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Abstract

This paper addresses the problem of global asymptotic and local exponential stabilization of a rigid body inside a viscous
incompressible fluid described by Navier-Stokes equations within a bounded domain in three dimensional space provided that
there is no collision between the rigid body and the boundary of the fluid domain. Due to consideration of less regular initial
values of the fluid velocity, the forces and moments induced by the fluid on the rigid body are not able to bound. Therefore, the
paper handles “fluid work and fluid power” on the rigid body in stability and convergence analysis of the closed-loop system.
The control design ensures global asymptotic and local exponential stability of the rigid body while the initial fluid velocity is
not required to be small and regular but only under no collision between the rigid body and the boundary of the fluid domain.
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1 Introduction

Stabilization of a rigid body (e.g., an ocean vehicle), in
a viscous fluid has many practical applications in off-
shore engineering. The fluid loads on a rigid body are
usually considered by an approximation approach, see
[12, 14, 22, 24] and references therein. In this approach,
the fluid loads on a rigid body are approximated and de-
coupled into two parts. The first part (related to added
mass) depends on the acceleration and velocity of the
rigid body. The second part depends on the fluid velocity
and is considered to be bounded in the Euclidean (point-
wise) norm. These approximations are overlooked from
the fundamental viewpoint of the fluid-structure inter-
action, which can be elaborated as follows. The require-
ment of the first part is oversimplified because it actually
depends on the fluid acceleration as shown in Section 5.
The requirement of the second part to be bounded in the
Euclidean norm requires a strong solution of the Navier-
Stokes equations (NSEs) for a viscous incompressible
fluid. Currently, existence of this strong solution is local
in either time or small initial values [25] under sufficient
regularity of initial values.

In comparison with the aforementioned approximation
approach, a fundamental NSE approach has been re-
cently considered. In this approach, fully coupled dy-
namics of both a rigid body and a fluid, where motion
of the rigid body is described by nonlinear ordinary dif-
ferential equations (ODEs) and motion of the fluid is
described by NSEs in three dimensional space, is ad-
dressed. This approach results in much more complex-
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ities but actualities in fluid-structure interactions be-
cause we have to deal with: i) existence of an appropri-
ate solution of the fluid and rigid body system; ii) time-
varying domain of the fluid; iii) bound of the forces and
moments induced by the fluid on the rigid body. There
are several works related to the fundamental NSE ap-
proach. Existence of a weak solution for a system of a
fluid and multiple rigid bodies was proved in [7–9, 13],
where dynamics of the fluid and rigid bodies is written
as a global fluid and the initial values of the fluid are
assumed in H1

0 (Ω), which is the usual Sobolev space of
order 1 with compact support in the domain Ω, because
an estimate of the fluid acceleration in a weak form is
needed for compactness argument in passing to the limit
due to the nonlinear convection term. A similar result
was obtained in [6, 18, 19, 27, 28] but using a coordinate
transformation to handle difficulty caused by the fluid
time-varying domain. In [29], a proportional and deriva-
tive control law was designed to stabilize a rigid ball in a
fluid with the initial values of the fluid are also assumed
in H1

0 (Ω). This allows to estimate the fluid acceleration
in a weak form so that the fluid force acting on the rigid
ball is bounded. Feedback stabilization of a rigid body
in 1D, 2D, and 3D under similar regularity of the initial
data was considered in [2–4], see also [15] for the case
of stabilizing a flexible body in a fluid. Stabilization of
a rigid ball in compressible fluid was considered in [26],
where the global-in-time existence of strong solutions for
the corresponding system under a smallness condition
on the initial velocities and on the distance between the
initial position of the center of the ball was proved, see
also [8, 23].

In this paper, we consider the initial values of the fluid
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velocity in H(Ω), see (7) for definition of this functional
space, which is less regular than H1

0 (Ω). This less regu-
larity of the initial values of the fluid velocity will result
in a global solution but will cause a major difficulty: no
information on bound of the fluid loads on the rigid body
because we do not have an estimate of the fluid accelera-
tion in a weak form for both compactness argument and
the bound of the fluid loads on the rigid body. To handle
this difficulty, we consider the effect of the “fluid work
and fluid power” (instead of the fluid forces and mo-
ments) on the rigid body, see discussion just below (39)
for detail of the “fluid work and fluid power”. Although
uniqueness of a weak solution is neither proved nor dis-
proved (this is also a problem for standard NSEs [30]),
we show that its boundedness in appropriate norms is
sufficient for ensuring global asymptotic and local ex-
ponential stability of the closed-loop system provided
that there is no collision between the rigid body and
the boundary of the fluid domain. Hence, in compari-
son with the existing works on the approximation ap-
proach [12, 14, 22, 24] our control design does not suffer
from oversimplifications used in this approach, see the
first paragraph of this section. In comparison with the
fundamental NSE approach [6–9, 13, 18, 19, 27, 28], our
work does not require existence of a strong solution be-
cause we only require the initial values of the fluid ve-
locity in H(Ω). This results in a global solution as long
as there is no collision between the rigid body and the
boundary of the fluid domain.

In Section 3, a control law is designed in an appropriate
form such that it can be amended to be inverse opti-
mal [20, 21], and suitable for stability analysis of stabil-
ity of the closed-loop system in Section 5. In Section 4,
existence of at least one weak solution of the closed-loop
system is shown via a penalization approach. In Section
5, we prove global asymptotic and local exponential sta-
bility of the closed-loop system provided that there is
no collision between the rigid body and the boundary of
the fluid domain. We derive the affect of the fluid on the
rigid body via the “fluid work and fluid power”. This
enables us to consider a proper Lyapunov function for
stability analysis of the closed-loop system.

Notation: Let Ω be a open bounded set in R3, and
T > 0. Lp(Ω), where 1 ≤ p < ∞, denotes the stan-
dard Lebesgue space of measurable p-integrable func-
tions; L∞(Ω) denotes the space of essentially bounded
functions; H1(Ω) is the usual Sobolev space of order 1,
see [1]; H1

0 (Ω) denotes H1(Ω) with compact support;
Lp(0, T ;X), where 1 ≤ p <∞ and X is a Banach space
with the norm denoted by ‖ · ‖X , denotes a Brochner

space with the norm ‖u‖Lp(0,T ;X) = (
∫ T

0
‖u‖pXdt)1/p.

We also use ‖ · ‖E to denote the Euclidean norm, i.e.,
‖x‖E =

√
x · x with x · y =

∑
i(xiyi). For a scalar, we

use | · |E to denote the absolute value.
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Fig. 1. Domain definition

2 Problem statement

Let Ω ⊂ R3 be a C1 domain occupied by a viscous in-
compressible fluid surrounding a rigid body represented
by Ωs(t), which is a bounded open connected subdomain
of Ω, at time t, see Fig. 1, where the domain Ω∗s(t) is de-
fined and used in Section 5. We assume that Ωs(0) b Ω.
The fluid has density ρf > 0, dynamic viscosity µ > 0,
pressure p, velocity uf , and is governed by the NSEs for
viscous incompressible fluids [30]:

ρf (∂tuf+(uf ·∇)uf )−div(σf ) = 0, in Ωf (t)

div(uf ) = 0 in Ωf (t),
(1)

where the stress tensor of the fluid σf is given by

σf = 2µD(uf )−pI3 (2)

with D(uf ) = 1
2 (∇uf + (∇uf )T ) being the rate tensor

of the fluid (•T denotes the transpose of • and it should
not be confused with the time constant T ), Ωf (t) ⊂ Ω
being the fluid domain at time t (the boundary (interface
between the fluid and the rigid body) of Ωf depends on
t), I3 being the 3 × 3 identity matrix, and we assume
the body force is potential such as gravity, and hence is
merged to pressure p.

In what follows, we briefly describe equations of motion
of the rigid body in the incompressible fluid. For details
of derivation, the reader is referred to [7, 13,17].

For the rigid body, we define the mass ms, the density
ρs > 0, the vector of the center of gravity xc(t) and its
velocity vector uc(t), the modified Rodrigues parame-
ter vector η(t) representing the rigid body orientation,
see [32], (this vector is related to the principal axis e
and the principal angle γ through η = e tan(γ4 ), which
is well-defined for all eigenaxis rotations in the range
[0, 2π); this range can be further relaxed by using quater-
nion as in [10], and should not be confused with global
stability in this paper), angular velocity vector ω, the in-
ertial matrix Js, the transformation matrix R, and the
velocity vector filed us by

ρs = ms
|Ωs(0)|E , xc = 1

|Ωs(t)|E

∫
Ωs(t)

xdx,

us(t,x) = uc(t)+ω(t)×r(t) for x ∈ Ωs(t),

aTJsb = ρs
∫

Ωs(0)
(a×r(t))T (b×r(t))∀, a, b ∈ R3,

R = 1
2

(
I−S(η)+ηηT− 1+‖η‖2E

2 I3

)
,

(3)
where

r(t) = x−xc(t), (4)
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|Ωs(t)|E denotes the volume of Ωs(t), S(η) denotes the
3 × 3 skew-symmetric matrix of η, and it holds that
η · Rω = 1

4 (1 + ‖η‖2E)η · ω for all η,ω ∈ R3. Then,
equations of motion of the rigid body are given by

dxc
dt = uc,
dη
dt = Rω,

ms
duc
dt =

∫
∂Ωs(t)

σfndτ+
∑N
k=1 Fk,

Js
dω
dt = −ω×(Jsω)+

∫
∂Ωs(t)

r(t)×(σfn)dτ

+
∑N
k=1 rFk×Fk,

(5)

where n is the normal unit vector pointing outside of
the rigid body, Fk is the control force, rFk denotes the
relative position vector of Fk with respect to xc(t) such

that
∑N
k=1 Fk ∈ R3 and

∑N
k=1 rFk × Fk ∈ R3, i.e., the

rigid body is fully actuated.

We impose a homogeneous Dirichlet boundary condition
at the boundary ∂Ω∩∂Ωf (t) and a continuous condition
of the velocity at the interface between the rigid body
and the fluid:

uf = 0 on ∂Ω∩∂Ωf (t),
us = uf on ∂Ωs(t).

(6)

In derivation of (5), we have used an interface condition
that the stress is continuous in normal direction, i.e,
σfn = σsn on ∂Ωs with σs being the Cauchy stress
tensor, i.e., −σsn is the force applied by the rigid body
on the fluid.

From now onwards, we will drop the argument t of Ωf ,
Ωs, and r when it does not lead to a confusion. For use
in the rest of the paper, we denote Q = (0, T )× Ω, and
introduce the following function spaces:
V = {v ∈ H1

0 (Ω),div(v) = 0},
H = {v ∈ L2(Ω),div(v) = 0,v·n|∂Ω = 0},
K(t) = {v ∈ V,∃ (vv,ωv) ∈ R3×R3,v|Ωs = vv+ωv×r}.

(7)
Note that the elements of K(t) are given by the rigid
body velocity in Ωs. One can prove the following lemma
on the space K(t), see [5, 31].

Lemma 2.1 The space K(t) is equivalent to

K(t) = {v ∈ V, D(v) = 0 in Ωs}. (8)

In this paper, we address the following control objective.

Control Objective 2.1 Under the initial data:
Ωs(0) b Ω,
uf (0,x) ∈ H,
(xc(0),η(0),uc(0),ω(0)) ∈ Ω×Dη×R3×R3,

(9)

where Ω b Ω and Dη = (−∞,∞)3, design the control

forces
∑k
i=1 Fi and control moments

∑N
k=1 rFk × Fk to

globally asymptotically and locally exponentially stabilize
the rigid body at the origin provided that there is no colli-
sion between the rigid body and the boundary of the fluid
domain. Moreover, the designed control forces and con-
trol moments must ensure existence of the weak solution
of the closed-loop system consisting of both the rigid body

and the fluid, see Definition 4.1 in Section 4 for defini-
tion of the weak solution.

Note that the initial values xc(0) ∈ Ω is imposed to be
compatible with Ωs(0) b Ω, and η(0) ∈ Dη is made
due to the domain of the modified Rodrigues parameter
vector η.

3 Control design

For convenience, we denote the control force Fs and the
control moment Ms as follows

Fs =
∑N
k=1 Fk,

Ms =
∑N
k=1 rFk×Fk.

(10)

Since the rigid body dynamics (5) is of a second-order
system, we consider the following Lyapunov function
candidate to design the controls Fs and Ms:

U1 = 1
2‖xc‖

2
E+ms

2 ‖k1xc+uc‖2E
+ 1

2‖η‖
2
E+ 1

2 (k2η+ω)TJs(k2η+ω),
(11)

where k1 and k2 are constants to be chosen. It holds that

k̄01‖Ys‖2E ≤ U1 ≤ k̄02‖Ys‖2E , (12)

where Ys = col(xc,uc,η,ω), and we chose k1 and k2

such that
k̄01 = 1

2 min
(
(1+msk

2
1−ms|k1|E), (ms−|k1|Ems),

(1+k2
2λm(Js)−|k2|EλM (Js)),

(λm(Js)−|k2|EλM (Js))
)
> 0,

k̄02 = 1
2 max

(
(1+msk

2
1 +ms|k1|E), (ms+|k1|Ems),

(1+k2
2λM (Js)+|k2|EλM (Js)),

(λM (Js)+|k2|EλM (Js))
)
,

(13)
with λm(Js) and λM (Js) being the minimum and max-
imum eigenvalue of Js, respectively.

