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A B S T R A C T 

Understanding the temporal characteristics of data from low-frequency radio telescopes is of importance in devising suitable 
calibration strategies. Application of time-series analysis techniques to data from radio telescopes can reveal a wealth of 
information that can aid in calibration. In this paper , we in vestigate singular spectrum analysis (SSA) as an analysis tool for radio 

data. We show the intimate connection between SSA and Fourier techniques. We develop the relevant mathematics starting with 

an idealized periodic dataset and proceeding to include various non-ideal behaviours. We propose a no v el technique to obtain 

long-term gain changes in data, leveraging the periodicity arising from sky drift through the antenna beams. We also simulate 
several plausible scenarios and apply the techniques to a 30-day time series data collected during 2021 June from SITARA 

– a short-spacing two element interferometer for global 21-cm detection. Applying the techniques to real data, we find that 
the first reconstructed component – the trend – has a strong anti-correlation with the local temperature suggesting temperature 
fluctuations as the most likely origin for the observed variations in the data. We also study the limitations of the calibration in 

the presence of diurnal gain variations and find that such variations are the likely impediment to calibrating SITARA data with 

SSA. 

Key words: Dark ages, reionization, first stars – methods: data analysis. 
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 I N T RO D U C T I O N  

here is a renewed interest in low-frequency ( < 300 MHz) radio
stronomy, due to the multitude of science cases that benefit from
o w-frequency observ ations. Se veral lo w-frequency radio telescopes
uch as LOFAR (van Haarlem et al. 2013 ), MWA (Tingay et al.
013 ), HERA (DeBoer et al. 2017 ), and LWA (Hallinan et al. 2015 )
ave been constructed and are currently observing, with the low-
requency Square Kilometer Array (SKA), SKA-low (Dewdney et al.
009 ) in construction phase. Some of the key science goals for these
etre-wavelength radio telescopes are cosmic dawn and epoch of

eionization (CD/EoR)(Trott 2017 ), solar and heliospheric science
Nindos, Kontar & Oberoi 2019 ), and cosmic magnetism (Gaensler,
eck & Feretti 2004 ). Modern low-frequency radio telescopes
iffer from their higher-frequency counterparts in that they consist
f aperture arrays constructed from a large number of antennas
hat are often beamformed in the analogue or digital domain and
orrelated against each other to observe the radio sky. The calibration
equirements, calibration models, and the complexity are different to
igher-frequency (cm wavelengths and above) radio telescopes. 
For dish-based interferometers with a small number of antennas,

ingle dish telescopes, and specialized low-frequency radiometers,
alibration techniques such as Dicke switching or noise injection
an be employed. Specifically, global 21-cm experiments constitute
 group of low-frequency radiometers requiring precise and accurate
 E-mail: j.thekkeppattu@curtin.edu.au 
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alibration of the systems to limit the systematics to less than one
art in a million. Most of the global 21-cm experiments use single
ntennas as sensors and employ Dicke-switching ambient tempera-
ure matched loads and noise diodes (see Rogers & Bowman 2012 ;
ambissan T. et al. 2021 ) or noise injection (Singh et al. 2018 ) for
andpass calibration. The same calibrators are used to compensate for
eceiver gain drifts over extended periods of time. Ho we ver, in order
o maintain a stable excess noise ratio (ENR), the calibrators have to
e maintained in temperature-controlled environments, and the noise
iodes themselves require periodic re-calibration with laboratory
tandards to mitigate drift and ageing, especially if they are to be
sed in applications demanding high accuracy such as cosmology.
esides, with future telescopes such as the SKA-low potentially
mploying thousands of low-cost active antennas, calibration using
edicated noise diodes at each antenna becomes impossible. The
perture array nature of these instruments, i.e. a large number of
tationary antennas of simple construction, often with integrated low-
ost low-noise amplifiers (LNAs), necessitates calibration based on
k y models. Therefore, dev elopment of no v el mathematical tools
o explore the long-term stability of these low-frequency telescopes
nd radiometers, and to determine the limits of calibration and data
ntegration, become essential. 

In this paper, we explore the potential of one such tool in analysing
ime series data from low-frequency radiometers and an application
f it to real-valued time series data. The instrument under study is
ITARA, a broadband two element interferometer targeting global
1-cm detection employing short spacing interferometry. SITARA
onsists of two MWA-style active antennas kept 1 m apart o v er a large
© 2023 The Author(s) 
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Figure 1. SITARA raw data time series as a function of Julian Date (JD) for 
a single frequency channel of bandwidth 61 kHz, at a frequency of 111 MHz. 
The data have been extracted from a concatenated SITARA dataset for the 
month of 2021 June. Solar bursts contribute to most of the RFI seen in this 
time series. 
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round-plane (35 m) and a correlator that records auto-correlations 
nd cross-correlations with spectral resolution of about 61 kHz, 
cross 0–250 MHz. The usable band is limited to 70–200 MHz, with
educed sensitivity in the 50–70 MHz band. SITARA is deployed 
ithin the radio quiet zone of the Murchison Radioastronomy 
bservatory (MRO) in Western Australia, which is also the site for

uture SKA-low. Data are collected round the clock and timestamped 
ata are written out in miriad format (Sault, Teuben & Wright 
995 ). SITARA has been conceived as the first prototype to evolve
ools and techniques for short-spacing interferometry; further details 
bout SITARA can be found in Thekkeppattu et al. ( 2022 ). Single-
requency data from SITARA auto-correlations can essentially be 
reated as radiometric data, with SITARA behaving as an uncalibrated 
otal power radiometer. 

 MOTIVATION  

s an example to moti v ate this study, we consider real-valued auto-
orrelations from SITARA data. A plot of single-frequency channel 
ime series data from SITARA auto-correlations, at a frequency of 
11 MHz for the month of 2021 June, is shown in Fig. 1 . The
requency of 111 MHz has relatively low radio frequency interference 
RFI) and is also a frequency where mutual coupling between 
ntennas does not cause large beam shifts (see Thekkeppattu et al. 
022 ) for details). The data have a periodic nature arising from the
rifting of various regions of the radio sky through the antenna beams
s the Earth rotates. If the radio telescope was perfectly calibrated, 
nd there was no RFI, Fig. 1 would have shown a perfectly repeating
attern. 
As can be seen, this is not the case. The data have some multi-

licative gain variations as well as some additive RFI. Therefore, 
ur aim is to decompose this time series into some components that
an help us understand it better. A plausible decomposition is the 
ourier transform, i.e. into sines and cosines. Ho we ver, radiometric 
ata can have aperiodic patterns such as a drift which gets distributed
o various modes in a Fourier analysis, thus making an interpretation 
ifficult. Therefore, it is desirable to adopt an analysis which selects 
 suitable basis from the data, in other words a data-driven technique.
Singular spectrum analysis (SSA) is a set of data-driven tools that
an decompose a time series into elementary patterns such as trend
nd oscillatory components. The raw data from a low-frequency 
adio telescope with a fixed pointing are expected to have oscillatory
omponents with a period corresponding to a sidereal day, while 
wing to environmental changes trend-like patterns (drift) are also 
xpected. This makes SSA an ideal tool for analysis of such data. 

