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Eocene mafic magmatism in the Himalaya provides a crucial window for probing the 20 

evolution of crustal anatexis processes within the lower-plate in a collisional orogen. Here we 21 

report geochemical data from the earliest post-collision ocean island basalt-like mafic dikes 22 

intruding the Tethyan Himalaya near the northern edge of the colliding Indian plate. These 23 

dikes occurred coevally, and spatially overlap with, Eocene granitoids in the cores of gneiss 24 

domes and are likely derived from interaction of melts from the lithosphere-asthenosphere 25 

boundary with the Indian continental lithosphere. We propose that these mafic magmas were 26 

emplaced along lithospheric fractures in response to lithospheric flexure during initial 27 

subduction of the Indian continent and that the underplating of such mafic magmas resulted in 28 

orogen-parallel crustal anatexis within the Indian continent. This mechanism can explain the 29 

formation of coeval magmatism and the geological evolution of collisional orogen on both 30 

sides of the suture zone. 31 

 32 

INTRODUCTION 33 

The Himalaya belt is the most active collisional orogen in the world. It exposes the former 34 

passive margins of the Indian continent, and it is characterized by widespread Cenozoic 35 

crustal anatexis, high-grade metamorphism and some orogen-scale normal and strike-slip 36 

faulting (Harrison et al., 1997; Yin, 2006) (Fig. 1a). These magmatic and metamorphic units 37 

distributed parallel to the suture within the lower plate/previously passive side of the 38 

collisional orogen, can yield significant information on the collision and related crustal 39 

reworking processes (Hou et al., 2012; Vanderhaeghe and Teyssier, 2001; Wang et al., 2021; 40 

Weller et al., 2021; Zeng et al., 2011).  41 



Two critical episodes of Cenozoic metamorphism and magmatism have been identified 42 

from the Himalaya: 1) 48–35 Ma Barrovian-type prograde metamorphism with Eocene mafic 43 

and Na-rich adakitic melts (e.g., Hou et al., 2012; Ji et al., 2016), and 2) Late Oligocene–44 

Early Miocene retrograde metamorphism associated with leucogranite formation (Harrison et 45 

al., 1997; Vanderhaeghe and Teyssier, 2001; Weller et al., 2021) (Fig. 1). 46 

Himalayan uplift and associated crustal anatexis (Hou et al., 2012) has been linked to a 47 

range of possible processes including thin-skinned thrusting (DeCelles et al., 2002; Yin, 2006), 48 

middle-crustal melting and ductile flow (Nelson et al.,1996; Vanderhaeghe and Teyssier, 49 

2001), or extrusion of an Indian crustal wedge (Chemenda et al., 2000). A variety of anatexis 50 

mechanisms beneath the Himalayas have been proposed, including: shear heating (Harrison et 51 

al., 1998), decompression melting (Davidson et al., 2008), radiogenic heating (Searle et al., 52 

2003) and heat transferred from mantle-derived melts (Zheng et al., 2016). However, the links 53 

between the crustal anatexis event(s) and coeval tectonic developments remain unclear (Guo 54 

and Wilson, 2012; Hou et al., 2012 and references therein).  55 

In this paper we report geochemical data from Eocene mafic dikes found in the Tethyan 56 

Himalaya that have ocean island basalt (OIB)-like compositions. This mafic magmatism 57 

occurred coevally, and spatially overlaps with, the well-developed Tethyan Himalayan 58 

granitoids and associated metamorphic event (Hou et al., 2012) (Fig. 1a-b). These dikes 59 

provide a rare opportunity to examine the origin of such enigmatic intraplate magmatism and 60 

related geodynamic evolution along the margin of the lower plate in a continental collision 61 

zone. Similar magmatism is also reported in other collisional orogens (Vanderhaeghe et al., 62 

