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Abstract—This paper proposes a smooth-trajectory estimator
for the labelled multi-Bernoulli (LMB) filter by exploiting the
special structure of the generalised labelled multi-Bernoulli
(GLMB) filter. We devise a simple and intuitive approach to
store the best association map when approximating the GLMB
random finite set (RFS) to the LMB RFS. In particular, we
construct a smooth-trajectory estimator (i.e., an estimator over
the entire trajectories of labelled estimates) for the LMB filter
based on the history of the best association map and all of
the measurements up to the current time. Experimental results
under two challenging scenarios demonstrate significant tracking
accuracy improvements with negligible additional computational
time compared to the conventional LMB filter.

Index Terms—Labelled multi-Bernoulli filter, estimator,
smoothing, STE-LMB, RFS.

I. INTRODUCTION

Multi-object tracking (MOT) aims to identify varying num-
bers of objects and their trajectories in the presence of noisy
data. Because of noisy sensors resulting in misdetections and
false alarms, as well as the randomness of object disap-
pearances and appearances (i.e., the object’s birth and death
processes), solving the MOT problems is extremely more
challenging than the single-object tracking problem [1], [2].
Additionally, MOT plays crucial roles in various applications
ranging from aerospace [3], robotics [4], [5], surveillance [1],
[2], to cell biology [6], [7]. Although there are various
approaches to MOT, most align with three principal frame-
works: joint probabilistic data association (JPDA) [2], [8], [9],
multiple hypothesis tracking (MHT) [1]–[3], and random finite
set (RFS) [10], [11].

The RFS framework, a recent development in MOT, has
gained significant attention in the past twenty years due to its
capacity to manage intricate tracking scenarios. This approach
considers the multi-object state as a finite set, utilising finite
set statistics techniques for temporal estimations. Given its
robust mathematical foundation, several RFS-based filters have
emerged, including the probability hypothesis density (PHD)
[12], cardinalised probability hypothesis density (CPHD) [13],
multi-Bernoulli (MB) [10], [14], and Poisson multi-Bernoulli
mixture filter (PMBM) [15]. Notably, these filters estimate
only the multi-object states, omitting trajectory details.

For estimating the multi-object trajectories (i.e., the history
of multi-object states), one can utilise the labelled RFSs
by augmenting unique labels/identities to individual object
states [1], [10]. Significantly, trajectories play a pivotal role
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in capturing the motion and interaction of objects within a
setting. Concurrently, labels are essential in differentiating
individual trajectories and conveying trajectory-related infor-
mation. In particular, based on the theory of labelled RFSs,
the generalised labelled multi-Bernoulli (GLMB) filter [16],
[17] stands as the inaugural exact closed-form solution for
multi-object tracking, efficiently approximated using Gibbs
sampling [18], [19]. Owing to its reliability and adaptability,
the GLMB filter has been utilised in diverse applications
like lineage tracking [7], [20], track-before-detect [21], [22],
distributed MOT [23], [24], path planning [25]–[27], multi-
sensor [28], multi-scan [29], and large-scale [30] MOT. The
LMB filter [31], an approximation of GLMB’s first moment,
significantly curtails association hypotheses by categorising
tracks and measurements into distinct, statistically independent
groups. Yet, being a GLMB filter derivative, the LMB filter can
encounter issues like track fragmentation and label switching.

Smoothing produces superior tracking performance com-
pared to filtering since smoothing considers the full history
of the states up to the current time, whereas filtering only
considers the most recent state [32], [33]. Another weakness
of filtering compared to smoothing in the context of MOT
is the track fragmentation and label switching since low
existence probability tracks might be killed and re-born with
new track labels [29]. GLMB smoothing has been proposed
in [29] by solving multi-scan MOT problems via Gibbs
sampling, and further generalised to multi-scan multi-sensor
GLMB in [34]. However, computing an exact multi-object
posterior in the multi-scan MOT is an NP-hard problem and is
typically approximated via Gibbs sampling to solve the multi-
dimensional assignment problems. An alternative approach en-
tails a proficient GLMB smoothing algorithm centred on multi-
object trajectory estimates rather than multi-object posteriors,
as presented in [35]. This method maintains computational
complexity akin to the conventional GLMB filter but offers
considerable enhancements in tracking performance.