SSA techniques appear in the analysis of dynamical systems 
Broomhead & King 1986 ; Vautard & Ghil 1989 ) and SSA has been
 popular tool for time series analysis in a variety of fields such as
eteorology and climate science (Ghil et al. 2002 ) and geophysics

Dokht, Gu & Sacchi 2016 ). Ho we ver the application of SSA in radio
stronomy has been limited (Donskikh et al. 2016 ; G ̈urel, Hurley &
imeoni 2018 ). Indeed, to the best of our knowledge, SSA has not
een applied for time series analysis of radiometric time series data.
his paper aims to detail the necessary mathematical tools for SSA
f time series data from a low-frequency radiometer and demonstrate 
hem with SITARA data. 

.1 Notation and mathematical preliminaries 

n this section, we describe the notation employed and define certain
atrices that are useful for the subsequent analysis. Many of these

efinitions can be found in Davis ( 1979 ) as well as Olson et al. ( 2014 ).
e use bold capital Roman letters such as X to denote matrices, and

mall Roman letters such as n are used for indexing. We use zero-
ased numbering such that the indices start at 0. Small Roman letters
ith an arrow such as � u denote v ectors. Inte gers are denoted by

apital Roman letters such as L . We now proceed to define some
asic matrices and associated linear algebra. 

.1.1 Circulant and anti-circulant matrices 

n N × N square matrix C is circulant if each row of the matrix is a
ight -shifted version of the previous row as shown in equation ( 1 ). 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c[0] c[1] ...... c[ N − 1] 
c[ N − 1] c[0] ...... c[ N − 2] 
c[ N − 2] c[ N − 1] ...... c[ N − 3] 

.. .. ...... .. 

c[1] c[2] ...... c[0] 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (1) 

An N × N square matrix C is anti-circulant if each row of the matrix
s a left -shifted version of the previous row as shown in equation ( 2 ). 

 a = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c[0] c[1] ...... c[ N − 1] 
c[1] c[2] ...... c[0] 
c[2] c[3] ...... c[1] 
.. .. ...... .. 

c[ N − 1] c[0] ...... c[ N − 2] 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (2) 

oth the circulant and anti-circulant matrices can be obtained from 

 sequence c [ n ]; n = 0, 1,.... N − 1 and are completely specified by
hat sequence. While useful in a wide variety of analyses, circulant

atrices are not of much utility in this paper. We will be dealing
ith anti-circulant matrices instead. A matrix can also be interpreted 

o have been broken into blocks or submatrices that are themselves
atrices. 

.1.2 Matrix products 

he notations employed in this paper for the various matrix products
re listed below. 
MNRAS 520, 6040–6052 (2023) 
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(i) Regular matrix-matrix multiplication is denoted with no spe-
ific operator. 

(ii) ⊗ denotes the outer product of two vectors that results in a
atrix. 
(iii) � represents an element-by-element multiplication of two
atrices, known as the Hadamard product. 

 BA SIC S  O F  S I N G U L A R  SPECTRUM  

NALY SIS  

hough the theory of SSA is co v ered in detail in references such
s Golyandina, Nekrutkin & Zhigljavsky ( 2001 ), we provide a basic
escription of the steps involved for completeness. In this paper,
e follow the SSA approach known as the Broomhead–King (BK)
ersion, with the alternate being the Vautard–Ghil (V G) v ersion. The
 G v ersion is only suitable for the analysis of a stationary time

eries and therefore is not discussed here. Following Golyandina &
orobe yniko v ( 2014 ), the four major steps in BK SSA are given
elow. 

(i) Convert the 1-D time series into a 2-D matrix called a trajectory
atrix . This step is called embedding in time series analysis. 
(ii) Decompose the trajectory matrix with singular value decom-

osition (SVD). The result consists of a set of left and right singular
ectors and associated singular values. 

(iii) Reconstruct the constituent components of the trajectory
atrix with selected singular vectors and singular values. 
(iv) Reconstruct the time series with these components by per-

orming diagonal averaging. 

In the embedding step, the trajectory matrix is constructed with
olumns consisting of elements from sliding a window of length L
cross the original time series. The window length is chosen in such a
anner that each column of the resulting matrix consists of one cycle

f the data. As an example, for drift sky data from a ground-based
adiometer, as given in Section 4.1.1 , this corresponds to one sidereal
ay. For each sliding, the elements inside the window are made into
ne column of the trajectory matrix, yielding a matrix with L rows
nd K = N − L + 1 columns. Consider a time series x [ n ], n = 0,
,... N − 1. The embedding step converts this time series of length N
nto an L × K matrix that has the elements of the time series as given
n equation ( 3 ). 

X = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

x[0] x[1] x[2] .. x[ K − 1] 
x[1] x[2] x[3] .. x[ K] 
x[2] x[3] x[4] .. x[ K + 1] 
.. .. .. .. .. 

x[ L − 1] x[ L ] x[ L + 1] .. x[ N − 1] 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3) 

rom equation ( 3 ), it can be seen that the anti-diagonals of a trajectory
atrix contain similar terms, and therefore it is like a Hankel matrix,

lthough it is not square in general. It may be noted that some
mplementations pad the original time series with zeros to obtain
 = N , though we do not employ this. 
In the second step, the trajectory matrix is decomposed via SVD

o yield left and right singular vectors as well as the corresponding
ingular values. This can be written as 

X = U � V 

T . (4) 

he SVD operation decomposes the L × K matrix X into three
atrices U , � , and V ; where U is an L × L unitary matrix, V is a
 × K unitary matrix and � is an L × K diagonal matrix consisting
f the singular values. Since we consider only real-valued matrices

X in this paper, the matrices U and V are real orthogonal matrices.
NRAS 520, 6040–6052 (2023) 
ach singular value σ i and the corresponding singular vectors � u i and
�  i form an eigentriple ( σi , � u i , � v i ). The decomposition step can also
e written as 

X = 

∑ 

i 

X i ; X i = σi ( � u i ⊗ � v i ) , (5) 

here ⊗ is the vector outer product of two vectors yielding a matrix.
These eigentriples can be grouped and used to reconstruct the

arious components of the time series. An inspection of the singular
alues can give an insight into the complexity of the data and the
umber of eigentriples to consider, and this is also related to the
ank of the trajectory matrix. It may be noted that calculation of
VD of a data matrix and subsequent reconstruction is identical to
rincipal component analysis or PCA (Jolliffe 1986 ). Seen in this
ight, SSA can be treated as PCA of the trajectory matrix formed
ut of a time series. Ho we ver, PCA does not involve embedding
r trajectory matrices, and therefore the interpretation of the PCA
esults is different to that of SSA. 