2020; Weller et al., 2021) and in this study we present a new geodynamic model for such 63 



orogen-parallel lower-plate magmatic and metamorphic belts. 64 

 65 

BACKGROUND AND SAMPLES 66 

The Himalaya-Tibet orogen was formed by the collision of the Indian continent with 67 

Eurasia that started along the Yarlung Zangbo Suture (YZS) (Fig. 1). The Lhasa block, 68 

immediately north of the YZS, represents the southern edge of the Asian upper plate, and 69 

experienced long-lived subduction of Neo-Tethyan ocean crust with extensive late Triassic to 70 

Eocene calc-alkaline plutonism and volcanism before the terminal collision (Zhu et al., 2013, 71 

2019). Following the collision and a magmatic flare-up with a peak of 51 ± 3 Ma, arc 72 

magmatism in southern Tibet waned, as cold Indian lithosphere underthrust Tibet (Chung et 73 

al., 2005; Zhu et al., 2019).  74 

On the opposite side of the suture is the lower Indian plate representing a pre-collisional 75 

stable craton, with slightly younger (ca. 48–35 Ma) high Sr/Y granitoids and limited OIB-type 76 

gabbros and medium-temperature eclogite–high pressure (EHP) granulite metamorphism (Fig. 77 

1; Hou et al., 2012; Ji et al., 2016; Weller et al., 2021; Zeng et al., 2011). The high Sr/Y 78 

granitoids are believed to have derived from partial melting of amphibolite at ~880°C and ~10 79 

kbar (Hou et al., 2012; Zeng et al., 2011). The 45 Ma Langshan gabbro, on the other hand, has 80 

HIMU (high μ, μ = 238U/204Pb)-type OIB signatures with depleted Sr-Nd isotopes. These 81 

gabbros are thought to have been generated by partial melting of the asthenosphere during 82 

detachment of the subducted Neo-Tethyan slab (Ji et al., 2016). Subsequent to this magmatic 83 

episode, kilometer-scale Himalayan leucogranite bodies (~25–15 Ma and ~8 Ma) were 84 

emplaced in the northern Himalaya (Fig. 1; Vanderhaeghe and Teyssier, 2001; Weller et al., 85 



2021). These leucogranites were produced by muscovite-dehydration melting of 86 

meta-sediments (Weinberg, 2016) at ultrahigh temperature (UHT) conditions (900–970°C and 87 

6–11 kbar [∼40°C /km]), mostly between 25 and 15 Ma (Wang et al., 2021).  88 

Several ENE-trending, broadly orogen-parallel, 5–8 m wide diabase dikes that intrude the 89 

Early Jurassic Ridang Formation limestone, marl limestone and shale, have recently been 90 

discovered near Gyangze (Figs. 1 and DR2). These dikes are coarse-grained and consist of 91 

clinopyroxene, plagioclase and amphibolite with secondary chlorite and sericite. 92 

 93 

GEOCHRONOLOGY AND GEOCHEMISTRY 94 

Zircon grains from the Gyantse diabase sample JZ18-2-1 yielded a U-Pb age of 48.6 ± 0.5 95 

Ma (Fig. 2d, methodology and detailed analytical results in the Data Repository), that is 96 

slightly older than the Langshan OIB-type gabbro (45 ± 1.4 Ma, Ji et al., 2016) but overlaps 97 

with the earliest Cenozoic high Sr/Y granitoids (ca. 48–45 Ma; e.g., Hou et al., 2012). Zircon 98 

δ18O values ranging from 5.1‰ to 6.4‰ with a mean of 5.9 ± 0.6‰, are consistent (within 99 

error) with mantle zircon values (5.3 ± 0.6‰). 100 

The Gyantse diabase dikes have relatively broad ranges of SiO2 (46.0 to 54.5 wt.%) and 101 

