
Robust Multi-Sensor Generalized Labeled Multi-Bernoulli Filter

Cong-Thanh Do1,*, Tran Thien Dat Nguyen1, and Hoa Van Nguyen2

1School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Bentley, WA 6102,
Australia

2School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
*Corresponding author, thanh.docong@postgrad.curtin.edu.au; thanhdc@tnu.edu.vn

November 4, 2021

Abstract

This paper proposes an efficient and robust algorithm to estimate target trajectories with unknown
target detection profiles and clutter rates using measurements from multiple sensors. In particular, we
propose to combine the multi-sensor Generalized Labeled Multi-Bernoulli (MS-GLMB) filter to estimate
target trajectories and robust Cardinalized Probability Hypothesis Density (CPHD) filters to estimate
the clutter rates. The target detection probability is augmented to the filtering state space for joint
estimation. Experimental results show that the proposed robust filter exhibits near-optimal performance
in the sense that it is comparable to the optimal MS-GLMB operating with true clutter rate and detection
probability. More importantly, it outperforms other studied filters when the detection profile and clutter
rate are unknown and time-variant. This is attributed to the ability of the robust filter to learn the
background parameters on-the-fly.

Keywords— Multi-sensor GLMB filter; robust tracking; bearing-only sensors; bootstrapping method; Labeled Ran-
dom Finite Sets.

1 Introduction

Multi-target tracking has captured the interest of the research community for more than fifty years with its range
of applications. In the current literature, solutions for multi-target tracking problem can be categorized into three
main paradigms: the Joint Probabilistic Data Association (JPDA) [1], Multiple Hypotheses Tracking (MHT) [2], and
Random Finite Set (RFS) [3]1. Among those, the RFS framework models the set of target states as a random variable
instead of estimating measurement-to-track association hypothesis [6]. This formulation then allows the application
of Bayesian recursion to produce the multi-target posterior density.

In general, propagating a multi-target density is computationally expensive. Various filters only propagate the
first moment of the multi-target density in the RFS paradigm, such as the Probability Hypothesis Density (PHD)
filters [7, 8, 9]. The recent introduction of labeled RFS [10] led to the development of filters capable of estimating the
trajectories, such as the Generalized Labeled Multi-Bernoulli (GLMB) filters [11, 12, 13], and Labeled Multi-Bernoulli
(LMB) approximation [14]. The scalability of this approach has recently been demonstrated via its ability to track
over one million targets [15]. Furthermore, labeled RFS filters can also be formulated to jointly track the targets
and their ancestral information via a spawning model as in [16, 17, 18]. Today, RFS-based filters have been applied
to many fields ranging from space debris tracking [19, 20], crowd surveillance [21, 22], automation [23, 17] to cell
tracking [24, 18].

Multi-sensor setting frequently appears in multi-target tracking applications. Using multi-sensor framework al-
lows the reduction of the system uncertainty, hence enhances the capability of the tracking algorithms to resolve
the ambiguity of the target states. There are two architectures for multi-sensor multi-target tracking: distributed
(decentralized) and centralized.

In the distributed setting, information of targets is processed by individual sensor nodes then fused to form
a posterior multi-target density. However, the correlation between the fused (from distributed sensor nodes) and
the actual multi-sensor updated densities needs to be strong to warrant consistent tracking capability. In the RFS
framework, the decentralized multi-sensor tracking problem has been addressed in [25, 26] with PHD/CPHD filter,
[27, 28, 29] with Multi-Bernoulli filter, and in [30, 31, 32] with LMB/GLMB filter.

In the centralized setting, measurements from all sensors are delivered to a central node for direct computation
of the multi-target density. Solutions for this problem have been developed via PHD, CPHD filters in [33, 34], Multi-
Bernoulli filter in [35], or LMB filter in [36, 37, 38, 39] . The iterated corrector method, which sequentially performs
update overall sensors, is also widely used in practice [33, 40]. Notably, the recent multi-sensor GLMB (MS-GLMB)
filter [13] efficiently performs joint sensors update with linear complexity in the total number of measurements across
the sensors and a quadratic complexity to the number of hypothesized targets.

Information of targets detection probability and clutter rate (background information) influences the performance
of multi-target filters while it is usually assumed to be known and constant. However, this assumption is strong and
often does not hold in practice since these parameters are often time-varying in practical applications. Furthermore,
the problem is worsened in multi-sensor tracking as background information must be provided for each sensor. For
single-sensor systems, this problem has been addressed in [41, 42, 43, 44]. However, it has not yet been tackled in
the multi-sensor multi-target tracking framework.

This paper introduces a robust filter capable of estimating target trajectories with a centralized multi-sensor
setting in an unknown background environment. Our main contribution is a systematic combination of multiple
independent, robust CPHD filters [43] to estimate clutter rate (each filter estimates the clutter rate of one sensor)
and an efficient MS-GLMB [13] to handle the main filtering process. The detection probability of a target is augmented
to its state for joint estimation [44].

1We categorize these techniques considering the recent literature reviews presented in [3] and [4]. However, authors of [5]
consider JPDA as a special case of MHT.
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Figure 1: Evolution of the labeled multi-target state over time [11].

The structure of this paper is as follows. In Section 2, we start with providing readers background information on
multi-target tracking in the RFS paradigm. In Section 3, we detail the formulation and implementation of our robust
filter. Finally, in Section 4, we demonstrate the performance of our filter in different tracking scenarios. Although
this filter can handle different types of sensors, we focus on showing its performance with bearing-only sensors in this
work.