The next step is to reconstruct the trajectory matrix with the
elected eigentriples. Once this is accomplished, a reconstructed
ime series is obtained by performing an anti-diagonal averaging over
he reconstructed matrix — this step is called ‘diagonal averaging’
Golyandina & Korobe yniko v 2014 ). 1 The diagonal averaging step
pplied to a trajectory matrix Y yields a series y s as shown in
quation ( 6 ). 

 s [ n ] = 

∑ 

( l,k) ∈ A s Y [ l][ k] 

| A n | , (6) 

here A n = { ( l, k); l + k = n, 0 ≤ l ≤ L − 1 , 0 ≤ k ≤ K − 1 } and
 A n | is the number of elements in the set A n . This step can be treated
s the reverse of the embedding step, conversion of an anti-diagonal,
ank el-lik e matrix back into a time series. To gain an appreciation
f this step, it is useful to take a closer look at the structure of a
rajectory matrix as given in equation ( 3 ). Recalling that this matrix
s formed by sliding a window and converting the data into columns
f a matrix, it can be seen that the anti-diagonals consist of the same
alue from the time series. Therefore to convert a trajectory matrix
ack into a time series, all that one has to do is a computation of
he mean of the redundant information in each anti-diagonal and
orm a time series out of them. This operation is what equation ( 6 )
oes. It may also be noted that one can even select the first row
nd the last column of a trajectory matrix to reconstruct a time
eries; ho we ver, it is preferable to obtain a mean of the redundant
nformation in the anti-diagonal elements. When applied to each X i 

n equation ( 5 ), diagonal averaging results in reconstructed series .
o we ver, one can also choose to form X i from groups of eigentriples,

nd then obtain reconstructed series. F or e xample, one may pair the
igentriples, then each eigentriple used to form a matrix (by forming
uter products and scaling with the corresponding singular value)
nd a pair of matrices added together to form one X i . Indeed, this
rouping approach is what we employ in this paper. Therefore, the
esult is the decomposition of the original time series into a sum of
econstructed series as shown in equation ( 7 ). 

[ n ] = 

h ∑ 

i= 0 

˜ x i [ n ] , n = 0 , 1 , ...N − 1 , (7) 

here ˜ x i is the reconstructed series obtained from X i and h depends
n the grouping of eigentriples. For elementary grouping, h = L − 1
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s there can only be a maximum of L singular values for a matrix of
imensions L × K . Depending on the selection of eigentriples, the 
econstructed time series reveals the corresponding aspect of the data. 
 or e xample, the first eigentriple contains information on the trend,
hile the subsequent ones are associated with oscillatory patterns. 
igher eigentriples are typically associated with noise. 

 SSA  O F  P ERIODIC  TIME  SERIES  

n this section, we obtain the mathematical form of SSA when applied
o a time series containing periodic data. We first consider the case
here we have an ideal periodic time series. We find that in this

ase, the singular vectors obtained are sinusoidal in nature. The case 
here a periodic series is corrupted by multiplicative element is then 

onsidered. We also perform simulations to validate the algebra. 

.1 SSA applied to an ideal periodic time series 

onsider a time series x [ n ], n = 0, 1,.... N − 1 of length N that is
trictly periodic with a period given by L . 

[ k + pL ] = x[ k] . (8) 

e also assume that the length N of the time series obeys the relation
 = zL − 1, where z is an inte ger. F orming a trajectory matrix out
f this sequence gives the following matrix. 

X = 

⎡ 

⎢ ⎢ ⎣ 

x[0] x[1] ...... x[ L − 1] 
x[1] x[2] ...... x[0] 
.. .. ...... .. 

x[ L − 1] x[0] ...... x[ L − 2] 

⎤ 

⎥ ⎥ ⎦ 

L ×K 

. (9) 

s K is an integer multiple of L , the trajectory matrix can be
nterpreted as a block matrix, and partitioned into M = 

K 

L 
square 

ubmatrices as given in equation ( 10 ), where X ac is an anti-circulant
atrix of dimensions L × L . 

X = 

[
X ac X ac .. 

]
L ×M 

. (10) 

X ac = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

x[0] x[1] ...... x[ L − 1] 
x[1] x[2] ...... x[0] 
x[2] x[3] ...... x[1] 
.. .. ...... .. 

x[ L − 1] x[0] ...... x[ L − 2] 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (11) 

efore proceeding further, some observations can be made. 

(i) We find that rank( X ) ≤ L , as there can only be a maximum
f L linearly independent columns in X . Consequently, there can be 
 maximum of L non-zero singular values for X . 

(ii) The anti-circulant matrix form given in equation ( 10 ) is real
ymmetric. Therefore, it has an eigendecomposition given as X ac = 

Q� Q 

T , where Q is an L × L orthonormal matrix of eigenvectors 
nd � is an L × L matrix of the corresponding eigenvalues. 

This enables us to write the trajectory matrix as a block matrix
X = 

[
Q� Q 

T Q� Q 

T .. 
]
. Without going through the pedagogical 

etails, we state that X can be decomposed into three matrices as
i ven belo w. 

X = Q L ×L 

[√ 

M � 0 .. 
]
L ×K 

1 √ 

M 

⎡ 

⎣ 

Q 

T Q 

T .. 

Q 

T Q 

T .. 

.. .. .. 

⎤ 

⎦ 

K×K 

, (12) 

= U L ×L � L ×K 

V 

T 
K×K 

, (13) 

where, in the last step we recall the SVD of X to facilitate a direct
omparison. 
We now attempt to find the nature of this decomposition –
pecifically what one can expect from the singular vectors if the
ime series is periodic in nature. From equation ( 12 ), it can be noted
hat the singular values are a scaled version of the eigenvalues of
nti-circulant matrix X ac . Inspecting the block matrix representation 
n equation ( 12 ), it can also be seen that the matrix that forms to
he left and right singular vectors is the matrix of eigenvectors Q .
herefore, all that we need to know is the nature of Q . A calculation
f this is provided in Appendix. A , where it is shown that Q consists
f sinusoidal eigenvectors if the data are periodic. Therefore, the left
ingular vectors – which are exactly the eigenvectors contained in 
he matrix Q – are all sinusoidal. Besides, the vectors in Q are all
eriodic in L and thus when arranged as blocks in the right singular
 ector matrix, the y form continuous sinusoids. Thus, the equi v alence
f decompositions in equation ( 12 ) shows that when SSA is applied
o a strictly periodic sequence, the singular vectors obtained are 
inusoidal . 

In Appendix A , it is also shown that the eigendecomposition of
nti-circulant matrices such as X ac has a deep relation to discrete 
ourier transforms (DFT). Indeed, when applied to an ideal periodic 
eries, SSA results are directly comparable to DFT of one cycle of
eriodic data; this is also demonstrated with simulations in Section 
.1.1 . Ho we ver, if the data have aperiodic structures, DFT of the
ntire span of data is not a suitable choice as aperiodic structures
re not well represented in a sine/cosine Fourier basis. In such a
cenario, SSA is better suited to reveal aperiodic structures in the
ata. Therefore, regardless of the nature of data, SSA can be applied
o them and if the data are periodic, SSA reduces to a form of Fourier
nalysis. 