MgO (5.0 to 12.4 wt.%) contents, and plot in the field of alkali basaltic rocks (Fig. 2a). They 102 

have OIB-like element patterns with enriched Nb (11.4–21.5 ppm) and TiO2 (1.9–2.9 wt.%) 103 

and a slight Eu anomaly (chondrite normalized Eu/√Sm×Gdమ  = 0.85–1.10). Initial Sr-isotope 104 

ratios (0.7076–0.7115) and εNd(t) (−2.7 to −2.0), are more enriched than the Langshan gabbro 105 

but less so than the coeval granitoids (Fig. 2c). 106 

 107 



PETROGENESIS AND GEOTECTONIC IMPLICATIONS 108 

The Gyantse mafic dikes have relatively low Nb (11.7–21.5 ppm) and more enriched Sr-Nd 109 

isotope compositions than the Langshan gabbro which was likely formed by partial melting of 110 

asthenosphere (Ji et al., 2016), that contained more-enriched components. Given the 111 

insignificant crustal contamination of the Gyantse mafic magmas (see details in Data 112 

Repository), the Indian lithospheric mantle (Shellnutt et al., 2014) is the most likely source of 113 

this enriched component. Our modeling indicates that the Gyantse mafic dikes were most 114 

likely derived from the lithosphere-asthenosphere boundary (LAB) melts at the top of the 115 

asthenosphere with a contribution from the Indian lithospheric mantle (Figs. 2c and DR3). 116 

Seismic profiles show that the present depth of the LAB below eastern Himalaya ranges from 117 

140 km to 100 km (Zhao et al. 2010), which is likely to be similar to, or greater than, the 118 

lithosphere thickness at the early stage of the collision (~50 Ma). Peridotite with 1.0–2.5 wt.% 119 

CO2 or 200–300 ppm H2O can produce stable partial melts at 3 Gpa (Hirschmann et al., 2009). 120 

The LAB has recently been documented to be volatile enriched (Blatter et al. 2022), and thus 121 

provides the most likely source for mafic magmas in Tethyan Himalaya during early collision. 122 

The Early Eocene (51–45 Ma) magmatism, dominated by crustal anatexis, occurred on 123 

both sides of the YZS during early collision. The southern margin of Asian plate is 124 

characterized by thickened juvenile crust and a relatively high crustal thermal state (Ma et al., 125 

2017). In contrast, the northern edge of the Indian plate is marked by a thickened ancient crust 126 

with a moderate geothermal gradient during the early stage of collision (Hou et al., 2012; 127 

Weller et al., 2021 and references therein). The 48–35 Ma Tethyan Himalaya magmatism, 128 

consisting of high Sr/Y granitoids within gneiss dome and coeval gabbros and dikes, is slightly 129 



younger than the magmatic peak in the Lhasa block (51±3 Ma) (Fig. 1). After that, another 130 

episode (25–8 Ma) of crustal anatexis of accreted sediments dominated the melting in the 131 

Himalaya (Guo and Wilson, 2012; Weller et al., 2021).  132 

The sources of the two episodes of crustal anatexis along the northern Indian continental 133 

margin (one at around 48–35 Ma, and the other around 25–8 Ma) may be very different. The 134 

Miocene crustal anatexis accompanied by ultrahigh temperature (900–970 °C) metamorphism 135 

indicates a hotter crustal thermal state than the Eocene crustal anatexis events with moderate 136 

temperature (~600–750 °C) metamorphism (e.g., Wang et al., 2021; Weller et al., 2021). 137 

Numerous studies over the past few decades have been carried out on the Miocene crustal 138 

anatexis and related process, which led to the Cenozoic rise of the Himalaya orogen 139 

(Chemenda et al., 2000; DeCelles et al., 2002; Harrison et al., 1998; Nelson et al.,1996; Yin, 140 

2006; Wang et al., 2021). However, the Eocene crustal anatexis event is poorly understood 141 

due to the lack of critical evidence. A previous model for the generation of mafic magmas in 142 