2 Background

This section briefly summarizes some fundamental concepts related to multi-target tracking in the RFS framework.

2.1 The labeled RFS

An RFS is a random variable defined on the space of sets with a finite number of elements. The elements of an RFS
are random and unordered, which allows it to describe the multi-target state naturally. A labeled RFS is essentially
the RFS, in which each element has a distinct label [10]. This framework allows the joint modelling of the target
state and its identities; hence, filters based on labeled RFS can provide trajectories estimation. For consistency, we
adhere to the following notation scheme from [10] throughout our discussion. Specifically, the inner product of two
functions f and g concerning their variable x is defined as xf, gy fi

ş

f pxq g pxq dx. For a given set S, the class of all
finite subsets of S is denoted by FpSq. The Kronecker delta function with arbitrary argument (integers, vectors, sets,
etc.) is given by,

δS pXq “

#

1, X “ S
0, X ‰ S

. (1)

The indicator function of the set S is defined as follows,

1S pXq “

#

1, X Ď S
0, otherwise

. (2)

For a finite set X, the number of elements of X, or its cardinality, is denoted by |X|, and the set exponential
is defined as rf p¨qsX “

ś

xPX f pxq , with fH “ 1. We denote the single-target state by lower-case letters and the
multi-target states by upper-case letters, i.e. x and X. We differentiate the unlabeled target state with the labeled
version by standard-faced and bold-faced letters, i.e. X and X. Blackboard upper case letters (e.g. X,L,Z) are used
to denote spaces.

Each labeled target state x contains an unlabeled kinematic state x P X augmented with a unique label ` P L,
hence x “ px, `q P Xˆ L. Each distinct label ` P L at time k consists of two components: time of birth, tb ď k, and
a unique index i to differentiate targets born at the same time. We use subscript ‘+’ to denote the next time step.
The birth labels at time k` 1 belong to the label space B` “ tpk ` 1, iq : i P Nu, and hence LX B` “ H. The labels
space at time k ` 1 is then L` “ LZ B` (Z denotes the disjoint union operator). Fig. 1 illustrates the evolution of
a labeled multi-target state over time using the mentioned labeling convention.

The distinct label indicator [10] is given as,

∆ pXq “ δ|X| p|L pXq|q , (3)

where L : Xˆ LÑ L is a mapping from a labeled RFS to the labels, which satisfies the projection Lpx, `q “ `. A
labeled RFS X has distinct labels if ∆ pXq “ 1.

The integral of a function f : F pXˆ Lq Ñ R is given by [10]

ż

f pXq δX “

8
ÿ

i“0

1

i!

ÿ

p`1,...,`iqPLi

ż

Xi
fptpx1, `1q , . . . , pxi, `iquqd px1, . . . , xiq . (4)

2.2 RFS multi-target filtering

2.2.1 The Bayesian recursion

In Bayesian paradigm, given the multi-target transition density f` pX`|Xq and the multi-target likelihood function
g pZ`|X`q, the (labeled) multi-target probability density function2 is propagated via the Bayesian recursion as [3],

π pX`q “

ż

f` pX`|Xqπ pXq δX, (5)

π` pX`|Z`q “
g` pZ`|X`qπ pX`q

ş

g` pZ`|Xqπ pXq δX
, (6)

where the integrals are the set integral defined in Eq. (4). In the above expression, the dependence on previous
measurements of the prior density is omitted for compactness.

2This is not a probability density function but is equivalent to one as shown in [45]. Hence, with a slight abuse of terminology,
we regard this function as a probability density function.
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2.3 The multi-target transition model

For a current multi-target state X Ď XˆL, at the next time step, a target px, `q PX either continues to exist in the
sensor field of view with the probability pSpx, `q, or it disappears with the probability qSpx, `q “ 1 ´ pSpx, `q. If it
exists, its state is predicted via a single target transition density of the form fSpx`|x, `qδ`p``q where fSpx`|x, `q is
the spatial transition density and δ`p``q implies the old label is retained. The multi-target transition density from
set X to the next time step surviving targets set XS` can be written as [10],

fS` pXS`|Xq “ ∆ pXS`q∆ pXq 1LpXq pL pXS`qq rΦS` pXS`|¨qs
X , (7)

where
ΦS` pXS`|x, `q “

ÿ

px`,``qPXS`

δ` p``q pS px, `q fS` px`|x, `q `
”

1´ 1LpXS`q
p`q

ı

qS px, `q . (8)

In addition, new targets can also spontaneously appear in the tracking region at each time step. Let XB` denote
the multi-target state of those newborn targets with LpXB`q P B`, the set of new births can be modeled with an
LMB RFS as [10, 11],

fB` pXB`q “ ∆ pXB`qωB pL pXB`qq rpB`s
XB` , (9)

where
ωB pLq “ r1´ rB`s

B`´L 1B` pLq rrB`s
L , (10)

rB`p`q is the birth probability of target labeled ` and pB`px, `q is its spatial distribution.
Due to the independence between surviving and newborn targets, the multi-target transition kernel can be written

as,
f` pX`|Xq “ fS` pXS`|XqfB` pXB`q , (11)

where XS` “X` X pXˆ Lq, and XB` “X` X pXˆ B`q.