In this work, drawing inspiration from [35], we introduce a
novel smooth trajectory estimator algorithm for LMB, termed
STE-LMB1. This algorithm performs on multi-object tra-
jectory estimates rather than multi-object posteriors, leverag-
ing the unique architecture of the GLMB filter. Specifically,
during the LMB filter’s update phase, while converting the
GLMB density as an LMB density, we concurrently record
the best association map linking each labelled track to the

1The source code is available at https://tinyurl.com/ste-lmb
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measurements at the present time step. This process yields
a comprehensive association history for each labelled track,
enabling the crafting of a smooth trajectory estimator across
each labelled estimate’s full trajectory, anchored on all associ-
ated measurements up to the present time. Thus, our smooth
trajectory estimator executes forward filtering from an object’s
birth time to the present and then backward smoothing from
the current time to its inception for every labelled track. This
methodology not only mitigates track fragmentation and label
switching but also curtails localisation discrepancies typically
seen in the conventional LMB filter.

This paper is structured as follows: Section II delivers
essential background on labelled RFSs and the LMB/GLMB
filters. Our proposed smooth trajectory estimator algorithm is
detailed in Section III. Numerical experiments and a com-
parative analysis with the standard LMB filter are covered in
Section IV. Finally, Section V summarises our conclusions.

II. BACKGROUND

The section offers foundational knowledge on labelled
RFSs, and an overview of the associated LMB/GLMB filter.

A. Notations
Using the notation from [31], lowercase characters like

x,x denote single-object states, whereas uppercase ones like
X,X symbolise multi-object states. Boldface characters such
as X,π represent labelled states and their densities, and
blackboard characters like X,L stand for spaces. For any set
X , F(X) signifies the class of its finite subsets. The indicator
function of X is represented as 1X(·) and its cardinality as
|X|. For a function f , its multi-object exponential is defined
as fX =

∏
x∈X f(x), with f∅ = 1. We also introduce the

generalised Kronecker delta function δY (X), which is one if
X = Y and zero otherwise. The inner product

∫
f(x)g(x)dx

is concisely represented as ⟨f, g⟩.
B. Labelled Random Finite Sets
Labelled multi-object representation. At time k, a surviving
object is described by a labelled state x = (x, ℓ). Here, the
state x ∈ X, while the distinct label ℓ = (s, α) in L combines
its birth time, s, and a unique identifier, α, distinguishing
objects with identical birth times. The trajectory for the shared
label ℓ = (s, α) from time s to t is the time-sequential
sequence τ = [(xs, ℓ), . . . , (xt, ℓ)]. The collection of surviving
objects, each with a unique label, at time k is encapsulated by
the labelled multi-object state X ⊆ X × L. The set of labels
from X is symbolised as L(X) = {L(X) : X ∈ X}.

Within the window interval {j : k} for a sequence of
labelled multi-object states Xj:k, the trajectory corresponding
to the label ℓ ∈

⋃k
i=j L(Xi) is defined as follows [29]:

x
(ℓ)
s(ℓ):t(ℓ) =

[
(x

(ℓ)
s(ℓ), ℓ), . . . , (x

(ℓ)
t(ℓ), ℓ)

]
, (1)

s(ℓ) = max(j, ℓ[1, 0]T ), (2)

t(ℓ) = s(ℓ) +

k∑
i=s(ℓ)+1

1L(Xi)(ℓ), (3)

where the start and end times of label ℓ within the window
interval {j : k} are denoted by s(ℓ) and t(ℓ), respectively. As
a result, the sequence Xj:k can be represented by

Xj:k =

{
x
(ℓ)
s(ℓ):t(ℓ) : ℓ ∈

k⋃
i=j

L(Xi)

}
. (4)

Labelled multi-Bernoulli (LMB) RFS. An LMB RFS
denoted as X is characterised by the parameter set π =
{r(ℓ), p(·, ℓ)}ℓ∈L. Here, r(ℓ) signifies the existence probability
of label ℓ, whilst p(·, ℓ) represents the spatial distribution
corresponding to label ℓ, ensuring that

∫
p(x, ℓ)dx = 1. The

LMB density is detailed in [31]:

π(X) = △(X)w(L(X))pX, (5)

where △(X) = δ|X|(L(|X)|) is a distinct label indicator;
w(L) = π(∅)

∏
ℓ∈L

(
r(ℓ)/(1−r(ℓ))

)
; π(∅) =

∏
ℓ∈L(1−r(ℓ));

p(x) = p(x, ℓ). For clarity, we represent the LMB density as
π = {r(ℓ), p(·, ℓ)}ℓ∈L =

{
(w(I), p) : I ∈ F(L)

}
.

