
The Megopolis Resampler: Memory Coalesced Resampling on GPUs
Joshua A. Chessera, Hoa Van Nguyena and Damith C. Ranasinghea,∗

aSchool of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

ART ICLE INFO

Keywords:
Resampling
Megopolis
Metropolis
Particle Filters
Sequential Monte Carlo
Importance Sampling
Adaptive Importance Sampling
GPU

ABSTRACT

The resampling process employed in widely used methods such as Importance Sampling (IS), with its
adaptive extension (AIS), are used to solve challenging problems requiring approximate inference; for
example, non-linear, non-Gaussian state estimation problems. However, the re-sampling process can
be computationally prohibitive for practical problems with real-time requirements. We consider the
problem of developing highly parallelisable resampling algorithms for massively parallel hardware
architectures of modern graphics processing units (GPUs) to accomplish real-time performance.
We develop a new variant of the Metropolis algorithm—Megopolis—that improves performance
without requiring a tuning parameter or reducing resampling quality. The Megopolis algorithm
is built upon exploiting the memory access patterns of modern GPU units to reduce the number
of memory transactions without the need for tuning parameters. Extensive numerical experiments
on GPU hardware demonstrate that the proposed Megopolis algorithm is numerically stable and
outperforms the originalMetropolis algorithm and its variants—Metropolis-C1 andMetropolis-C2–in
speed and quality metrics. Further, given the absence of open tools in this domain and facilitating fair
comparisons in the future and supporting the signal processing community, we also open source the
complete project, including a repository of source code with Megopolis and all other comparison
methods.

1. Introduction
A wide range of domains including multi-object

tracking [2, 14, 40], physics [33], financial economics [36],
and statistics [8] involves problems needing to model
nonlinearity and non-Gaussianity to accurately estimate
the state of a dynamic system, unknown parameters or
functions from noisy measurements. Monte Carlo (MC)
methods are statistical sampling-based techniques to
solve such challenging or high-dimensional problems
numerically [35]. In particular, MC methods use a
collection of random samples (so-called particles with
associated weights) to approximate probability density
functions. One of the common MC methods for sampling
from a complex distribution is the Markov chain Monte
Carlo (MCMC) method, which relies on constructing
a Markov chain based on a stationary (equilibrium)
distribution to generate desired samples [10, 27].

A crucial alternative to the MCMC method is
Importance Sampling (IS) [21] with its adaptive
extension (AIS) [5, 11]. These importance sampling
methods are attractive because of their strong theoretical
basis, wide applicability and ease of understanding. In
essence, importance sampling approximates a probability
distribution by: i) drawing samples from a proposal
distribution (or the posterior distribution in a Bayesian
context); ii) computing sampled weights based on the
difference between proposal distribution and the target
distribution. For online and recursive estimation problems,
practitioners can employ a sequential Monte Carlo (SMC)
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method [12, 15], a recursive generalisation of IS methods.
Notably, IS, AIS and SMC methods are more popular
because of their parallel implementation capabilities,
especially on modern computing hardware. Importantly,
at the heart of many of these algorithms is a resampling
procedure to minimise the particle degeneracy problem
[44].

Resampling is a process of replicating high weight
particles and removing low weight particles while
retaining an approximation of the probability density
function. The resampling process plays a vital role in
IS and SMC methods to prevent the problem of particle
degeneracy, a phenomenon where all but few particles
have negligible weights [2, 15, 44]. However, resampling
is a collective operation over all particle weights and
is therefore computationally expensive. Importantly,
increasing the number of particles improves estimation
accuracy and is an unavoidable necessity for approximating
high dimensional distributions in practical problems.
Consequently, resampling is a bottleneck impeding the
parallelisation of sampling algorithms such as IS, AIS and
SMC for practical problems demanding the manipulation
of large numbers of particles [17, 28, 29]. Therefore, we
consider the problem of developing highly parallelisable
resampling algorithms for massively parallel hardware
architectures of modern graphics processing units (GPUs)
to address performance limitations.

Common resampling algorithms include multinomial,
residual, stratified and systematic [3, 13, 30, 34, 45].
These methods use the normalised particle weights to
compute a particle’s offspring, where the number of
offspring is the number of times to duplicate that particle.
Computing the normalised particle weights involves
computing a cumulative sum over the particle weights
known as a prefix sum. Previous studies have focused
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The Megopolis Resampler

on the parallelisation of the prefix sum and the particle
selection stage of the algorithms [22, 26, 28, 29] to
improve performance. Recently, one notable approach
is to utilise the monotonously increasing nature of the
prefix sum to parallelise the systematic and stratified
resampling algorithms by reindexing particles using
multiple threads [41]. However, the cumulative sum
can lead to numerical instabilities when single-precision
representations are used for particle weights, and the number
of particles is large. Although using double-precision
can alleviate the problem, on contemporary hardware,
single-precision performance is significantly faster than
double-precision, making single-precision a more desirable
choice for production scale algorithms [25].

Metropolis [1] and Rejection resampling algorithms
mitigate the issues of the prefix summethods by avoiding the
prefix sum entirely [37]. Instead of computing a particle’s
offspring, each particle finds an ancestor to replace itself
in both algorithms. The number of offspring for a particle
is determined by the number of other particles that have
selected it to be their ancestor. To find a particle’s ancestor,
the Metropolis and Rejection resampling algorithms use the
ratio between pairs of particle weights to iteratively search
for particles with higher weighting to choose as ancestors.

The Rejection resampler is unbiased but requires an
upper bound on the particle weights, and it can take a
variable amount of time to choose an ancestor for each
particle [37]. Varying execution times are undesirable
as divergent code paths on GPUs have performance
implications. We discuss this issue further in Section 2.3.
The Metropolis resampler is biased but does not require an
upper bound on the weights. The time to find an ancestor for
each particle is constant; consequently,Metropolis is a more
desirable option for parallel resampling. Unfortunately,
both of these algorithms aiming to mitigate the numerical
instability of prefix sum methods are shown to have worse
execution time performance in comparisons with other
methods [38, 39].

Both Rejection and Metropolis resamplers involve
random memory accesses with significant performance
penalties on modern, massively parallel computing
hardware such as graphics processing units (GPUs). As we
explore in Section 2.4, the memory access patterns exhibited
by an algorithm greatly affect GPU performance due to the
memory architecture and the relatively slow memory access
times compared to GPU processing speeds. Two techniques
developed by Dülger et al. [17]—Metropolis-C1 (C1)
and Metropolis-C2 (C2)—aim to improve the Metropolis
resampling algorithm performance on GPU platforms.
These techniques recognise the problems with the memory
access patterns generated by Metropolis and alter the access
pattern of the original Metropolis algorithm to improve
performance on GPUs but introduce a tuning parameter that
adjusts both the speed and the quality of resampling. As we
discuss in Section 3, the memory access patterns generated
by Metropolis-C1 and Metropolis-C2 techniques still inhibit
the performance of these methods.

In this article, we present a new algorithm, Megopolis,
to improve the performance of the Metropolis resampling
algorithm by focusing on designing memory access patterns
to exploit memory coalescing on modern GPUs to improve
performance. Importantly, we achieve performance
improvements without introducing algorithm tuning
parameters or affecting the resampling quality. Further,
we prove that the convergence rate for Megopolis is
the same as Metropolis and, consequently, achieve the
same algorithmic complexity but with the significant
performance improvements attained from coalesced
memory access patterns. We compare our method to the
original Metropolis algorithm and both C1 and C2 in
terms of execution time and resampling quality on a GPU
platform. We demonstrate that Megopolis allows users
to adopt the numerically stable Metropolis resampler in
applications that demand speed without increasing bias and
root-mean-square-error resampling. Further, to support the
research community, we also open source the complete
project comprising a repository of source 1.

The paper is organised as follows. Section 2 provides
preliminary background information, including particle
filtering, GPU programming and memory access patterns.
Section 3 revisits the Metropolis resampler and its C1 and
C2 variants. Section 4 presents our proposed Megopolis
resampling algorithm. Section 5 describes our experimental
framework and performance evaluation measures. Section 6
presents our experimental results across the bias, mean
squared error (MSE), and execution time. Section 7 details
an end-to-end application benchmark. Section 8 discusses
concluding remarks.

2. Background
In this section, we provide a brief overview of sequential

important resampling (SIR) particle filters also known as
bootstrap particle filter (BPF) since we will employ the
SMC method in the end-to-end algorithm benchmark in
the context of an estimation problem in Section 7. SIR
filters are a common and easy to understand example of an
SMC method for state-space estimation problems involving
highly non-linear systems and noisy observations with
non-Gaussian noise.

Although we have used the SIR filter to illustrate the
use of and benchmark the proposed resampling algorithm,
other particle filter algorithms (e.g., Auxiliary Particle Filter
(APF) [42], or Improved APF (IAPF) [18]) or Adaptive
Importance Sampling (AIS) algorithms (e.g., Standard
Population MC (PMC) [7], Mixture PMC (M-PMC) [6],
Deterministic Mixture PMC (DM-PMC) [20], or Diverse
PMC (D-PMC) [19]), employing resampling algorithms
will also benefit from the performance benefits gained from
massive parallelisation of the resampling procedure.

Notably, earlier efforts have focused on parallelisation
of prediction and update processes of particle filters using
techniques such as clustering techniques and dividing

1see: https://github.com/AdelaideAuto-IDLab/Megopolis
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The Megopolis Resampler

the population of particles into a set of sub-population
particles [4, 46] (so-called islands) as well as the
implementation of distributed particle filters on specialised
hardware such as FPGA [3] or VLSI [31]. Similar to the
approaches adopted in [17, 41] , we adopted the capabilities
of modern GPUs and programming paradigms to implement
a SIR (or BPF) particle filter where each step—prediction,
update and resampling—is parallelised to benchmark the
performance gains from the proposed resampling algorithm.

Further, in the following, we provide an overview of
the GPU programming model, coalesced memory access
on modern GPUs and illustrate the problem of uncoalesced
memory access patterns to help understand the proposed
Megopolis algorithm. We begin with an introduction to the
notations we have adopted.

2.1. Notations
For notational clarity and simplicity, we use non-bold

letters to denote scalar values (e.g., x,w), bold letters to
denote vectors, e.g., x = [x(0),… , x(N−1)]T , and
w = [w(0),… , w(N−1)]T , while (⋅)T denotes the transpose
of a vector. A uniform distribution of real numbers within
the interval [a, b) is denoted as  [a, b] while  {a, b}
denotes a uniform distribution of integer numbers within
the interval [a, b]. Further,  (�,Σ) denotes a Gaussian
distribution with mean � and co-variance Σ; E(⋅) denotes
the expectation operator.