Even though the decomposition given may be treated as an SVD
f the trajectory matrix, some caution has to be e x ercised. Since the
ingular vector matrices have to be unitary, the right singular matrix

ets divided by a scaling factor of 
√ 

K 

L 
, while the singular values

et multiplied the same factor. Also, the left singular matrix in SVD
s unitary, while the eigenvector form given in Appendix A has unit
mplitude. The corresponding scaling applies to the singular value; 
o we ver, it is inconsequential when the eigendecomposition and 
VD are computed with numerical packages. Moreo v er , eigen values
an be positive and ne gativ e, and as giv en in Appendix A , they occur
n positive and negative pairs in this context. Ho we ver, singular v alues
re al w ays non-ne gativ e and therefore the signs of the eigenvalues
et applied to the singular vectors when equated with the SVD given
n equation ( 12 ). Also, we assume that both the singular values and
igenvalues (and corresponding vectors) have been ordered in the 
ame fashion – typically in descending magnitude. 

.1.1 Simulations 

o validate the abo v e calculations, we analyse a simulated periodic
ime series. Since our aim is to gain a better understanding of SSA
s applied to radiometric time series data, the simulations are beam
ultiplied sky temperature as would be seen by a radiometer. The

imulation methodology used to obtain the time series is described in
hekkeppattu et al. ( 2022 ), which we have extended to yield a time
eries spanning 30 days. For this, we make an important assumption
hat the radio sky is static and therefore, the true sky temperature
s exactly the same across all days for each local sidereal time. The
imulations are for auto-correlations at a frequency of 111 MHz 
ith a time cadence of 15 min of sidereal time. Since the sky has
 periodicity of one sidereal day, it is important that the cadence is
hosen in sidereal time units. 
MNRAS 520, 6040–6052 (2023) 
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Figure 2. Simulated time series at a frequency of 111 MHz and the 
corresponding trajectory matrix formed by choosing an embedding dimension 
L = 96. 
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Figure 3. SVD of the trajectory matrix. Panel (A) shows singular values in 
a semilogarithmic scale. The same panel shows the eigenvalues of an L × L 
submatrix as well as the DFT spectrum of the periodic sequence. The DFT 

spectrum has been sorted according to descending magnitude and artificially 
scaled by a value of 4 to make it distinguishable from the eigenspectrum. For 
clarity, only the first 19 values are plotted. Panel (B) shows the first five left 
singular vectors while Panel (C) shows the first five right singular vectors. In 
both plots, the orthogonal (sine-cosine) vector pairs are plotted with the same 
colour but with different line-styles. 
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The simulation yields N = 2879 data points that are then converted
nto a trajectory matrix. Key to embedding data is selection of an ap-
ropriate window length. Typically, a window length is chosen such
hat it is divisible by the fundamental of the known periodicity. As we
ave prior information that data have a periodicity corresponding to a
idereal day, a choice of the window length is the number of samples
hat correspond to one sidereal day. Therefore a suitable embedding
imension is L = 96; as it corresponds to one sidereal day. This
ives a matrix of dimensions 96 × 2784 which can be partitioned
nto M = 

K 

L 
= 29 block matrices. The simulated time series and a

epresentation of the trajectory matrix are shown in Fig. 2 . 
The trajectory matrix is then decomposed with SVD. The results

rom the SVD are shown in Fig. 3 . Independently, an L × L submatrix
f the trajectory matrix (with L = 96) is eigendecomposed. The
igenspectrum of this anti-circulant matrix is also given in Fig. 3 .
oreo v er, the DFT of the underlying periodic sequence of length
 = 96 is also computed and plotted in the same figure with the
FT values sorted in descending order. As the sequence is real, the
FT spectrum is Hermitian and the sorted values appear twice in the

pectrum. 
Se veral observ ations can be made from Fig. 3 . The spectrum of

ingular values matches the spectrum of eigenvalue magnitudes ex-
ctly, except for a scaling (which is 

√ 

29 ). The spectrum of eigenvalue
agnitudes matches exactly the DFT magnitude spectrum, thereby

alidating the results from Appendix A . The same scaling is also
vident in the amplitudes of the right singular vectors. We also find
hat the singular v ectors, e xcept the n = 0 component, are purely
inusoidal and occur in sine-cosine pairs as the calculations showed.
e have also verified that the vector pairs are indeed orthogonal by

alculating the inner product between such pairs. The singular vectors
NRAS 520, 6040–6052 (2023) 
re also periodic in L while the n = 0 component is essentially the DC
omponent of the data, similar to the zeroth component in Fourier
ransforms. 

In Fig. 4 , we compare the first pair of orthogonal left singular
ectors with the corresponding pair of the eigenvectors. We find that
he eigenvectors are exactly the same as the singular v ectors, e xcept
or a sign reversal in one of the vectors in the pair. It has been verified
hat the corresponding eigenvalue carries a ne gativ e sign; thus, it is
nconsequential to the o v erall analysis, and we can safely consider the
qui v alence between SVD and eigendecomposition in equation ( 12 )
o be valid. 

Thus, we find that the singular vectors obtained from SSA of
 periodic sequence are purely sinusoidal with them occurring in
rthogonal pairs. It may also be noted that while such orthogonal
eatures have been noticed in the SSA literature (see for e.g. Ghil et al.
 2002 )), we mathematically demonstrated using simple arguments
hy such orthogonal sinusoidal pairs are to be expected in the
SA of an ideal time series. We now inspect the reconstructed
eries given in Fig. 5 . As we know that the singular vectors and
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Figure 4. A comparison between the left singular vectors of the trajectory 
matrix and eigenvectors of a square submatrix. Only the vectors from the first 
orthogonal pair in each case are plotted. 
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Figure 5. Reconstructed series from SSA of an ideal periodic series. The 0 th 

component and the succeeding five grouped orthogonal pairs are given in this 
figure. Since the reconstructed series add up to the original time series, their 
x -axis is the number of days. 
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orresponding values occur in pairs, we group the eigentriples into 
airs (except the 0 th component) and apply the diagonal averaging. 
s can be seen, the reconstructed series are also purely sinusoidal

ince the vectors are sinusoidal. Another important observation with 
ig. 5 is the 0 th component, which is often called ‘trend’ in SSA

iterature. For radiometric data this term corresponds to the sky- 
veraged component of the radio data and is the rele v ant observ able
or global 21-cm research. Since the origin of the 0 th reconstructed 
omponent can be traced back to 0 th eigenvector of the matrix Q , we
an see that the corresponding Fourier component has a frequency 
f zero. In other words for an ideal periodic time series, the 0 th 

omponent in SSA is related to the zero frequency or DC term in
he Fourier spectrum, such that its singular value is the same as the
ourier DC term. 
In the abo v e e x ercise, it is essential that the embedding dimension

window length) corresponds to exactly one sidereal day. If not, the 
ecomposition will not lead to sinusoidal patterns of appropriate 
eriodicity, and the various relations that we obtained between SVD, 
igendecomposition, and Fourier analysis become in valid. W ith this 
mportant result, we now proceed to introduce some non-idealities 
nto the time series. 