2.3.1 The single-sensor multi-target likelihood model

At time k, each target px, `q P X can generate a measurement z P Z with the detection probability of pDpx, `q or it
is misdetected with the probability qDpx, `q “ 1 ´ pDpx, `q. The likelihood of target px, `q generates a measurement
z is gpz|x, `q. In addition, due to sensor imperfections and environmental conditions, clutter can also be included in
the observation set. The clutter set is modelled with Poisson RFS, with the state of clutter targets is assumed to be
uniformly distributed over the state space. Denoting Z as the measurement space, given the set Z “ z1:|Z| P Z and
the multi-target state X at the current time step k, the multi-target likelihood function is given as [10]

gpZ|Xq9
ÿ

θPΘpLpXqq

ź

px,`qX

Ψ
pθp`qq
Z px, `q, (12)

where Θ is the set of all positive 1-1 labels to measurement indices association maps (θ : LÑt0 : |Z|u) with the
zero measurement index indicates miss-detection. The positive 1-1 condition implies each measurement can only be
assigned to at most one label. The function Ψ is given by

Ψ
pθp`qq
Z px, `q “

#

PDpx,`qgpzθp`q|x,`q

κpzpθp`qq
, θp`q ą 0

1´ PDpx, `q, θp`q “ 0,
, (13)

where κ is the Poisson clutter intensity.

2.4 The GLMB filter

GLMB filter is an exact solution for the Bayes optimal multi-target tracking problem [46]. Given its formulation on
labeled RFS, GLMB filter estimates target states and their labels which, in turn, allows the estimation of trajectories.
The filter first assumes the probability density function of the multi-target state at time k be given in the GLMB
form, i.e.

π pXq “ ∆ pXq
ÿ

pI,ξqPFpLqˆΞ

ωpI,ξqδI pL pXqq
”

ppξq
ıX

, (14)

where I represents a set of labels, and ξ P Ξ represents a history of association maps up to time k. Each ppξqp¨, `q
represents a spatial distribution of a single target on X (with

ş

ppξq px, `q dx “ 1), and each non-negative weight ωpI,ξq

satisfies,
ÿ

IPFpLq

ÿ

ξPΞ

ωpI,ξq pLq “ 1. (15)

Via Bayes recursion with the multi-target transition model in (11) and likelihood function in (12), the prior
GLMB density is propagated through time [11]. A more efficient implementation that combines the prediction and
update steps into one single filtering step is also presented in [47].

3 The robust MS-GLMB filter

Our proposed robust MS-GLMB filter exploits the strengths of established filters in the literature to track multiple
targets without prior knowledge of the detection profile and clutter rates. In particular, for each sensor, we implement
an independent, robust CPHD filter [43] to estimate its clutter rate from the PHD and cardinality distribution of
targets set obtained from the GLMB density at the previous time step. The estimated clutter rate is then bootstrapped
into the MS-GLMB filter [13] for the main filtering process. The detection probability of a target is augmented to
the filtering state space of the filters for estimation [44]. The schematic of the algorithm is given in Fig. 2.
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Figure 2: The proposed structure for the robust MS-GLMB filter.

3.1 The multi-target system modelling

3.1.1 The robust CPHD filter

The CPHD filter is a low-cost multi-target filter built on the premise of unlabeled RFS. In this filter, the multi-target
density is approximated by its first moment (PHD) and the cardinality distribution. While being more accurate than
the PHD filter, the CPHD filter has a complexity of O

`

|Z|3
˘

or even O
`

|Z|2 log2
p|Z|q

˘

[9]. In [43], the CPHD filter
is adapted to jointly estimate the clutter rate and detection probability (the robust CPHD) online. Note that, the
clutter rate of each sensor can also be estimated using data association method (with a single-sensor GLMB filter)
as proposed in [44]. However, for each prior component of the single-sensor GLMB density, it incurs a complexity of
O
`

T |Z|3
˘

(where T is the number of request components) to sample for significant components. Such complexity
prevents the application of the data association approach in scenarios with a high number of sensors. Hence, the
robust CPHD filter provides a good trade-off between accuracy and computational load in estimating the sensor
clutter rate.

Following [43], the clutter and actual targets are modelled as two different types of targets. The detection
probability is augmented to the target state for joint estimation. Denoting the state spaces for actual and clutter
targets as Xp1q and Xp0q, the hybrid state space is then given by [43]:

Xphq “
´

Xp1q ˆ Xp∆q
¯

Z

´

Xp0q ˆ Xp∆q
¯

, (16)

where Xp∆q “ r0, 1s is the space of unknown detection probability.
For consistency, we use the superscripts p1q,p0q and phq to denote functions or variables on space of actual, clutter,

and hybrid targets, respectively.
For the vth sensor, at the next time step, a target survives with the probability p

pv,hq
S pxphqq and has the transition

density of f
pvq
` px

phq
` |xphqq or being terminated with the probability 1 ´ p

pv,hq
S pxphqq. The survival probability and

transition density are given respectively as [43]:

p
pv,hq
S pxphqq “

#

p
p1q
S pxq, xphq P Xp1q ˆ Xp∆q

p
pv,0q
S , xphq P Xp0q ˆ Xp∆q

, (17)

f
pvq
` px

phq
` |xphqq “

$

’

&

’

%

f
p1q
` px`|xqf

pvq
∆`pa`|aq, x

phq
` “ px`, a`q, x

phq
“ px, aq P Xp1q ˆ Xp∆q

f
pv,0q
` pc`|cq, x

phq
` “ pc`, b`q, x

phq
“ pc, bq P Xp0q ˆ Xp∆q

0, otherwise

. (18)

Given a target with the state xphq defined on the hybrid state-space, it can generate a measurement z P Z with the
probability p

phq
D pxphqq and the likelihood gpv,hqpz|xphqq, or being miss-detected with the probability of 1´ p

phq
D pxphqq.