2.2. SIR Particle filters
Particle filters (PF) [14, 23, 24, 43] belong to a class

of approximation methods for non-linear systems in the
Bayesian filter family. The primary method of a particle
filter is to use a random sampling process to approximate
the probability distributions of interest [24]. Particle
filters implement the random sampling process called
the Monte Carlo (MC) method to approximate the belief
density by a weighted set of independently and identically
distributed (i.i.d) particles. The filtering algorithm
involves three key processes: i) prediction–the particles are
propagated using the system model; ii) update–the particle
weights are updated based on noisy observations, and
iii) resampling—particles with low weights are removed.

Formally, suppose that xt−1 is the state of interest at
time t−1, which generates an observation zt−1 while z1∶t−1
denotes the measurements history up to time t − 1. The
belief density p(xt−1|z1∶t−1) is approximated by a set of
particles, {(w(i)t−1, x

(i)
t−1)}

N−1
i=0 , where N is the number of

particles, w(i)t−1 and x
(i)
t−1 are the weight and state of particle

i at time t − 1 respectively with
N−1
∑

i=0
w(i)t−1 = 1, and �(⋅)

denotes the Kronecker delta function.
Each particle is predicted to time t using a dynamic

transition model expressed as:

x(i)t|t−1 = ft−1(x
(i)
t−1, vt−1), (1)

where ft−1(⋅, ⋅) is a dynamic transition function, vt−1 is the

Algorithm 1 SIR Particle Filter (Bootstrap Particle Filter)
Input: [x̄t−1, zt]
Output: x̄t

⊳ Stage 1: Predict and Update

1: for i ← 0 toN − 1 do
2: x(i)t = ft−1(x̄

(i)
t−1, vt−1) ⊳ prediction using (1)

3: w(i)t = p(zt|x
(i)
t ) ⊳ update using (2) wherew(i)t|t−1 =

1
N

is omitted.
4: end for

⊳ Stage 2: Normalise Weights

5: r =
∑N−1
i=0 w(i)t

6: for i ← 0 toN − 1 do
7: w(i)t = w(i)t ∕r
8: end for

⊳ Stage 3: Resample

9: x̄t = RESAMPLE([xt,wt])

process noise, while the weightw(i)t|t−1 = w
(i)
t−1 is maintained

during the prediction step.
In contrast, during the update step, the particle state

is maintained, i.e., x(i)t = x(i)t|t−1, while its corresponding
weight is updated as

w(i)t = p(zt|x
(i)
t )w

(i)
t|t−1, (2)

and then normalised to ensure that
∑N−1
i=0 w(i)t = 1 before

the resampling stage.
A typical problem with particles filter is particles

depletion or degeneracy, i.e., weights are concentrated on
a few particles, while the remaining particles have weights
close to zero. After multiple update procedures, the reason
is that the variance of weights increases and never decreases
because the measurement likelihood function is often less
scattered than the dynamic transition kernel [2, 15, 16].
A well-known method to prevent particle depletion is
resampling [13, 30, 45]. The resampling procedure avoids
particle degeneracy by pruning particles with small weights
while duplicating particles with high weights.

In this article, we employ the SIR particle filter, also
known as the bootstrap resampling filter [24], shown in
Algorithm 1 for an end-to-end application benchmark in
Section 7. In this algorithm, xt is the set of particles at time
step t before resampling; x̄t is the set of particles at time
step t after resampling. The SIR particle filter algorithm
can be separated into three stages. Stage 1: particles and
particle weights are updated using the prediction model
and the measurement likelihood model. Stage 2: the
particle weights are normalised. Stage 3: the particles are
resampled, generating a new set of particles. Notably, in
line 9, the resampling step approximates the belief density
by a set of particles with the equal weights of 1∕N , i.e.,

p(xt|z1∶t) ≈
N−1
∑

i=0
w(i)t �(xt − x

(i)
t ) ≈

1
N

N−1
∑

i=0
�(xt − x̄

(i)
t ).

2.3. GPU Programming
Implementing numerical algorithms efficiently on GPUs

requires careful consideration of specific architectural

J. Chesser et al.: Preprint submitted to Elsevier Page 3 of 21
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features of graphics processing units. We briefly introduce
GPU programming and code execution concepts to provide
necessary insights into algorithm design decisions and their
performance impact on GPUs. We provide a primer on
threads, memory, and kernels in the context of GPU in the
following.

On a GPU, instructions are executed in a single
instruction, multiple threads (SIMT) architectures. In
this architecture, threads are executed in groups of 32
parallel threads called warps. Each thread in a warp
initialises to the same program address but maintains its
own instruction counter and register state. A warp will
execute one instruction on all threads simultaneously until
all threads have finished execution. If a thread’s instruction
counter differs from the warp instruction, that thread will
be inactive for that cycle, reducing the efficiency gains from
parallelisation. Consequently, diverging code paths should
be avoided in GPU algorithm designs.

Executing code on a GPU generally involves threads
fetching data from memory and executing instructions, as in
a typical Von Neumann architecture. As expected, memory
access times are orders of magnitude slower (involving
hundreds of clock cycles) than instruction executions [47]
and lead to performance bottlenecks. As a result, the
manner in which threads in a warp access memory (their
memory access pattern) can greatly affect the execution
time exhibited by threads in a warp. Consequently,
efficient memory access patterns are critical to achieving
performance improvements.

Kernels define the code to be executed on the GPU in
parallel. The host machine must launch a kernel onto the
GPU. To launch a kernel, the host must specify the number
of threads to launch with two parameters, blockcount
and blocksize. The total number of threads launched is
blockcount × blocksize. Two common ways of launching
kernels are the monolithic and grid-stride loop launch. In a
monolithic launch, the host launches one thread per datum.
In a grid-stride loop launch, any number of threads can
be launched, but each thread operates on multiple data.
Launching kernels generates an added overhead as the GPU
must prepare and schedule threads for execution.

2.4. Memory access patterns
Warps are responsible for servicing the memory

accesses of all its owned threads. Warps transact with
memory in aligned 32-byte segments, and if multiple
threads request data from the same segment, then the warp
only needs to fetch one segment to service those threads.
Coalescing memory access combines many memory
accesses into a single or as few memory transactions
as possible. Consequently, coalesced memory access
occurs when threads in a given warp access data that are
physically close in the memory address space [25]. Memory
accesses leading to coalesced memory access patterns can
significantly improve memory throughput and reduce the
execution time of numerical algorithms.

Certain memory access patterns can lead to uncoalesced

memory access, and it is important to consider the resulting
memory access patterns when designing an algorithm
for GPU execution. We provide a brief discussion on
two contrasting access patterns to highlight the potential
impact on performance as well as to aid the description
of the proposed resampling algorithm, which can realise
coalesced memory access patterns. For simplicity, we
consider the scenario of a single warp where the threads are
accessing 4-byte words from global memory, where global
memory is only 256-bytes in size.

First, we look at the simplest access pattern that achieves
high coalescence due to localised thread accesses. Here,
thread k ∈ {1…32} accesses the kth word in a 32-byte
aligned array starting at byte 64, illustrated in Fig. 1a. In
this case, the warp only requires 4 transactions to service all
32 threads, and no word is unnecessarily loaded.

Second, we look at a stridden access pattern that
achieves poor coalescence due to separated thread accesses.
Here, given some offset o, thread k ∈ {1…32} accesses
the (ko)th word in a 32-byte aligned array starting at byte
0, illustrated in Fig. 1b. With an offset of o = 2, a warp
requires 8 transactions to service all 32 threads, and every
second word is unnecessarily loaded in this example.
Notably, as o increases, the thread accesses are further
separated, and the impact of increased transactions are
further exacerbated.

3. Revisiting the Metropolis Resampler

The Metropolis resampling algorithm designed for
parallel execution avoids the common issue of numerical
instabilities from computing the prefix sum of weights seen
in other resampling methods. Although the algorithm has

 Required Segment (32-Bytes) / Transaction

Not Loaded WordRequired Word Unused Word

64 96 128 160 192 224 256320

Warp (32 Threads)

Global Memory (Bytes)

Thread Word 
Access

(a) Simple access pattern. Requires 4 transactions.

64 96 128 160 192 224 256320

Warp (32 Threads)

Global Memory (Bytes)

(b) Strided access pattern with an offset of 2. Requires 8
transactions.

Figure 1: An illustration of a warp’s 32-byte memory
transactions with different memory access patterns. Each
thread in the warp points to the memory location of the 4-byte
word it is accessing.
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 Required Segment (32-Bytes) / Transaction

Not Loaded WordRequired Word Unused Word

64 96 128 160 192 224 256320

Warp (32 Threads)

Global Memory

Figure 2: An illustration of the Metropolis random memory
access pattern. The warp requires from 1 to 8 memory
transactions when the section of memory is 256-bytes in size.

been analysed by other previous works [17, 38, 39], we
revisit Metropolis and its variants to explain practical and
performance issues as well as to aid the explanation of our
Megopolis algorithm.

For completeness, the Metropolis algorithm is described
in Algorithm 2, and parameter definitions are explained in
Table 1. Metropolis operates by using the ratios between
randomly selected particle weights to iteratively select
particles with higher weights to duplicate. It generates a list
containing an ancestor for each particle where the ancestor
is the index of the particle that will replace the current
particle. However, due to the random selection of particles,
the algorithm manifests a random memory access pattern
illustrated in Fig. 2. In this example, thread k ∈ {1…32} of
a warp accesses the itℎ word where i ∼  {0, 63}. Notably,
when the number of particles exceeds 256, it is possible for
thread memory accesses to be completely separated where
each thread in a warp accesses a weight from a unique
segment for comparison. This can result in a maximum of
32 memory transactions for a single warp. Consequently,
the algorithm implementations on GPUs leads to poor
performance due to memory throughput bottlenecks.