Differentiating (11) along the solutions of (5) yields
dU1

dt = xc·uc+(k1xc+uc)·
(
msk1uc+Fs

)
+η·Rω

+(k2η+ω)·
(
k2JsRω−ω×(Jsω)+Ms

)
+$,

(14)

where
$ = (k1xc+uc)·

∫
∂Ωs

σfndτ

+(k2η+ω)·
∫
∂Ωs

r×(σfn)dτ

= k12

∫
∂Ωs

xc ·(σfn)dτ+k2

∫
∂Ωs

xs ·(σfn)dτ

+
∫
∂Ωs

us ·(σfn)dτ ,

(15)
with

k12 = k1−k2,
xs = xc+η×r, (16)

which satisfies div(xs) = 0.

From (14), we design the controls Fs andMs as follows:

Fs = −k3xc−k4(k1xc+uc),
Ms = −k5(1+‖η‖2E)η−k6(1+‖η‖2E)(k2η+ω),

(17)

where ki, i = 3, · · · , 6 are positive constants to be cho-
sen. It is noted that instead of cancelling controls, we
designed the controls Fs and Ms as in (17) so that they
can be written in the form:[

Fs
Ms

]
= −K

(
∂U1

∂Ys

)T
, (18)
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where K is a positive definite matrix. This form means
that the controls Fs andMs are inverse pre-optimal and
can be easily extended to be inverse optimal by multi-
plying themselves by a positive constant larger than 2,
see [20,21] for extending Fs and Ms given by (17) to in-
verse optimal controls, and many desired properties of
inverse optimal controls. However, we do not detail this
issue here as we focus on the fluid loads on the rigid body
in this paper.

Substituting (17) into (14) and using Young’s inequality
gives
dU1

dt ≤ −k̄1‖xc‖2E−k̄2‖uc‖2E−k̄3‖η‖2E−k̄4‖ω‖2E+$,
(19)

where we chose the constants ki, i = 1, · · · , 6 such that

1+k2
1ms−k3−2k1k4 = 0,

k̄1 = k1k3+k2
1k4 > 0,

k̄2 = k4−k1ms > 0,
1
2−2k2k6+k5 = 0,

k̄3 = k5− 1
8k

2
2λM (Js)+k2

2k6 > 0,

k̄4 = k6− 1
8k

2
2λM (Js)−|k2|EλM (Js) > 0.

(20)

It is easy to see that there exist constants ki, i = 1, · · · , 6
such that all the conditions in (20) and (13) hold, and
that k̄i, i = 1, · · · , 4 are as large as required. From (17)
and (10), we can solve for the controls Fk, see Section 6.

Remark 3.1 At this point, we cannot conclude any
stability of the rigid body dynamics based on (11) and
(19) because we do not have a bound on the fluid force∫
∂Ωs

σfndτ and the fluid moment
∫
∂Ωs

r × (σfn)dτ .

This means that we cannot use Young’s inequality to
bound the term $ defined in (15). Therefore, we will
analyze stability of the rigid body dynamics and conver-
gence of its states in Section 5 after we show existence
of the weak solution of the whole system (i.e., both the
fluid and the rigid body) and consider the NSEs for the
fluid separately in Section 4.

4 Existence of a weak solution of the closed-loop
system

In this section, we show the closed-loop system consist-
ing of the fluid (1) and the rigid body (5) with Fk ob-
tained from (17) and (10) has at least one weak solution.

4.1 Formulation of a weak solution

We define the characteristic function χΩs(t,x) on Ωs, a
global velocity u, and a global density ρ(t,x), and assign
a function h(t,x) to χΩs(t,x) (for simplicity of presen-
tation and for penalization purpose later) as follows:

χΩs(t,x) =

{
1 if x ∈ Ωs

0 otherwise,

u =

{
uf in Ωf

us in Ωs,

ρ(t,x) = ρsχΩs(t,x)+ρf (1−χΩs(t,x)),

h(t,x) = χΩs(t,x).

(21)

Clearly, we have

Ωs(t) = {x ∈ Ω, h(t,x) = 1}. (22)

Let us denote the initial data for those variables defined
in (21) as

u0 := u(0,x) =

{
uf (0,x) in Ωf (0)

us(0,x) in Ωs(0).

ρ0 := ρ(0,x) = ρsχΩs(0,x)+ρf (1−χΩs(0,x)),

h0 := h(0,x) = χΩs(0)(0,x).

(23)

Then, h(t,x) and ρ(t,x) satisfy transport equations [7]
in a weak form as

∀ψ ∈ C1(Q), ψ(T ) = 0 :∫ T
0

∫
Ω

(
h∂ψ∂t +hu·∇ψ

)
dxdt+

∫
Ω
h0ψ(0) = 0,∫ T

0

∫
Ω

(
ρ∂ψ∂t +ρu·∇ψ

)
dxdt+

∫
Ω
ρ0ψ(0) = 0.

(24)

Next, we perform tedious but straightforward calcula-
tions from (1) and (5) to obtain
dxc
dt = uc,
dη
dt = Rω,

∀ξ ∈ H1(Q)∩L2(0, T ;K(t)) :

d
dt

∫
Ω
ρu·ξdx =

∫
Ω

[
ρu·∂tξ+(ρu⊗u−2µD(u)) : D(ξ)

+
∑N
k=1(δFkFk)·ξ

]
dx,

(25)
where δFk denotes the diagonal matrix of the dirac delta
function of x− xFk with xFk being the position of the
force Fk, i.e., xFk = xc + rFk. We have included the
first two equations in (25) for convenience of referring
later. In derivation of (25), we have multiplied the first
equation in (1) by ξ ∈ H1(Q) ∩ L2(0, T ;K(t)), then
calculated d

dt

∫
Ωs
ρu · ξdx, and noted that

vξ ·Fs+ωξ ·Ms =
∑N
i=1(vξ ·Fk+ωξ ·(rFk×Fk))

=
∑N
i=1

∫
Ωs

(vξ ·δFkFk+ωξ ·(rFk×δFkFk))dx

=
∑N
i=1

∫
Ω

(vξ ·δFkFk+ωξ ·(rFk×δFkFk))dx

=
∑N
i=1

∫
Ω
ξ·δFkFkdx.

(26)
Now, setting ψ = hq with q ≥ 1 in the first equation of
(24) and ψ = ρq with q ≥ 1 in the second equation of
(24) yields

ρ, h ∈ C(0, T ;Lq(Ω)), ∀ q ≥ 1. (27)

Moreover, setting ξ = u in (26) and considering the
“energy” E defined by

E = k̂1
2 ‖xc‖

2
E+2k̂2‖η‖2E+ 1

2

∫
Ω
ρ‖u‖2E , (28)

where k̂1 = k3 + k1k4 > 0 and k̂2 = k5 + k2k6 > 0 under
conditions (20). Differentiating (28) along the solutions
of (25), we formally obtain:

dE
dt = −2µ

∫
Ω
‖D(u)‖2Edx−k4ms‖uc‖2E

−k6(1+‖η‖2E)ω·Jsω.
(29)

From (27), (28), and (29), we can derive that

xc ∈ L∞(0, T ;R3), η ∈ L∞(0, T ;R3),
u ∈ L∞(0, T ;H)∩L2(0, T ;V ).

(30)
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The above derivations motivate the following weak so-
lution definition.

Definition 4.1 Under the initial data (9), where
the initial data of global variables are given in (23),
(xc(t),η(t), ρ(t,x),u(t,x), h(t,x)) is a weak solution of
the closed-loop system consisting of (1), (5), and (17) if
they satisfy (24), (25), (27), and (30).

The above definition of a weak solution is similar to a
definition of a weak solution to standard nonhomoge-
neous NSEs except for the fact that we take the con-
straint of rigidity into account. On the other hand, the
transport equation on ρ can be deduced from that of h
and the definition of ρ0; however h is added for passing
the passage to the limit in the problem of penalization.

4.2 Penalized system

In order to find (xc(t),η(t), ρ(t,x),u(t,x), h(t,x)) such
that they satisfy Definition 4.1, we use a penalization ap-
proach. Due to Lemma 2.1, there are two methods to pe-
nalize the rigidity constraint: i) penalizing the difference
between the fluid velocity and rigid body velocity [5];
ii) penalizing the spatial derivative of the rigid body ve-
locity [31]. We use the first method due to its several
advantages (such as simpler calculations in proof, and
numerical computation) over the second method.

Let δ > 0 be a penalized parameter. Given the initial
data

xcδ(0) = xc(0), ηδ(0) = η(0), uδ(0) = u0,
ρδ(0) = ρ0, hδ(0) = h0,

(31)

we wish to find (xcδ(t),ηδ(t), ρδ(t,x),uδ(t,x), hδ(t,x),
pδ(t,x)) such that they satisfy

xcδ,ηδ ∈ L∞(0, T ;R3); ρδ, hδ ∈ L∞(Q);
uδ ∈ L∞(0, T ;H)∩L2(0, T ;V ); pδ ∈ L2(Q),

(32)

and are a solution to the penalized system:
ρδ(∂tuδ+(uδ ·∇)uδ)−div(σδ)

+ 1
δρδhδ(uδ−uδ,s)−

∑N
k=1(δkFk) = 0,

div(uδ) = 0,
∂tρδ+uδ ·∇ρδ = 0,
∂thδ+uδ,s·∇hδ = 0,

in Q

{
dxcδ
dt = ucδ,
dηδ
dt = Rδωδ,

in R3

(33)

where
σδ = 2µD(uδ)−pδI3,

uδ,s = 1
mδ

∫
Ω
ρδuδhδdx+

(
J−1
δ

∫
Ω
ρδrδ×uδhδdx

)
×rδ,

Rδ = 1
2

(
I−S(ηδ)+ηδη

T
δ −

1+‖ηδ‖2E
2 I3

)
,

(34)
with

rδ = x−xcδ, xcδ = 1
mδ

∫
Ω
ρδhδxdx,

mδ =
∫

Ω
ρδhδdx,

Jδ =
∫

Ω
ρδ(‖rδ‖2EI3−rδ⊗rδ)hδdx

(35)

In addition, we impose the homogeneous Dirichlet
boundary condition:

uδ = 0 on (0, T )×∂Ω, (36)

and define Ωδs = {x ∈ Ωs, hδ(t,x) = 1}. Several obser-
vations on the penalized system (33) are given in the
following remark.

Remark 4.1

• The penalized system (33) is based on [5], where action
of the controls Fs and Ms given by (17) are taken into
account.

• It is clear that |Ωδs|E =
∫

Ω
hδdx = |Ωs(0)|E because

uδ,s is divergence free and hδ vanishes on ∂Ω as we
assume there is no collision between the rigid body and
∂Ω. We also have

mδ =
∫

Ωδs
ρδdx,

Jδ =
∫

Ωδs
ρδ(‖rδ‖2EI3−rδ⊗rδ)dx.

(37)

Hence, mδ is positive (as mδ ≥ min(ρf , ρs)
∫

Ωδs
dx)

and Jδ is positive definite (as a · Jδa =
∫

Ωδs
ρδ‖rδ ×

a‖2Edx ≥ min(ρf , ρs)
∫

Ωδs
‖rδ × a‖2Edx for all a ∈

R3 \ {0}).
• In the first equation of (33), the term uδ,s defined in

(34) is the projection ofuδ onto the velocity fields which
are rigid on Ωδs because one can prove that, see [5]:∫

Ω
ρδhδ(uδ−uδ,s)·ζdx = 0, (38)

where ζ is a rigid velocity field, i.e., there exist
(vζ ,ωζ) ∈ R3 × R3 such that ζ = vζ + ωζ × r(t,x),
and uδ,s is given by (34). Hence, the penalized term
1
δρδhδ(uδ − uδ,s) in the first equation of (33) is the
difference between uδ and its projection onto rigid
velocity fields in the rigid body domain, i.e., uδ,s.

• The density is transported with the velocity field uδ.
This eases calculations in estimating bounds for the
penalized system.

Existence of a weak solution (xcδ(t), ηδ(t), ρδ(t,x),
uδ(t,x), hδ(t,x), pδ(t,x)) to the penalized system (33)
is stated in the following lemma.

Lemma 4.1 There is at least one weak solution (xcδ(t),
ηδ(t), ρδ(t,x), uδ(t,x), hδ(t,x), pδ(t,x)) to the penal-
ized system (33) that satisfies (32) for all t ∈ [0, T ], where
T is such that Ωδs(t) b Ω and ηδ(t) ∈ Dη for all t ∈ [0, T ].

Proof. Proof of this lemma principally follows the part
of a priori estimates and convergence arguments in proof
of Theorem 2.1 in [5]. The only main difference is that a
priori estimates should use the penalized energy Eδ as in
(28) with (xc,η,u) being substituted by (xcδ,ηδ,uδ).
This is due to inclusion of (xc,η) and controls (Fs,Ms)
in this paper.

4.3 Existence of a weak solution

Having obtained a weak solution of the penalized system
(33) in Lemma 4.1, existence of a weak solution stated
in Definition 4.1 is given in the following theorem.

Theorem 4.1 Let (xcδ(t), ηδ(t), ρδ(t,x), uδ(t,x),
hδ(t,x), pδ(t,x)) be a weak solution to the penalized sys-
tem (33). Then, under the initial data (23) and (9), there
exists a subsequence of (xcδ(t), ηδ(t), ρδ(t,x), uδ(t,x),
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hδ(t,x)) such that xcδ → xc strongly in L∞(Q); ηδ → η
strongly in L∞((0, T )×Dη); ρδ → ρ, hδ → h strongly in
C(0, T ;Lq(Ω)); uδ → u strongly in L2(Q) and weakly in
L∞(0, T ;H) ∩ L2(0, T ;V ) such that (xc,η, ρ, h,u) is a
weak solution of the closed-loop system consisting of (1),
(5), and (17) as defined in Definition 4.1. The constant
T is such that Ωs(t) b Ω and η(t) ∈ Dη for all t ∈ [0, T ].