The detection probability and the likelihood of observing z are given respectively as [43]:

p
phq
D pxphqq “

#

a, xphq “ px, aq P Xp1q ˆ Xp∆q

b, xphq “ pc, bq P Xp0q ˆ Xp∆q
, (19)

gpv,hqpz|xphqq “

#

gpvqpz|xq xphq “ px, aq P Xp1q ˆ Xp∆q

µpvqpzq xphq “ pc, bq P Xp0q ˆ Xp∆q
. (20)

3.1.2 The MS-GLMB filter

The MS-GLMB filter [13] is an extension of the efficient GLMB filter [47] to the multi-sensor framework. Given its
labeled RFS formulation, the MS-GLMB filter propagates the labeled multi-target density hence providing trajectory
estimates. In this work, the MS-GLMB filter is formulated to carry out the main filtering process. The sensor clutter
rates are bootstrapped from the robust CPHD filters.

Assuming the detection probability of a target on different sensors is independent, we can write the state distri-
bution of a target with label ` and association history ξ as ppξqpx, α, `q “ ppξqpx, `q

śV
v“1 p

pξq
pαvq. Given the inclusion

of the detection probability, the state transition model in Eq. (8) can be rewritten as:

ΦS` pXS`|x, α, `q “
ÿ

px`,``qPXS`

δ` p``q pS px, `q fS` px`|x, `q

ˆ

V
ź

v“1

f
pvq
∆` pαv`|αvq `

”

1´ 1LpXS`q
p`q

ı

qS px, `q ,

(21)

where f
p∆q
v` p¨|¨qis the state transition density of the detection probability of the target on the vth sensor.

For multi-sensor multi-target tracking, we follow [13] to extend the likelihood in Eq. (12) to multiple sensors

case. Specifically, given the multi-target state X and the set of measurements Zpvq “ z
pvq

1:|Zpvq|
P Z produced by

sensor vth, each observation of a target px, α, `q P X on this sensor is either a measurement z
pvq
j P Zpvq with the

detection probability of αv and the likelihood of gpvqpzpvq|x, `q or empty (miss-detected) with the probability 1´ αv.
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Furthermore, the set Zpvq may also contain measurements that are not generated by any targets and the set of those
false measurements is modeled by Poisson RFS with the rate (intensity) of κpvq (estimated by the robust CPHD
filter). The multi-target likelihood of this sensor can be written as [10, 11],

gpvq
´

Zpvq|X
¯

9
ÿ

θpvqPΘpvq

1ΘpvqpLpXqq

´

θpvq
¯

„

ψ
pv,θpvq˝Lp¨qq
Zpvq

p¨q

X

, (22)

where

ψ
pv,jq
tz

1:Mpvq
u
px, α, `q “

$

&

%

αvg
pvqpzj |px,`qq

κpvqpzjq
j “ 1 : M pvq

1´ αv j “ 0.
(23)

Notations are defined as the same as those in Eq. (12) with the additional superscript pvq to indicate the sensor index.
Via the assumption that all sensors are conditionally independent and the following abbreviations:

Z fi

´

Zp1q, . . . , ZpV q
¯

, (24)

Θ fi Θp1q ˆ ¨ ¨ ¨ ˆΘpV q, (25)

ΘpIq fi Θp1qpIq ˆ ¨ ¨ ¨ ˆΘpV qpIq, (26)

θ fi
´

θp1q, . . . , θpV q
¯

, (27)

1ΘpIqpθq fi
V
ź

v“1

1ΘpvqpIq

´

θpvq
¯

, (28)

ψ
pjp1q,...,jpV qq
Z fi

V
ź

v“1

ψ
pv,jpvqq
Zv px, α, `q, (29)

the multi-sensor multi-target likelihood can be written simply as:

gpZ|Xq “
V
ź

v“1

gpvq
´

Zpvq|X
¯

9
ÿ

θPΘ

1ΘpLpXqqpθq
”

ψ
pθ˝Lp¨qq
Z p¨q

ıX

. (30)

Note that, as all the terms θpiq (i “ 1, . . . , V ) are positive 1-1, the multi-sensor extended association map θ is also
positive 1-1.

Remark. For tracking scenarios involving target spawning (i.e., a new target is born from an existing target), the
target spawning model presented in [16] can be used in place of the dynamic model in Eq. (7) for the MS-GLMB
filter. For the CPHD filter, the standard dynamic model (without target spawning) is sufficient given its unlabeled
formulation [48] (Chapter 1, Section 1.1.2). For tractability, a proposal density can be constructed by replacing the
single-sensor likelihood in Eq. (43) of [16] with the multi-sensor likelihood in Eq. (30). Hence, our method is readily
extended to this tracking scenario. However, the inclusion of the spawning model naturally increases the complexity
of the filter due to additional operations (approximation, marginalization) need to be performed.