δ-Generalised labelled multi-Bernoulli (δ-GLMB) RFS. A
δ-GLMB RFS delineates the statistical interrelations between
objects by accounting for multiple hypotheses. These consist
of a set of track labels, denoted as I ∈ F(L), and a respective
association history symbolised as ξ ∈ Ξ . The δ-GLMB density
is detailed in [18]

π(X) = △(X)
∑

(I,ξ)∈F(L)×Ξ

w(ξ)(I)δI(L(X))[p(ξ)]X (6)

For simplicity, we denote the δ-GLMB density as π ={
(w(ξ)(I), p(ξ)) : (ξ, I) ∈ Ξ ×F(L)

}
.

C. Generalised Labelled Multi-Bernoulli (GLMB) Filter

Given the current δ-GLMB filter density at time k as π in
(6) and the LMB birth model, the δ-GLMB density at time
k+1 (indicated by +) based on measurement set Z+ is defined
accordingly [18]:

π+(·|Z+) =

{(
w

(ξ,θ+)
Z+

(I+), p
(ξ,θ+)
Z+

)
: (ξ, θ+, I+)

}
(7)

where ξ ∈ Ξ , θ+ ∈ Θ+, I+ ∈ F(L+), and

w
(ξ,θ+)
Z+

(I+) ∝
∑
I⊆L

w(ξ)(I)1F(I⊎B+)(I+)w
(I,ξ,I+,θ+)
Z+

,

(8)

w
(I,ξ,I+,θ+)
Z+

= 1Θ+(I+)(θ+)[1− P̄
(ξ)
S ]I−I+ [P̄

(ξ)
S ]I∩I+

× [1− rB,+]
B+−I+r

B+∩I+
B,+ [ψ̄

(ξ,θ+)
Z+

]I+ , (9)

P̄
(ξ)
S (ℓ) = ⟨p(ξ)(·, ℓ), PS(·, ℓ)⟩, (10)

ψ̄
(ξ,θ+)
Z+

(ℓ+) = ⟨p̄(ξ)+ (·, ℓ+), ψ(θ+(ℓ+))
Z+

(·, ℓ+)⟩, (11)

p̄
(ξ)
+ (x+, ℓ+) = 1L(ℓ+)

⟨PS(·, ℓ+)f+(x+|·, ℓ+), p(ξ)(·, ℓ+)⟩
P̄

(ξ)
S (ℓ+)

+ 1B+
(ℓ+)pB,+(x+, ℓ+), (12)

p
(ξ,θ+)
Z+

(x+, ℓ+) =
p̄
(ξ)
+ (x+, ℓ+)ψ

(θ+(ℓ+))
Z+

(x+, ℓ+)

ψ̄
(ξ,θ+)
Z+

(ℓ+)
. (13)



Here, Θ+ represents the collection of positive 1-1 mappings
θ+ : L+ → {0 : |Z+|}. The survival probability of the label
ℓ is given by PS(·, ℓ), and the single-object state transition
density is defined by f+(·|·, ℓ+). The birth space at k + 1
is B+. The birth probability associated with the label ℓ+ is
rB+

(ℓ+), and its related spatial distribution is pB,+(x+, ℓ+);

ψ
(j)
Z+

(x+, ℓ+) =


PD(x+, ℓ+)g(zj |x+, ℓ+)

κ(zj)
, j ∈ {1 : |Z+|},

1− PD(x+, ℓ+), otherwise;

PD(·, ℓ+) represents the detection probability corresponding
to the label ℓ+. The spatial clutter intensity, distributed as
Poisson, is denoted by κ(·). Lastly, the likelihood of producing
measurement z from the single-object state x+ associated with
label ℓ+ is given by g(z|x+, ℓ+).

III. THE PROPOSED METHOD

A. LMB Filtering Recursion

The LMB filter approximates the GLMB filter by matching
the first moment (PHD); hence, the LMB filter is often referred
to as the PHD filter for multi-object trajectory estimation.
Suppose the LMB filtering density at the current time k is
π = {r(ℓ), p(·, ℓ)}ℓ∈L = {(w(I), p) : I ∈ F(L)}. Since the
LMB filter is closed under the prediction but not the update
step, given the LMB birth model, a joint prediction and update
step with measurement Z+ for the LMB density yields the
GLMB density,

πg
+(·|Z+) =

{(
w

(θ+)
Z+

(I+), p
(θ+)
Z+

)
: (θ+, I+) ∈ Θ+ ×F(L+)