Importantly, in the Metropolis algorithm, the
convergence of the resampled distribution to the
approximated posterior probability density function or
the belief density of the system is determined by the number
of iterationsB ∈ ℕ (an integer). SinceB is finite in practice,
the algorithm always produces a biased sample— the larger
number of iterations leading to lower bias. Hence, B needs
to be selected with care, and the selection process of B is
described in detail in [39] and is given by

B ≥

⌈

log(�)

log(1 −
E(w)
w(p)

)

⌉

(3)

where
⌈

⋅
⌉

is the ceiling operator, � is an error bound
(maximum variation distance to the posterior probability
density function) greater than 0; w(p) = max(w) is the
maximum of particle weights. In practice, we want to
avoid calculating B as it requires a weight summation to
compute E(w) and an exhaustive search for w(p). Both
the summation and exhaustive search increase execution
time and, as discussed previously, performing a sum over
the weights can lead to numerical instabilities. Instead,

Table 1
List of parameters used in Metropolis, C1, C2, and Megopolis.

Common Parameters
xt Particles at time t
wt Weights at time t
x̄t Resampled particles at time t
N Number of particles
B Number of iterations
i Particle index
k Ancestor index
u Uniform random number between 0 and

1 for ancestor selection
b Inner loop iteration index
j Selected particle index for comparison
Metropolis-C1/C2 Specific Parameters

Psize Number of bytes in a chosen partition of
wt

Npart Number of Psize partitions in wt

Nw Number of single-precision floating-point
weights in a partition

iwarp Warp index
p Selected partition

Megopolis Specific Parameters
o List of random integer offsets

ialigned Starting index of initial aligned segment
oaligned Segment aligned offset
ounaligned Unaligned offset within segment

Algorithm 2 Metropolis Resample
Input: [xt,wt]
Output: x̄t

1: for i ← 0 toN − 1 do
2: k← i
3: for b← 0 to B − 1 do
4: u ∼  [0, 1]
5: j ∼  {0, N − 1} ⊳ select a particle index for comparison
6: if u ≤ w(j)t ∕w

(k)
t then

7: k ← j
8: end if
9: end for
10: x̄(i)t = x(k)t
11: end for

an appropriate value for B can be chosen from some
estimate of E(w)∕w(p) either pre-computed experimentally
or computed at runtime using a subset of the particles or
another estimation method.

The Metropolis resampler can be implemented with
a single GPU kernel. The outer loop (lines 1 to 11 in
Algorithm 2) can be executed in parallel such that each
thread is assigned one particle to find the ancestor for.
The particle weights are stored in memory; hence, each
comparison requires memory access from a random location
in memory resulting in the random access pattern discussed
earlier. The generated memory access becomes an issue due
to the inability of the GPU to coalesce the random memory
accesses as the number of particles increases.

J. Chesser et al.: Preprint submitted to Elsevier Page 5 of 21
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Algorithm 3Metropolis-C1 Resample
Input: [xt,wt]
Output: x̄t

1: Npart ← 4N∕Psize ⊳ number of partitions
2: Nw ← Psize∕4 ⊳ number of weights in a partition
3: for i ← 0 toN − 1 do
4: k ← i
5: iwarp ← ⌊i∕32⌋ ⊳ compute warp index
6: p ∼  {0, Npart − 1} ∣ iwarp

⊳ select common partition for threads in a warp
7: for b← 0 to B − 1 do
8: u ∼  [0, 1]
9: j ∼  {p ⋅Nw, (p + 1) ⋅Nw − 1}

⊳ select a particle index for comparison
10: if u ≤ w(j)t ∕w

(k)
t then

11: k ← j
12: end if
13: end for
14: x̄(i)t = x(k)t
15: end for

Algorithm 4Metropolis-C2 Resample
Input: [xt,wt]
Output: x̄t

1: Npart ← 4N∕Psize ⊳ number of partitions
2: Nw ← Psize∕4 ⊳ number of weights in a partitions
3: for i ← 0 toN − 1 do
4: k ← i
5: iwarp ← ⌊i∕32⌋ ⊳ compute warp index
6: for b← 0 to B − 1 do
7: u ∼  [0, 1]
8: p ∼  {0, Npart − 1} ∣ iwarp

⊳ select common partition for threads in a warp
9: j ∼  {p ⋅Nw, (p + 1) ⋅Nw − 1}

⊳ select a particle index for comparison
10: if u ≤ w(j)t ∕w

(k)
t then

11: k ← j
12: end if
13: end for
14: x̄(i)t = x(k)t
15: end for

3.1. Metropolis-C1 and Metropolis-C2
The Metropolis-C1 (simply C1 henceforth) and

Metropolis-C2 (C2 henceforth) algorithms are an adaptation
of the Metropolis algorithm aiming to improve memory
coalescence [17]. We revisit C1 and C2 in Algorithms 3
and 4, respectively. The additional parameters introduced
in C1 and C2 are described in Table 1.

Selected Partition

64 96 128 160 192 224 256320

Warp (32 Threads)

 Required Segment (32-Bytes) / Transaction

Not Loaded WordRequired Word Unused Word

Figure 3: An illustration of the partitioned random memory
access pattern used by the C1 and C2 algorithms when the
selected partition starts at the 64th byte and is 128 bytes long.

Algorithm 5 Megopolis Resample
Input: [xt,wt]
Output: x̄t

1: o ← [o(0),… , o(B−1)]T
2: for b← 0 to B − 1 do
3: o(b) ∼  {0, N − 1}
4: end for
5: for i ← 0 toN − 1 do
6: k← i
7: ialigned ← i − (i mod 32) ⊳ compute aligned index
8: for b← 0 to B − 1 do
9: oaligned ← o(b) − (o(b) mod 32) ⊳ compute aligned offset
10: ounaligned ← (i + o(b)) mod 32 ⊳ compute unaligned offset
11: j ← (ialigned + oaligned + ounaligned ) mod N

⊳ select a particle index for comparison
12: u ∼  [0, 1]
13: if u ≤ w(j)t ∕w

(k)
t then

14: k← j
15: end if
16: end for
17: x̄(i)t = x(k)t
18: end for

Both C1 and C2 algorithms divide the particles into
partitions; each partition contains a user-defined number
of bytes. Conceptually, the algorithms attempt to force
all threads in a given warp to only access memory from
one partition at a time (line 6 in Algorithm 3 and line
8 in Algorithm 4) to increase the localisation of thread
memory accesses. Consequently, the number of global
memory transactions required by each thread warp is
related to the partition size Psize instead of random
memory accesses—illustrated in Fig. 2—resulting from
the execution of the Metropolis algorithm. The realised
partitioned random memory access pattern generated by C1
and C2 is illustrated in Fig. 3.

The partition approach adopted by C1 and C2 forces a
compromise between speed and bias. In C1, Algorithm 3,
each warp selects one partition outside the inner loop (line
6) and performs Metropolis resampling using only the data
within that partition. Reducing the partition size reduces
the number of memory transactions required but restricts
the range of data each thread can view when choosing an
ancestor. The C2 algorithm—Algorithm 4—reduces bias
by randomly selecting a new partition at each iteration of
the inner loop (line 8). However, this alteration affects
performance because the adopted method forces each thread
to generate an extra random number for each algorithm
iteration.

4. Megopolis
We propose a variation of the Metropolis algorithm,

referred to as the Megopolis algorithm, to improve
performance on massively parallel hardware architectures
of modern graphics processing units. We aim to improve
memory coalescence and obviate the need for a tuning
parameter, such as the partition size in C1 and C2, whilst
not sacrificing the quality of the results measured by bias
and mean squared error—defined in Section 5.

Algorithm 5 describes Megopolis algorithm. The key
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 Required Segment (32-Bytes) / Transaction

Not Loaded WordRequired Word Unused Word

64 96 128 160 192 224 256320

Warp (32 Threads)

Global Memory (Bytes)

(a) Misaligned but sequential memory access pattern. Requires at
most 5 transactions.

64 96 128 160 192 224 256320

Warp (32 Threads)

Global Memory (Bytes)

Wrapped Access

(b) Wrapped sequential memory access pattern. Requires 4
transactions

Figure 4: An illustration of the memory access patterns
exhibited by the Megopolis algorithm.

concept underlying the construction of the Megopolis
resampler is to avoid the need for individual threads to
generate random indices for weight comparison and,
thereby, remove the consequential generation of the
undesirable random memory access patterns to global
memory illustrated in Fig. 2. In contrast to previous
algorithms, we compute B random integers (lines 1–4)
for use as random offset values, necessary for the B
comparisons the algorithm must perform (lines 8–16), as a
separate task before the resampling process. Subsequently,
during parallel execution, each random integer is used as an
offset for all threads, simultaneously in the inner loop, to
choose the next weight compared to the currently selected
ancestor.

The random integer offsets are uniformly sampled from
[0, N − 1] to ensure that every particle has a uniform
likelihood of choosing any other particle for comparison.
Here, o is a set of random offsets uniformly sampled from
[0, N − 1]; in contrast to previous algorithms, j now uses
the random offsets o(b) ∈ o instead of generating another
new random number to select particles for comparison.
Given a set of random integers o = [o(0),… , o(B−1)]T , at
iteration i of the main loop and iteration b of the inner loop,
the idea is to use the value o(b) as an offset to the index of
the ith particle to find the bth particle index for comparison.
This can be achieved by adding the offset to the ith index
and using modulo arithmetic to ensure the resulting index
j ∈ [0, N − 1], i.e., (i + o(b)) mod N . In the context of
parallel execution, where the main loop is performed in
parallel, this offset formulation would result in every thread
in a warp accessing memory directly next to the memory
accessed by its neighbours. This would achieve a localised
sequential but misaligned access pattern as illustrated in
Fig. 4a. However, Fig. 4a demonstrates that this access
pattern can result in an additional unnecessary memory

transaction, where a warp of 32 threads requires at most 5
transactions with potentially 8 unnecessary word loads.

To remove the aforementioned unnecessary memory
transaction, we force all memory accesses of threads in a
warp to be within a memory aligned partition. We choose
a partition for each warp, namely the warp partition, to
be large enough. Each thread within that warp can access
exactly one unique particle, i.e., for a warp with 32 threads,
we use a partition size fits exactly 32 particle weights. To
force memory accesses to be within this partition, memory
accesses that extend past the end of the warp partition are
wrapped around to the start of the partition. In contrast
to the sequential but misaligned formulation, at iteration
i of the main loop and iteration b of the inner loop, the
particle index for comparison is computed by first finding
the starting index of the warp partition and then computing
the offset within that partition. The starting index is found
by offsetting the aligned index of the ith particle with the
aligned offset from o(b). These aligned components are
computed by rounding down to the nearest multiple of the
partition size (lines 7 and 9). The offset within the partition
is computed by wrapping the sum of i and o(b) to be within
the partition size, i.e., i + o(b) mod 32 for a warp with 32
threads (line 10). This achieves a highly localised wrapped
sequential access pattern illustrated in Fig. 4b.