Proof. Proof of this theorem can be readily obtained
from that of Theorem 2.1 in [5] with a note as in the
proof of Lemma 4.1.

5 Stability and convergence of the closed-loop
system

This section provides stability and convergence analysis
of the closed-loop system, which can be based on (11),
(19), (28), and (29) once we handle the term $ in (15).

5.1 Detail of $

Since we already showed existence of a weak solution
of the closed-loop system (including both the fluid and
rigid body) in Theorem 4.1, the idea to handle the term
$ is to multiply the first equation in (1) by appropriate
test functions to detail the terms:

A1 =
∫
∂Ωs

xc ·(σfn)dτ ,

A2 =
∫
∂Ωs

xs ·(σfn)dτ ,

A3 =
∫
∂Ωs

us ·(σfn)dτ ,
(39)

where us is defined in (3) and xs is defined in (16). We
refer A1 and A2 to as fluid work as they are products of
the fluid force (σfn) with displacements xc and xs, and
A3 to as fluid power as it is a product of the fluid force
with velocity us.

5.1.1 Detail of A1 and A2

We define the domain Ω∗s(t), where the argument t of
Ω∗s is dropped for clarity henceforth, such that Ωs ⊂
Ω∗s ⊆ Ω, and the minimum distance between ∂Ωs and
∂Ω∗s denoted by κ = inft≥0 dist(∂Ωs, ∂Ω∗s) is strictly
positive, see Fig. 1. There exists Ω∗s such that this κ
is strictly positive because we assumed Ωs b Ω. Let
X̂s(t,x) ∈ L∞(0, T ;E), which represents either xc or

xs, we can extend X̂s(t,x) to Xs(t,x) in Ω∗s such that
Xs = 0 on ∂Ω∗s and div(Xs) = 0 in Ω∗s using the smooth
step function introduced in [11] as follows. Let h(t,x) be
the smooth step function extended to three dimensional
space such that ∇× h = 0 on ∂Ω∗s and ∇× h = X̂s on

∂Ωs. Then, Xs can be defined as Xs = X̂ in Ωs, and
Xs = ∇× h in Ω∗s. It is clear that div(Xs) = 0 because

div(X̂) = 0 and div(∇× h) = 0.

Now, multiplying the first equation in (1) by Xs and
integrating over Ω∗s yields

ρf
∫

Ω∗
s
∂tuf ·Xsdx+ρf

∫
Ω∗
s
(uf ·∇)uf ·Xsdx

−
∫

Ω∗
s

div(σf )·Xsdx = 0.
(40)

Using integration by parts, the boundary condition
Xs = 0 on ∂Ω∗s, and the interface condition given by

the second equation in (6), we have∫
Ω∗
s
∂tuf·Xsdx = d

dt

∫
Ω∗
s
uf·Xsdx−

∫
Ω∗
s
uf·∂tXsdx

−
∫
∂Ωs

(uf·Xs)uf·ndτ ,∫
Ω∗
s
(uf·∇)uf·Xsdx =

∫
∂Ωs

(uf·Xs)uf·ndτ
−
∫

Ω∗
s
(uf⊗uf ) : ∇Xsdx,∫

Ω∗
s

div(σf )·Xsdx =
∫
∂Ωs

(σfn)·X̂sdτ

−2µ
∫

Ω∗
s
D(uf ) : D(Xs)dx.

(41)
Substituting (41) into (40) gives∫

∂Ω∗
s
(σfn)·X̂sdτ = 2µ

∫
Ω∗
s
D(uf ) : D(Xs)dx

+ρf
d
dt

∫
Ω∗
s
uf ·Xsdx−ρf

∫
Ω∗
s
uf ·∂tXsdx

−ρf
∫

Ω∗
s
(uf⊗uf ) : ∇Xsdx.

(42)

Letting x̃c ≡Xs for the case X̂s = xc and x̃s ≡Xs for
the case X̂s = xs, we can detail the terms A1 and A2 as

A1 = 2µ
∫

Ω∗
s
D(uf ) : D(x̃c)dx+ρf

d
dt

∫
Ω∗
s
uf ·x̃cdx

−ρf
∫

Ω∗
s
uf ·∂tx̃cdx−ρf

∫
Ω∗
s
(uf⊗uf ) : ∇x̃cdx,

A2 = 2µ
∫

Ω∗
s
D(uf ) : D(x̃s)dx+ρf

d
dt

∫
Ω∗
s
uf ·x̃sdx

−ρf
∫

Ω∗
s
uf ·∂tx̃sdx−ρf

∫
Ω∗
s
(uf⊗uf ) : ∇x̃sdx,

(43)
where ∇x̃c = κ(∇2h)xc and ∇x̃s = κ(∇2h)xs with
κ(∇2h) being a matrix depending on ∇2h. Since Ωs ⊂
Ω∗s ⊆ Ω, ∂txc = uc, ∂txs = uc + Rω × (x − xc(t))
because ∂t(x − xc(t)) = 0 for x ∈ Ωs, and we have
proved (30), we can handle the terms

∫
Ω∗
s
uf · ∂tx̃cdx

and
∫

Ω∗
s
uf · ∂tx̃sdx in (43).

5.1.2 Detail of A3

We perform a similar extension as for the terms A1 and
A2 but the difference is that we set X̂s = us in Ωs and
chooseXs = uf on ∂Ωs. Now, the problem is that we will
not be able to handle the term

∫
Ω∗
s
uf ·∂tXsdx. To fix this

problem, we proceed as follows. As
∫

Ω∗
s
∂tuf ·Xsdx =∫

Ω∗
s
uf · ∂tXsdx for this extension, we can write (41) as

2
∫

Ω∗
s
∂tuf·Xsdx = d

dt

∫
Ω∗
s
uf·Xsdx−

∫
∂Ω∗

s
|uf |2Euf·ndτ ,

2
∫

Ω∗
s
(uf·∇)uf·Xsdx =

∫
∂Ω∗

s
|uf |2Euf·ndτ

−
∫

Ω∗
s
(uf⊗uf ) : ∇ũsdx,∫

Ω∗
s

div(σf )·Xsdx =
∫
∂Ωs

(σfn)·usdτ
−2µ

∫
Ω∗
s
D(uf ) : D(Xs)dx,

(44)
where ∇ũs = (κ(∇2h)uf ).

Now, letting ũs ≡Xs, we can detail the term A3 as

A3 = 2µ
∫

Ω∗
s
D(uf ) : D(ũs)dx+

ρf
2
d
dt

∫
Ω∗
s
uf ·ũsdx

−ρf2
∫

Ω∗
s
(uf⊗uf ) : ∇ũsdx.

(45)

5.1.3 Detail of $

With (39), (43), and (45), we can write$ defined in (15)
as
$ = k12ρf

d
dt

∫
Ω∗
s
uf ·x̃cdx+

ρf
2
d
dt

∫
Ω∗
s
uf ·ũsdx

+k2ρf
d
dt

∫
Ω∗
s
uf ·x̃sdx+$∗,

(46)
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where
$∗ = 2µk12

∫
Ω∗
s
D(uf ) : D(x̃c)dx

+2µk2

∫
Ω∗
s
D(uf ) : D(x̃s)dx

+2µ
∫

Ω∗
s
D(uf ) : D(ũs)dx

−k12ρf
[ ∫

Ω∗
s
uf ·∂tx̃cdx

+
∫

Ω∗
s
(uf⊗uf ) : ∇x̃cdx

]
−k2ρf

[ ∫
Ω∗
s
uf ·∂tx̃sdx

+
∫

Ω∗
s
(uf⊗uf ) : ∇x̃sdx

]
−ρf2

∫
Ω∗
s
(uf⊗uf ) : ∇ũsdx.

(47)

We now derive the bound of $∗. Due to the extensions
x̃c, x̃s, and ũs, we can use Hölder’s inequality to obtain:

|$∗|E ≤2µ
(
|k12|E+|k2|Eε11+ϑ( 1

κ )
) ∫

Ω∗
s
‖D(uf )‖2Edx

+2µϑ( 1
κ )
∫

Ω∗
s
‖uf‖2Edx

+2µ|k12|Eϑ( 1
κ )|Ω∗s|E‖xc‖2E

+4µ|k2|Eϑ( 1
κ )(‖xc‖2E+r2

s‖η‖2E)

+ 1
2 |k12|Eρf

∫
Ω∗
s
‖uf‖2Edx

+ 1
2 |k12|Eρf |Ω∗s|Eϑ( 1

κ )‖uc‖2E
+ 1

2 |k2|Eρf
∫

Ω∗
s
‖uf‖2Edx

+|k2|Eρf |Ω∗s|Eϑ( 1
κ )(‖uc‖2E+r2

s‖ω‖2E)

+|k12|Eρfϑ( 1
κ )|Ω∗s|

1
2

E‖xc‖E
( ∫

Ω∗
s
‖uf‖4Edx

) 1
2

+|k2|Eρfϑ( 1
κ )|Ω∗s|

1
2

E(‖xc‖E
+rs‖η‖E)

( ∫
Ω∗
s
‖uf‖4Edx

) 1
2

+ 1
2ρfϑ( 1

κ )
( ∫

Ω∗
s
‖uf‖4Edx

) 1
2
( ∫

Ω∗
s
‖uf‖2Edx

) 1
2 ,

(48)
where rs = supΩs ‖x−xc(t)‖E and ϑ( 1

κ ) is an increasing

function of 1
κ , and |Ω∗s|E denotes the volume of Ω∗s.

We now use the embedding V ⊂ (L6(Ω∗s))
3 ⊂ (L4(Ω∗s))

3

to write (48) as

|$∗|E ≤
(
ε11+ε12|uf |2Ω∗

s
+ε13‖xc‖2E+ε14‖η‖2E

)
·‖uf‖2Ω∗

s
+ε21‖xc‖2E+ε22‖η‖2E+ε23‖uc‖2E

+ε24‖ω‖2E+ε25|uf |2Ω∗
s
,

(49)

where
ε11 = c

(
2µ
(
|k12|E+|k2|E+ϑ( 1

κ )
)
+ 1

4ρfϑ( 1
κ )

+|k2|Eρfϑ( 1
κ )|Ω∗s|

1
2

E+ 1
2 |k12|Eρfϑ( 1

κ )|Ω∗s|
1
2

E

)
,

ε12 = 1
4cρfϑ( 1

κ ),

ε13 = c
(

1
2 |k2|Eρfϑ( 1

κ )|Ω∗s|
1
2

E+ 1
2 |k12|Eρfϑ( 1

κ )|Ω∗s|
1
2

E

)
,

ε14 = c 1
2 |k2|Eρfϑ( 1

κ )|Ω∗s|
1
2

Er
2
s ,

ε21 = 2µ|k12|Eϑ( 1
κ )|Ω∗s|E+4µ|k2|Eϑ( 1

κ ),

ε22 = 4µ|k2|Eϑ( 1
κ )r2

s ,

ε23 = |k2|Eρf |Ω∗s|Eϑ( 1
κ )+ 1

2 |k12|Eρf |Ω∗s|Eϑ( 1
κ ),

ε24 = |k2|Eρf |Ω∗s|Eϑ( 1
κ )r2

s ,

ε25 = 2µ
(
|k12|E+ 1

2 |k12|Eρf+ 1
2 |k2|Eρf

(50)
with c being the embedding constant depending on only

Ω∗s.

5.2 Convergence of the closed-loop system

With $ detailed by (46), we consider the following Lya-
punov function candidate for the closed-loop system:

U = U1+ε01E+ ε02
2 E

2+U2, (51)

where U1 is given by (11), E is given by (28), ε01 and ε02

are positive constants to be chosen, and

U2 = (k1−k2)ρf
∫

Ω∗
s
uf ·x̃cdx

−ρf2
∫

Ω∗
s
uf ·ũsdx−k2ρf

∫
Ω∗
s
uf ·x̃sdx.

(52)

Using Hölder’s inequality, we can find the bound of U2 as

|U2|E ≤ ε31‖xc‖2E+ε32‖η‖2E+ε33ρf |uf |2Ω∗
s
. (53)

where

ε31 = ρf
(

1
2 |k12|E+|k2|E |Ω∗s|E

)
,

ε32 = |k2|Eρf |Ω∗s|Er2
s ,

ε33 = 1
2 |k12|E+ 1

4ϑ( 1
κ ).

(54)

Since ρf |uf |2Ω∗
s
≤
∫

Ω
ρ‖u‖2E due to Ω∗s ⊂ Ω and defini-

tion of u in (21), we can find the bound for U as:

U1+ε01E+ 1
2ε02E2 ≤ U ≤ U1+ε̄01E+ 1

2ε02E2,

α0

(
k̂1
2 ‖xc‖

2
E+ k̂2

2 ‖η‖
2
E+ 1

2

∫
Ω
ρ‖u‖2E

)
+k̄01‖Ys‖2E ,

(55)
where Ys is defined just below (12), and we choose a
sufficiently large ε01 such that

ε01 = min
(
ε01

k̂1
2 −ε31, ε01

k̂2
2 −ε32,

1
2ε01−ε33

)
> 0,

ε̄01 = max
(
ε01

k̂1
2 +ε31, ε01

k̂2
2 +ε32,

1
2ε01+ε33

)
> 0.