.2 SSA applied to periodic time series with time-varying gains 

he calculations and simulations so far assume a case where the 
adiometer system has been fully calibrated to yield data calibrated 
o a reference plane outside the Earth’s ionosphere. Observational 
adiometric data have multiple non-idealties, the dominant ones 
re additive components such as receiver noise temperatures and 
utliplicative factors that are often called gains. Both of them can be

ime-varying and therefore are required to be known to correct the 
ata. We now incorporate them into our model. 
Assuming a simple system model for SITARA data (see Section 

.2 of Thekkeppattu et al. ( 2022 )), the trajectory matrix of the
easured data can be expressed as a Hadamard product, given in 

quation ( 14 ). 

X 

′ = ( X s + R ) � G , (14) 

here X s is the sky temperature trajectory matrix, R is the receiver 
oise temperature trajectory matrix, and G is the trajectory matrix 
f time-varying system gains. Since the low-frequency radio sky is 
right, the dominant time-varying component in the data is due to sky
emperature multiplied with time-varying system gains. Therefore, 
e can apply a simplifying assumption that the receiver noise 

emperature is constant with time and absorb it into the ‘ideal’ sky
atrix, and the sum can be written as X . Thus we write 

X 

′ = X � G . (15) 

hile equations ( 14 ) and 15 may be written without resorting to a
atrix formulation, expressing them with trajectory matrices enables 
SA. 
Based on the summation of X from equations ( 5 ) and ( 15 ), the

ollowing relations can be derived. 

X 

′ = 

∑ 

i 

X 

′ 
i , and 

X 

′ = 

(∑ 

i 

X i 

)
� G , 

= 

∑ 

i 

( X i � G ) , (16) 

here we have used the distributive property of Hadamard products. 
hus we have, ∑ 

i 

X 

′ 
i = 

∑ 

i 

( X i � G ) . (17) 
MNRAS 520, 6040–6052 (2023) 
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Figure 6. Simulated time series with gains at a frequency of 111 MHz and 
the corresponding trajectory matrix. 
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Figure 7. Reconstructed series from SSA of a simulated series with time- 
varying gains. The 0 th series and the succeeding five components from 

grouping orthogonal pairs are given in this figure. 
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hough equation ( 17 ) appears trivial, it reveals a useful aspect of
he decomposition. Applying diagonal averaging to each X 

′ 
i leads to

ain multiplied reconstructed series, as the Hadamard product is an
lement-by-element multiplication. Ho we ver, we already kno w the
true’ reconstructed series to be purely sinusoidal from Section 4 .
he multiplication of a pure sinusoid waveform by a signal of much

ower frequency results in amplitude modulation of the sinusoid, a
rocess that is called amplitude modulation (AM) in communication
ystems (Haykin & Moher 2008 ). Therefore, we may treat the gain
ultiplied reconstructed series as a form of AM signals with the

inusoids acting analogous to ‘carriers’ and using AM demodulation
echniques to extract the temporal variations in gains. 

Before proceeding further, it is instructive to verify the above
alculations with simulations. For this, we begin with the basic time
eries from Section 4 . To this series, we add a constant of 100 K
s the receiver noise temperature and simulated radiometric noise
integration time of 15 min and bandwidth of 61 kHz) for the o v erall
ystem temperature. The gain profile is modelled as a random-walk,
hich is generated as a cumulative sum of Gaussian white noise. The

esulting profile is subsequently smoothed with box-car averaging to
uppress variations of time cadence less than one sidereal day. The
ains are also normalized to a v oid ne gativ e e xcursions. The time
eries is then multiplied with the simulated gains and the resulting
eries and the associated trajectory matrix are shown in Fig. 6 . It may
e noted that the dimensions of the matrices and time series have all
een kept the same. 

The trajectory matrix is then decomposed with SVD and the eigen-
riples grouped in the same manner as in Section 4 and diagonally
veraged. It is easy to notice that the resulting reconstructed series
hown in Fig. 7 are indeed amplitude-modulated sinusoids. 
NRAS 520, 6040–6052 (2023) 
Sev eral algorithms e xist to demodulate such AM signals to obtain
heir envelopes. Here we use an algorithm that is mathematically
imple to interpret. The first step in this algorithm is converting a
eal-valued signal into an analytic signal, which can be accomplished
ith Hilbert transforms. Taking the magnitude of this analytic signal
ields the modulation envelope. We apply this procedure to the series
iven in Fig. 7 . The resulting gain profiles are plotted in Fig. 8 ,
n which the curves are also normalized according to the method
escribed in Section 4.3 . 
Fig. 8 validates the interpretation of equation ( 17 ) that the recon-

tructed series have identical gain templates that can be recovered
ith amplitude demodulation. Indeed, a major outcome of this
 x ercise is that the gain template for the DC component is identical
o those of the periodic components. Therefore the time-variations in
he DC term may be corrected for by using the gain templates from
eriodic components. This leads us to a no v el calibration strate gy for
lobal 21-cm radiometers that can correct long-term drift and related
ystematics. 

.3 On the use of SSA to aid calibration 

he reco v ered gains require normalization to enable a comparison
ith the injected gains and make them useful for calibration. We
egin with equation ( 17 ) and incorporate equation ( 5 ) as shown in
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Figure 8. Injected and reco v ered gains. The reco v ered gains have been 
normalized according to equation ( 22 ). The reco v ered gains from periodic 
components resemble the injected gains. 
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Figure 9. Calibrating the mean sky component using reco v ered gains from 

periodic components. For comparison, the expected mean levels with and 
without the 100 K receiver noise temperatures are also plotted. 
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quation ( 18 ), where we also include the eigentriple grouping. The
ndices have also been modified for convenience. 

X 

′ 
i = G �

1 ∑ 

j= 0 

σi+ j ( � u i+ j ⊗ � v i+ j ) , i = 1 , 3 ..., 

X 

′ 
i = σi G �

1 ∑ 

j= 0 

( � u i+ j ⊗ � v i+ j ) , i = 1 , 3 ..., (18) 

here we used the property that singular values are identical for
he eigentriples in a grouped pair. The vectors � u and � v are from
nitary matrices and therefore their individual inner products equal 
o unity. Ho we ver, for subsequent analysis, these vectors need to be
ormalized to have unity amplitude when diagonally averaged after 
rouping. The normalization can be achieved with the following 
perations, where the sinusoidal terms in the brackets have been 
ormalized to have unity amplitude. 