When using the wrapped sequential access pattern
during parallel execution, all threads within a warp will
access memory within an aligned segment of memory while
each unique offset still produces a unique index. In the
example presented in Fig. 4b, this formulation results in a
memory access pattern where a warp of 32 threads requires
exactly four memory transactions with zero unnecessary
word loads. This access pattern closely follows the highly
efficient sequential memory access pattern illustrated in
Fig. 1a.

Notably, the proposed Megopolis resampling algorithm
requires the small but additional generation and storage ofB
integers and, therefore, an additional runtime and memory
complexity of (B) compared to the Metropolis algorithm
and its C1 and C2 variants. The generation of these random
integers can be performed in parallel to reduce the runtime
complexity to (1).

4.1. Selecting Number of Iterations
In the following, we provide proof to confirm the

proposition that the number of iterations B for Metropolis
and the proposed Megopolis can indeed be described
by equation (3) and consequently, bear the same rate of
convergence of the resampled particle distribution to the
estimated belief density of the system. This is an important
result that ensures the number of iterations, hence the
time-complexity, to achieve a desirable resampling quality
is the same as that of Metropolis.

Proposition 1. The rate of convergence of Megopolis is
the same as Metropolis and is described by the minimum
number of iterations B to achieve an error � ∈ (0, 1] as
the maximum variation distance to the posterior probability
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density function p(xt|z1∶t), where:

B =

⌈

log(�)

log(1 −
E(w)
w(p)

)

⌉

(4)

and w(p) = max(w) is the maximum weight of particles.

Proof. Since the rate of convergence is described by the
number of iterations B, we aim to show that the number
of iterations B for the Megopolis algorithm is the same
as for the Metropolis algorithm. As explained in [39],
the convergence rate to the target probability distribution
p(xt|z1∶t) is predominantly dependent on the particle with
the highest weight. If we define x(p) as the particle with
the maximum weight w(p) then we want to estimate the
value of B which satisfies the probability that the particle
x(i), i ∈ {0,… , N − 1} will choose x(p) as its ancestor
given B and w, with a desired error � ∈ (0, 1], i.e.,

Pr(x(i) = x(p)|B,w) ≥ w(p)
∑N−1
i=0 w(i)

− �. (5)

For compactness, let PB = Pr(x(i) = x(p)|B,w).
We investigate how PB changes over the iterations, by
considering two aspects: i) the probability of selecting
x(p) for the particles that have not selected x(p) at iteration
B − 1, ii) the probability of not selecting x(p) for particles
that have already selected x(p) at iteration B − 1. Note that
since all particles are given the same offset value o(b) at each
iteration, the probability of selecting any particle index in
line 9 of Algorithm 5 is 1

N
.

i) Since the ratio w(p)∕w(j) ≥ 1 ∀j ∈ 0,… , N − 1,
the probability of selecting x(p) at iteration B is the
probability that a particle that has not already selected
x(p) at iteration B − 1 chooses x(p) for comparison at
iteration B, i.e.,

(1 − PB−1) ⋅
1
N

(6)

ii) The probability of deselecting x(p) at iteration B for
particles that have already selected x(p) at iterationB−
1 is

N−1
∑

i=0,i≠p

w(i)

w(p)
⋅
1
N

⋅ PB−1 =
[E(w)
w(p)

− 1
N

]

PB−1

(7)

Thus, at iteration B, PB can be computed as followed:

PB = PB−1 + (1 − PB−1) ⋅
1
N
−
[E(w)
w(p)

− 1
N

]

PB−1

= 1
N
+ PB−1(1 −

E(w)
w(p)

). (8)

For a given P0, we can write (8) in terms ofB as follows:

PB = (1 −
E(w)
w(p)

)BP0 +
1
N

B−1
∑

i=0
(1 −

E(w)
w(p)

)i (9)

By setting P0 = 0 and

PB = w(p)∕[
∑N−1
i=0 w(i)] × (1 − �) = (1 − �)∕(N

E(w)
w(p)

)
which satisfies (5), we have:

(1 − �)

N
E(w)
w(p)

= 1
N

⋅
(1 −

E(w)
w(p)

)B − 1

(1 −
E(w)
w(p)

) − 1
(10)

⇔ (1 −
E(w)
w(p)

)B = �. (11)

Thus, it suffices to select B =

⌈

log(�)

log(1 −
E(w)
w(p)

)

⌉

as

the minimum number of iterations to satisfy condition (5).
Hence the minimum number of iterations B described by
(3) for the Metropolis algorithm is identical to that for the
proposed Megopolis algorithm. Consequently, the rate of
convergence of Megopolis is the same as Metropolis.

5. Experiments
We detail the settings employed in the extensive

numerical experimental regime and introduce the
performance measures adopted to assess the performance
of resampling algorithms.

Numerical Experimental Settings. To obtain the
weight sequences w for the experiments, we use two
weight-generation methods.

For the first method, we follow the weight generation
method proposed in [39]. We use this method to evaluate
the performance of the algorithms as the particle weighting
becomes concentrated on a few particles, a typical scenario
demanding a resampling process. The weights are generated
as follows:

w(i) = 1
√

2�
exp

(−1
2
(x(i) − y)2

)

, (12)

where x(i) ∼  (0, 1) (drawn from a zero-mean Gaussian
distribution with a co-variance Σ = 1) and y controls
the weight distribution. As y increases, the coefficient
of variation (CV) �∕� increases where � and � are the
standard deviation and mean of the weights, respectively.
Consequently, a larger CV corresponds to few particles
holding the majority of the weight. We generate weights
using 5 different values for y as illustrated in the distributions
in Fig. 5a. From Fig. 5a, we can observe that as y increases,

J. Chesser et al.: Preprint submitted to Elsevier Page 8 of 21



The Megopolis Resampler

most particles will have weights in the 0 and 1 weight bins,
with few particles in the higher weight bins, simulating the
particle degeneracy problem.

For the second method, we adopt a similar approach
in [17] used for evaluating resampling algorithms by
sampling from the gamma distribution. We use the gamma
distribution to evaluate the algorithms on a rich variety of
particle weight distributions. The gamma distribution is
defined by the following probability density function:

p(x ∣ �, �) =
��x�−1e−�x

Γ(�)
∀x, �, � > 0, (13)

where � is the shape parameter for the gamma distribution
Γ(�) and � is the rate parameters of the gamma
distribution. The shape and rate can be adjusted to
obtain different distributions. We generate 5 different
distributions by setting � to 1 and selecting 5 values
for �: 0.5, 2.0, 3.0, 10.0, and 50.0. The resulting weight
distributions are shown in Fig. 5b.

Weight Bins

D
at

a 
P

er
ce

n
ta

g
e

(a) Weight distribution of a weight sequence generated from (12).
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(b) Weight distribution of a weight sequence generated from the
gamma distribution.

Figure 5: Illustrations of the distribution of weights in weight
sequences of size N = 4, 194, 304, generated using (12)
and by sampling from the gamma distribution. The X-axis
represents the bins of the weights, and the Y-axis represents
the percentage of particles with weights in a given bin.

Algorithm Implementation Details. We implement each
algorithm using the Compute Unified Device Architecture
(CUDA) C++ platform on a Tesla K40m GPU. All
resampling GPU kernels are implemented with a grid-stride
loop to accommodate a varying number of particles easily.
With the exception of the improved systematic kernels, they

are launched with a 512 blockcount and a 256 blocksize.
The improved systematic kernels are launched with a
512 blockcount and a 64 blocksize to utilise the shared
memory optimisation [41]. When a prefix sum is required
for resampling, we employ the efficient parallel prefix sum
algorithms provided by the Thrust library [25]. We use
XORWOW PRNG pseudo-random number generator (PRNG) in
the CURAND library for all random number generations in the
kernels. The PRNGs are only initialised once outside of
the resampling kernels, and the states are saved in global
memory. For all algorithms, when we are required to
generate random numbers, the PRNG states are loaded
from memory in a coalesced way and used to generate the
random numbers in parallel. When a kernel has finished
generating random numbers, the PRNG state is stored back
into global memory. The initialisation time of the PRNGs
is excluded from execution time; however, the loading and
storing of the PRNG states are included.

5.1. Performance Evaluation Measures
Resampling algorithms are often assessed empirically

for mean squared error (MSE), bias, and execution time [39,
17].

Mean Square Error (MSE). To determine the squared
error (SE) we compare the offspring vector ok, where o

(i)
k is

the number of offspring of the ith particle, to the expected
offspring computed from the weight vector w as described
in [39] using:

SE(ok) =
N−1
∑

i=0

(

o(i)k − Nw(i)
∑N−1
j=0 w(j)

)2. (14)

The MSE is then calculated from K offspring vectors
o1, ...,oK by taking the sample mean of squared errors:

MSE(o) = 1
K

K
∑

k=1
SE(ok). (15)

Bias. Notably, the MSE can be rewritten as a sum of two
separate components, bias and variance highlighted in [39]:

MSE(o) = Var(o) + ||Bias(o)||2. (16)

Here,

Var(o) =
N−1
∑

i=0
Var(o(i)), (17)

||Bias(o)||2 =
N−1
∑

i=0

(

ô(i) − Nŵ(i)
∑N−1
j=0 w(j)

)2 (18)

where,

ô(i) = 1
K

K−1
∑

k=0
o(i)k , (19)
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Var(o(i)) = 1
K − 1

K−1
∑

k=0
(o(i)k − ô(i))2 (20)

ô(i) is the sample mean of the offspring of the ith particle
in the K offspring sequences. Var(o(i)) is the sample
variance in offspring of the ith particle in the K offspring
sequences. The MSE results are normalised by the number
of particles, MSE(o)∕N . Then the contribution of the
squared bias to the mean squared error given in (21) is used
to assess the bias of the resampling algorithms.

Bias contribution = ||Bias(o)||2∕MSE(o) (21)

Execution Time. To assess the speed of each resampling
algorithm, we calculate the execution time of the kernels.
We compute B using (3) with � = 0.01 and ignore this
computation time as it is the same for all of the algorithms,
and, in practice, it can be chosen from some estimate of the
weight distribution.