(56)
Differentiating (51) along the solutions of (19), (29), us-
ing (46), and noting that |uf |2Ω∗

s
≤ |u|2 and ‖uf‖2Ω∗

s
≤

‖u‖2 due to Ω∗s ⊂ Ω and definition of u in (21), we have
dU
dt = dU1

dt +(ε01+ε02E)dEdt + dU2

dt

≤ − 1
2 k̄1‖xc‖2E− 1

2 k̄2‖uc‖2E− 1
2 k̄3‖η‖2E− 1

2 k̄4‖ω‖2E
− 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)
+$0,

(57)
where
$0 = − 1

2 k̄1‖xc‖2E− 1
2 k̄2‖uc‖2E− 1

2 k̄3‖η‖2E− 1
2 k̄4‖ω‖2E

− 1
2 (ε01+ε02E)

(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)
+$∗.

(58)
Substituting the bound of $∗ in (49) into (58), and
choosing

k̄1 ≥ ε21, k̄2 ≥ ε23, k̄3 ≥ ε22, k̄4 ≥ ε24, (59)

which is always feasible because we can choose ki, i =
1, · · · , 6 such that k̄i, i = 1, · · · , 4 are as large as re-
quired, see the paragraph just under (20), and suffi-
ciently large ε01 and ε02, we can use the Poincaré in-
equality to ensure that

$0 ≤ 0. (60)
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Substituting (60) in to (57) yields
dU
dt ≤ −

1
2 k̄1‖xc‖2E− 1

2 k̄2‖uc‖2E− 1
2 k̄3‖η‖2E− 1

2 k̄4‖ω‖2E
− 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)
.

(61)

Integrating (61) from 0 to ∞ yields∫∞
0

[
1
2 k̄1‖xc‖2E+ 1

2 k̄2‖uc‖2E+ 1
2 k̄3‖η‖2E+ 1

2 k̄4‖ω‖2E
+ 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)]
dt ≤ U(0)−U(∞)

≤ U(0).

(62)
Since we have already proved existence of the solution
of the closed-loop system consisting of (1), (5), and (17),
the inequality (62) implies that

lim
t→∞

[
1
2 k̄1‖xc(t)‖2E+ 1

2 k̄2‖uc(t)‖2E+ 1
2 k̄3‖η(t)‖2E

+ 1
2 k̄4‖ω‖2E+ 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u(t))‖2Edx

+k4ms‖uc(t)‖2E+k6(1+‖η(t)‖2E)ω(t)·Jsω(t)
)]

= 0,

(63)
which shows global asymptotic stability of the closed-
loop system. We now show local exponential stability
of the closed-loop system, i.e. Υ(t) ≤ β(t,Υ(0)), where
Υ(t) = ‖xc(t)‖2E+‖η(t)‖2E+

∫
Ω
‖u(t,x)‖2Edx, β(·, ·) is a

classKL∞-function. When (xc,uc,η,ω,
∫

Ω
ρ‖D(u)‖2Edx)

are small in magnitude (i.e., when the closed-loop sys-
tem evolutes for a sufficiently long time, say t ≥ t0 for
some t0 ≥ 0), we obtain from (61), 55), (11), and (28)
that

dU
dt ≤ −c0U, ∀ t ≥ t0 ≥ 0 (64)

where c0 is a positive constant. From (64), it holds that
U(t) ≤ U(t0)e−c0(t−t0), and hence local exponential sta-
bility of the closed-loop system is ensured.

We summarize the main results in the following theorem.

Theorem 5.1 Under the initial data (9), the controls
Fk, which are obtained from (17), solves Control Objec-
tive 2.1 for all t ∈ [0, T ], where T is such that Ωs(t) b Ω.
In particular, the closed-loop system consisting of (1),
(5), and (17) has at least one weak solution, which is de-
fined in Definition 4.1 for all t ∈ [0, T ] such that

xc ∈ Ω, η ∈ Dη, ρ, h ∈ L∞(Q),

u ∈ L∞(0, T ;H)∩L2(0, T ;V ), p ∈ L2(Q),
(65)

where (ρ, h,u) are defined in (21). Moreover, the closed-
loop system is globally asymptotically and locally stable
at the origin provided that there is no collision between
the rigid body and the boundary of the fluid domain, i.e.,

Υ(t) ≤ β(t,Υ(0)), (66)

where Υ(t) = ‖xc(t)‖2E + ‖η(t)‖2E +
∫

Ω
‖u(t,x)‖2Edx,

β(·, ·) is a class KL∞-function, and if Υ(t0), where t0 ≥
0, is sufficiently small, then Υ(t) ≤ Υ(t0)e−c0(t−t0),
where c0 is a positive constant.

6 Simulations

In this section, we perform a simulation to illustrate the
effectiveness of the control law given by (17). We take
a rectangular prism as the domain Ω with dimensions
[L1×L2×L3] = [− 1

2π,
1
2π]m×[− 1

2π,
1
2π]m×[− 3

2π,
3
2π]m.

For the fluid, we take water as the fluid with µ = 1.793×
10−3kg/ms and ρf = 980kg/m3. For the rigid body,
we take the physical shape of a rectangular prism with
dimensions: π

10m × π
10m × 3π

10 m and the mass: ms =

10kg, which give Js = diag(0.1645, 0.1645, 0.8225)kgm2.
We approximate all the sharp corners of Ω and Ωs by
rounding them off to make ∂Ω and ∂Ωf Lipschitz. We
assume that there are six forces Fk, k = 1, · · · , 6 located
at six locations Rk, which are configured as

F1 =

[
f1
0
0

]
,F2 =

[
f2
0
0

]
,F3 =

[
0
f3
0

]
,F4 =

[
0
f4
0

]
,F5 =

[
0
0
f5

]
,F6 =

[
0
0
f6

]
,

R1 =

[
0
r1
0

]
,R2 =

[
0
r2
0

]
,R3 =

[
0
0
r3

]
,R4 =

[
0
0
r4

]
,R5 =

[
r5
0
0

]
,R6 =

[
r6
0
0

]
.

(67)
Then we can write (10) as

f = Q−1

[
Fs
−Ms

]
(68)

where f = col(f1, · · · , f6) and

Q =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 r3 r4 0 0
0 0 0 0 r5 r6
r1 r2 0 0 0 0

 . (69)

The determinant Q is det(Q) = r1r3r5 − r1r3r6 −
r1r4r5 − r2r3r5 + r1r4r6 + r2r3r6 + r2r4r5 − r2r4r6 and
can be made nonzero to make Q invertible by a simple
choice: r1 = −r2 6= 0, r3 = −r4 6= 0 and r5 = −r6 6= 0.
This choice yields det(Q) = 8r1r3r5, which is nonzero
due to rk 6= 0 for all k = 1, · · · , 6. In the simula-
tions, we choose r1 = −r2 = π

10m, r3 = −r4 = π
10m,

r5 = −r6 = 3π
10 m. The formula (68) is to calculate the

individual forces Fk as Fs and Ms are given by (17).
We pre-eliminate the difference between buoyancy and
gravity forces before applying (17).

We will use the semi-Galerkin method to the penalized
system (33) to obtain a numerical weak solution, where
we approximate

unδ (t,x) =
∑n
l=1 c

n
l (t)al(x), (70)

where cnl (t) are scalar functions of time, al(x) are
eigenfunctions of the Stokes operator. We substitute
(70) into the first equation of (33) and multiply it by
ξ = Spann{al(x); l = 1, · · · , n} to obtain a system
of ODEs for cnl (t), which is numerically solvable. The
transport equations (the third and fourth equations of
(33)) are solved by using the characteristic method.
Next, we choose the penalized parameter as δ = 1

n . We
now need to derive eigenfunctions for our domain Ω.
To do so, we need the following lemma [16, Theorem
III.2.3].
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Lemma 6.1 If Ω is a bounded open set in R3 with Lip-
schitz boundary, then H coincides with the space of di-
vergence free functions in L2(Ω) such that u · n = 0 on
∂Ω, where n is the normal unit vector to ∂Ω.

With this lemma, eigenfunctions of the Stokes problem
are equivalent to those of the Laplace operator with the
condition u ·n = 0 on ∂Ω as we consider a weak solution
in H. Hence, we look for al such that

i) ∆al = −λlal, div(al) = 0 in Ω; al · n = 0 on ∂Ω,
ii) al is an orthornormal basis of H(Ω),
iii) al is an orthogonal basis of V (Ω),
iv) 0 < λ1 ≤ λ2 ≤ · · · and λl →∞ as l→∞.

A nontrivial calculation gives al (we neglect the round
off corners), which satisfies all the above properties, as
follows:

al = āl
λl

L1 cos(l1x1) sin(l2x2) sin(l3x3)

L2 sin(l1x1) cos(l2x2) sin(l3x3)

L3 sin(l1x1) sin(l2x) cos(l3x3)

 , (71)

where
L1 = l22+l23+l1(l2−l3), L2 = −(l21+l23+l2(l1+l3)),

L3 = (l21+l22+l3(l2−l1), āl =

√
8λ2
l

π3(L2
1+L2

2+L2
3)
,

λl = l21+l22+l23,

(72)

for (l1, l2, l3) ∈ Z3 such that l2 = l21 + l22 + l23, which
are taken into account to have summing combination in
calculating (70). We perform two simulations. In both
simulations, we choose the control gains as follows: k1 =
0.05, k4 = 8, k2 = 0.1, and k6 = 3. This choice gives
k3 = 1.825, k5 = 0.1, k̄1 = 0.11, k̄2 = 7.5, k̄3 = 0.13, and
k̄4 = 2.92 according to (20). Clearly, the conditions in
(13) and (20) hold. Moreover, we choose n = 108, which
gives δ = 10−8.

In the first simulation, for the initial values of the
fluid velocity we take cnl (0) to be random num-
ber in 1

n2 [−1, 1]. The initial values of the rigid
body are taken as xc(0) = col(0.2,−0.2, 0.4)m,
η(0) = col(1.6, 0.4, 2.5), which yields a principal
axis/angle pair e = col(0.4782, 0.2050, 0.8540) and
γ = 4.9665 rad. The initial values of the velocities uc(0)
and ω(0) of the rigid body are determined via (31), (23),
and the interface condition given by the second equation
in (6), where u(0,x) is substituted by unδ (0,x).

The position vector xc, orientation vector η, linear ve-
locity vector uc, angular velocity vector ω, and H-norm
of the global velocity

∫
Ω
‖u‖2Edx are plotted in Fig. 2.

The control force vector Fs, control moment vectorMs,
and control forces fk, k = 1, · · · , 6, see (68), are plotted
in Fig. 3. It is seen from these figures that all the states
xc, η, uc, and ω, |u| = (

∫
Ω
‖u‖2Edx)

1
2 ; and the controls

Fs,Ms, and fk converge to zero. It is noted that conver-
gence of the rigid body states xc, η, uc, and ω to zero
is affected by that of |u| due to the fluid forces and fluid
moments on the rigid body.

Fig. 2. First simulation - states: xc, η, uc, ω, and

|u| = (
∫

Ω
‖u‖2

Edx)
1
2 .

Fig. 3. First simulation - controls: Fcs, Ms, and fk.

To illustrate the robustness/performance of the pro-
posed stabilization controller under the same control
gains, we perform the second simulation with the ini-
tial values xc(0) = col(0.4,−0.4, 0.8)m while all other
initial values and parameters are taken the same as in
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the first solution. Simulation results are plotted in Fig.
4 and Fig. 5. Explanation of Fig. 4 and Fig. 5 is similar
to that of Fig. 2 and Fig. 3. Comparing Fig. 2 and Fig.
4; Fig. 3 and Fig. 5 shows that the proposed stabiliza-
tion controller stabilizes the rigid body very well under
different positions of the rigid body.

Fig. 4. Second simulation - states: xc, η, uc, ω, and

|u| = (
∫

Ω
‖u‖2

Edx)
1
2 .

7 Conclusions

Global asymptotic and local exponential stabilization of
a rigid body in an incompressible viscous fluid under po-
tential body force with the fluid velocity uf (0,x) ∈ H
was solved in this paper under an assumption that there
is no collision between the rigid body and the boundary
of the fluid domain. Since the fluid forces and fluid mo-
ments on the rigid body are not able to bound in an Eu-
clidean norm due to uf (0,x) ∈ H, the “fluid work and
fluid power” on the rigid body can be bound and should
be used for stability and convergence analysis. Future
work is to extend to stabilization of a rigid body in mul-
tiple fluids to cover practical cases such as floating rigid
bodies.
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[15] M. Fournié, M. Ndiaye, and J. P. Raymond. Feedback
stabilization of a two-dimensional fluid-structure interaction

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



system with mixed boundary conditions. SIAM Journal on
Control and Optimization, 57:3322–3359, 2019.

[16] G. P. Galdi. An Introduction to the Mathematical Theory
of the Navier-Stokes Equations: Steady-State Problems.
Springer, New York, 1989.

[17] G. P. Galdi. On motion of a rigid body in a viscous
liquid: a mathematical analysis with applica tions. Handbook
of Mathematical Fluid Dynamics, Vol. I, North-Holland,
Amsterdam, pages 653–791, 2002.

[18] C. Grandmont and Y. Maday. Existence for an unsteady
fluid-structure interaction problem. ESAIM: Mathematical
Modelling and Numerical Analysis, 34:609–636, 2000.