�  i = 

1 √ 

L/ 2 

( � u i 

√ 

L/ 2 
)
, 

� v i = 

1 √ 

K/ 2 

( � v i 
√ 

K/ 2 
)
, (19) 

s the lengths of the vectors � u and � v are L and K, respectively. The
rouped and diagonally averaged reconstructed series is given as 

˜ 
 i [ n ] = 

σi √ 

L/ 2 
√ 

K/ 2 
g[ n ] c i [ n ] , (20) 

here g [ n ] is the gain series and c i [ n ] is the ‘carrier’ sinusoid. The
ormalization in equation ( 19 ) ensures unity amplitude for c i [ n ].
pon demodulation of a series ˜ x i [ n ], the carrier is remo v ed and a
odulation envelope g i , t [ n ] is obtained as 

 i,t [ n ] = 

σi √ 

L/ 2 
√ 

K/ 2 
g ′ i [ n ] . (21) 

rom these envelopes, gain templates g ′ i [ n ] can be recovered as 

 

′ 
i [ n ] = g i,t [ n ] 

√ 

L/ 2 
√ 

K/ 2 

σi 

. (22) 

or equation ( 22 ) to be useful for calibration, the only auxiliary
nformation required is the singular value σ i . This is the singular 
alue of the component with the same periodicity of that we expect
rom the true sky and can be obtained from the SSA of the simulated
deal sky time series from Section 4 . Using those singular values,
e obtain the reco v ered and appropriately normalized gains that are
lotted in Fig. 8 . 
We are now in a position to apply those gains to the 0 th recon-

tructed series to achieve calibration and compare the calibration 
ith the expected levels. The results are given in Fig. 9 . 
We find that the mean-sky component has been calibrated solely 

sing the periodic component(s) of the sky with the aid of SSA.
t has to be noted that the prescription provided here to calibrate
he mean-sky relies only on the singular values of the simulated
eriodic components. Even without using the singular values, and 
nly using the data, it is possible to achieve relative gain calibra-
ion, while applying gains with appropriate singular values to the 

ean-sky component establishes its proper brightness temperature 
cale. 

Let us now try to obtain an intuitive appreciation of this calibration.
he trend component obtained from SSA is essentially a box-car 
veraging of time series data. If the window used for averaging
ncompasses exactly one sidereal day, the periodic variations caused 
y the Galaxy transiting through the beam are averaged out. If the
ystem were perfect the result would be a constant temperature, 
hich is the sum of mean-sky and receiver noise temperatures. 
hus the trend that we observe in the non-ideal system may be
odelled by a constant value multiplied with the time-varying 

ains. 
The gain variations that we have studied so far have smooth

volution o v er time with no periodicity. Ho we ver, for real radio
elescope systems that do not have temperature regulation, gain 
ariations with local temperature are expected—details given in 
ection 5 . Indeed, the rising and setting of the Sun can heat and
ool the components in the analogue signal chain and induce diurnal
ariations in the gain that may be correlated with the sky drift. Yet
nother potential origin for diurnal patterns in gains is the ionosphere. 
herefore, it is imperative to study such a scenario, which we perform 

ext. 

.4 SSA with diurnal gain variations 

o the gains simulated in the previous section, we add a sinusoidal
iurnal gain component. For a time series that spans a month, the
MNRAS 520, 6040–6052 (2023) 
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Figure 10. Simulated radiometer data with gains that have a smoothly 
varying component and a diurnal component. 

Figure 11. Injected and SSA-reco v ered gains when the gains have a diurnal 
component. Appropriate normalization has been applied. 
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Figure 12. Application of reco v ered gains from periodic components to cal- 
ibrate the mean-sky term, when the injected gains have a diurnal component. 
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iurnal gain variations are expected to show a strong correlation with
alaxy transit. For longer time series, the difference between sidereal

ime and civil time reduces this correlation. The modified gains and
he resulting time series are shown in Fig. 10 . 

We perform SSA in the exact same manner as in the previous case,
nd reco v er normalized gains, as shown in Fig. 11 . 

It is interesting to note that the correlation between gains and sky
atterns reduces the separability of the two, and the reco v ered gains
rom the reconstructed series differ from one another. We attempt a
alibration of the mean component with these gains and the results
re given in Fig. 12 . 

The differences in the reco v ered gains in Fig. 11 as well as
he calibrated temperatures in Fig. 12 demonstrate a fundamental
imitation of the SSA technique in calibrating data when the gain
ariations are correlated with sky patterns. Lacking auxiliary infor-
ation related to the cause of such gain variations, for example

emperature measurements, the calibration technique fails and yields
rroneous results as demonstrated. On the other hand, a disagreement
etween the reco v ered gains can be used as a practical indicator of
ain variations that have frequencies coinciding with the periodicity
nduced by sky drift, thus pointing to a necessity for subsidiary
NRAS 520, 6040–6052 (2023) 
nformation. In other words, differences in reco v ered gains between
he groupings indicate presence of correlations between the gains
nd sky drift. It may also be noted that no a priori information is
equired to infer such a correlation. Having demonstrated the various
ases of SSA, we now apply these techniques to data from SITARA
bservations. 

 SSA  APPLIED  TO  SI TARA  DATA  

.1 Data preparation 

e use a time series of SITARA spectral data from the concatenated
0 days of 2021 June data. The individual data files in miriad
ormat are converted to hdf5 format and concatenated using custom
ools written in python . From the concatenated dataset, auto-
orrelation data for a frequency of 111 MHz are extracted, as it
s a frequency with relatively low RFI occupancy. The major source
f RFI observed during this period was Solar radio bursts that are
ransient in nature. This raw data time series as a function of Julian
ate (JD) is shown in Fig. 1 . 
The raw SITARA data spanning a month have about 749 000

oints, which makes calculations difficult. Therefore, the data are
inned into the same number of bins (2879) as done in the simu-
ations, giving one sample per 15 min or 96 samples per sidereal
ay. Once again, in performing binning it is important to use sidereal
ime—and not Julian time—to ensure an equal number of samples
or each cycle of sky drift. The data are then embedded into a
rajectory matrix and SSA is applied in the same manner as before.
he eigentriples are grouped and reconstructed series formed. 
Fig. 13 shows first four of the reconstructed series. The trend

lot also has a low-time cadence record of the temperature recorded
ithin the Murchison Shire, which is available from NCEI-NOAA

ntegrated Surface Dataset (Lott et.al. 2001 ). 2 The temperature
cale has been inverted, as the trend shows an anti-correlation with
emperature. Further, the radio data and temperature data fall into
w o different f amilies with different sampling, and therefore the
emperature data have been interpolated to the same Julian day bins as
he radio data. The Pearson correlation coefficient computed between
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Figure 13. Reconstructed series from SITARA data SSA. A plot of the 
physical temperature recorded within the Murchison Shire is included in the 
trend plot to show the anti-correlation between them. 
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Figure 14. Reco v ered g ains from SITARA data, 2021 June. The g ains differ 
across reconstructed series, pointing to potential diurnal gain variations. 
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he trend and the temperature data is −0.83, which denotes a strong
nti-correlation between the trend and temperature. 

Apart from component ageing effects, there are two major reasons 
or such temperature-induced variations in radiometric data. 

(i) The noise temperatures of active devices used in amplifiers 
ncrease with physical temperature. 3 The same holds true for passive 
omponents such as attenuators. If this is the cause of drift, the pattern
o obtained is expected to be correlated with physical temperature. 

(ii) The gain of amplifiers reduces as temperature is increased. 
n this case, the trend pattern and physical temperature would be 
nti-correlated . 

It is therefore evident from Fig. 13 that the major contributor to
he trend is temperature-induced gain v ariations. The recei ver noise 
ould ine vitably v ary as a function of physical temperature; ho we ver,
hen the o v erall system temperature is sky-dominated the impact of

his would be secondary to gain variations. This informs our choice of
alibration model given in Section 4.3 , where we assume a constant
eceiver noise temperature and a time-varying gain. 