For each resampling algorithm, we consider the
performance when the number of particles is increased
from 26 to 222. We generate 16 unique weight sequences
from both weight generation methods for each choice of the
number of particles. Each algorithm under test performs
256 Monte Carlo runs (K = 256) on each weight sequence,
generating an offspring vector each time. The experimental
results for a given weight distribution are the average across
the 256 repeated assessments of the 16 generated weight
sequences.

6. Results and Discussion
This section compares the Megopolis algorithm with

Metropolis and C1 and C2 with partition sizes 128 and
2048 bytes. For the sake of brevity, C1-PS128, C1-PS2048,
C2-PS128, C2-PS2048 will be used to discuss C1 and
C2 with the respective partition sizes. We compare
the algorithms using the weight distribution described
in (12) to generate weight sequences. The results are
summarised in Fig. 6. We also compare the algorithms
with weight sequences generated by sampling from the
gamma distribution described by (13); however, as the
results are very similar to those observed with the previous
weight-generation method, we defer these results to
Appendix A. To provide a baseline for the expected MSE
and bias, we also compare Megopolis to the unbiased
parallel resampling methods that require a prefix sum, the
parallel multinomial algorithm, [38], and the improved
parallel systematic method [41]. These algorithms are
provided in Appendix B with a discussion in Section 6.5
and results summarised in Fig. 8.

6.1. MSE and Bias
The MSE and bias contribution results indicate that

the Megopolis algorithm produces the highest quality
results compared to Metropolis, C1, and C2. It produces

a lower MSE than these algorithms without increasing the
bias contribution to MSE. To understand the rationale for
the lower MSE, we analyse the bias and variance of the
Megopolis results separately.

The bias contribution results in Fig. 6 demonstrate
that the bias contribution for Megopolis is the same as
both Metropolis and C2 but significantly lower than C1.
We observe no increase in the bias for Megopolis due to
the behaviour exhibited by an individual particle during
ancestor selection. For an individual particle, at each
iteration of the inner loop, the particle uses a random offset
from 0 to N − 1 to select a particle for comparison with its
current ancestor. As such, this choice can be any particle
from the entire set of particles with equal probability,
resulting in negligible bias values. Given that the MSE
is composed of variance and bias, the lower MSE for
Megopolis indicates that Megopolis produces less variance
in the particle offspring across repeated resamples of the
same distribution.

The lower variance in particle offspring for Megopolis
is attributed to selecting a weight for comparison with the
current ancestor. In Megopolis, each particle is exposed
exactly once for weight comparison on B occasions due to
the global offsets used. As such, the maximum number of
offspring a particle can have in a given resampling process
is B; hence, the range of possible offspring a particle can
have 0 to B for Megopolis. In contrast, in Metropolis, C1
and C2, each particle generates its own random index at
each iteration; hence, for a single iteration, a single particle
may be selected as an ancestor up to N times while others
may not be selected at all. Therefore, the range of possible
offspring a particle can have is 0 to N for Metropolis, C1,
and C2. As B is generally significantly smaller than N , the
range of possible offspring a particle can have is smaller
in Megopolis than Metropolis, C1, and C2. Consequently,
Megopolis produces significantly lower variance in particle
offspring.

6.2. Execution Time
We evaluate and report the execution time of the

proposed Megopolis and the relative speedup obtained with
respect to other algorithms. The results demonstrate that
Megopolis is significantly faster than Metropolis and C1
and C2 implementations with large partition sizes (2048).
The execution time improvements become more prevalent
when the number of particles exceeds 214; at this point, the
contribution of the kernel launch time to the total execution
time becomes less significant. Overall, as expected,
Megopolis using the wrapped sequential memory access
pattern to coalesce memory accesses attains significant
performance improvements when the number of particles
required is large.

Interestingly, small partition (PS128) implementations
of C1 and C2 have similar execution time performance
to Megopolis, with C1-PS128 marginally faster than
Megopolis. The comparable execution times attained can
be attributed to the similar number of memory transactions
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Figure 6: Comparison of experimental results of Megopolis, Metropolis, C1-PS128, C1-PS2048, C2-PS128, and C2-PS2048,
using the distribution from (12) to generate weights. The speedup graphs directly compare the execution time of a given method
with Megopolis where Speed Up = ExecutionT ime∕Megopolis Execution T ime.
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that Megopolis, C1-PS128, and C2-PS128 require.
Megopolis requires 4 transactions at each iteration of the
inner loop as it achieves the wrapped sequential memory
access. The impact of the smaller partition sizes leads
C1-PS128 and C2-PS128 to require at most 4 transactions.
The marginal speedup of C1-PS128 over Megopolis can be
attributed to C1-PS128 having improved cache utilisation as
each thread warp uses the same partition for all iterations.
Using the same partition at each iteration allows for better
cache utilisation when each partition is small enough to
fit entirely within the cache and, thus, reducing the need
to access slower global memory. However, the speedup
is marginal since C1 still requires generating two random
numbers per particle (lines 8 and 9) for each iteration B
compared to the single random number generation needed
in Megopolis (line 12).

Despite requiring only at most 4 transactions in
C2-PS128, Megopolis gains a small speedup over
C2-PS128. This can be attributed to the behaviour C2
exhibits as the number of iterations B increases. As B
increases, C2 must generate more random numbers than
Megopolis for each iteration (three numbers per particle
compared to the single number in Megopolis), resulting
in longer execution times. We observe this effect in
the speedup graph of C2-PS128 as y increases. This is
because increasing y causes the number of iterations, B, to
increase. The relationship between B and y is discussed in
Section. 6.3.

Notably, despite the comparable execution times, the
use of small partition sizes with C1 (C1-PS128) leads
to significantly worse resampling quality results. This is
indicated by C1-PS128 and C2-PS128 attaining a larger
MSE compared to Megopolis for all y weight distribution
parameters (as we discussed in Section 6.1) and further
confirmed through our results from the gamma distributions
(in Appendix A).

In contrast, for larger partition sizes (e.g. PS2048),
the number of memory transactions required by a warp
for C1 and C2 increases to at most 32 (one per thread in
a warp) because of the increased particle selection range.
Megopolis achieves a significant speedup due to requiring
only 4 memory transactions per warp.

6.3. Effect of Weight Distribution Variations
Comparing the performance of the algorithms as the

y parameter increases (increasing coefficient of variation
and altering the weight distribution) provides useful insight
into the behaviour of each algorithm. Megopolis attains
consistently low MSE and bias contribution results across
all tested particle distributions; further confirmed through
our results from the gamma distributions in Appendix A.

It is evident from Fig. 6 that the MSE, bias contribution,
and execution time of all the algorithms can be impacted by
an increasing y (an increasing concentration of weights on a
few particles). Importantly, consider the effect an increasing
y has on the number of iterations B. From (12), we have
w(p) = 1∕

√

2� and E(w) = exp (−y2∕4)∕
√

4� [39].

Thus, an increasing y reduces the expected weight E(w).
Additionally, since the maximum weight w(p) is a constant,
based on (3), we can see that B is inversely proportional
to E(w). Therefore, when y increases, the weights become
more concentrated on a few particles. Consequently,
achieving a desirable error � requires increasing the number
of iterations B as y is increased in the sampled distribution.
Although we have not directly evaluated the impact of
B, we can see that the number of iterations B affects the
execution time of all algorithms. The speedup section of
Fig. 6 for an increasing y (corresponding to an increasing B
value) illustrates that the impact from increasing iterations
is the lowest on the proposed Megopolis and C1-PS128
algorithms. Thus we can expect Megopolis to be robust to
changes in particle distributions and always generate higher
quality results (seen with Megopolis generating the lowest
MSE results for all y distribution parameters) for a chosen
number of iterations with significant or comparable speedup
to Metropolis, C1 and C2 variants. Notably, C1 results
demonstrate an increasing MSE and bias contribution as y
increases. This is due to the particles with large weights
not being adequately exposed to random selections. In
contrast, C2 shows a lower MSE than C1 and a constant
bias contribution for small and large partition sizes. The
decreasing MSE observed in C2 compared to C1 can be
attributed to particles being exposed to more partitions as B
increases.

Interestingly, although the MSE of Megopolis is the
lowest compared to all other algorithms, the MSE also
increases with y. However, the bias contribution remains
constant. This suggests that the variance in the output
sequence generated is increasing with y. As discussed in
Section. 6.1, the range of offspring a particle can have in
Megopolis is 0 to B while in Metropolis, the range is 0 to
N . As B is increased to resample distributions with an
increasing y, the particle offspring range, and consequently,
the variance in the output sequence increases with y. In
contrast, Metropolis maintains a constant, albeit higher,
MSE. This can be attributed to the 0 toN particle offspring
range unaffected by an increasing B. Importantly, the
highest MSE achieved by Megopolis is still lower than the
Metropolis algorithm under the shift in weights generated
by an increasing y parameter.

6.4. Effect of C1 and C2 Partition Size Selection
As reported [17], we also observe that as the chosen

C1 and C2 partition size approaches the total number
of particles, the algorithms behave closer to Metropolis,
improving both bias and MSE. However, increasing the
partition size impacts the execution time of C1 and C2.
An increased partition size requires an increased number
of transactions to read a given partition from memory.
More memory transactions result in increased execution
time of the algorithms. Moreover, as the partition sizes
are increased, the MSE results of C1 and C2 approach
that of Metropolis. Therefore, we opted to compare the
MSE and execution time of Megopolis against C1 and
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Figure 7: A comparison of the MSE and execution time of Megopolis with C1 and C2 with varying partition sizes when the
number of particles is 222 and the weights are sampled from the distribution from (12) with y = 4. The dashed red and blue lines
represent the MSE and execution time of Megopolis respectively.

C2 with varying partition sizes in an effort to investigate
the partition size at which both the C1 and C2 algorithms
achieve an MSE closer to that of Megopolis. Subsequently,
we compared the execution times of C1 and C2 at these
optimal partition sizes.

We evaluated C1 and C2 on the distribution from (12)
with an exhaustive combination of the y parameter chosen
from 0, 1, 2, 3, 4 and the number of particles in the range
214 to 222. We ignore the number of particles lower than
214 as the choice of algorithm does not significantly impact
execution time when the number of particles required to
estimate the distribution is small. We evaluate the C1
and C2 algorithms using five different partition sizes,
128, 256, 512, 1024, 2048. The comprehensive set of results
for all the experiments are in Appendix C. Fig. 7 presents
a summary comparison of the MSE and execution time
of Megopolis with respect to C1 and C2 with varying
partition sizes when the number of particles is 222, and
the y parameter is 4. We choose a y parameter of 4
to demonstrate the resampling quality when the weight
distribution is highly concentrated on a small number of
particles, simulating the particle degeneracy problem.