[19] M. D. Gunzburger, H. C. Lee, and G. A. Seregin. Global
existence of weak solutions for viscous incompressible flows
around a moving rigid body in three dimensions. Journal of
Mathematical Fluid Mechanics, 2:219–266, 2000.

[20] K. D. Do. Inverse optimal control of stochastic systems driven
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Stabilization of a rigid body in a viscous incompressible fluid

K. D. Do

School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia

Abstract

This paper addresses the problem of global asymptotic and local exponential stabilization of a rigid body inside a viscous
incompressible fluid described by Navier-Stokes equations within a bounded domain in three dimensional space provided that
there is no collision between the rigid body and the boundary of the fluid domain. Due to consideration of less regular initial
values of the fluid velocity, the forces and moments induced by the fluid on the rigid body are not able to bound. Therefore, the
paper handles “fluid work and fluid power” on the rigid body in stability and convergence analysis of the closed-loop system.
The control design ensures global asymptotic and local exponential stability of the rigid body while the initial fluid velocity is
not required to be small and regular but only under no collision between the rigid body and the boundary of the fluid domain.

Key words: Rigid body; Stabilization; Navier-Stokes equations; Existence; Weak solution.

1 Introduction

Stabilization of a rigid body (e.g., an ocean vehicle), in
a viscous fluid has many practical applications in off-
shore engineering. The fluid loads on a rigid body are
usually considered by an approximation approach, see
[12, 14, 22, 24] and references therein. In this approach,
the fluid loads on a rigid body are approximated and de-
coupled into two parts. The first part (related to added
mass) depends on the acceleration and velocity of the
rigid body. The second part depends on the fluid velocity
and is considered to be bounded in the Euclidean (point-
wise) norm. These approximations are overlooked from
the fundamental viewpoint of the fluid-structure inter-
action, which can be elaborated as follows. The require-
ment of the first part is oversimplified because it actually
depends on the fluid acceleration as shown in Section 5.
The requirement of the second part to be bounded in the
Euclidean norm requires a strong solution of the Navier-
Stokes equations (NSEs) for a viscous incompressible
fluid. Currently, existence of this strong solution is local
in either time or small initial values [25] under sufficient
regularity of initial values.

In comparison with the aforementioned approximation
approach, a fundamental NSE approach has been re-
cently considered. In this approach, fully coupled dy-
namics of both a rigid body and a fluid, where motion
of the rigid body is described by nonlinear ordinary dif-
ferential equations (ODEs) and motion of the fluid is
described by NSEs in three dimensional space, is ad-
dressed. This approach results in much more complex-

Email address: duc@curtin.edu.au (K. D. Do).

ities but actualities in fluid-structure interactions be-
cause we have to deal with: i) existence of an appropri-
ate solution of the fluid and rigid body system; ii) time-
varying domain of the fluid; iii) bound of the forces and
moments induced by the fluid on the rigid body. There
are several works related to the fundamental NSE ap-
proach. Existence of a weak solution for a system of a
fluid and multiple rigid bodies was proved in [7–9, 13],
where dynamics of the fluid and rigid bodies is written
as a global fluid and the initial values of the fluid are
assumed in H1

0 (Ω), which is the usual Sobolev space of
order 1 with compact support in the domain Ω, because
an estimate of the fluid acceleration in a weak form is
needed for compactness argument in passing to the limit
due to the nonlinear convection term. A similar result
was obtained in [6, 18, 19, 27, 28] but using a coordinate
transformation to handle difficulty caused by the fluid
time-varying domain. In [29], a proportional and deriva-
tive control law was designed to stabilize a rigid ball in a
fluid with the initial values of the fluid are also assumed
in H1

0 (Ω). This allows to estimate the fluid acceleration
in a weak form so that the fluid force acting on the rigid
ball is bounded. Feedback stabilization of a rigid body
in 1D, 2D, and 3D under similar regularity of the initial
data was considered in [2–4], see also [15] for the case
of stabilizing a flexible body in a fluid. Stabilization of
a rigid ball in compressible fluid was considered in [26],
where the global-in-time existence of strong solutions for
the corresponding system under a smallness condition
on the initial velocities and on the distance between the
initial position of the center of the ball was proved, see
also [8, 23].

In this paper, we consider the initial values of the fluid
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velocity in H(Ω), see (7) for definition of this functional
space, which is less regular than H1

0 (Ω). This less regu-
larity of the initial values of the fluid velocity will result
in a global solution but will cause a major difficulty: no
information on bound of the fluid loads on the rigid body
because we do not have an estimate of the fluid accelera-
tion in a weak form for both compactness argument and
the bound of the fluid loads on the rigid body. To handle
this difficulty, we consider the effect of the “fluid work
and fluid power” (instead of the fluid forces and mo-
ments) on the rigid body, see discussion just below (39)
for detail of the “fluid work and fluid power”. Although
uniqueness of a weak solution is neither proved nor dis-
proved (this is also a problem for standard NSEs [30]),
we show that its boundedness in appropriate norms is
sufficient for ensuring global asymptotic and local ex-
ponential stability of the closed-loop system provided
that there is no collision between the rigid body and
the boundary of the fluid domain. Hence, in compari-
son with the existing works on the approximation ap-
proach [12, 14, 22, 24] our control design does not suffer
from oversimplifications used in this approach, see the
first paragraph of this section. In comparison with the
fundamental NSE approach [6–9, 13, 18, 19, 27, 28], our
work does not require existence of a strong solution be-
cause we only require the initial values of the fluid ve-
locity in H(Ω). This results in a global solution as long
as there is no collision between the rigid body and the
boundary of the fluid domain.

In Section 3, a control law is designed in an appropriate
form such that it can be amended to be inverse opti-
mal [20, 21], and suitable for stability analysis of stabil-
ity of the closed-loop system in Section 5. In Section 4,
existence of at least one weak solution of the closed-loop
system is shown via a penalization approach. In Section
5, we prove global asymptotic and local exponential sta-
bility of the closed-loop system provided that there is
no collision between the rigid body and the boundary of
the fluid domain. We derive the affect of the fluid on the
rigid body via the “fluid work and fluid power”. This
enables us to consider a proper Lyapunov function for
stability analysis of the closed-loop system.

Notation: Let Ω be a open bounded set in R3, and
T > 0. Lp(Ω), where 1 ≤ p < ∞, denotes the stan-
dard Lebesgue space of measurable p-integrable func-
tions; L∞(Ω) denotes the space of essentially bounded
functions; H1(Ω) is the usual Sobolev space of order 1,
see [1]; H1

0 (Ω) denotes H1(Ω) with compact support;
Lp(0, T ;X), where 1 ≤ p <∞ and X is a Banach space
with the norm denoted by ‖ · ‖X , denotes a Brochner

space with the norm ‖u‖Lp(0,T ;X) = (
∫ T

0
‖u‖pXdt)1/p.

We also use ‖ · ‖E to denote the Euclidean norm, i.e.,
‖x‖E =

√
x · x with x · y =

∑
i(xiyi). For a scalar, we

use | · |E to denote the absolute value.



( )f t

( )s t

*
( )s t

Fig. 1. Domain definition

2 Problem statement

Let Ω ⊂ R3 be a C1 domain occupied by a viscous in-
compressible fluid surrounding a rigid body represented
by Ωs(t), which is a bounded open connected subdomain
of Ω, at time t, see Fig. 1, where the domain Ω∗s(t) is de-
fined and used in Section 5. We assume that Ωs(0) b Ω.
The fluid has density ρf > 0, dynamic viscosity µ > 0,
pressure p, velocity uf , and is governed by the NSEs for
viscous incompressible fluids [30]:

ρf (∂tuf+(uf ·∇)uf )−div(σf ) = 0, in Ωf (t)

div(uf ) = 0 in Ωf (t),
(1)

where the stress tensor of the fluid σf is given by

σf = 2µD(uf )−pI3 (2)

with D(uf ) = 1
2 (∇uf + (∇uf )T ) being the rate tensor

of the fluid (•T denotes the transpose of • and it should
not be confused with the time constant T ), Ωf (t) ⊂ Ω
being the fluid domain at time t (the boundary (interface
between the fluid and the rigid body) of Ωf depends on
t), I3 being the 3 × 3 identity matrix, and we assume
the body force is potential such as gravity, and hence is
merged to pressure p.

In what follows, we briefly describe equations of motion
of the rigid body in the incompressible fluid. For details
of derivation, the reader is referred to [7, 13,17].

For the rigid body, we define the mass ms, the density
ρs > 0, the vector of the center of gravity xc(t) and its
velocity vector uc(t), the modified Rodrigues parame-
ter vector η(t) representing the rigid body orientation,
see [32], (this vector is related to the principal axis e
and the principal angle γ through η = e tan(γ4 ), which
is well-defined for all eigenaxis rotations in the range
[0, 2π); this range can be further relaxed by using quater-
nion as in [10], and should not be confused with global
stability in this paper), angular velocity vector ω, the in-
ertial matrix Js, the transformation matrix R, and the
velocity vector filed us by

ρs = ms
|Ωs(0)|E , xc = 1

|Ωs(t)|E

∫
Ωs(t)

xdx,

us(t,x) = uc(t)+ω(t)×r(t) for x ∈ Ωs(t),

aTJsb = ρs
∫

Ωs(0)
(a×r(t))T (b×r(t))∀, a, b ∈ R3,

R = 1
2

(
I−S(η)+ηηT− 1+‖η‖2E

2 I3

)
,

(3)
where

r(t) = x−xc(t), (4)
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|Ωs(t)|E denotes the volume of Ωs(t), S(η) denotes the
3 × 3 skew-symmetric matrix of η, and it holds that
η · Rω = 1

4 (1 + ‖η‖2E)η · ω for all η,ω ∈ R3. Then,
equations of motion of the rigid body are given by

dxc
dt = uc,
dη
dt = Rω,

ms
duc
dt =

∫
∂Ωs(t)

σfndτ+
∑N
k=1 Fk,

Js
dω
dt = −ω×(Jsω)+

∫
∂Ωs(t)

r(t)×(σfn)dτ

+
∑N
k=1 rFk×Fk,

(5)

where n is the normal unit vector pointing outside of
the rigid body, Fk is the control force, rFk denotes the
relative position vector of Fk with respect to xc(t) such

that
∑N
k=1 Fk ∈ R3 and

∑N
k=1 rFk × Fk ∈ R3, i.e., the

rigid body is fully actuated.

We impose a homogeneous Dirichlet boundary condition
at the boundary ∂Ω∩∂Ωf (t) and a continuous condition
of the velocity at the interface between the rigid body
and the fluid:

uf = 0 on ∂Ω∩∂Ωf (t),
us = uf on ∂Ωs(t).

(6)

In derivation of (5), we have used an interface condition
that the stress is continuous in normal direction, i.e,
σfn = σsn on ∂Ωs with σs being the Cauchy stress
tensor, i.e., −σsn is the force applied by the rigid body
on the fluid.

From now onwards, we will drop the argument t of Ωf ,
Ωs, and r when it does not lead to a confusion. For use
in the rest of the paper, we denote Q = (0, T )× Ω, and
introduce the following function spaces:
V = {v ∈ H1

0 (Ω),div(v) = 0},
H = {v ∈ L2(Ω),div(v) = 0,v·n|∂Ω = 0},
K(t) = {v ∈ V,∃ (vv,ωv) ∈ R3×R3,v|Ωs = vv+ωv×r}.

(7)
Note that the elements of K(t) are given by the rigid
body velocity in Ωs. One can prove the following lemma
on the space K(t), see [5, 31].

Lemma 2.1 The space K(t) is equivalent to

K(t) = {v ∈ V, D(v) = 0 in Ωs}. (8)

In this paper, we address the following control objective.

Control Objective 2.1 Under the initial data:
Ωs(0) b Ω,
uf (0,x) ∈ H,
(xc(0),η(0),uc(0),ω(0)) ∈ Ω×Dη×R3×R3,

(9)

where Ω b Ω and Dη = (−∞,∞)3, design the control

forces
∑k
i=1 Fi and control moments

∑N
k=1 rFk × Fk to

globally asymptotically and locally exponentially stabilize
the rigid body at the origin provided that there is no colli-
sion between the rigid body and the boundary of the fluid
domain. Moreover, the designed control forces and con-
trol moments must ensure existence of the weak solution
of the closed-loop system consisting of both the rigid body

and the fluid, see Definition 4.1 in Section 4 for defini-
tion of the weak solution.

Note that the initial values xc(0) ∈ Ω is imposed to be
compatible with Ωs(0) b Ω, and η(0) ∈ Dη is made
due to the domain of the modified Rodrigues parameter
vector η.

3 Control design

For convenience, we denote the control force Fs and the
control moment Ms as follows

Fs =
∑N
k=1 Fk,

Ms =
∑N
k=1 rFk×Fk.

(10)

Since the rigid body dynamics (5) is of a second-order
system, we consider the following Lyapunov function
candidate to design the controls Fs and Ms:

U1 = 1
2‖xc‖

2
E+ms

2 ‖k1xc+uc‖2E
+ 1

2‖η‖
2
E+ 1

2 (k2η+ω)TJs(k2η+ω),
(11)

where k1 and k2 are constants to be chosen. It holds that

k̄01‖Ys‖2E ≤ U1 ≤ k̄02‖Ys‖2E , (12)

where Ys = col(xc,uc,η,ω), and we chose k1 and k2

such that
k̄01 = 1

2 min
(
(1+msk

2
1−ms|k1|E), (ms−|k1|Ems),

(1+k2
2λm(Js)−|k2|EλM (Js)),

(λm(Js)−|k2|EλM (Js))
)
> 0,

k̄02 = 1
2 max

(
(1+msk

2
1 +ms|k1|E), (ms+|k1|Ems),

(1+k2
2λM (Js)+|k2|EλM (Js)),

(λM (Js)+|k2|EλM (Js))
)
,

(13)
with λm(Js) and λM (Js) being the minimum and max-
imum eigenvalue of Js, respectively.