}
which is then approximated as an LMB density:

π+(·|Z+) =

{(
rZ+(ℓ), pZ+(·, ℓ)

)}
ℓ∈L+

(14)

=

{
(w(I+), pZ+) : I+ ∈ F(L+)

}
(15)

with the same first moment as πg
+(·|Z+) by choosing

rZ+(ℓ) =
∑

(θ+,I+)∈Θ+×F(L+)

1I+(ℓ)w
(θ+)
Z+

(I+), (16)

pZ+
(x, ℓ) ∝

∑
θ+∈Θ+

p
(θ+)
Z+

(x, ℓ)
∑

I+⊆L+

1I+(ℓ)w
(θ+)
Z+

(I+). (17)

B. Smooth Trajectory Estimator for LMB Filter

Given the LMB density, extracting multi-object estimates
using optimal methods like the joint or marginal multi-object
estimators is intractable [11]. Typically, a less-than-optimal
estimator is used by determining the maximum a posterior
(MAP) cardinality estimate from the cardinality distribution,
denoted as ρ, given by

ρ(n) = δn(|I+|)
∑

I+∈F(L+)

w(I+). (18)

From the cardinality distribution ρ, we can compute the
estimated cardinality N̂ , given by

N̂ = argmax
n

ρ(n). (19)

By sorting the existence probability vector {rZ+(ℓ)}ℓ∈L+ in
descending order, we can choose the foremost N̂ labels based
on the highest existence probability within π+(·|Z+) and
let rmin(N̂) be the smallest existence probability from these
top N̂ labels. Therefore, the standard MAP multi-object state
estimates X̂+ at time k + 1 is computed as follows:

X̂+ =
{
(x, ℓ) : r

(ℓ)
Z+

≥ rmin(N̂), x =

∫
ypZ+

(y, ℓ)dy
}
.

(20)

Notably, in the standard LMB filter, the association map θ+
was marginalised over the association space Θ+ and discarded
(see (16) and (17)). However, this association map is crucial
to constructing the smooth trajectory estimator for estimating
trajectory using all measurements and should not be discarded.
In this work, we propose to store the best weighted association
map of each label ℓ ∈ L+, i.e.,

θ
(∗,ℓ)
+ = argmax

θ+∈Θ+

1F(L+)(I+)1I+(ℓ)w
(θ+)
Z+

(I+), (21)

and the set of the best association map of all labels in L+ is
denoted as Θ(∗)

+ = {θ(∗,ℓ)+ : ℓ ∈ L+}. The association history
of each label ℓ ∈ L+ is recursively stored from the birth time
s(ℓ) to the current time k + 1, i.e.,

ξ
(∗,ℓ)
+ =

(
ξ(∗,ℓ), θ

(∗,ℓ)
+ ). (22)

Let Ξ(∗)
1:k+1 = {ξ(∗,ℓ) : ℓ ∈ L1:k+1} be the set of the

best association history of all labels in L1:k+1. As a result,
by utilising the entire association history ξ

(∗,ℓ)
s(ℓ):k+1 of the

trajectory with label ℓ, we can efficiently estimate the entire
history of this trajectory. The detailed algorithm is provided
in Algorithm. 1 where X 1:k+1 is denoted as the recursive
multi-object trajectory estimates from time 1 to k + 1. In
particular, to estimate the entire history of each label ℓ,
we apply forward filtering via any applicable single-object-
tracking filter (e.g., Kalman Filter, Unscented Kalman Filter,
or Particle Filter) in lines 7−13 and then backward smoothing
via Rauch–Tung–Striebel (RTS) smoother [36] in lines 14−15.

IV. EXPERIMENTS

A. Scenario 1 - Linear

We examine a straightforward linear setting from [17],
where we track a variable number of mobile objects (as
many as 12) with different birth and death instances. This
occurs within a 2D region measuring [−1000, 1000] m by
[−1000, 1000] m. The duration of this scenario stands at 100 s.

