƟons 
in mulƟphase flows and reactor has been reviewed.14 Minimum fluidizaƟon velocity for 
mixtures of biomass and inert solid parƟcles have been predicted using arƟficial neural 
networks.15 There are some efforts towards modelling waste pyrolysis16,17 and gasificaƟon18–

20 along with co-pyrolysis of biomass and plasƟcs21 or coal22,23. It has been shown that using 
arƟficial neural networks and decision trees reduces computaƟonal expense of detailed 
kineƟc models by four orders of magnitude making their applicaƟon in comprehensive models 
possible.24 ANN along with CFD has been used to link parƟcle and reactor scale models.25,26  
There some works focussed on low heaƟng rate operaƟon for producing char and syngas via 
torrefacƟon and pyrolysis.27–31 UƟlity of ANN for predicƟng higher heaƟng value of biomass 
pyrolysis oil has been reviewed.31 ANN has also shown promise in predicƟng lumped char, oil 
and gas yields for biomass pyrolysis.32,33  

ANN modelling for current work 

The neural network model in current work is trained using experimentally procured data as 
described in chapter 2 secƟon 2.1-2.3. The model is trained to predict the conversion profile 
for different biomass composiƟons described mass basis in terms of cellulose, hemicellulose, 
lignin for heaƟng rate of 250 K.min-1. The cellulose, hemicellulose and lignin weight percent 
values from Chapter 2, Table 2 are used for training the models. Further a mix of 6 and then 3 
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more biomass samples were used to train the model.  ParƟcle size samples of 106 µm to 150 
µm and of parƟcle sizes 250 µm – 300 µm were used for all experiments. TGA mass loss data 
was used to calculate α vs t and alpha vs t which were then used for training and tesƟng. Using 
real biomass samples and training and tesƟng the ANN models with experimental data 
ensures that the model possess a higher degree of fidelity to reality (of biomass pyrolysis 
phenomena) as compared to models trained completely from simulaƟon or literature data. 
The details of training, tesƟng, data treatment and model validaƟon are presented in 
subsequent secƟons.  

 

Structure 

[iniƟal 1 layer to layer 4 discuss] IniƟally the model is developed with four hidden layers with 
50 neurons each to test the sensibility of this approach. Later, on realizing the validity of the 
approach, we redevelop the model with 5 hidden layers and 200 neurons each. 
[computaƟonal Ɵme trade off] The structure of model is shown in Figures 4.2 and 4.3.  

 

             

 

Figure 4.2 ANN model overview 
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Figure 4.3 Structure of ANN model 

 

Model details 

The models are normal feed forward neural networks with TGA experimental data as labelled 
data. Model 1-has 4 hidden layers and 50 neurons per layer. It is trained using 10 biomass 
samples. Model - 1a is trained to predict conversion α v/s Ɵme for unknown biomass sample. 

Model - 1b is trained to predict rate of conversion or rate of reacƟon ௗఈ

ௗ௧
 v/s Ɵme for unknown 

biomass sample. (Figures 4.4 – 4.7) 

Two more versions, model - 1c and model - 1d are trained by adding a regularizaƟon term to 
the loss funcƟon (Figure 4.8 – 4.11). RegularizaƟon is in the form of Arrhenius equaƟon. A 
second output is also included along with alpha to accommodate value of rate constant. 
Model 1-c is trained to predict conversion α v/s Ɵme with regularizaƟon using Arrhenius 
relaƟonship. (Figure 4.10) Similarly, model 1-d is trained to predict rate of conversion or rate 

of reacƟon ௗఈ

ௗ௧
 v/s Ɵme for unknown biomass sample by trying to fit the predicted value using 

Arrhenius relaƟonship between K and α (Figure 4.11). RegularisaƟon technique is introduced 
to overcome possible generalizaƟon errors and to test the usefulness of Arrhenius correlaƟon. 
Later, the model was modified to have 5 hidden layers with 200 neurons each and trained 
using addiƟonal cellulose, hemicellulose, lignin and newer parƟcle size range. Model 2-a 

predicts conversion α v/s Ɵme. Model 2-b predicts rate of conversion or rate of reacƟon ௗఈ

ௗ௧
 v/s 

Ɵme. (Figures 4.12 & 4.13) The current models are trained and tested for 250 oK/min heaƟng 
rate and for samples with parƟcle size 106-150 µm and 250-300 µm.  