Differentiating (11) along the solutions of (5) yields
dU1

dt = xc·uc+(k1xc+uc)·
(
msk1uc+Fs

)
+η·Rω

+(k2η+ω)·
(
k2JsRω−ω×(Jsω)+Ms

)
+$,

(14)

where
$ = (k1xc+uc)·

∫
∂Ωs

σfndτ

+(k2η+ω)·
∫
∂Ωs

r×(σfn)dτ

= k12

∫
∂Ωs

xc ·(σfn)dτ+k2

∫
∂Ωs

xs ·(σfn)dτ

+
∫
∂Ωs

us ·(σfn)dτ ,

(15)
with

k12 = k1−k2,
xs = xc+η×r, (16)

which satisfies div(xs) = 0.

From (14), we design the controls Fs andMs as follows:

Fs = −k3xc−k4(k1xc+uc),
Ms = −k5(1+‖η‖2E)η−k6(1+‖η‖2E)(k2η+ω),

(17)

where ki, i = 3, · · · , 6 are positive constants to be cho-
sen. It is noted that instead of cancelling controls, we
designed the controls Fs and Ms as in (17) so that they
can be written in the form:[

Fs
Ms

]
= −K

(
∂U1

∂Ys

)T
, (18)
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where K is a positive definite matrix. This form means
that the controls Fs andMs are inverse pre-optimal and
can be easily extended to be inverse optimal by multi-
plying themselves by a positive constant larger than 2,
see [20,21] for extending Fs and Ms given by (17) to in-
verse optimal controls, and many desired properties of
inverse optimal controls. However, we do not detail this
issue here as we focus on the fluid loads on the rigid body
in this paper.

Substituting (17) into (14) and using Young’s inequality
gives
dU1

dt ≤ −k̄1‖xc‖2E−k̄2‖uc‖2E−k̄3‖η‖2E−k̄4‖ω‖2E+$,
(19)

where we chose the constants ki, i = 1, · · · , 6 such that

1+k2
1ms−k3−2k1k4 = 0,

k̄1 = k1k3+k2
1k4 > 0,

k̄2 = k4−k1ms > 0,
1
2−2k2k6+k5 = 0,

k̄3 = k5− 1
8k

2
2λM (Js)+k2

2k6 > 0,

k̄4 = k6− 1
8k

2
2λM (Js)−|k2|EλM (Js) > 0.

(20)

It is easy to see that there exist constants ki, i = 1, · · · , 6
such that all the conditions in (20) and (13) hold, and
that k̄i, i = 1, · · · , 4 are as large as required. From (17)
and (10), we can solve for the controls Fk, see Section 6.

Remark 3.1 At this point, we cannot conclude any
stability of the rigid body dynamics based on (11) and
(19) because we do not have a bound on the fluid force∫
∂Ωs

σfndτ and the fluid moment
∫
∂Ωs

r × (σfn)dτ .

This means that we cannot use Young’s inequality to
bound the term $ defined in (15). Therefore, we will
analyze stability of the rigid body dynamics and conver-
gence of its states in Section 5 after we show existence
of the weak solution of the whole system (i.e., both the
fluid and the rigid body) and consider the NSEs for the
fluid separately in Section 4.

4 Existence of a weak solution of the closed-loop
system

In this section, we show the closed-loop system consist-
ing of the fluid (1) and the rigid body (5) with Fk ob-
tained from (17) and (10) has at least one weak solution.

4.1 Formulation of a weak solution

We define the characteristic function χΩs(t,x) on Ωs, a
global velocity u, and a global density ρ(t,x), and assign
a function h(t,x) to χΩs(t,x) (for simplicity of presen-
tation and for penalization purpose later) as follows:

χΩs(t,x) =

{
1 if x ∈ Ωs

0 otherwise,

u =

{
uf in Ωf

us in Ωs,

ρ(t,x) = ρsχΩs(t,x)+ρf (1−χΩs(t,x)),

h(t,x) = χΩs(t,x).

(21)

Clearly, we have

Ωs(t) = {x ∈ Ω, h(t,x) = 1}. (22)

Let us denote the initial data for those variables defined
in (21) as

u0 := u(0,x) =

{
uf (0,x) in Ωf (0)

us(0,x) in Ωs(0).

ρ0 := ρ(0,x) = ρsχΩs(0,x)+ρf (1−χΩs(0,x)),

h0 := h(0,x) = χΩs(0)(0,x).

(23)

Then, h(t,x) and ρ(t,x) satisfy transport equations [7]
in a weak form as

∀ψ ∈ C1(Q), ψ(T ) = 0 :∫ T
0

∫
Ω

(
h∂ψ∂t +hu·∇ψ

)
dxdt+

∫
Ω
h0ψ(0) = 0,∫ T

0

∫
Ω

(
ρ∂ψ∂t +ρu·∇ψ

)
dxdt+

∫
Ω
ρ0ψ(0) = 0.

(24)

Next, we perform tedious but straightforward calcula-
tions from (1) and (5) to obtain
dxc
dt = uc,
dη
dt = Rω,

∀ξ ∈ H1(Q)∩L2(0, T ;K(t)) :

d
dt

∫
Ω
ρu·ξdx =

∫
Ω

[
ρu·∂tξ+(ρu⊗u−2µD(u)) : D(ξ)

+
∑N
k=1(δFkFk)·ξ

]
dx,

(25)
where δFk denotes the diagonal matrix of the dirac delta
function of x− xFk with xFk being the position of the
force Fk, i.e., xFk = xc + rFk. We have included the
first two equations in (25) for convenience of referring
later. In derivation of (25), we have multiplied the first
equation in (1) by ξ ∈ H1(Q) ∩ L2(0, T ;K(t)), then
calculated d

dt

∫
Ωs
ρu · ξdx, and noted that

vξ ·Fs+ωξ ·Ms =
∑N
i=1(vξ ·Fk+ωξ ·(rFk×Fk))

=
∑N
i=1

∫
Ωs

(vξ ·δFkFk+ωξ ·(rFk×δFkFk))dx

=
∑N
i=1

∫
Ω

(vξ ·δFkFk+ωξ ·(rFk×δFkFk))dx

=
∑N
i=1

∫
Ω
ξ·δFkFkdx.

(26)
Now, setting ψ = hq with q ≥ 1 in the first equation of
(24) and ψ = ρq with q ≥ 1 in the second equation of
(24) yields

ρ, h ∈ C(0, T ;Lq(Ω)), ∀ q ≥ 1. (27)

Moreover, setting ξ = u in (26) and considering the
“energy” E defined by

E = k̂1
2 ‖xc‖

2
E+2k̂2‖η‖2E+ 1

2

∫
Ω
ρ‖u‖2E , (28)

where k̂1 = k3 + k1k4 > 0 and k̂2 = k5 + k2k6 > 0 under
conditions (20). Differentiating (28) along the solutions
of (25), we formally obtain:

dE
dt = −2µ

∫
Ω
‖D(u)‖2Edx−k4ms‖uc‖2E

−k6(1+‖η‖2E)ω·Jsω.
(29)

From (27), (28), and (29), we can derive that

xc ∈ L∞(0, T ;R3), η ∈ L∞(0, T ;R3),
u ∈ L∞(0, T ;H)∩L2(0, T ;V ).

(30)
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The above derivations motivate the following weak so-
lution definition.

Definition 4.1 Under the initial data (9), where
the initial data of global variables are given in (23),
(xc(t),η(t), ρ(t,x),u(t,x), h(t,x)) is a weak solution of
the closed-loop system consisting of (1), (5), and (17) if
they satisfy (24), (25), (27), and (30).

The above definition of a weak solution is similar to a
definition of a weak solution to standard nonhomoge-
neous NSEs except for the fact that we take the con-
straint of rigidity into account. On the other hand, the
transport equation on ρ can be deduced from that of h
and the definition of ρ0; however h is added for passing
the passage to the limit in the problem of penalization.

4.2 Penalized system

In order to find (xc(t),η(t), ρ(t,x),u(t,x), h(t,x)) such
that they satisfy Definition 4.1, we use a penalization ap-
proach. Due to Lemma 2.1, there are two methods to pe-
nalize the rigidity constraint: i) penalizing the difference
between the fluid velocity and rigid body velocity [5];
ii) penalizing the spatial derivative of the rigid body ve-
locity [31]. We use the first method due to its several
advantages (such as simpler calculations in proof, and
numerical computation) over the second method.

Let δ > 0 be a penalized parameter. Given the initial
data

xcδ(0) = xc(0), ηδ(0) = η(0), uδ(0) = u0,
ρδ(0) = ρ0, hδ(0) = h0,

(31)

we wish to find (xcδ(t),ηδ(t), ρδ(t,x),uδ(t,x), hδ(t,x),
pδ(t,x)) such that they satisfy

xcδ,ηδ ∈ L∞(0, T ;R3); ρδ, hδ ∈ L∞(Q);
uδ ∈ L∞(0, T ;H)∩L2(0, T ;V ); pδ ∈ L2(Q),

(32)

and are a solution to the penalized system:
ρδ(∂tuδ+(uδ ·∇)uδ)−div(σδ)

+ 1
δρδhδ(uδ−uδ,s)−

∑N
k=1(δkFk) = 0,

div(uδ) = 0,
∂tρδ+uδ ·∇ρδ = 0,
∂thδ+uδ,s·∇hδ = 0,

in Q

{
dxcδ
dt = ucδ,
dηδ
dt = Rδωδ,

in R3

(33)

where
σδ = 2µD(uδ)−pδI3,

uδ,s = 1
mδ

∫
Ω
ρδuδhδdx+

(
J−1
δ

∫
Ω
ρδrδ×uδhδdx

)
×rδ,

Rδ = 1
2

(
I−S(ηδ)+ηδη

T
δ −

1+‖ηδ‖2E
2 I3

)
,

(34)
with

rδ = x−xcδ, xcδ = 1
mδ

∫
Ω
ρδhδxdx,

mδ =
∫

Ω
ρδhδdx,

Jδ =
∫

Ω
ρδ(‖rδ‖2EI3−rδ⊗rδ)hδdx

(35)

In addition, we impose the homogeneous Dirichlet
boundary condition:

uδ = 0 on (0, T )×∂Ω, (36)

and define Ωδs = {x ∈ Ωs, hδ(t,x) = 1}. Several obser-
vations on the penalized system (33) are given in the
following remark.

Remark 4.1

• The penalized system (33) is based on [5], where action
of the controls Fs and Ms given by (17) are taken into
account.

• It is clear that |Ωδs|E =
∫

Ω
hδdx = |Ωs(0)|E because

uδ,s is divergence free and hδ vanishes on ∂Ω as we
assume there is no collision between the rigid body and
∂Ω. We also have

mδ =
∫

Ωδs
ρδdx,

Jδ =
∫

Ωδs
ρδ(‖rδ‖2EI3−rδ⊗rδ)dx.

(37)

Hence, mδ is positive (as mδ ≥ min(ρf , ρs)
∫

Ωδs
dx)

and Jδ is positive definite (as a · Jδa =
∫

Ωδs
ρδ‖rδ ×

a‖2Edx ≥ min(ρf , ρs)
∫

Ωδs
‖rδ × a‖2Edx for all a ∈

R3 \ {0}).
• In the first equation of (33), the term uδ,s defined in

(34) is the projection ofuδ onto the velocity fields which
are rigid on Ωδs because one can prove that, see [5]:∫

Ω
ρδhδ(uδ−uδ,s)·ζdx = 0, (38)

where ζ is a rigid velocity field, i.e., there exist
(vζ ,ωζ) ∈ R3 × R3 such that ζ = vζ + ωζ × r(t,x),
and uδ,s is given by (34). Hence, the penalized term
1
δρδhδ(uδ − uδ,s) in the first equation of (33) is the
difference between uδ and its projection onto rigid
velocity fields in the rigid body domain, i.e., uδ,s.

• The density is transported with the velocity field uδ.
This eases calculations in estimating bounds for the
penalized system.

Existence of a weak solution (xcδ(t), ηδ(t), ρδ(t,x),
uδ(t,x), hδ(t,x), pδ(t,x)) to the penalized system (33)
is stated in the following lemma.

Lemma 4.1 There is at least one weak solution (xcδ(t),
ηδ(t), ρδ(t,x), uδ(t,x), hδ(t,x), pδ(t,x)) to the penal-
ized system (33) that satisfies (32) for all t ∈ [0, T ], where
T is such that Ωδs(t) b Ω and ηδ(t) ∈ Dη for all t ∈ [0, T ].

Proof. Proof of this lemma principally follows the part
of a priori estimates and convergence arguments in proof
of Theorem 2.1 in [5]. The only main difference is that a
priori estimates should use the penalized energy Eδ as in
(28) with (xc,η,u) being substituted by (xcδ,ηδ,uδ).
This is due to inclusion of (xc,η) and controls (Fs,Ms)
in this paper.