Tethyan Himalaya involves decompression melting of the asthenosphere triggered by the 143 

break-off of the Neo-Tethyan lithosphere (e.g., Ji et al., 2016). However, such a model has 144 

difficulties in accounting for the following geological observations. 1) Similar OIB-like 145 

magma has not been found in the Lhasa terrane below which the break-off of the 146 

Neo-Tethyan lithosphere is proposed to have occurred. 2) It would have been extremely 147 

difficult for OIB-like magma to migrate southwards from beneath the Lhasa terrane and 148 

emplace as the Indian plate continued to push northward against Eurasia. An alternative 149 

model is therefore required to reconcile coeval metamorphic and magmatic records and 150 

geological observations along both sides of the suture zone in this collisional orogen. 151 



It has been noted that a sudden increase in the convergence rate of the Indian continent 152 

toward Eurasia occurred prior to its initial collision with Eurasia was likely a response to 153 

enhanced pull caused by the steepening subduction of the Neo-Tethyan plate (Fig. 3; Chung et 154 

al., 2005). Such a steepening of subduction may also have resulted in the likely steep 155 

geometry of the early subduction of the Indian continental margin (Qi et al., 2020). This 156 

steepening Neo-Tethyan and Indian lithospheric subduction may also have triggered 157 

subduction channel widening and asthenospheric upwelling under the southern Lhasa terrane 158 

(Kelly et al., 2019). This would have eventually resulted in break-off of the Neo-Tethyan 159 

oceanic slab (Hou et al., 2012), and/or lithospheric delamination of southern Lhasa terrane 160 

(Qi et al., 2020), causing melting to produce the ca. 51 Ma magmatism in southern Lhasa 161 

block along the suture zone (Fig. 3).  162 

We propose here that after the 51 Ma magmatic event, a lithospheric flexure formed along the 163 

northern Indian continent parallel to the suture, causing brittle cracking (i.e., bending-induced 164 

faults; Romeo and Álvarez-Gómez, 2018) and the 48–45 Ma melting in northern Himalaya 165 

(Fig. 3a). The lithospheric flexure could have resulted from either: 1) the break-off of the 166 

subducted Neo-Tethyan lithosphere at ca. 50 Ma (Fig. 3a), and the resultant 167 

buoyancy-induced upward bending of the leading edge of the Indian continental lithosphere; 168 

or 2) the slowdown of subduction along the leading-edge of the subducting Indian lithosphere 169 

at ca. 50 Ma due to the buoyancy of the Indian continental crust while the Indian plate was 170 

still continuously pushing northward. This is consistent with the rapid slowdown of the Indian 171 

continent’s northward movement since 50 Ma (Fig. 1c, Cande et al., 2010). In addition, the 172 

loading caused by crustal thickening after the collision may also have contributed to 173 



lithospheric bending (Fig. 3a).  174 

In our model, the melts derived by decompression melting of the LAB intruded to the 175 

shallow levels of the lithosphere along extensional fractures below neutral plane of the 176 

downwarped lithosphere (Fig. 3). Given the rapid thickening of the Indian continental crust 177 

during the early collision, the neutral plane of the bended lithosphere could have been close to 178 

or above the Moho, with shortening above the neutral plane mostly absorbed by the series of 179 

crust thrusting (Fig. 3a). The high buoyancy of volatile-rich LAB melts and potential 180 

thermal–mechanical–chemical erosion could have driven the migration of the LAB melts 181 

through the lithosphere (Spence and Turcotte, 1985). Emplacement of such mafic magmas 182 

may not only form the reported gabbros and mafic dikes which are now exhumed to the 183 

surface by kilometers of erosion, associated mafic underplating in the crust likely also 184 

provided the heat source for the formation of coeval (51–40 Ma) orogen-parallel crustal 185 

anatexis, and thus the orogen-parallel gneiss domes (Hou et al., 2012; Weller et al., 2021). 186 