3.2 Clutter rate estimation with the robust CPHD filter

For the vth sensor, the recursion of the robust CPHD filter at each time step starts with the prior PHD and cardinality
distributions of targets on the hybrid state space. Note that we also have the prior GLMB density of the labeled
targets state (from the MS-GLMB filter). Since the MS-GLMB filter combines measurements from all sensors, its
contained information is more accurate than that of the current vth robust CPHD filter (which is only updated by
measurements from the vth sensor). Basing on that fact, instead of using the prior PHD and cardinality from the
current robust CPHD filter, we use prior information from the GLMB density to predict the PHD and cardinality
distribution at the next time step. Specifically, given the GLMB prior as in Eq. (14), the PHD and cardinality
distribution of an actual target can be computed, respectively as

ζ̃p1q px, αvq “
ÿ

I,ξ

ÿ

`PI

ωpI,ξqppξqpx, `q ppξqpαvq
ź

iPt1:V u´tvu

ż

ppξqpαiq dαi, (31)

ρ̃p1qpnq “
ÿ

I,ξ

δn p|I|qω
pI,ξq. (32)

The cardinality distribution of targets on the hybrid state space is then ρ̃phq “ ρ̃p1q ˚ ρp0q (‘˚’ denotes convolution
operation).

Given Eq. (31), Eq. (32) and the priors information of the current sensor clutter targets, the robust CPHD
prediction can be carried out as [43]:

ζ
pv,1q
` px`, a`q “γ

p1q
px`, a`q `

ż ż

p
p1q
S pxqf

p1q
` px`|xqf

pvq
∆`pa`|αvqζ̃

p1q
px, αvq dαv dx, (33)

ζ
pv,0q
` pbq “γpv,0qpbq ` p

pv,0q
S ζpv,0q pbq , (34)

ρ
pv,hq
` pnq “

n
ÿ

j“0

ρ
pv,hq
` pn´ jq

8
ÿ

i“j

Cij ρ̃
phq
piqp1´ φvq

i´jφjv, (35)

φv “

A

ζ̃p1q, p
p1q
S

E

`

A

ζpv,0q, p
pv,0q
S

E

A

1, ζ̃p1q
E

` x1, ζpv,0qy
, (36)

where Cij is the binomial coefficient, i.e., Cij “
i!

j!pi´jq!
.
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Given the measurements set Z
pvq
` , the updated PHD and cardinality distribution can be written as [43]:

ζ
pv,1q
`

´

x`, a`|Z
pvq
`

¯

“ ζ
pv,1q
` px`, a`qˆ

»

—

—

—

—

—

—

—

–

p1´ a`q ˆ

xΓ
pv,1q

Z
pvq
`

”

ζ
pv,hq
`

,Z
pvq
`

ı

,ρ
pv,hq
`

y

xΓ
pv,0q

Z
pvq
`

”

ζ
pv,hq
`

,Z
pvq
`

ı

,ρ
pv,hq
`

y

x1, ζ
pv,1q
` y ` x1, ζ

pv,0q
` y

`
ÿ

zPZ
pvq
`

a` ˆ g
pv,1q

pz|x`q

xζ
pv,0q
` , p

pv,0q
D`

µpvqy ` xζ
pv,1q
` , p

pv,1q
D`

gpv,1q pz|¨qy

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
(37)

ζ
pv,0q
`

´

b`|Z
pvq
`

¯

“ ζ
pv,0q
` pb`qˆ

»

—

—

—

—

—

–

p1´ b`q ˆ

xΓ
pv,1q

Z
pvq
`

”

ζ
pv,hq
`

,Z
pvq
`

ı

,ρ
pv,hq
`

y

xΓ
pv,0q
`

”

ζ
pv,hq
`

,Z
pvq
`

ı

,ρ
pv,hq
`

y

x1, ζ
pv,1q
` y ` x1, ζ

pv,0q
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ρ
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pvq
`
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A

ρ
pv,hq
`

,Γ
pv,0q
`

E , n ě |Z
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` |
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where
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, (40)

Φv` “1´
xζ
pv,1q
` , p

pv,1q
D`

y ` xζ
pv,0q
` , p

pv,0q
D` y

x1, ζ
pv,1q
` y ` x1, ζ

pv,0q
` y

, (41)

p
pv,1q
D` px, aq “a, (42)

p
pv,0q
D` pbq “b, (43)

and Pnj is the permutation coefficient, i.e., Pnj “
n!

pn´jq!
.

In this work, we model the kinematic state and detection probability of targets with Gaussian and beta distri-
butions, respectively. The analytic implementation can be found in Proposition 13 and 14 of [43]. For clutter rate
estimation, given the PHD of clutter targets is written as a mixture of beta distributions, i.e.

ζpv,0qpb`q “
Jpv,0q
ÿ

i“1

w
pv,0q
i β

pv,0q
i pb`|s

pv,0q
i , t

pv,0q
i q, (44)

where βp¨|s, tq denotes a beta distribution with mean s
ps`tq

and variance st
ps`tq2ps`t`1q

. The mean clutter rate for the

vth sensor is computed as [43]

κ̄pvq “
Jpv,0q
ÿ

i“1

w
pv,0q
i

s
pv,0q
i

s
pv,0q
i ` t

pv,0q
i

. (45)

Practically, the presented clutter rate estimation step can be parallelized for V sensors to reduce the computation
time.