4.3 Existence of a weak solution

Having obtained a weak solution of the penalized system
(33) in Lemma 4.1, existence of a weak solution stated
in Definition 4.1 is given in the following theorem.

Theorem 4.1 Let (xcδ(t), ηδ(t), ρδ(t,x), uδ(t,x),
hδ(t,x), pδ(t,x)) be a weak solution to the penalized sys-
tem (33). Then, under the initial data (23) and (9), there
exists a subsequence of (xcδ(t), ηδ(t), ρδ(t,x), uδ(t,x),
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hδ(t,x)) such that xcδ → xc strongly in L∞(Q); ηδ → η
strongly in L∞((0, T )×Dη); ρδ → ρ, hδ → h strongly in
C(0, T ;Lq(Ω)); uδ → u strongly in L2(Q) and weakly in
L∞(0, T ;H) ∩ L2(0, T ;V ) such that (xc,η, ρ, h,u) is a
weak solution of the closed-loop system consisting of (1),
(5), and (17) as defined in Definition 4.1. The constant
T is such that Ωs(t) b Ω and η(t) ∈ Dη for all t ∈ [0, T ].

Proof. Proof of this theorem can be readily obtained
from that of Theorem 2.1 in [5] with a note as in the
proof of Lemma 4.1.

5 Stability and convergence of the closed-loop
system

This section provides stability and convergence analysis
of the closed-loop system, which can be based on (11),
(19), (28), and (29) once we handle the term $ in (15).

5.1 Detail of $

Since we already showed existence of a weak solution
of the closed-loop system (including both the fluid and
rigid body) in Theorem 4.1, the idea to handle the term
$ is to multiply the first equation in (1) by appropriate
test functions to detail the terms:

A1 =
∫
∂Ωs

xc ·(σfn)dτ ,

A2 =
∫
∂Ωs

xs ·(σfn)dτ ,

A3 =
∫
∂Ωs

us ·(σfn)dτ ,
(39)

where us is defined in (3) and xs is defined in (16). We
refer A1 and A2 to as fluid work as they are products of
the fluid force (σfn) with displacements xc and xs, and
A3 to as fluid power as it is a product of the fluid force
with velocity us.

5.1.1 Detail of A1 and A2

We define the domain Ω∗s(t), where the argument t of
Ω∗s is dropped for clarity henceforth, such that Ωs ⊂
Ω∗s ⊆ Ω, and the minimum distance between ∂Ωs and
∂Ω∗s denoted by κ = inft≥0 dist(∂Ωs, ∂Ω∗s) is strictly
positive, see Fig. 1. There exists Ω∗s such that this κ
is strictly positive because we assumed Ωs b Ω. Let
X̂s(t,x) ∈ L∞(0, T ;E), which represents either xc or

xs, we can extend X̂s(t,x) to Xs(t,x) in Ω∗s such that
Xs = 0 on ∂Ω∗s and div(Xs) = 0 in Ω∗s using the smooth
step function introduced in [11] as follows. Let h(t,x) be
the smooth step function extended to three dimensional
space such that ∇× h = 0 on ∂Ω∗s and ∇× h = X̂s on

∂Ωs. Then, Xs can be defined as Xs = X̂ in Ωs, and
Xs = ∇× h in Ω∗s. It is clear that div(Xs) = 0 because

div(X̂) = 0 and div(∇× h) = 0.

Now, multiplying the first equation in (1) by Xs and
integrating over Ω∗s yields

ρf
∫

Ω∗
s
∂tuf ·Xsdx+ρf

∫
Ω∗
s
(uf ·∇)uf ·Xsdx

−
∫

Ω∗
s

div(σf )·Xsdx = 0.
(40)

Using integration by parts, the boundary condition
Xs = 0 on ∂Ω∗s, and the interface condition given by

the second equation in (6), we have∫
Ω∗
s
∂tuf·Xsdx = d

dt

∫
Ω∗
s
uf·Xsdx−

∫
Ω∗
s
uf·∂tXsdx

−
∫
∂Ωs

(uf·Xs)uf·ndτ ,∫
Ω∗
s
(uf·∇)uf·Xsdx =

∫
∂Ωs

(uf·Xs)uf·ndτ
−
∫

Ω∗
s
(uf⊗uf ) : ∇Xsdx,∫

Ω∗
s

div(σf )·Xsdx =
∫
∂Ωs

(σfn)·X̂sdτ

−2µ
∫

Ω∗
s
D(uf ) : D(Xs)dx.

(41)
Substituting (41) into (40) gives∫

∂Ω∗
s
(σfn)·X̂sdτ = 2µ

∫
Ω∗
s
D(uf ) : D(Xs)dx

+ρf
d
dt

∫
Ω∗
s
uf ·Xsdx−ρf

∫
Ω∗
s
uf ·∂tXsdx

−ρf
∫

Ω∗
s
(uf⊗uf ) : ∇Xsdx.

(42)

Letting x̃c ≡Xs for the case X̂s = xc and x̃s ≡Xs for
the case X̂s = xs, we can detail the terms A1 and A2 as

A1 = 2µ
∫

Ω∗
s
D(uf ) : D(x̃c)dx+ρf

d
dt

∫
Ω∗
s
uf ·x̃cdx

−ρf
∫

Ω∗
s
uf ·∂tx̃cdx−ρf

∫
Ω∗
s
(uf⊗uf ) : ∇x̃cdx,

A2 = 2µ
∫

Ω∗
s
D(uf ) : D(x̃s)dx+ρf

d
dt

∫
Ω∗
s
uf ·x̃sdx

−ρf
∫

Ω∗
s
uf ·∂tx̃sdx−ρf

∫
Ω∗
s
(uf⊗uf ) : ∇x̃sdx,

(43)
where ∇x̃c = κ(∇2h)xc and ∇x̃s = κ(∇2h)xs with
κ(∇2h) being a matrix depending on ∇2h. Since Ωs ⊂
Ω∗s ⊆ Ω, ∂txc = uc, ∂txs = uc + Rω × (x − xc(t))
because ∂t(x − xc(t)) = 0 for x ∈ Ωs, and we have
proved (30), we can handle the terms

∫
Ω∗
s
uf · ∂tx̃cdx

and
∫

Ω∗
s
uf · ∂tx̃sdx in (43).

5.1.2 Detail of A3

We perform a similar extension as for the terms A1 and
A2 but the difference is that we set X̂s = us in Ωs and
chooseXs = uf on ∂Ωs. Now, the problem is that we will
not be able to handle the term

∫
Ω∗
s
uf ·∂tXsdx. To fix this

problem, we proceed as follows. As
∫

Ω∗
s
∂tuf ·Xsdx =∫

Ω∗
s
uf · ∂tXsdx for this extension, we can write (41) as

2
∫

Ω∗
s
∂tuf·Xsdx = d

dt

∫
Ω∗
s
uf·Xsdx−

∫
∂Ω∗

s
|uf |2Euf·ndτ ,

2
∫

Ω∗
s
(uf·∇)uf·Xsdx =

∫
∂Ω∗

s
|uf |2Euf·ndτ

−
∫

Ω∗
s
(uf⊗uf ) : ∇ũsdx,∫

Ω∗
s

div(σf )·Xsdx =
∫
∂Ωs

(σfn)·usdτ
−2µ

∫
Ω∗
s
D(uf ) : D(Xs)dx,

(44)
where ∇ũs = (κ(∇2h)uf ).

Now, letting ũs ≡Xs, we can detail the term A3 as

A3 = 2µ
∫

Ω∗
s
D(uf ) : D(ũs)dx+

ρf
2
d
dt

∫
Ω∗
s
uf ·ũsdx

−ρf2
∫

Ω∗
s
(uf⊗uf ) : ∇ũsdx.

(45)

5.1.3 Detail of $

With (39), (43), and (45), we can write$ defined in (15)
as
$ = k12ρf

d
dt

∫
Ω∗
s
uf ·x̃cdx+

ρf
2
d
dt

∫
Ω∗
s
uf ·ũsdx

+k2ρf
d
dt

∫
Ω∗
s
uf ·x̃sdx+$∗,

(46)
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where
$∗ = 2µk12

∫
Ω∗
s
D(uf ) : D(x̃c)dx

+2µk2

∫
Ω∗
s
D(uf ) : D(x̃s)dx

+2µ
∫

Ω∗
s
D(uf ) : D(ũs)dx

−k12ρf
[ ∫

Ω∗
s
uf ·∂tx̃cdx

+
∫

Ω∗
s
(uf⊗uf ) : ∇x̃cdx

]
−k2ρf

[ ∫
Ω∗
s
uf ·∂tx̃sdx

+
∫

Ω∗
s
(uf⊗uf ) : ∇x̃sdx

]
−ρf2

∫
Ω∗
s
(uf⊗uf ) : ∇ũsdx.

(47)

We now derive the bound of $∗. Due to the extensions
x̃c, x̃s, and ũs, we can use Hölder’s inequality to obtain:

|$∗|E ≤2µ
(
|k12|E+|k2|Eε11+ϑ( 1

κ )
) ∫

Ω∗
s
‖D(uf )‖2Edx

+2µϑ( 1
κ )
∫

Ω∗
s
‖uf‖2Edx

+2µ|k12|Eϑ( 1
κ )|Ω∗s|E‖xc‖2E

+4µ|k2|Eϑ( 1
κ )(‖xc‖2E+r2

s‖η‖2E)

+ 1
2 |k12|Eρf

∫
Ω∗
s
‖uf‖2Edx

+ 1
2 |k12|Eρf |Ω∗s|Eϑ( 1

κ )‖uc‖2E
+ 1

2 |k2|Eρf
∫

Ω∗
s
‖uf‖2Edx

+|k2|Eρf |Ω∗s|Eϑ( 1
κ )(‖uc‖2E+r2

s‖ω‖2E)

+|k12|Eρfϑ( 1
κ )|Ω∗s|

1
2

E‖xc‖E
( ∫

Ω∗
s
‖uf‖4Edx

) 1
2

+|k2|Eρfϑ( 1
κ )|Ω∗s|

1
2

E(‖xc‖E
+rs‖η‖E)

( ∫
Ω∗
s
‖uf‖4Edx

) 1
2

+ 1
2ρfϑ( 1

κ )
( ∫

Ω∗
s
‖uf‖4Edx

) 1
2
( ∫

Ω∗
s
‖uf‖2Edx

) 1
2 ,

(48)
where rs = supΩs ‖x−xc(t)‖E and ϑ( 1

κ ) is an increasing

function of 1
κ , and |Ω∗s|E denotes the volume of Ω∗s.

We now use the embedding V ⊂ (L6(Ω∗s))
3 ⊂ (L4(Ω∗s))

3

to write (48) as

|$∗|E ≤
(
ε11+ε12|uf |2Ω∗

s
+ε13‖xc‖2E+ε14‖η‖2E

)
·‖uf‖2Ω∗

s
+ε21‖xc‖2E+ε22‖η‖2E+ε23‖uc‖2E

+ε24‖ω‖2E+ε25|uf |2Ω∗
s
,

(49)

where
ε11 = c

(
2µ
(
|k12|E+|k2|E+ϑ( 1

κ )
)
+ 1

4ρfϑ( 1
κ )

+|k2|Eρfϑ( 1
κ )|Ω∗s|

1
2

E+ 1
2 |k12|Eρfϑ( 1

κ )|Ω∗s|
1
2

E

)
,

ε12 = 1
4cρfϑ( 1

κ ),

ε13 = c
(

1
2 |k2|Eρfϑ( 1

κ )|Ω∗s|
1
2

E+ 1
2 |k12|Eρfϑ( 1

κ )|Ω∗s|
1
2

E

)
,

ε14 = c 1
2 |k2|Eρfϑ( 1

κ )|Ω∗s|
1
2

Er
2
s ,

ε21 = 2µ|k12|Eϑ( 1
κ )|Ω∗s|E+4µ|k2|Eϑ( 1

κ ),

ε22 = 4µ|k2|Eϑ( 1
κ )r2

s ,

ε23 = |k2|Eρf |Ω∗s|Eϑ( 1
κ )+ 1

2 |k12|Eρf |Ω∗s|Eϑ( 1
κ ),

ε24 = |k2|Eρf |Ω∗s|Eϑ( 1
κ )r2

s ,

ε25 = 2µ
(
|k12|E+ 1

2 |k12|Eρf+ 1
2 |k2|Eρf

(50)
with c being the embedding constant depending on only

Ω∗s.

5.2 Convergence of the closed-loop system

With $ detailed by (46), we consider the following Lya-
punov function candidate for the closed-loop system:

U = U1+ε01E+ ε02
2 E

2+U2, (51)

where U1 is given by (11), E is given by (28), ε01 and ε02

are positive constants to be chosen, and

U2 = (k1−k2)ρf
∫

Ω∗
s
uf ·x̃cdx

−ρf2
∫

Ω∗
s
uf ·ũsdx−k2ρf

∫
Ω∗
s
uf ·x̃sdx.

(52)

Using Hölder’s inequality, we can find the bound of U2 as

|U2|E ≤ ε31‖xc‖2E+ε32‖η‖2E+ε33ρf |uf |2Ω∗
s
. (53)

where

ε31 = ρf
(

1
2 |k12|E+|k2|E |Ω∗s|E

)
,

ε32 = |k2|Eρf |Ω∗s|Er2
s ,

ε33 = 1
2 |k12|E+ 1

4ϑ( 1
κ ).