The results in Fig. 7 demonstrate that for any chosen
partition size, resampling with Megopolis yields a lower
MSE than C1 and C2. We also observe that Megopolis
performs faster than C2 in all cases. The execution times
for C1 is slightly lower for the smaller partition sizes
of 128 or 256. However, with smaller partition sizes,
we observe the artefacts of the C1 and C2 algorithms
producing significantly higher MSE, resulting in lower
quality resampling results. This experiment shows that
C1 generates almost 15 times increase in the MSE (see
PS=128) compared to Megopolis. Consequently, we can
observe that Megopolis will always produce a lower MSE
and bias for a given execution time budget compared to
C1 and C2; importantly, without needing to determine an
appropriate partition size.

6.5. Comparison with Prefix Sum Methods

We also compare Megopolis with the unbiased parallel
resampling methods that require a prefix sum: i) the parallel
multinomial algorithm [38]; and ii) the improved parallel
systematic method [41] to provide a baseline for MSE and
bias. From the results in Fig. 8, we see that Megopolis
has a lower MSE than multinomial but a higher MSE than
systematic. It is well-known that the systematic resampling
method can reduce the variance of particle offspring over
the multinomial method [13], hence, the MSE of the
systematic method is lower than the multinomial method.
Importantly, when comparing the bias contribution, the
effect of numerical instabilities expected from the prefix
sum can be observed as the bias contribution of both the
multinomial and systematic methods increases with the
number of particles. In contrast, the bias contribution of
Megopolis is unaffected by the number of particles.

Comparing the execution time of Megopolis with
multinomial and systematic in Fig. 8, Megopolis achieves
a significant speedup over both algorithms as the number
of particles increases. Interestingly, we can observe the
speedup Megopolis attains to be lower at higher y values
where the weights become highly concentrated on fewer
particles. This observation is due to the number of iterations
that Megopolis must perform, i.e., the complexity of
Megopolis increasing with y faster than the complexity of
the multinomial and systematic algorithms for our choice of
error � = 0.01— see Equation (4).

7. End-to-End Application Benchmark
We apply an SIR particle filter to a well known, highly

non-linear system [9, 24, 32, 2] to benchmark the resampling
algorithms in the context of a filtering application. For the
SIR filter described in Section 2.2, the predict (propagation)
and update equations for the non-linear system are as
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Figure 8: Comparison of experimental results of Megopolis, parallel Multinomial [38], and parallel Systematic [41] using the
distribution from (12) to generate weights. The speedup graphs directly compare the execution time of a given method with
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follows:

xt =
xt−1
2

+ 25
xt−1

1 + x2t−1
+ 8 cos (1.2t) + vt−1, (22)

zt =
x2t
20
+ nt, (23)

where t is the time step; xt is the state; zt is themeasurement;
vt−1 and nt are zero-mean Gaussian random variables with
variance o2v = 10 and o

2
n = 1. For the SIR particle filter, we

modify Algorithm 1 to remove the weight normalisation step
as the resampling algorithms used do not require normalised
weights. As the output of the particles from resampling has
uniform weighting, we can shift the estimation step to occur
after resampling. In this case, we simply need to calculate
themean of the particles as our estimate. We use the efficient
parallel reduction algorithm provided by the CUDA C++
Thrust library [25] to calculate the mean. The modified SIR
particle filter is described inAlgorithm 6where x̂t is the filter
estimate at time step t, and the rest of the parameters are as
described in Algorithm 1.

We generated 16 ground truth trajectories and, for
each instance, performed 50 Monte Carlo experiments
and executed the SIR filter over 100-time steps. At each
time step, the error is calculated as the difference between

Algorithm 6 Modified SIR Particle Filter
Input: [x̄t−1, zt]
Output: [x̄t, x̂t, ]

⊳ Stage 1:Prediction and Update

1: for i ← 0 toN − 1 do
2: x(i)t = ft−1(x̄

(i)
t−1, vt−1) ⊳ prediction using (1)

3: w(i)t = p(zt|x
(i)
t ) ⊳ update using (2)

4: end for
⊳ Stage 2: Resample

5: x̄t = RESAMPLE([xt,wt])
⊳ Stage 3: Estimation

6: x̂t =
(
∑N−1
i=0 x̄(i)t

)

∕N .

the ground truth state and the estimated state. We use
220 particles as the performance differences become
more important with larger particle counts. To measure
the quality of the estimation results generated from the
resampling algorithms, we use the average root mean
squared error (RMSE) [43] of the generated trajectories,
where RMSE is defined as follows:

RMSE = 1
T

T
∑

t=1

√

√

√

√
1
K

K
∑

k=1
||x̂(k)t − xt||2, (24)

where T = 100 is the number of time steps; K = 50 is
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Figure 9: End-to-end application results comparing mean RMSE, Resample Ratio, and number of iterations for Megopolis,
Metropolis, C1-PS128, and C2-PS128.

the number of Monte Carlo runs; t is the time step; xt is the
ground truth state at time step t; x̂(k)t is the estimated state at
time step t in the kth Monte Carlo run.

To assess time spent resampling, we compute the time
spent in each stage of Algorithm 6: i) prediction and update
time at stage 1 (�s1 ); ii) resample time at stage 2 (�s2 ); and
iii) estimation time at stage 3 (�s3 ). We present the ratio of
time spent resampling compared to the total execution time
as:

Resample Ratio =
�s2

�s1 + �s2 + �s3
. (25)

We compare the results for Megopolis, Metropolis,
C1-PS128, and C2-PS128 since Megopolis demonstrates
significant speedup over C1-PS2048 and C2-PS2048
while maintaining similar or better bias. As discussed
earlier, choosing the number of resampling iterations B
for the algorithms significantly impacts execution time and
resampling quality. In practical implementations, we want
to avoid calculating B at each resampling stage and employ
a prior value chosen for the application context. Thus, we
elect to evaluate the performance of the algorithms with
varying B parameters. First, we execute the application
using each algorithm, calculatingB at runtime using (3) with
an � of 0.1, from [17], before each resampling stage. We
choose a baseline for B from the average of the calculated
B values. For this application, we calculated a baseline of
30 iterations. Next, using this baseline, we evaluate the
effects of varying B by running the application for each
algorithm with fixed B values of 5, 7, 10, 15, 20, 25, 30, 40.
We focus on the effect of reducing B as increasing B
provides diminishing improvements to RMSE, however,
for completeness we include B = 40 to demonstrate this

behaviour. We present the RMSE results in Fig. 9a and the
resample ratio results in Fig. 9b.

From the results in Fig. 9a and Fig. 9b, we can see that for
any choice ofB, C1-PS128 has the lowest resample ratio but
a significantly higher RMSE value. Megopolis, Metropolis,
and C2-PS128 have similar RMSE values, with Megopolis
having the lowest resample ratio of the three. Importantly,
we can see that the RMSE produced by C1-PS128 with a B
value of 25 is similar to the RMSE produced by Megopolis,
Metropolis, and C2-PS128 with a B value of 10.

Using the relationship between resample ratio and
iterations B, we can construct a model for mapping
resample ratio to RMSE for each algorithm. This is
presented in Fig. 9c. Recall that the resample ratio is
directly related to execution time; a lower resample ratio
is equivalent to a lower execution time. Hence, this model
shows the RMSE quality each algorithm can produce under
varying execution time budget constraints. From Fig. 9c, we
can see that Megopolis produces the lowest RMSE out of all
the algorithms for any given resample ratio. Consequently,
under any chosen time constraint, these benchmark results
demonstrate that the lowest RMSE value can be obtained
by employing the Megopolis algorithm.

In order to assess the impact of the bias exhibited by
Megopolis, Metropolis, C1, and C2 on the RMSE, we
compare these methods to the unbiased parallel multinomial
algorithm [38] and improved parallel systematic [41];
both of which require a prefix sum. As the number of
iterations B affects the bias of the algorithms avoiding
the prefix sum, we compare three choices of B, 16, 32,
and 64 to provide a comparison with a range of biases.
We execute the application for each algorithm with 220
particles. We selected 220 particles to avoid numerical
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Table 2
End-to-end application results comparing resample ratio,
and RMSE for the different resampling algorithms with 220
particles. The best results out of Megopolis, Metropolis,
C1-PS128, and C2-PS128 for each choice of B are in bold,
while the second-best results of those algorithms are in green.

B Type Resample Ratio RMSE
- Multinomial [38] 0.925 2.944
- Systematic [41] 0.878 2.944

16

Megopolis 0.603 3.039
Metropolis 0.968 3.053
C1-PS128 0.573 3.170
C2-PS128 0.650 3.053

32

Megopolis 0.718 2.972
Metropolis 0.984 2.978
C1-PS128 0.707 3.118
C2-PS128 0.776 2.985

64

Megopolis 0.821 2.948
Metropolis 0.992 2.956
C1-PS128 0.818 3.101
C2-PS128 0.867 2.957

instabilities produced by the prefix sum required for the
unbiased methods. The resample ratio and RMSE results
of the algorithms are presented in Table 2. The results
confirm that our proposed Megopolis algorithm achieves a
performance balance between the execution time (Resample
Ratio) and accuracy (RMSE) without the need to evaluate
and select a partition size, as in C1 and C2. Importantly,
Megopolis achieves the best RMSE amongst the non-prefix
sum methods; we can also observe that as the number of
iterations B is increased, Megopolis closely approaches
the RMSE of unbiased resamplers (multinomial and
systematic) whilst demonstrating a speedup over these
unbiased methods.