Subsequently, the gain patterns are reco v ered from the recon- 
tructed series with the demodulation technique. These reco v ered 
 It may be noted that this is one of the reasons for cryogenic cooling of radio 
elescope front-ends to achieve a low o v erall system temperature. 

t  

s  

s
c  
ains for the first two periodic components are shown in Fig. 14 .
s can be seen, the normalized gains are different between the

eries, thus pointing to potential diurnal gain variations. Therefore, 
e refrain from applying these gains to the mean component to

stablish its brightness temperature scale. 

 DI SCUSSI ON  

n this paper, we developed the mathematical framework for SSA 

f a radiometric time series and demonstrated its application in 
nalysing radiometric time series data from a radio telescope at a
requenc y with relativ ely low RFI. A major outcome of this work is
 no v el method to calibrate the mean-sk y component of radio data
sing the periodic component of sky-drift patterns. Calibration using 
ifferential measurements of the sky to obtain the system gain has
een successfully utilized in dif ferent lo w-frequenc y e xperiments
Rogers et al. 2004 ; Singh et al. 2017 ; Thekkeppattu et al. 2022 ).
o we ver, those applications were limited, as the calibration was
erformed on a day-to-day basis, assuming a constant value for the
ystem gain for a specific day. With SSA, the periodic nature of data
s leveraged to obtain gains that can vary with time, provided they do
ot have a diurnal component. Seen in this light, SSA can be viewed
s an extension of the aforesaid technique. 

Let us examine the implications of the gain recovery in Fig. 8 .
he gain patterns that we reco v ered are purely from the periodic
omponents of the sky and the singular values of simulated periodic
omponents. The procedure does not need simulations that include 
he mean-sky or the zero-point of the sky maps. Indeed, zero-point
rrors have been noticed in sky maps, since these maps are often
roducts of combination of sky surveys conducted with different 
elescopes. Disagreements exist between estimates of the zero- 
oints of sky maps across e xperiments, for e xample, Monsalv e et al.
 2021 ) report a different zero-point offset for the 150 MHz sky map
Landecker & Wielebinski 1970 ) compared to the measurements of 
atra et al. ( 2015 ). Therefore, the methods outlined in this paper
an be applied to experiments where zero-point levels have to be
ccurately known to verify that the gains do not have variations
hat can confuse sky signals. Ho we ver, to get accurate estimates of
ystem gains the input sky maps need to get an accurate temperature
cale even though zero-points errors are acceptable. An associated 
aveat is that while SSA can provide multiplicative system gains, the
MNRAS 520, 6040–6052 (2023) 
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dditi ve recei ver noise temperature is practically indistinguishable
rom the mean-sky component. Therefore, experiments requiring
ccurate measurements of zero-level still need additional calibration
o estimate the receiver noise temperature. Nonetheless, as demon-
trated in this paper, SSA can be utilized as a diagnostic tool for such
xperiments. 

.1 Caveats and future work 

ince this is the first work exploring SSA for radiometric data
nalysis and calibration, we have kept the analysis simple. Specif-
cally, low-frequency radio data can have RFI and we ignored the
agging that has been performed. Flagging considerations lead to
aps in a time series dataset and may necessitate data in-painting or
nterpolation. Such explorations will be taken up in future work. 

We hav e dev eloped the mathematical background and demon-
trated an application of SSA for auto-correlations at a single
requency, while SITARA has nearly 2000 usable frequency channels
n auto-correlations and cross-correlations each. To use all the
requency channels and to consider complex cross-correlations, the
athematical frame work de veloped in this paper has to be expanded.
or a proper treatment of multiple frequency channels, multi v ariate
SA techniques will be explored in future work. 
While we demonstrated via simulations a calibration technique

o remo v e gain v ariations that e volve smoothly with time, the
pplication of it to SITARA data is hampered by diurnal gain
 ariations. This sho ws the necessity to maintain temperature reg-
lation or inclusion of thermometers at points in the signal chain
o track such gain variations—this will be incorporated in future
evisions of the SITARA system. Additionally, the data in frequency
hannels below 50 MHz, where receiver temperature dominates over
ky temperature, show diurnal periodicity arising from such gain
ariations that may be exploited as a template to improve calibration.

.2 A potential application of SSA for space-based 21-cm 

xperiments 

s we demonstrated, a major limitation with the SSA technique
or calibration is the confusion between diurnal gain variations and
ky drift, as both have approximately the same periodicity. If the
eriodicities can be made to differ, the calibration can be impro v ed
ignificantly . Specifically , if the sky drift can be made faster than
he gain variations, substantially better calibration can be expected.

hile it is difficult for ground-based experiments to introduce such
 separation, a radiometer payload on a spin-stabilized satellite can
ave beams that rapidly scan the sky, thereby increasing the sky-
rift rate. For example, a broadband dipole antenna could be placed
n a satellite spinning such that the nulls sweep the Galactic plane
t a rate much faster than any gain variations, including the flicker
oise of the electronic systems. Spinning a satellite at a rate faster
han the 1/ f knee frequency of the radiometric system, to reduce
he deleterious impact of gain fluctuations on the images, has been
mployed in CMB missions such as Planck (Bersanelli et al. 2010 ).
s there are a few projects proposed, planned, or launched targeting

he global 21-cm signal from a satellite platform such as DARE
Burns et al. 2012 ), Longjiang/Chang’e-4 (Jia et al. 2018 ), DSL
Chen et al. 2021 ), PRATUSH, etc., we opine that SSA would be an
deal tool for analysis and calibration of time series data from such
adiometers in space. 
NRAS 520, 6040–6052 (2023) 
 C O N C L U S I O N S  

n this paper, we introduced SSA as a powerful tool to study
adiometric data. We showed the deep connections between the SSA
echniques and Fourier transforms and leverage that to obtain long-
erm gain evolution from radio data. A no v el technique to calibrate
1-cm experiments using periodicity in the sky-drift patterns has
een proposed and simulated. The limitations of that technique in
he presence of diurnal variations that can confuse with the sky drift
s studied. Upon application of SSA to SITARA data, we find that
he obtained decomposition has the features as expected, with the
rend showing strong anti-correlation with temperature. However,
he gains obtained point to diurnal variations as a limiting factor in
sing SSA for gain calibration of SITARA data. 
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PPEN D IX  A :  EIGENDECOMPOSITION  O F  

N T I - C I R C U L A N T  MATRICES  

he relation between circulant matrices and circular convolution, 
s well as the relation between the eigendecomposition of such 
atrices and DFT, are well known – see for e.g. Gray ( 2006 )

or an approachable introduction to this relation – and put to 
se in several signal processing applications. Ho we ver, the ma- 
rices of rele v ance for this paper are anti-circulant and there-
ore we provide some useful relations between those matrices 
nd DFT. 

Consider a rea- valued sequence x [ n ], n = 0, 1... N − 1. This
equence can be used to construct an N × N real-valued anti-circulant 
atrix as given in equation ( A1 ). 