Further, 6 new mixed biomass samples with varying cellulose, hemicellulose and lignin values 
were used to train and test the model 3a and 3-b. (Figure 4.14 & 4.15) This confirms the 
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dependence of predicƟve ability on the quanta and variaƟon of composiƟonal heterogeneity 
present in training data sets. 

Lastly, to check the dependence of number of neurons on predicƟon results and to conclude 
the present work, the model with all biomass samples and pure cellulose, hemicellulose and 
lignin samples was retrained and retested with 100 neurons (model 4) and 500 neurons 
(model 5). The results are shown in table 4.1. 

 

Defining parameters 

The loss funcƟon for non-regularized models can be given as: 

ℒ =  ෍(𝑦 − 𝑦ො)ଶ

ே

௜ୀଵ

 

4.1 

The neural network is trained with Adam opƟmizer for 50000 epochs with Learning rate = 10e-

4 and for another 50000 epochs with LR = 10e-5. 

The loss funcƟon for regularized models can be given by: 

ℒ =  ෍(𝑦 − 𝑦ො)ଶ

ே

௜ୀଵ

+ ෍(
𝑑𝑦ොଵ,௝

𝑑𝑡
+ 𝑦ොଶ,௝ . 𝑦ොଵ,௝

ଶ)

ே಴

௝ୀଵ

 

4.2 

Nc is chosen as 5000 and these data points are randomly chosen from the enƟre data set to 
calculate regularizaƟon terms. Sigmoid acƟvaƟon funcƟon has been used since it shows the 
best result for current work. 

𝑆(𝑥) =
1

1 + 𝑒ି௫
 

4.3 

 

Defining training and tesƟng program 

Inputs to the neural network are Ɵme, cellulose composiƟon, hemicellulose composiƟon and 
lignin composiƟon. Output is either conversion or rate of conversion/reacƟon.  

Sample of Jarrah, which is a part of training data is taken for validaƟng the model and pinecone 
samples are taken for tesƟng. The tesƟng is also carried out for 2 addiƟonal unknown samples. 
TGA data for test case is not included in training data. So, tests carried on such experimental 
data are equivalent to predicƟon tests for unknown biomass sample. 
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Model is retrained for regularizaƟon approaches. Further, interchanging test and train data 
sets for models is done to ensure that fidelity of model. All models are tested on 3 unknown 
test samples to ensure reliability of this approach.  

 

Model Description 
Test prediction 

MSE loss 
Prediction of conversion function; 4 hidden layers, 50 neurons each; 9 

training sets 
0.0067 

Prediction of conversion function; 5 hidden layers, 200 neurons each; 
21 training sets 

0.0036 

Prediction of conversion function; 5 hidden layers, 200 neurons each; 
27 training sets 

0.0021 

Prediction of conversion function; 5 hidden layers, 200 neurons each; 
30 training sets 

0.0017 

Prediction of conversion function; 5 hidden layers, 200 neurons each; 
30 training sets; regularization 

0.0016 

Prediction of conversion function; 5 hidden layers, 100 neurons each; 
30 training sets; no regularization 

0.0018 

Prediction of conversion function; 5 hidden layers, 500 neurons each; 
30 training sets; no regularization 

0.0016 

Table 4.1 Details of models presented in current work 
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Results and discussion 

 

 

Figure 4.4 Prediction of conversion for Jarrah (training data) using 9 samples 

 

 

Figure 4.5 Prediction of rate of conversion for Jarrah (training data) using 9 samples 
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Figure 4.6 Prediction of conversion for Pinecone (test data) using 9 samples 

 

Figure 4.7 Prediction of rate of conversion for Pinecone (test data) for 9 samples 
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Figure 4.8 Prediction of conversion using regularized approach for Jarrah (train data) for 9 samples 

 

Figure 4.9 Prediction of rate of conversion using regularized approach for Jarrah (train data) for 9 
samples 
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Figure 4.10 Prediction of conversion using regularized approach for Pinecone (test data) using 9 
samples 

 

Figure 4.11  Prediction of rate of conversion using regularized approach for Pinecone (test data) for 9 
samples  

 

To establish confidence about model’s learning ability, the model is tested on training data 
samples. The training results for alpha for model with 50 neurons as well as models with 100, 
200 and 500 neurons yield good match. The model training results for dα/dt also show 
agreeable match with experimental data. The shoulders are not captured in unregularized 
model but the dα/dt max value is predicted with reasonable accuracy. AŌer adding 
regularizaƟon to the model, the shoulders start becoming apparent in the predicƟons but the 
max value for dα/dt starts reducing. The test results for training data for model with 100, 200 
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and 500 neurons and an addiƟonal 5th hidden layer also show accurate match with 
experimental data. This helps establish the confidence on models learning abiliƟes. The 
models’ predicƟve capabiliƟes are re-tested using experimental data for unknown (not used 
for training) biomass samples. Note: the unknown biomass sample for machine is known to 
the experimenter. 