3.3 Multi-target state filtering with the MS-GLMB filter

Given the set of estimated clutter rates κ̄p1:V q (see Eq. (45)), the main multi-target filtering is carried out via the
MS-GLMB filter. Noting that the detection probability α of a target is augmented to its state for joint estimation
as in [44]. For the initial GLMB density of the form in Eq. (14), the transition model in Eq. (11), Eq. (21) and the
multi-sensor multi-target likelihood in Eq. (12), the filtering density at the next time step is given as:

π` pX`|Z`q9∆ pX`q
ÿ

I,ξ,I`,θ`

ωpI,ξqω
pI,ξ,I`,θ`q
Z`

δI` rL pX`qs
„

p
pξ,θ`q
Z`

X`

, (46)

where I P F pLq , ξ P Ξ, I` P F pL`q , θ` P Θ` pI`q , and

ω
pI,ξ,I`,θ`q
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ıIXI`
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, (47)
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ψ̄
pξ,θ`q
Z`

p``q “

ż

p̄
pξq
` px`, ``q

V
ź

v“1

ppξqpαvqψ
pθ`p``qq
Z`

px`, α`, ``q dx`dα1:V , (49)

pS px`, α`, ``q “

ż

PS px, ` q̀ fS` px`|x, ``q p
pξq
px, ``q dxˆ

V
ź

v“1

ż

ppξqpαvqf
pvq
∆`pαv`|αvqdαv, (50)

p̄
pξq
` px`, α`, ``q “1L p``q

pS px`, α`, ``q

P̄
pξq
S p``q

` 1B` p``q pB,` px`, ``q , (51)

p
pξ,θ`q
Z`

px`, α`, ``q “
p̄
pξq
` px`, α`, ``qψ

pθ`p``qq
Z`

px`, α```q

ψ̄
pξ,θ`q
Z`

p``q
. (52)



Accepted to Signal Processing. DOI: doi.org/10.1016/j.sigpro.2021.108368

The number of components in the GLMB filtering density grows exponentially over time. Hence, it needs to
be truncated to keep the filter tractable. To select significant components, one approach is to formulate the multi-
dimensional assignment on the extended association maps. However, solving this problem is NP-hard and intractable
given a high number of sensors. On the other hand, significant components can be efficiently sampled from a stationary
distribution via the Gibbs sampler. However, this approach is also intractable with a high number of sensors due
to the amount of memory required to store the high-dimensional distribution. In this work, minimally-Markovian
(between sensors) on the stationary distribution is assumed [13], which allows a significant reduction of computation
time and memory usage. Hence it allows the filter to operate with a high number of sensors in an online fashion.
The filtering procedure is given in Alg. 2 of [13].

In this filter, we model the kinematic with the Gaussian distribution, and the detection probability of each sensor
with independent beta distribution. The procedures to predict and update each beta distribution are described
in [43].

The pseudo-code in Alg. 1 lays out the implementation of our algorithm. The modelCPHD and modelGLMB
classes contain the corresponding transition and likelihood models for the CPHD and MS-GLMB filters as discussed
in Subsections 3.1.1 and 3.1.2. Given the posterior density, multi-target [10] or multi-trajectory [13, 49] estimators
can be applied to extracts target tracks. In this work, we use the sub-optimal multi-target estimators proposed in [10]
to estimate tracks. The complexity of the MS-GLMB filter is OpTP 2

p|
řV
v“1 Z

pvq
|qq. Hence the overall complexity of

our algorithm is OpTP 2
p|
řV
v“1 Z

pvq
|qq.

Algorithm 1 Robust MS-GLMB filtering algorithm

Input: modelGLMB, priorGLMB, modelCPHD, rpriorCPHDsp1:V q, Z`
Output: rposteriorCPHDsp1:V q, EstimatedTracks

Compute ρ̃p1q, ζ̃p1q via Eq.(31) and Eq.(32) using priorGLMB.
for v “ 1 : V do (parallelizable)

posteriorCPHD = Robust-CPHD-Recursion(ρ̃p1q, ζ̃p1q, modelCPHD, priorCPHDpvq, Z`q

Compute κ̄pvq via Eq.(45) using posteriorCPHDpvq

end for
posteriorGLMB = MS-GLMB-Recursion(κ̄p1:V q, modelGLMB, priorGLMB, Z`)
EstimatedTracks = Multi-Target-Estimator(posteriorGLMB)

4 Numerical study

In this section, we conduct numerical studies to compare the performance of our proposed robust MS-GLMB filter
to the ones of MS-GLMB (sub-optimal implementation) and iterated corrector GLMB (IC-GLMB) filters. The
ground truth consists of 10 targets in a 2-D surveillance area over a period of 100 (s). The true target trajectories
are shown in Fig. 3. A target kinematic state is represented by a 4-D vector of planar position and velocity, i.e.,
xk “ rpx, py, 9px, 9pys

T , where T denotes the matrix transpose operation. The single target transition density is given
by

fS` px`|x, `q “ N px`;Fx,Qq , (53)

where N p¨; x̄, P q denotes a Gaussian distribution with mean x̄ and covariance P ,
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„
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«

∆4

4
I2

∆3

2
I2
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2
I2 ∆2I2

ff

, with σa “ 0.15pm{sq, ∆ “ 1psq and In is a n ˆ n identity

matrix. The probability of survival pS is set to 0.98. The newborn targets are modeled by an LMB RFS of
cardinality 6 and the parameters are given as tprB`, p

piq
B`qu

6
i“1 where rB` “ 0.01 and p

piq
B` “ N px;m

piq
B`, QB`q with

QB` “ diagpr10, 5, 10, 5sq and

m
p1q
B` “ p100, 100, 0, 0q, m

p2q
B` “ p100, 500, 0, 0q, m

p3q
B` “ p100, 900, 0, 0q,

m
p4q
B` “ p900, 100, 0, 0q, m

p5q
B` “ p900, 500, 0, 0q, m

p6q
B` “ p900, 900, 0, 0q.