8. Conclusion and Discussion
To improve coalesced memory access in the Metropolis

resampling algorithm while also improving quality in
output over other techniques, we developed the Megopolis
algorithm. We proved that the number of iterations B for
our Megopolis algorithm is the same as for Metropolis to
achieve the same error bound on the resampled distribution.
The extensive experimental evidence demonstrates that the
Megopolis algorithm always produces high-quality results
with a lower MSE than the original Metropolis algorithm
and both the C1 and C2 algorithms. The Megopolis
algorithm is significantly faster than Metropolis as well as
C1 and C2 when larger partition sizes are chosen to achieve
lower MSE. Further, our extensive experimental results
show that the execution time of the Megopolis algorithm is
similar to the C1 and C2 algorithms, even when execution
time is favoured over resampling quality by using smaller
partition sizes. The smaller partition implementations for
C1 achieve a marginal speedup over Megopolis at the cost
of significantly increasing MSE and bias. However, through

our end-to-end application benchmark, we demonstrate that
by reducing the iterations for Megopolis to match the lower
resampling quality of C1, Megopolis can achieve a speedup
over C1. As for C2 with smaller partition implementations,
Megopolis achieves a marginal speedup and improvedMSE.
Consequently, the Megopolis algorithm can be adapted
to many application scenarios to provide both fast and
high-quality resampling.

Although we have explored the application of our
Megopolis resampler in the context of a SIR particle
filter, in general, Megopolis can operate on weights (e.g.,
particle weights and mixture weights) that have not been
normalised; an important feature for parallelisation shared
with other Metropolis resampling algorithms. Notably,
some sampling-based algorithms require resampling to be
performed where the number of input samples is different
from the number of output samples, e.g., the D-PMC [19]
method. To employ the Megopolis algorithm in this
setting, the range of offsets in the Megopolis algorithm
can be altered to fit the number of input samples. Further,
other sampling-based algorithms require procedures that
also pose challenging computational requirements, e.g.,
computing both the particle and mixture weights in the
Improved Auxiliary Particle Filter (IAPF) [18]. We leave
the evaluation of performance improvements the Megopolis
algorithm can provide on a wider set of sampling-based
algorithms and the exploration of methods to improve the
performance of the other computationally burdensome
procedures using massive parallelisation as directions to
explore in future work.

Further, the cost of global memory transfers has been
acknowledged by GPU manufacturers, and architectural
changes have been made to lessen the impact. The
performance of the Megopolis algorithm is greatly affected
by global memory transfer speeds and would benefit from
improvements to the size and rate of sequential memory
transactions. On the other hand, improvements to random
memory accesses would benefit Metropolis, C1, and
C2 more than Megopolis. However, improvements to
random memory accesses would likely only homogenise
the execution time of the algorithms, and Megopolis can
be expected to maintain an improved MSE over the other
algorithms.
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A. Appendix
This appendix presents the comparison of experimental results of Megopolis, Metropolis, C1-PS128, C1-PS2048, C2-PS128, and C2-PS2048 when

sampling from the gamma distribution to generate weight sequences.
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Figure 10: Comparison of experimental results of Megopolis, Metropolis, and C1 and C2 with partition sizes of 128 and 2048
bytes, using the gamma distribution to generate weights. The speedup graphs directly compare the execution time of a given
method with Megopolis where speedup = Execution T ime∕Megopolis Execution T ime.
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B. Appendix
Algorithm 7Multinomial Resample [38]

Input: [xt,wt]
Output: x̄t

1: w̄t ← EXCLUSIVE_PREFIX_SUM(wt)
2: for i ← 0 toN − 1 do
3: u ∼  [0, w̄(N−1)

t +w(N−1)
t ]

4: binary search through w̄t to find j such that w̄
(j)
t ≤ u < w̄(j+1)

t
5: x̄(i)t ← x(j)t
6: end for

Algorithm 8 Improved Systematic Resample [41]
Input: [xt,wt]
Output: x̄t

1: w̄t ← INCLUSIVE_PREFIX_SUM(wt)
2: ut ←∼  [0, 1]
3: for i ← 0 toN − 1 do
4: u ← (i + ut)∕N
5: mt ← true ⊳ thread bit mask
6: lt ← 0
7: a← i ⊳ ancestor index
8: while mt ≠ false do
9: if i > (N − lt) then
10: mt ← false
11: else
12: mt ← w̄(t+lt)

t < u
13: end if
14: if mt = true then
15: a← a + 1
16: end if
17: lt ← lt + 1
18: end while ⊳ all thread bit masks must be false to exit
19: lt ← 1
20: while mt ≠ true do
21: if i < lt then
22: mt ← true
23: else
24: mt ← w̄(t−lt)

t < u
25: end if
26: if mt = false then a← a − 1
27: end if
28: lt ← lt + 1
29: end while ⊳ all thread bit masks must be true to exit
30: x̄(i)t ← x(a)t
31: end for
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Table 3
The MSE and execution time results of the Megopolis algorithm on the distribution from
(12). The results are displayed in the form "MSE/N, execution time" for each choice of y
and number of particles

Megopolis

particles y
0 1 2 3 4

32768 0.2760, 1.396e-4 0.3769, 1.389e-4 0.5213, 1.475e-4 0.6067, 1.719e-4 0.6508, 5.170e-4
65536 0.2753, 1.467e-4 0.3767, 1.496e-4 0.5214, 1.558e-4 0.6071, 2.086e-4 0.6507, 8.173e-4
131072 0.2755, 1.652e-4 0.3767, 1.698e-4 0.5213, 1.798e-4 0.6072, 3.028e-4 0.6505, 0.0014
262144 0.2756, 1.851e-4 0.3767, 1.943e-4 0.5214, 2.427e-4 0.6072, 5.410e-4 0.6510, 0.0027
524288 0.2757, 2.292e-4 0.3768, 2.589e-4 0.5213, 3.928e-4 0.6070, 0.0010 0.6511, 0.0055
1048576 0.2758, 3.377e-4 0.3768, 4.044e-4 0.5213, 7.156e-4 0.6071, 0.0021 0.6511, 0.0113
2097152 0.2757, 5.643e-4 0.3768, 7.069e-4 0.5213, 0.0014 0.6071, 0.0042 0.6511, 0.0233
4194304 0.2757, 0.0010 0.3767, 0.0013 0.5213, 0.0027 0.6071, 0.0086 0.6510, 0.0478

Table 4
The MSE and execution time results of the Metropolis algorithm on the distribution from
(12). Each cell contains "MSE/N, execution time" for each choice of y and number of
particles

Metropolis

particles y
0 1 2 3 4

32768 0.9997, 1.620e-4 1.0001, 1.846e-4 1.0001, 3.013e-4 1.0001, 8.962e-4 0.9994, 0.0052
65536 0.9998, 1.944e-4 1.0000, 2.406e-4 1.0000, 4.805e-4 1.0001, 0.0017 1.0000, 0.0102
131072 0.9999, 2.719e-4 0.9999, 3.598e-4 1.0001, 8.597e-4 1.0000, 0.0032 0.9995, 0.0188
262144 0.9999, 5.170e-4 1.0000, 6.696e-4 1.0000, 0.0018 1.0000, 0.0063 1.0002, 0.0386
524288 0.9998, 0.0013 1.0000, 0.0017 1.0001, 0.0041 0.9999, 0.0150 1.0002, 0.0902
1048576 0.9998, 0.0032 1.0000, 0.0050 1.0000, 0.0143 1.0001, 0.0556 1.0002, 0.3223
2097152 0.9999, 0.0067 1.0000, 0.0109 1.0000, 0.0321 1.0001, 0.1264 1.0000, 0.7466
4194304 0.9999, 0.0139 1.0000, 0.0227 1.0001, 0.0675 1.0001, 0.2672 1.0002, 1.5929

C. Appendix
In this appendix, we summarise the bias and execution time results of each resampling algorithm on the distribution from (12), including Metropolis,

Megopolis, and both Metropolis-C1 and Metropolis-C2 with partition sizes 128, 256, 512, 1024, and 2048 bytes in Tables 3, 4, 5, 6, respectively.
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Table 5
The MSE and execution time results of the C1 algorithm on the distribution from (12).
The results are displayed in the form "MSE/N, execution time" for each choice of y and
number of particles

Metropolis C1

particles y
0 1 2 3 4

Partition Size = 128
32768 2.0902, 1.402e-4 2.3105, 1.407e-4 3.2380, 1.476e-4 6.2008, 1.738e-4 15.3599, 3.927e-4
65536 2.0908, 1.429e-4 2.3090, 1.429e-4 3.2362, 1.521e-4 6.2169, 2.096e-4 15.4083, 7.143e-4
131072 2.0906, 1.492e-4 2.3102, 1.496e-4 3.2421, 1.646e-4 6.2085, 2.915e-4 15.4024, 0.0014
262144 2.0907, 1.713e-4 2.3113, 1.710e-4 3.2412, 2.126e-4 6.2096, 5.194e-4 15.4186, 0.0026
524288 2.0910, 2.146e-4 2.3113, 2.116e-4 3.2410, 3.390e-4 6.2012, 9.563e-4 15.3472, 0.0051
1048576 2.0908, 3.068e-4 2.3112, 3.153e-4 3.2410, 5.957e-4 6.2035, 0.0018 15.3344, 0.0101
2097152 2.0910, 4.984e-4 2.3110, 5.321e-4 3.2413, 0.0011 6.2057, 0.0036 15.3497, 0.0202
4194304 2.0910, 8.811e-4 2.3110, 9.659e-4 3.2413, 0.0021 6.2040, 0.0071 15.3533, 0.0402

Partition Size = 256
32768 1.5457, 1.401e-4 1.6548, 1.406e-4 2.1225, 1.492e-4 3.7169, 1.795e-4 9.8313, 4.159e-4
65536 1.5462, 1.451e-4 1.6564, 1.453e-4 2.1245, 1.568e-4 3.7268, 2.242e-4 9.9361, 7.820e-4
131072 1.5458, 1.557e-4 1.6560, 1.565e-4 2.1222, 1.740e-4 3.7305, 3.253e-4 9.8162, 0.0014
262144 1.5463, 1.793e-4 1.6561, 1.790e-4 2.1241, 2.308e-4 3.7353, 5.600e-4 9.9280, 0.0027
524288 1.5463, 2.298e-4 1.6564, 2.318e-4 2.1233, 3.705e-4 3.7251, 0.0010 9.9072, 0.0054
1048576 1.5463, 3.358e-4 1.6563, 3.481e-4 2.1237, 6.402e-4 3.7254, 0.0019 9.8904, 0.0106
2097152 1.5465, 5.511e-4 1.6562, 5.849e-4 2.1238, 0.0012 3.7277, 0.0038 9.8972, 0.0212
4194304 1.5464, 9.704e-4 1.6564, 0.0011 2.1235, 0.0022 3.7273, 0.0074 9.8994, 0.0423