The predicƟve capability of the model trained using 9 biomass samples and having 4 hidden 
layers with 50 neurons each is poor. It predicts the general form of conversion funcƟon but 
does not predict the rate of reacƟon funcƟon with great accuracy. To improve the predicƟve 
capability of the model, we train it further by adding pure cellulose, hemicellulose, and lignin 
samples. We also add samples for 9 biomass samples used earlier for an addiƟonal parƟcle 
size 250-300 µm. We also incorporate an addiƟonal hidden layer so that the model has 5 
hidden layers and increased the number of neurons to 200 neurons per hidden layer. The 
predicƟon capability of the model improves from a MSE loss value of 0.0067 to 0.0036 for 
conversion funcƟon. Assuming pyrolysis reacƟon to be funcƟon of biomass composiƟon, we 
keep the hidden layers at 5 and neurons per hidden layer at 200 and train the model with 6 
new biomass mixed samples with varying cellulose, hemicellulose, and lignin values. Upon 
tesƟng the model for an unknown sample, the MSE improves from 0.0036 to 0.0021. The 
model shows improvement in predicƟng conversion funcƟon as well as reacƟon rate funcƟon. 
To test the hypothesis further, we train the model using 3 new mixed biomass samples (Figures 
4.16 and 4.17) and test its predicƟon for an unknown sample (Figure 4.18 and 4.19). This 
improves the machine’s predicƟon MSE from 0.0021 to 0.0017. We checked the effect of 
regularizaƟon for this model (Figures 4.20 & 4.21) and find only a minor improvement of 
0.0001 in MSE. Lastly, the maximum number of samples is kept the same and only the number 
of neurons is changed – first to 100 neurons (Figures 4.22, 4.24, 4.26, 4.28) and then to 500 
neurons (Figures 4.23, 4.25, 4.27 and 4.29). Keeping the number of biomass samples used for 
training constant and reducing the number of neurons to 100 from 200, we see a decrease in 
MSE of 0.0001. Whereas, for the same number of training biomass samples and increasing 
the number of neurons from 200 to 500, we get an increase in MSE for test predicƟon of 
0.0001. 
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Figure 4.12 Results for model trained using pure cellulose, hemicellulose, lignin and new particle size 
range samples – unknown sample test data  

 

 

Figure 4.13 Results for model trained using pure cellulose, hemicellulose, lignin and new particle size 
range samples – unknown sample test data; unregularized 
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Figure 4.14 Prediction results for unknown sample trained using 6 additional samples - test data 
results 

 

 

Figure 4.15 Prediction results for unknown sample trained using 6 additional samples - test data 
results; 5 hidden layers and 200 neurons per hidden layer 
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Figure 4.16 Prediction of conversion function using training data after training using 9 additional 
samples; 5 hidden layers and 200 neurons per hidden layer 

 

 

Figure 4.17 Prediction of reaction rate function using training data after training using 9 additional 
samples; 5 hidden layers and 200 neurons per hidden layer 

 



 

113 
 

 

Figure 4.18 Prediction of conversion function for unknown sample after training using 9 additional 
samples; 5 hidden layers and 200 neurons per hidden layer 

 

 

 

Figure 4.19 Prediction of reaction rate function for unknown sample after training using 9 additional 
samples; 5 hidden layers and 200 neurons per hidden layer 
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Figure 4.20 Prediction of conversion function for unknown sample after training using 9 additional 
samples and using regularization - test data results; 5 hidden layers and 200 neurons per hidden 
layer 

 

Figure 4.21 Prediction of reaction rate function for unknown sample after training using 9 additional 
samples and using regularization - test data results; 5 hidden layers and 200 neurons per hidden 
layer 
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Figure 4.22 Training data result for conversion function for model with 100 neurons, 5 HL and all 
training samples 