There are eight fixed bearing-only sensors located at position spvq “
´

s
pvq
x , s

pvq
y

¯

, v “ 1, 2, ..., 8, as illustrated in Fig. 3.

For sensor vth , the likelihood that a target px, `q generates a measurement zpvq is given as

gpvq
´

zpvq|x, `, spvq
¯

“ N
´

zpvq;hθpvqpx, s
pvq
q, σ2

θ

¯

, (54)

where

hθ px, sq “ arctan

ˆ

px ´ sx
py ´ sy

˙

, (55)

and σθ “ π{180 (rad). Note that MS-GLMB and robust CPHD filters share the same single-target kinematic
transition and likelihood models.

For a fair performance comparison, all three filters sample 3000 components during the update stage, and a
maximum of 1000 components is allowed in the posterior density. We experimented with 100 Monte Carlo (MC)
trials. The errors of the estimates are quantified via the OSPA [50] and OSPAp2q [15] metrics (between the estimated
value and the ground truth). The cut-off and norm order of the metrics are set to 100(m) and 1, respectively. The
window length of OSPAp2q metric is set to 10(s). We perform the study on three scenarios with different simulated
detection probability and clutter rate settings as given in Tab. 1. These settings are the same for all 8 sensors.

To show the robustness of the proposed algorithm, we keep the parameters unchanged for our filter across all
scenarios. As the estimated pD and κ̄ for all 8 sensors are similar at each scenario, we only show the results from 1
sensor (per scenario) for demonstration purpose.

4.1 Scenario 1

In this scenario, we test the performance of different filters in high clutter rate and high detection probability. For the
IC-GLMB and MS-GLMB filters, we set the detection probability pD and clutter rate κ̄ to 0.9 and 30, respectively,
while these parameters are kept unknown to our filter.
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Figure 3: True target trajectories and sensor locations.

Scenario No.
Parameters

Detection probability pD Clutter rate κ̄p1,...,V q

1 0.9 30
2 0.5 5
3 varying between (0.5 - 0.9) varying between (5 - 30)

Table 1: Scenarios with different unknown parameters

Fig. 4 shows the estimated detection probability and clutter rate from our filter compared to the correct values.
Specifically, Fig. 4a suggests that the detection probability starts at around 0.7 (our initial settings). It approaches
the correct value of 0.9 while the estimated clutter rate is slightly below the true value.

(a) Mean estimated detection probability (b) Mean estimated clutter rate

Figure 4: Mean estimated detection probability and mean clutter rate together with 0.4-σ bound curves in
the first tracking scenario.

Regarding filtering performance, Fig. 5 shows that our filter exhibits low tracking errors both in terms of local-
ization and cardinality estimation. On the other hand, although the IC-GLMB filter gives reasonably low error in
localization, it shows drastic decay in cardinality estimation quality, hence the high overall errors. Moreover, its 0.4-σ
bounds (for visualisation) over 100 MC runs show unstable tracking performance at each time step. Furthermore,
the OSPA and OSPAp2q errors of our method and MS-GLMB filter are similar, as shown in Fig. 5a and Fig. 5b.
It demonstrates that our proposed method is competitive to the MS-GLMB filter. However, ours assumes no prior
information on the target detection probability and clutter rate.

Fig. 6 shows that our filter has slightly better cardinality estimation than MS-GLMB, while IC-GLMB fails due
to the high number of sensors.

4.2 Scenario 2

Different from Scenario 1, in this scenario, we attempt to test the tracking ability of different filters under the
condition of low detection probability and low clutter rate. In this test, we set pD “ 0.5 and κ̄ “ 5 for the IC-GLMB
and MS-GLMB filters, while these parameters are estimated online in our proposed filter.

Fig. 7 shows that our filter correctly estimates the clutter rate of sensors (Fig. 7b), but it slightly overestimates
the targets detection probability. In particular, the average detection probability starts at around 0.65 (near our
initial setting), then it gradually reduces to 0.55 instead of the true value of 0.5 as shown in Fig. 7a.

In terms of filtering performance, Fig. 8 shows that IC-GLMB cannot provide reliable estimates due to a high
number of sensors. On the other hand, the OSPA and OSPAp2q errors for our method and MS-GLMB filter are almost
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(a) Mean OSPA errors (b) Mean OSPAp2q errors

Figure 5: Mean OSPA (left) and OSPAp2q (right) errors in the first tracking scenario for different filters.

Figure 6: Mean estimated cardinality for different filters in scenario 1 with the ground true values.

similar, as shown in Fig. 8a and Fig. 8b. Interestingly, although we assume no prior information on the unknown
background information for our filter, the OSPAp2q error of ours is slightly lower than that of the MS-GLMB filter.

(a) Mean estimated detection probability (b) Mean estimated clutter rate

Figure 7: Mean estimated detection probability and mean clutter rate together with 0.4-σ bound curves in
the second tracking scenario.