Object dynamic model: Employing a linear constant
velocity model for object dynamics in a 2D setting, each
object’s state, x = [px, ṗx, py, ṗy]

T , encapsulates its kinematic
status. The dynamic density is expressed as f+(x+|x) =
N (x+;Fx,Q), where N (·;µ,Σ) symbolises a Gaussian



Algorithm 1: Smooth Trajectory Estimator for LMB

Input: X 1:k, Ξ(∗)
1:k , X̂k+1, Θ(∗)

k+1, Z1:k+1

Output: X 1:k+1

1 X 1:k+1 ← ∅ // initialisation

2 Ξ
(∗)
1:k+1 ← Ξ

(∗)
1:k ∪Θ

(∗)
k+1 // update history

3 X̂1:k+1 ← X 1:k ∪ X̂k+1 // update estimates

4 L̂1:k+1 ← L(X̂1:k+1) // extract labels

5 foreach trajectory with ℓ ∈ L̂1:k+1 do
6 Compute s(ℓ) via (2) and t(ℓ) via (3)

/* Forward filtering */
7 for i = s(ℓ) to t(ℓ) by 1 do
8 if i = s(ℓ) then
9 x

(ℓ)
i ←

∫
ypB(y, ℓ)dy

10 else
11 x

(ℓ)
i ← SingleObjectPredict(x(ℓ)

i−1)

12 if θ(∗,ℓ)i > 0 then
13 x

(ℓ)
i ← SingleObjectUpdate(x(ℓ)

i−1, Zi(θ
(∗,ℓ)
i ))

/* Backward smoothing */
14 for i = t(ℓ)− 1 to s(ℓ) by −1 do
15 x

(ℓ)
i ← SingleObjectSmoothing(x(ℓ)

i+1)

16 x
(ℓ)

s(ℓ):t(ℓ) ←
[
(x

(ℓ)

s(ℓ), ℓ), . . . , (x
(ℓ)

t(ℓ), ℓ)

]
17 X 1:k+1 ← X 1:k+1 ∪ x

(ℓ)

s(ℓ):t(ℓ)

18 return X 1:k+1
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Fig. 1. Scenario 1 (Linear): Truth vs Estimates using a) LMB filter, and b)
STE-LMB filter.

density. Given that F = [1,△; 0,△] ⊗ I2 and Q =
σ2
x[△3/3,△2/2;△2/2,△]⊗ I2, with I2 being a 2x2 identity

matrix, ⊗ denoting the Kronecker tensor product, a sampling
interval of △ = 1 s, and σx = 5 m/s2. Each object x has
a 0.99 survival probability, represented as PS = 0.99. For
every time increment, the birth density is represented by the
LMB density πB , comprising {rB(ℓj), pB(·, ℓj)}4j=1. Here,
rB(ℓj) = 0.05, ∀j = 1 . . . 4 and pB(x, ℓj) = N (x;µ

(j)
B , PB),

µ
(1)
B = [0.1, 0, 0.1, 0]T , µ(2)

B = 100 · [4, 0,−6, 0]T , µ(3)
B =

100 · [−8, 0,−2, 0]T , µ(4)
B = 100 · [−2, 0, 8, 0]T , PB =

diag(10 · [1, 1, 1, 1]T )2.
Measurement model: Each detected object x with a detec-

tion probability PD = 0.88 generates a noisy 2D position
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Fig. 2. Scenario 1 (Linear) - performance comparison results averaged over
100 Monte Carlo trials: a) Carnality estimation, b) OSPA distance, and c)
OSPA(2) distance.

measurement z = [zx, zy]
T with measurement likelihood

g(z|x) = N (z;Hx,R), where H = [I2, 02], 02 is the 2 × 2
zero matrix, R = σ2

rI2, σr = 10 m. The measurement set Z
at each time also contains the clutters that follow the Poisson
model with a uniform clutter density κ(·) = 5.5·10−7 resulting
in an average of 66 clutters per time step. Importantly, due to
the linear nature of the dynamic and measurement models,
we employ the Kalman filter alongside the conventional RTS
smoother for STE-LMB as detailed in Algorithm 1.

Fig. 1 depicts the estimated trajectories versus true tra-
jectories using a) LMB and b) STE-LMB. Comprehensive
comparative analysis, averaged across 100 Monte-Carlo (MC)
trials between LMB and STE-LMB, is depicted in Fig. 2.
The results confirm that using the smooth trajectory estimator,
we can estimate the multi-object trajectories correctly in
terms of cardinality (i.e., the number of time-varying objects),
OSPA [37] and OSPA(2) [30], [38] errors.

B. Scenario 2 - Non-Linear

In the following section, we examine a non-linear setting
from [31] wherein we track an uncertain, fluctuating count of
mobile objects (maximally 10) that possess different birth and
death timings. This takes place within a 2D space spanning
[−2000, 2000] m by [0, 2000] m. The duration of this scenario
is 100 seconds.
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Fig. 4. Scenario 2 (Non-Linear) - performance comparison results averaged
over 100 Monte Carlo trials: a) Carnality estimation, b) OSPA distance, and
c) OSPA(2) distance.