 

 

Figure 4.23 Training data result for conversion function for model with 500 neurons, 5 HL and all 
training samples 
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Figure 4.24 Training data result for rate of reaction function for model with 100 neurons, 5 HL and all 
training samples 

 

Figure 4.25 Training data result for rate of reaction function for model with 500 neurons, 5 HL and all 
training samples 
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Figure 4.26 Test result of conversion function for unknown sample by model with 100 neurons, 5 HL 
and all training samples 

 

Figure 4.27 Test result of rate of reaction function for unknown sample by model with 100 neurons, 5 
HL and all training samples 
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Figure 4.28 Test result of conversion function for unknown sample by model with 500 neurons, 5 HL 
and all training samples 

 

Figure 4.29 Test result of rate of reaction function for unknown sample by model with 500 neurons, 5 
HL and all training samples 

 

Using ANN model, the composiƟonal heterogeneity of biomass is accounted for and can be 
dealt with beƩer by providing beƩer process control to the variaƟon in feedstock. The 
accuracy of ANN model depends on both the volume and quality of spread of data sets on 
which it is trained.  The predicƟon ability of ANN model bears strong dependence on number 
of samples used for training and variaƟon in composiƟonal heterogeneity. The ANN models 
predicƟon is improved by increasing the number of neurons and hidden layers, however this 
has a milder effect on predicƟon capability as compared to composiƟonal variaƟon and 
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number of training samples. The higher the number of neurons and hidden layers, more is the 
computaƟonal Ɵme necessary for training and tesƟng the model. ANN model with 200 
neurons and 5 hidden layers shows good predicƟon capability with reasonable computaƟon 
duty. The arƟficial neural network models having incorporated the effect of composiƟon on 
reacƟon kineƟcs, bear the potenƟal for further improvement by increasing the variaƟon and 
quanƟty of training sets. 

The range of validity and predicƟon accuracy of the developed model will be improved by 
training it with more varied experimental data. Other parameters such as number of hidden 
layers, number of neurons in each layer, weight of the residual loss funcƟon, opƟmizers and 
learning rates could be tuned to improve the results of ANN predicƟons. However, those 
invesƟgaƟons lie beyond the purview of current thesis work and shall be dealt with in future 
work. 

 

Further scope of work 

To improve the predicƟve capability of the model within the domain specified in this work, it 
should be trained with newer biomass samples mass loss data at 250 oK/min heaƟng rate. This 
would improve the rigour of model within specified boundaries. It is also possible to 
incorporate newer dimensions such as mulƟple heaƟng rates and catalyƟc effect into the 
model. However, without enough variety in each newly added domain, the model fails to 
predict unknow samples. To ensure uniqueness in the value of predicted kineƟc parameters, 
the predicƟon accuracy needs to be improved and the model needs to be trained on a 
profusion of data generated from experimental work and literature.The understanding from 
current work is summarised in the final chapter 5. Some aspects of reactor design and 
incorporaƟon of current modelling approach to achieve dynamic reactor control are also 
touched upon in the concluding chapter. 
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Chapter 5 ReflecƟons and future direcƟons 
 

 

Summary 

A set of experiments to determine the composiƟon of biomass samples were performed. 
Conversion profiles and rate of reacƟon profiles for biomass samples at different heaƟng rates 
were studied. ExisƟng kineƟc methods were used to study the reacƟon kineƟcs of biomass 
pyrolysis. A novel predicƟve modelling approach was developed for biomass pyrolysis. 
ArƟficial neural networks were used to develop models capable of predicƟng conversion and 
rate of reacƟon profiles for unknown biomass samples. This approach has the potenƟal for 
dynamic control of heterogenous feedstock and is applicable over wider heaƟng rate range. 