Fig. 9 shows that the MS-GLMB filter has better cardinality estimation than ours from time steps 30 to 60. From
time step 60 onward, the MS-GLMB filter tends to provide overestimation while ours slightly underestimates the
number of targets. IC-GLMB cannot reliably track targets in this scenario.

4.3 Scenario 3

To test the filters in time-varying detection profile and clutter rate condition, we create a scenario where the detection
probability pD and clutter rate λc values increase from low to high during tracking period. Specifically, for the first
50 time steps, we simulate the condition with low detection probability and low clutter rate (parameters as in the
scenario 2). For the remaining tracking period, we simulate tracking condition with high detection probability and
high clutter rate (parameters as in the scenario 1). The average detection probability and clutter rate for IC-GLMB
and MS-GLMB are set to the mean values of the variation ranges, i.e. 0.7 and 17.5 for detection probability and
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(a) Mean OSPA errors (b) Mean OSPAp2q errors

Figure 8: Mean OSPA (left 3 plots) and OSPAp2q (right 3 plots) errors in the second tracking scenario for
different filters.

Figure 9: Mean estimated cardinality for different filters in scenario 2 with the ground true values.

clutter rate, respectively.

(a) Mean estimated detection probability (b) Mean estimated clutter rate

Figure 10: Mean estimated detection probability and mean clutter rate together with 0.4-σ bound curves in
the third tracking scenario.

Fig. 10 presents the estimated detection probability and clutter rate from our proposed filter. It demonstrates
that our filter correctly captures the variations of background condition. It is also observed that the sensitivity of
our filter to the change in clutter rate is higher than that of the one in detection probability.

Considering the filtering performance in terms of OSPA and OSPAp2q errors, the results in Fig. 11 shows that
although MS-GLMB filter has better performance than the IC-GLMB, both of these filters fail to track targets in
this scenario. Fig. 11 also indicates that our filter tracks all targets with high level of accuracy. This is due to the
capability of our filter in adapting to the changes of background condition.

Fig. 12 shows that IC-GLMB and MS-GLMB filters incorrectly estimate the targets set cardinality in this scenario.
On the other hand, our method demonstrates reliable estimation results, although it tends to slightly underestimate
the number of targets from time step 30 onward.

For overall comparison, Table 2 shows the mean OSPAp2q errors (over 100 MC runs) evaluated over the entire
tracking period. The results show that the IC-GLMB filter has the worst performance in all three scenarios. On the
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(a) Mean OSPA errors (b) Mean OSPAp2q errors

Figure 11: Mean OSPA (left 3 plots) and OSPAp2q (right 3 plots) errors in the third tracking scenario for
different filters.

Figure 12: Mean estimated cardinality for different filters in scenario 3 with the ground true values.

Scenario No.
Filters

IC-GLMB MS-GLMB Robust MS-GLMB

1 94.44(˘ 7.74) 28.81(˘ 10.45) 40.51 (˘ 10.55)
2 93.24 (˘ 3.61) 47.63 (˘ 9.83) 46.59 (˘ 12.36)
3 99.38 (˘ 1.22) 84.31 (˘ 3.91) 30.16 (˘ 10.62)

Table 2: OSPAp2q errors (˘ 1-σ bound) (m) (over 100 MC runs evaluated over the entire tracking period
(window length of 100s) of different filters in all scenarios.

other hand, the performance of our proposed robust filter is worse than of the MS-GLMB filter in the first scenario.
However, it is competitive to the MS-GLMB filter in the second scenarios (which is supplied with correct background
parameters). For the last scenario, our proposed filter has the best performance compared to the ones of others given
its capability to adapt to the changes in tracking environment.

Although the targets are accurately tracked, we observe the mean detection probability is overestimated while
the clutter rate is underestimated. One hypothesis is that in some GLMB components, clutter measurements might
be associated with true miss-detected tracks (those components might have small weights). In scenario 1, since the
number of clutter measurement is high, the underestimation of clutter rate is more severe. On the other hand, due to
the characteristics of the beta distribution3 and the high detection probability of the scenario, the underestimation of
detection probability is not noticeable. Similar explanation can also be established for scenario 2, but since the clutter
rate is low, the underestimation is not noticeable. However, due to the low detection probability of the scenario, the
detection probability overestimation is more severe.

5 Conclusions

This paper has proposed a robust multi-sensor multi-target tracking algorithm based on the MS-GLMB filter for
multi-target tracking and the low-cost robust CPHD filters for clutter rate estimation. Given this formulation, the
proposed algorithm efficiently estimates the target trajectories and background information online. The experimental
results show that our method provides reliable estimates in different tracking conditions with multiple bearing-only
sensors, whereas the iterated corrector approach fails completely due to the high number of sensors. Notably, our

3In low detection probability scenarios, a detection event will increase the mean detection probability more significant than
in high detection probability scenarios.
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filter has a similar performance to the MS-GLMB filter supplied with the correct background parameters in constant
background condition. In scenario with fluctuating backgrounds, our filter outperforms the MS-GLMB filter because
it can learn and adapt to the changes in clutter rate and target detection profile.

The proposed filter currently assumes prior knowledge of the newborn targets distribution. In practice, this
information is not available in many applications. While the measurement adaptive birth model [14] can be readily
extended to a multi-sensor setting, it is expensive to combine measurements from different sensors to form the
birth density. Hence, an efficient method for births modelling will be considered for a more adaptive multi-sensor
multi-target tracking algorithm for future work.
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