Partition Size = 512
32768 1.2729, 1.409e-4 1.3272, 1.421e-4 1.5576, 1.538e-4 2.3893, 2.035e-4 6.1284, 5.749e-4
65536 1.2729, 1.480e-4 1.3278, 1.497e-4 1.5621, 1.673e-4 2.3934, 2.707e-4 6.0562, 0.0011
131072 1.2732, 1.661e-4 1.3283, 1.684e-4 1.5620, 1.963e-4 2.3966, 4.177e-4 6.0780, 0.0020
262144 1.2732, 1.958e-4 1.3280, 1.989e-4 1.5620, 2.792e-4 2.3944, 7.460e-4 6.1108, 0.0039
524288 1.2735, 2.651e-4 1.3281, 2.714e-4 1.5621, 4.553e-4 2.3908, 0.0014 6.1052, 0.0077
1048576 1.2732, 4.088e-4 1.3281, 4.227e-4 1.5626, 8.099e-4 2.3917, 0.0027 6.1060, 0.0152
2097152 1.2733, 7.043e-4 1.3284, 7.252e-4 1.5623, 0.0015 2.3909, 0.0052 6.0944, 0.0302
4194304 1.2733, 0.0013 1.3283, 0.0013 1.5622, 0.0029 2.3916, 0.0103 6.0995, 0.0602

Partition Size = 1024
32768 1.1358, 1.426e-4 1.1636, 1.453e-4 1.2795, 1.625e-4 1.7024, 2.428e-4 3.7104, 8.112e-4
65536 1.1361, 1.527e-4 1.1636, 1.562e-4 1.2802, 1.874e-4 1.6978, 3.485e-4 3.7609, 0.0016
131072 1.1363, 1.781e-4 1.1637, 1.857e-4 1.2810, 2.408e-4 1.7000, 5.817e-4 3.7896, 0.0029
262144 1.1366, 2.257e-4 1.1641, 2.386e-4 1.2815, 3.712e-4 1.7005, 0.0011 3.7432, 0.0057
524288 1.1365, 3.319e-4 1.1641, 3.597e-4 1.2811, 6.316e-4 1.7018, 0.0020 3.7619, 0.0113
1048576 1.1367, 5.618e-4 1.1642, 6.137e-4 1.2812, 0.0012 1.7012, 0.0039 3.7638, 0.0226
2097152 1.1367, 0.0010 1.1642, 0.0011 1.2812, 0.0022 1.7021, 0.0078 3.7634, 0.0452
4194304 1.1366, 0.0020 1.1642, 0.0022 1.2813, 0.0043 1.7018, 0.0155 3.7636, 0.0903

Partition Size = 2048
32768 1.0675, 1.467e-4 1.0804, 1.523e-4 1.1380, 1.812e-4 1.3458, 3.162e-4 2.4094, 0.0013
65536 1.0678, 1.594e-4 1.0811, 1.681e-4 1.1400, 2.234e-4 1.3525, 4.942e-4 2.4772, 0.0026
131072 1.0680, 1.957e-4 1.0819, 2.112e-4 1.1403, 3.185e-4 1.3505, 8.859e-4 2.4354, 0.0047
262144 1.0682, 2.760e-4 1.0820, 3.077e-4 1.1406, 5.289e-4 1.3523, 0.0017 2.4431, 0.0093
524288 1.0684, 4.674e-4 1.0819, 5.305e-4 1.1406, 9.671e-4 1.3524, 0.0032 2.4417, 0.0184
1048576 1.0682, 9.037e-4 1.0819, 0.0010 1.1405, 0.0018 1.3530, 0.0064 2.4472, 0.0368
2097152 1.0682, 0.0018 1.0821, 0.0021 1.1406, 0.0036 1.3521, 0.0127 2.4476, 0.0737
4194304 1.0682, 0.0036 1.0821, 0.0043 1.1406, 0.0071 1.3522, 0.0253 2.4407, 0.1475
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Table 6
The MSE and execution time results of the C2 algorithm on the distribution from (12).
The results are displayed in the form "MSE/N, execution time" for each choice of y and
number of particles

Metropolis C2

particles y
0 1 2 3 4

Partition Size = 128
32768 1.7029, 1.398e-4 1.6066, 1.398e-4 1.4663, 1.475e-4 1.3841, 1.967e-4 1.3396, 5.845e-4
65536 1.7027, 1.461e-4 1.6061, 1.465e-4 1.4668, 1.568e-4 1.3839, 2.696e-4 1.3410, 0.0011
131072 1.7031, 1.583e-4 1.6065, 1.604e-4 1.4673, 1.825e-4 1.3839, 4.263e-4 1.3416, 0.0022
262144 1.7033, 1.852e-4 1.6063, 1.927e-4 1.4672, 2.782e-4 1.3841, 7.903e-4 1.3420, 0.0042
524288 1.7034, 2.458e-4 1.6066, 2.675e-4 1.4673, 4.933e-4 1.3841, 0.0016 1.3413, 0.0084
1048576 1.7034, 3.820e-4 1.6066, 4.325e-4 1.4670, 9.116e-4 1.3842, 0.0030 1.3413, 0.0168
2097152 1.7035, 6.622e-4 1.6065, 7.724e-4 1.4672, 0.0017 1.3842, 0.0058 1.3414, 0.0334
4194304 1.7034, 0.0012 1.6067, 0.0014 1.4673, 0.0033 1.3842, 0.0116 1.3414, 0.0668

Partition Size = 256
32768 1.3508, 1.399e-4 1.3017, 1.406e-4 1.2322, 1.498e-4 1.1908, 2.019e-4 1.1696, 6.062e-4
65536 1.3513, 1.473e-4 1.3021, 1.486e-4 1.2325, 1.615e-4 1.1906, 2.759e-4 1.1700, 0.0012
131072 1.3514, 1.643e-4 1.3021, 1.695e-4 1.2326, 1.930e-4 1.1911, 4.430e-4 1.1700, 0.0022
262144 1.3509, 1.998e-4 1.3026, 2.149e-4 1.2328, 2.997e-4 1.1913, 8.083e-4 1.1698, 0.0043
524288 1.3512, 2.780e-4 1.3026, 3.168e-4 1.2327, 5.355e-4 1.1913, 0.0016 1.1701, 0.0086
1048576 1.3511, 4.479e-4 1.3025, 5.361e-4 1.2329, 0.0010 1.1913, 0.0031 1.1699, 0.0172
2097152 1.3512, 7.931e-4 1.3027, 9.732e-4 1.2328, 0.0020 1.1913, 0.0061 1.1699, 0.0344
4194304 1.3511, 0.0015 1.3025, 0.0019 1.2328, 0.0039 1.1913, 0.0123 1.1700, 0.0689

Partition Size = 512
32768 1.1741, 1.406e-4 1.1506, 1.421e-4 1.1158, 1.545e-4 1.0941, 2.133e-4 1.0835, 6.561e-4
65536 1.1752, 1.497e-4 1.1508, 1.516e-4 1.1158, 1.722e-4 1.0949, 2.957e-4 1.0845, 0.0012
131072 1.1749, 1.739e-4 1.1507, 1.817e-4 1.1161, 2.147e-4 1.0953, 4.776e-4 1.0837, 0.0023
262144 1.1753, 2.244e-4 1.1509, 2.491e-4 1.1161, 3.449e-4 1.0952, 8.763e-4 1.0847, 0.0045
524288 1.1752, 3.346e-4 1.1510, 4.006e-4 1.1161, 6.782e-4 1.0955, 0.0017 1.0848, 0.0090
1048576 1.1753, 5.733e-4 1.1512, 7.311e-4 1.1161, 0.0014 1.0956, 0.0040 1.0846, 0.0205
2097152 1.1753, 0.0011 1.1512, 0.0014 1.1162, 0.0030 1.0955, 0.0092 1.0848, 0.0494
4194304 1.1754, 0.0020 1.1511, 0.0028 1.1162, 0.0061 1.0954, 0.0196 1.0849, 0.1077

Partition Size = 1024
32768 1.0868, 1.426e-4 1.0749, 1.460e-4 1.0577, 1.657e-4 1.0474, 2.517e-4 1.0417, 8.630e-4
65536 1.0872, 1.529e-4 1.0750, 1.585e-4 1.0580, 1.955e-4 1.0474, 3.695e-4 1.0426, 0.0017
131072 1.0874, 1.872e-4 1.0754, 1.986e-4 1.0578, 2.617e-4 1.0476, 6.290e-4 1.0419, 0.0031
262144 1.0874, 2.620e-4 1.0755, 3.021e-4 1.0581, 4.392e-4 1.0477, 0.0012 1.0423, 0.0061
524288 1.0875, 4.250e-4 1.0754, 5.440e-4 1.0580, 9.832e-4 1.0476, 0.0025 1.0423, 0.0128
1048576 1.0876, 7.775e-4 1.0755, 0.0011 1.0580, 0.0022 1.0476, 0.0068 1.0423, 0.0367
2097152 1.0876, 0.0015 1.0755, 0.0021 1.0580, 0.0048 1.0477, 0.0156 1.0424, 0.0866
4194304 1.0876, 0.0029 1.0755, 0.0042 1.0580, 0.0098 1.0477, 0.0330 1.0425, 0.1851

Partition Size = 2048
32768 1.0433, 1.467e-4 1.0369, 1.525e-4 1.0287, 1.849e-4 1.0232, 3.346e-4 1.0196, 0.0014
65536 1.0433, 1.604e-4 1.0376, 1.713e-4 1.0289, 2.383e-4 1.0235, 5.376e-4 1.0206, 0.0028
131072 1.0434, 2.053e-4 1.0374, 2.206e-4 1.0290, 3.436e-4 1.0236, 9.811e-4 1.0210, 0.0052
262144 1.0436, 3.185e-4 1.0376, 3.816e-4 1.0290, 6.051e-4 1.0238, 0.0019 1.0214, 0.0102
524288 1.0437, 5.844e-4 1.0377, 7.747e-4 1.0290, 0.0015 1.0238, 0.0042 1.0211, 0.0221
1048576 1.0437, 0.0012 1.0377, 0.0016 1.0290, 0.0037 1.0238, 0.0121 1.0211, 0.0677
2097152 1.0437, 0.0023 1.0377, 0.0033 1.0290, 0.0079 1.0238, 0.0275 1.0213, 0.1570
4194304 1.0437, 0.0046 1.0377, 0.0067 1.0291, 0.0164 1.0238, 0.0579 1.0213, 0.3331
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