 

Conclusion 

It is evident that biomass slow pyrolysis and biomass fast pyrolysis are qualitaƟvely different 
phenomena. For low ΔT/Δt values or slow heaƟng rates or slow pyrolysis condiƟon, the 
thermal breakdown reacƟons of biomass are lumped together. As opposed to this, discrete 
reacƟon regimes are observed in case of higher heaƟng rates or fast pyrolysis condiƟons or 
large ΔT/Δt values. To perform biomass fast pyrolysis, two condiƟons must be ensured, 
kineƟcally controlled reacƟon regime and minimizaƟon of secondary and terƟary reacƟons. 
Pyrolysis reacƟon can either assume an endothermic route or an exothermic route. 
Endothermic control of reacƟon leads to opƟmizaƟon of crude oil formaƟon. Exothermic 
control of reacƟon leads to formaƟon of char and syngas. KineƟc control of reacƟon would 
promote endothermicity and opƟmise oil yield. Whether a reacƟon pathway is via kineƟc 
control or thermodynamic control is determined by total reacƟon and vapour residence Ɵme 
under fixed operaƟng condiƟons. Higher Δt/ΔT raƟos will favour thermodynamic control 
whereas lower Δt/ΔT raƟos will favour kineƟc control of reacƟon pathway. A reactor in which 
heat transfer is facilitated via conducƟon is suitable for obtaining char and gas yield. For 
opƟmizing crude oil yield (qualitaƟvely and quanƟtaƟvely) dominant mode(s) of heat transfer 
need to be convecƟon and radiaƟon. Biomass fast pyrolysis is not just a funcƟon of 
temperature but also of its composiƟon. ExisƟng kineƟc methods do not take composiƟon 
into consideraƟon. Such an assumpƟon works in case of homogenous feedstock. ExisƟng 
methods as such are based on the implicit assumpƟon that solid feedstock is homogeneous. 
Biomass is inherently heterogeneous. To address this, in this work, arƟficial neural network 
models are trained to predict the conversion and rate of reacƟon profiles for unknown 
biomass samples. These models incorporate the biochemical composiƟon of biomass, show 
good predicƟons for unknown biomass samples and are applicable over wider heaƟng rate 
range. 
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Highlights 

 The modelling approach presented in this work captures in terms of mass 

quanƟficaƟon the composiƟonal heterogeneity of biomass in pyrolysis kineƟcs.  

 The model(s) are also extendable to higher heaƟng rates.  

 The models have the capacity to predict conversion profiles of unknown biomass 

samples.  

 The models show promise in predicƟng the rate of reacƟon profile for unknown 

biomass samples with some accuracy. This accuracy in predicƟon for unknown 

biomass samples is shown to increase upon training with more varied composiƟon 

data.  

 The current model has cellulose (wt%), hemicellulose (wt%), lignin (wt%) and heaƟng 

rate (oK/s) as dimensions. Given enough variaƟon in each dimension, the current 

model can be trained to incorporate newer dimensions.  

 

RecommendaƟons 

It is recommended that to realise the potenƟal of biomass pyrolysis for bio-oil producƟon, 
major areas of focus and invesƟgaƟon should be novel reactor designs, experiments to 
elucidate the mulƟ-scale variaƟon in reacƟon mechanism and developing predicƟve models 
capable of handling a variable heterogenous feedstock with process control. IncorporaƟng 
pretreatment and down-streaming aspects into design consideraƟons is also recommended 
since these aspects influence the bio-oil yield. 

To achieve heat transfer rates sufficient for fast pyrolysis it is recommended that the dominant 
form of heat transfer be either convecƟon or radiaƟon. It is also recommended that the 
vapour residence Ɵmes be kept to minimal, not more than 5 second in reacƟon regime. As 
such a reactor with mechanism to facilitate rapid vapour transport and immediate quenching 
to stop further vapour phase reacƟons is recommended. ParƟcle size reducƟon prior to 
pyrolysis is also recommended.  

 

 

Experimental invesƟgaƟons to determine bio-yield composiƟon at different temperature and 
vapour residence Ɵmes are recommended. The experiments should be performed at 
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isothermal condiƟons with small parƟcle sizes and with rapid transport and quenching of 
pyrolysis vapours, preferably in a series of chilled organic and inorganic solvents. A study of 
bio-oil yields at different isothermal temperatures with varying vapour residence Ɵmes will 
allow for the integraƟon of reacƟon mechanism and kineƟc study. 

It is recommended that the model presented in this work is trained further using more varied 
biomass composiƟons to improve the predicƟon of rate of reacƟon profile for unknown 
biomass samples. UlƟmately, if the potenƟal of biomass pyrolysis for oil generaƟon is to be 
realized fully, a concerted effort which makes use of open-source soŌware and plaƞorms to 
bring together the research of various groups and insƟtutes engaged in invesƟgaƟng biomass 
fast pyrolysis is recommended.  