Object dynamic model: Given the non-linear dynamics
of the object, we adopt the coordinated turn (CT) model.
The single object state is denoted by x = [x̃T , ω]T , wherein
x̃ = [px, ṗx, py, ṗy]

T represents the kinematic state and ω
signifies the turning rate. The transition density for the CT
model is defined as f+(x+|x) = N (x+;m(x), Q). Here,

Scenario 1 - Linear Scenario 2 - Non-Linear
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Fig. 5. Percentage of the smooth trajectory estimator’s computational time
in relation to the total filtering time averaged over 100 Monte Carlo trials.

m(x) =
[
[F (ω)x̃]T , ω

]T
. The matrix Q is represented

as diag([σ2
x̃GG

T , σ2
ω]

T ), with σx̃ = 5 m/s2 and σω =
π/180 rad/s.

F (ω) =


1

sin(Ω)

ω
0 −1− cos(Ω)

ω
0 cos(Ω) 0 − sin(Ω)

0
1− cos(Ω)

ω
1

sin(Ω)

ω
0 sin(Ω) 0 cos(Ω)

 , G =


△2

2
0

△ 0

0
△2

2
0 △2


where Ω = ω△, △ = 1 s is the sampling interval. At
every interval, each object x progresses to the subsequent
time through the dynamic density f+(x+|x), having a sur-
vival probability of PS = 0.99. We adopt an LMB birth
model denoted by πB = {rB(ℓj), pB(·, ℓj)}4j=1. Specifically,
rB(ℓ1) = rB(ℓ2) = 0.02, rB(ℓ3) = rB(ℓ4) = 0.03,
pB(x, ℓj) = N (x;µ

(j)
B , PB), µ

(1)
B = 250 · [−6, 0, 1, 0, 0]T ,

µ
(2)
B = 250·[−1, 0, 4, 0, 0]T , µ(3)

B = 250·[1, 0, 3, 0, 0]T , µ(4)
B =

250 · [4, 0, 6, 0, 0]T , PB = diag([50, 50, 50, 50, π/30]T )2.
Measurement model: For each detected object x, a range-

and-bearing measurement z = [r, θ]T is produced with a
detection probability PD = 0.9. The measurement likeli-
hood is given by g(z|x) = N (z;h(x), R) where h(x) =[√

p2x + p2y, atan2(py, px)
]T

. The matrix R is represented by
diag([σ2

r , σ
2
θ ]), with σr = 10 m and σθ = 2π/180 rad. Each

measurement Z at any given time step is further disrupted
with clutters (false alarms). The clutter follows a Poisson
distribution with a uniform clutter density κ(·) = 1.59 · 10−4,
resulting in an average of 15 clutters per observation. Cru-
cially, due to the non-linear characteristics of both the dynamic
and measurement models, we utilise the Unscented Kalman
filter and the Unscented RTS smoother for the STE-LMB filter,
as detailed in Algorithm 1.

Fig. 3 illustrates the comparison between estimated trajec-
tories and true trajectories in a specific run, using both the
LMB and STE-LMB approaches. The detailed comparison
results averaged over 100 MC trials, are depicted in Fig. 4.
These results validate that employing the smooth trajectory
estimator enables accurate estimation of multi-object trajec-
tories in terms of cardinality (i.e., the number of objects
that change over time), OSPA, and OSPA(2) errors. Fig. 5
presents the percentage of the smooth trajectory estimator’s
computational time in relation to the total filtering time for
both two considered scenarios. The additional computational



time from the smooth trajectory estimator is insignificant (i.e.,
less than 3.5%) compared to the total filtering time, which
demonstrates the efficiency of our method.

V. CONCLUSION

We have devised an innovative and efficient smooth trajec-
tory estimator for the LMB filter. By adopting the intuitive
strategy of retaining the optimal association map during the
conversion from the GLMB density to the LMB density, our
approach offers an efficient smooth trajectory estimator for the
LMB filter. This facilitates accurate detection and tracking of
a fluctuating number of mobile objects amidst noisy measure-
ments, whilst substantially reducing label switching and track
fragmentation. Experimental outcomes highlight our method’s
superiority over the existing LMB filter, achieved with only a
marginal increase in computational time.
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