(54)

Since ρf |uf |2Ω∗
s
≤
∫

Ω
ρ‖u‖2E due to Ω∗s ⊂ Ω and defini-

tion of u in (21), we can find the bound for U as:

U1+ε01E+ 1
2ε02E2 ≤ U ≤ U1+ε̄01E+ 1

2ε02E2,

α0

(
k̂1
2 ‖xc‖

2
E+ k̂2

2 ‖η‖
2
E+ 1

2

∫
Ω
ρ‖u‖2E

)
+k̄01‖Ys‖2E ,

(55)
where Ys is defined just below (12), and we choose a
sufficiently large ε01 such that

ε01 = min
(
ε01

k̂1
2 −ε31, ε01

k̂2
2 −ε32,

1
2ε01−ε33

)
> 0,

ε̄01 = max
(
ε01

k̂1
2 +ε31, ε01

k̂2
2 +ε32,

1
2ε01+ε33

)
> 0.

(56)
Differentiating (51) along the solutions of (19), (29), us-
ing (46), and noting that |uf |2Ω∗

s
≤ |u|2 and ‖uf‖2Ω∗

s
≤

‖u‖2 due to Ω∗s ⊂ Ω and definition of u in (21), we have
dU
dt = dU1

dt +(ε01+ε02E)dEdt + dU2

dt

≤ − 1
2 k̄1‖xc‖2E− 1

2 k̄2‖uc‖2E− 1
2 k̄3‖η‖2E− 1

2 k̄4‖ω‖2E
− 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)
+$0,

(57)
where
$0 = − 1

2 k̄1‖xc‖2E− 1
2 k̄2‖uc‖2E− 1

2 k̄3‖η‖2E− 1
2 k̄4‖ω‖2E

− 1
2 (ε01+ε02E)

(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)
+$∗.

(58)
Substituting the bound of $∗ in (49) into (58), and
choosing

k̄1 ≥ ε21, k̄2 ≥ ε23, k̄3 ≥ ε22, k̄4 ≥ ε24, (59)

which is always feasible because we can choose ki, i =
1, · · · , 6 such that k̄i, i = 1, · · · , 4 are as large as re-
quired, see the paragraph just under (20), and suffi-
ciently large ε01 and ε02, we can use the Poincaré in-
equality to ensure that

$0 ≤ 0. (60)
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Substituting (60) in to (57) yields
dU
dt ≤ −

1
2 k̄1‖xc‖2E− 1

2 k̄2‖uc‖2E− 1
2 k̄3‖η‖2E− 1

2 k̄4‖ω‖2E
− 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)
.

(61)
Integrating (61) from 0 to ∞ yields∫∞

0

[
1
2 k̄1‖xc‖2E+ 1

2 k̄2‖uc‖2E+ 1
2 k̄3‖η‖2E+ 1

2 k̄4‖ω‖2E
+ 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u)‖2Edx+k4ms‖uc‖2E

+k6(1+‖η‖2E)ω ·Jsω
)]
dt ≤ U(0)−U(∞)

≤ U(0).

(62)
Since we have already proved existence of the solution
of the closed-loop system consisting of (1), (5), and (17),
the inequality (62) implies that

lim
t→∞

[
1
2 k̄1‖xc(t)‖2E+ 1

2 k̄2‖uc(t)‖2E+ 1
2 k̄3‖η(t)‖2E

+ 1
2 k̄4‖ω‖2E+ 1

2 (ε01+ε02E)
(
µ
ρf

∫
Ω
ρ‖D(u(t))‖2Edx

+k4ms‖uc(t)‖2E+k6(1+‖η(t)‖2E)ω(t)·Jsω(t)
)]

= 0,

(63)
which shows global asymptotic stability of the closed-
loop system. We now show local exponential stability
of the closed-loop system, i.e. Υ(t) ≤ β(t,Υ(0)), where
Υ(t) = ‖xc(t)‖2E+‖η(t)‖2E+

∫
Ω
‖u(t,x)‖2Edx, β(·, ·) is a

classKL∞-function. When (xc,uc,η,ω,
∫

Ω
ρ‖D(u)‖2Edx)

are small in magnitude (i.e., when the closed-loop sys-
tem evolutes for a sufficiently long time, say t ≥ t0 for
some t0 ≥ 0), we obtain from (61), 55), (11), and (28)
that

dU
dt ≤ −c0U, ∀ t ≥ t0 ≥ 0 (64)

where c0 is a positive constant. From (64), it holds that
U(t) ≤ U(t0)e−c0(t−t0), and hence local exponential sta-
bility of the closed-loop system is ensured.

We summarize the main results in the following theorem.

Theorem 5.1 Under the initial data (9), the controls
Fk, which are obtained from (17), solves Control Objec-
tive 2.1 for all t ∈ [0, T ], where T is such that Ωs(t) b Ω.
In particular, the closed-loop system consisting of (1),
(5), and (17) has at least one weak solution, which is de-
fined in Definition 4.1 for all t ∈ [0, T ] such that

xc ∈ Ω, η ∈ Dη, ρ, h ∈ L∞(Q),

u ∈ L∞(0, T ;H)∩L2(0, T ;V ), p ∈ L2(Q),
(65)

where (ρ, h,u) are defined in (21). Moreover, the closed-
loop system is globally asymptotically and locally stable
at the origin provided that there is no collision between
the rigid body and the boundary of the fluid domain, i.e.,

Υ(t) ≤ β(t,Υ(0)), (66)

where Υ(t) = ‖xc(t)‖2E + ‖η(t)‖2E +
∫

Ω
‖u(t,x)‖2Edx,

β(·, ·) is a class KL∞-function, and if Υ(t0), where t0 ≥
0, is sufficiently small, then Υ(t) ≤ Υ(t0)e−c0(t−t0),
where c0 is a positive constant.

6 Simulations

In this section, we perform a simulation to illustrate the
effectiveness of the control law given by (17). We take
a rectangular prism as the domain Ω with dimensions
[L1×L2×L3] = [− 1

2π,
1
2π]m×[− 1

2π,
1
2π]m×[− 3

2π,
3
2π]m.

For the fluid, we take water as the fluid with µ = 1.793×
10−3kg/ms and ρf = 980kg/m3. For the rigid body,
we take the physical shape of a rectangular prism with
dimensions: π

10m × π
10m × 3π

10 m and the mass: ms =

10kg, which give Js = diag(0.1645, 0.1645, 0.8225)kgm2.
We approximate all the sharp corners of Ω and Ωs by
rounding them off to make ∂Ω and ∂Ωf Lipschitz. We
assume that there are six forces Fk, k = 1, · · · , 6 located
at six locations Rk, which are configured as

F1 =

[
f1
0
0

]
,F2 =

[
f2
0
0

]
,F3 =

[
0
f3
0

]
,F4 =

[
0
f4
0

]
,F5 =

[
0
0
f5

]
,F6 =

[
0
0
f6

]
,

R1 =

[
0
r1
0

]
,R2 =

[
0
r2
0

]
,R3 =

[
0
0
r3

]
,R4 =

[
0
0
r4

]
,R5 =

[
r5
0
0

]
,R6 =

[
r6
0
0

]
.

(67)
Then we can write (10) as

f = Q−1

[
Fs
−Ms

]
(68)

where f = col(f1, · · · , f6) and

Q =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 r3 r4 0 0
0 0 0 0 r5 r6
r1 r2 0 0 0 0

 . (69)

The determinant Q is det(Q) = r1r3r5 − r1r3r6 −
r1r4r5 − r2r3r5 + r1r4r6 + r2r3r6 + r2r4r5 − r2r4r6 and
can be made nonzero to make Q invertible by a simple
choice: r1 = −r2 6= 0, r3 = −r4 6= 0 and r5 = −r6 6= 0.
This choice yields det(Q) = 8r1r3r5, which is nonzero
due to rk 6= 0 for all k = 1, · · · , 6. In the simula-
tions, we choose r1 = −r2 = π

10m, r3 = −r4 = π
10m,

r5 = −r6 = 3π
10 m. The formula (68) is to calculate the

individual forces Fk as Fs and Ms are given by (17).
We pre-eliminate the difference between buoyancy and
gravity forces before applying (17).

We will use the semi-Galerkin method to the penalized
system (33) to obtain a numerical weak solution, where
we approximate

unδ (t,x) =
∑n
l=1 c

n
l (t)al(x), (70)

where cnl (t) are scalar functions of time, al(x) are
eigenfunctions of the Stokes operator. We substitute
(70) into the first equation of (33) and multiply it by
ξ = Spann{al(x); l = 1, · · · , n} to obtain a system
of ODEs for cnl (t), which is numerically solvable. The
transport equations (the third and fourth equations of
(33)) are solved by using the characteristic method.
Next, we choose the penalized parameter as δ = 1

n . We
now need to derive eigenfunctions for our domain Ω.
To do so, we need the following lemma [16, Theorem
III.2.3].
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Lemma 6.1 If Ω is a bounded open set in R3 with Lip-
schitz boundary, then H coincides with the space of di-
vergence free functions in L2(Ω) such that u · n = 0 on
∂Ω, where n is the normal unit vector to ∂Ω.

With this lemma, eigenfunctions of the Stokes problem
are equivalent to those of the Laplace operator with the
condition u ·n = 0 on ∂Ω as we consider a weak solution
in H. Hence, we look for al such that

i) ∆al = −λlal, div(al) = 0 in Ω; al · n = 0 on ∂Ω,
ii) al is an orthornormal basis of H(Ω),
iii) al is an orthogonal basis of V (Ω),
iv) 0 < λ1 ≤ λ2 ≤ · · · and λl →∞ as l→∞.

A nontrivial calculation gives al (we neglect the round
off corners), which satisfies all the above properties, as
follows:

al = āl
λl

L1 cos(l1x1) sin(l2x2) sin(l3x3)

L2 sin(l1x1) cos(l2x2) sin(l3x3)

L3 sin(l1x1) sin(l2x) cos(l3x3)

 , (71)

where
L1 = l22+l23+l1(l2−l3), L2 = −(l21+l23+l2(l1+l3)),

L3 = (l21+l22+l3(l2−l1), āl =

√
8λ2
l

π3(L2
1+L2

2+L2
3)
,

λl = l21+l22+l23,

(72)

for (l1, l2, l3) ∈ Z3 such that l2 = l21 + l22 + l23, which
are taken into account to have summing combination in
calculating (70). We perform two simulations. In both
simulations, we choose the control gains as follows: k1 =
0.05, k4 = 8, k2 = 0.1, and k6 = 3. This choice gives
k3 = 1.825, k5 = 0.1, k̄1 = 0.11, k̄2 = 7.5, k̄3 = 0.13, and
k̄4 = 2.92 according to (20). Clearly, the conditions in
(13) and (20) hold. Moreover, we choose n = 108, which
gives δ = 10−8.

In the first simulation, for the initial values of the
fluid velocity we take cnl (0) to be random num-
ber in 1

n2 [−1, 1]. The initial values of the rigid
body are taken as xc(0) = col(0.2,−0.2, 0.4)m,
η(0) = col(1.6, 0.4, 2.5), which yields a principal
axis/angle pair e = col(0.4782, 0.2050, 0.8540) and
γ = 4.9665 rad. The initial values of the velocities uc(0)
and ω(0) of the rigid body are determined via (31), (23),
and the interface condition given by the second equation
in (6), where u(0,x) is substituted by unδ (0,x).

The position vector xc, orientation vector η, linear ve-
locity vector uc, angular velocity vector ω, and H-norm
of the global velocity

∫
Ω
‖u‖2Edx are plotted in Fig. 2.

The control force vector Fs, control moment vectorMs,
and control forces fk, k = 1, · · · , 6, see (68), are plotted
in Fig. 3. It is seen from these figures that all the states
xc, η, uc, and ω, |u| = (

∫
Ω
‖u‖2Edx)

1
2 ; and the controls

Fs,Ms, and fk converge to zero. It is noted that conver-
gence of the rigid body states xc, η, uc, and ω to zero
is affected by that of |u| due to the fluid forces and fluid
moments on the rigid body.

Fig. 2. First simulation - states: xc, η, uc, ω, and

|u| = (
∫

Ω
‖u‖2

Edx)
1
2 .

Fig. 3. First simulation - controls: Fcs, Ms, and fk.

To illustrate the robustness/performance of the pro-
posed stabilization controller under the same control
gains, we perform the second simulation with the ini-
tial values xc(0) = col(0.4,−0.4, 0.8)m while all other
initial values and parameters are taken the same as in
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the first solution. Simulation results are plotted in Fig.
4 and Fig. 5. Explanation of Fig. 4 and Fig. 5 is similar
to that of Fig. 2 and Fig. 3. Comparing Fig. 2 and Fig.
4; Fig. 3 and Fig. 5 shows that the proposed stabiliza-
tion controller stabilizes the rigid body very well under
different positions of the rigid body.

Fig. 4. Second simulation - states: xc, η, uc, ω, and

|u| = (
∫

Ω
‖u‖2

Edx)
1
2 .

7 Conclusions

Global asymptotic and local exponential stabilization of
a rigid body in an incompressible viscous fluid under po-
tential body force with the fluid velocity uf (0,x) ∈ H
was solved in this paper under an assumption that there
is no collision between the rigid body and the boundary
of the fluid domain. Since the fluid forces and fluid mo-
ments on the rigid body are not able to bound in an Eu-
clidean norm due to uf (0,x) ∈ H, the “fluid work and
fluid power” on the rigid body can be bound and should
be used for stability and convergence analysis. Future
work is to extend to stabilization of a rigid body in mul-
tiple fluids to cover practical cases such as floating rigid
bodies.
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