X ac = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

x[0] x[1] ...... x[ N − 1] 
x[1] x[2] ...... x[0] 
x[2] x[3] ...... x[1] 
.. .. ...... .. 

x[ N − 1] x[0] ...... x[ N − 2] 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (A1) 

he eigendecomposition of X ac can be written as 

X ac = Q� Q 

T , (A2) 
where 

X ac y n = λn y n , (A3) 

here λn are the eigenvalues and y n corresponding eigenvectors with 
 being the index. The following set of equations are obtained from
igendecomposition. 

x[0] y n [0] + .... + x[ N − 1] y n [ N − 1] = λn y n [0] , 

x[1] y n [0] + .... + x[0] y n [ N − 1] = λn y n [1] , 

................................................... 

[ N − 1] y n [0] + .... + x[ N − 2] y n [ N − 1] = λn y n [ N − 1] , (A4) 

hich can be rearranged into, 

x[0] y n [0] + .... + x[ N − 1] y n [ N − 1] = λn y n [0] , 

[0] y n [ N − 1] + .... + x[ N − 1] y n [ N − 2] = λn y n [1] , 

................................................... 

x[0] y n [1] + .... + x[ N − 1] y n [0] = λn y n [ N − 1] . (A5) 

The abo v e set of equations can be recast into a summation
quation as given in equation ( A6 ). 

m −1 ∑ 

k= 0 

x[ k] y n [ k − m ] + 

N−1 ∑ 

k= m 

x[ k] y n [ k − m + N ] = λn y n [ m ] , (A6) 

here m = 0, 1.... N − 1. The matrix is real symmetric and therefore
he eigenvalues are real valued. The eigenvectors are fully real and
e assume them to be N periodic as given in equation ( A7 ). 

 n [ k − m + N ] = y n [ k − m ] . (A7) 

his simplifies equation ( A6 ) into 

N−1 ∑ 

k= 0 

x[ k] y n [ k − m ] = λn y n [ m ]; m = 0 , 1 ....N − 1 . (A8) 

t may be noted that the LHS of the abo v e equation is a case of
ircular correlation between x and y n . Therefore we can write 

 n � x = λn y n , (A9) 

here � denotes correlation. Applying Fourier transforms, we get 

( y n � x) = F ( λn y n ) . (A10) 

ourier transform of correlation can be written as a product, giving
s 

( y n ) F ( x) = λn F ( y n ) . (A11) 

e know that y n and λn are real. Since y n is periodic, a suitable
hoice is sinusoidal functions. 

1 Cosine case 

e first assume a cosine form for y n such that y n [ m ] = cos ( ω n m −
− φi ), where ω n = 

2 π
N 

n . The Fourier transform of such a cosine
unction is a pair of delta functions as given in equation ( A12 ). 

{ cos 
(
ω n m − φi 

)} = e −jφi δ( ω − ω n ) + e jφi δ( ω + ω n ) . (A12) 

he real valued normalization factors have been ignored for the 
ourier transform as they cancel out in the subsequent steps. The
orrelation equation can now be written as 

e jφi δ( ω − ω n ) + e −jφi δ( ω + ω n ) 
]
F ( x) = λn [ e 

−jφi δ( ω − ω n ) 

+ e jφi δ( ω + ω n )] . (A13) 
MNRAS 520, 6040–6052 (2023) 

http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.pss.2018.02.011
http://dx.doi.org/10.3847/1538-4357/abd558
http://dx.doi.org/10.1007/s10686-020-09697-2
http://dx.doi.org/https://doi.org/10.1016/j.asr.2018.10.023
http://dx.doi.org/10.1115/1.4027722
http://dx.doi.org/10.1088/0004-637X/801/2/138
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1029/2003RS003016
http://dx.doi.org/10.3847/2041-8213/aa831b
http://dx.doi.org/10.1007/s10686-018-9584-3
http://dx.doi.org/10.1017/pasa.2022.13
http://dx.doi.org/10.1017/pasa.2012.007
http://dx.doi.org/10.1017/S1743921317010729
http://dx.doi.org/10.1051/0004-6361/201220873
http://dx.doi.org/https://doi.org/10.1016/0167-2789(89)90077-8
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.21105/joss.01298


6052 J. N. Thekkeppattu, C. M. Trott and B. McKinley 

M

 

ω

e

w

F
T

e

l

|
S  

A  

b  

e  

a

y

A

A

F

C

[

(

l

|
O  

t  

a

y

 

t  

p  

e  

p

T

Note that the abo v e equation becomes non-zero only when ω =
 n or ω = −ω n . Let us take ω = ω n case. We have 

 

jφi F ( x)[ ω n ] = λn e 
−jφi , (A14) 

here the ω n component of F ( x) is 

( x)[ ω n ] = | F ( x)[ ω n ] | e j∠ F( x)[ ω n ] . (A15) 

hen 

 

jφi | F ( x)[ ω n ] | e j∠ F( x)[ ω n ] = λn e 
−jφi , (A16) 

eading to 

 F ( x)[ ω n ] | e j 
(
∠ F( x)[ ω n ] + 2 φi 

)
= λn . (A17) 

ince λn is real, we have ∠ F ( x)[ ω n ] + 2 φi = 0 or φi = −∠ F( x)[ ω n ] 
2 .

s x is real, the Fourier spectrum is Hermitian and therefore it can
e shown that the abo v e relation holds for ω = −ω n . Thus, the
igenvalue and the corresponding cosine eigenvector for a given n
re 

λn = | F ( x)[ ω n ] | and 

 n [ m ] = cos 
(
ω n m + 

∠ F ( x)[ ω n ] 

2 

)
. (A18) 

2 Sine case 

nother plausible eigenvector is y n [ m ] = sin ( ω n m − − − φi ), giving 

{ s i n (ω n m − φi 

)} = −j 
(
e −jφi δ( ω − ω n ) − e jφi δ( ω + ω n ) 

)
. 

(A19) 
NRAS 520, 6040–6052 (2023) 
alculating the Fourier transform and simplifying, we obtain 

e jφi δ( ω − ω n ) − e −jφi δ( ω + ω n ) 
]
F ( x) = − λn 

[
e −jφi δ( ω − ω n ) 

− e jφi δ( ω + ω n ) 
]
. 

(A20) 

Once again, let us consider ω = ω n case. We have 

 e jφi ) F ( x)[ ω n ] = −λn ( e 
−jφi ) , (A21) 

eading to 

 F ( x)[ ω n ] | e j 
(
∠ F( x)[ ω n ] + 2 φi 

)
= −λn . (A22) 

nce again, since λn is real we have ∠ F ( x)[ ω n ] + 2 φi = 0. Thus,
he eigenvalue and the corresponding sine eigenvector for a given n
re 

λn = −| F ( x)[ ω n ] | and 

 n [ m ] = s i n 
(
ω n m + 

∠ F ( x )[ ω n ] 

2 

)
. (A23) 

Summarizing, the spectrum of an anti-circulant matrix consists of
he absolute value of the DFT spectrum of the underlying periodic
attern, with the values occurring in positiv e–ne gativ e pairs. The
igenvectors are sines and cosines with phases determined by the
hase of the DFT. 
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