After this 48–35 Ma magmatic event, the ongoing over-thrusting and crustal compression 187 

enabled the accumulation of radiogenic heat in the lower crust. This radiogenic decay resulted 188 

in an elevated geotherm and causing the subsequent larger-scale crustal anatexis during the 189 

Miocene (Fig. 1). However, discussion and modelling of this process is beyond the scope of 190 

the present paper. 191 

Overall, our model provides new insights into the mechanisms of magma generation and 192 

orogenic evolution within the lower plate (a previous passive margin)-side of convergent 193 

orogens. Such mechanisms may also be appliable to converging oceanic lower plates, where 194 

explanations for the mechanism of orogen-parallel magmatism range from a mantle transition 195 



zone origin (Yang and Faccenda, 2020) to melts formed at the LAB due to either lithospheric 196 

flexure-related extension (e.g., Hirano et al., 2006; Pilet et al., 2016) or enhanced pull of the 197 

subducting plate (Dan et al., 2021). Elements of our model also share similarities to that of 198 

Yuan et al. (2010) proposed for the formation of Triassic granitoids in the eastern 199 

Songpan-Ganzi Fold Belt. Our model may also be applicable to magmatism along the passive 200 

side of other collisional orogens. 201 
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Figure 1. (a) Simplified geologic map of the Himalayan orogenic belt, southern Tibet 314 

(after Zeng et al., 2011) showing locations of the magmatism and metamorphism in 315 

the northern Himalaya, as well as the location of the study area. Locations and ages of 316 

Eocene magmatism in Tethyan Himalaya are listed in Table DR1. YZS: Yarlung 317 

Zangbo suture; STDS: Southern Tibet Detachment System; MCT: Main Central 318 

Thrust; MBT: Main Boundary Thrust; LH: Lower Himalaya. (b) Geological map of 319 

the study area. (c) Histogram of ages for Eocene magmatic rocks in the Tethyan 320 

Himalaya. The convergence rate of Indian continent is shown as green dotted line. 321 

The dark blue line shows the kernel density estimate (Chapman and Kapp, 2017) for 322 

the age of the southern Lhasa magmatism. (d) Plots of representative 323 

pressure-temperature (P-T) and thermal gradients for Cenozoic metamorphism in the 324 

Himalaya. The data and references are listed in Table DR5. 325 

 326 

Figure 2. Geochemistry and Tera-Wasserburg diagram of the Gyantse dikes. The 327 

Langshan gabbro data are from Ji et al. (2016). The data for Tethyan MORB, Panjal 328 

basalt, Eocene granite and Oligo-Miocene leucogranite shown in Table DR6. 329 

Langshan gabbro (12FW63, [87Sr/86Sr]i = 0.706571, εNd(t) =5.8) and Panjal low-Ti 330 

basalt (PJ2-014, [87Sr/86Sr]i = 0.712667, εNd(t) = -6.4) represent the asthenospheric 331 

and lithospheric mantle end-members for modeling, respectively. The numbers along 332 

the blue tick-line indicate percentage contribution of asthenosphere material. MSWD 333 

= mean square of weighted deviation. 334 

 335 



Figure 3. Schematic diagram illustrating the formation of the Eocene (ca. 50-35 Ma) 336 

orogen-parallel magmatic and metamorphic zone in the Tethyan Himalaya due to 337 

lithospheric flexure. Mafic melts from the lithosphere-asthenosphere boundary 338 

percolate into the Indian continental lithosphere and underplate the continental crust 339 

along fractures, causing coeval orogen-parallel thickened crustal anatexis. The 340 

steepening subduction of Neo-Tethyan and Indian lithosphere resulted in the 341 

subduction channel widening and asthenospheric upwelling and/or a slab break-off, 342 

causing melting to produce coeval magmatism in the Lhasa block. (b) Elevation and 343 

S-wave receiver function profiles along the dark blue dotted line in Fig.1a, are 344 

adapted from Zhao et al. (2010). The blue low velocity zone indicates a possible 345 

partial melting zone.  346 
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