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Abstract 

Underground utilities (UUs), such as water and sewage pipes, gas, and oil pipelines, 

and communications and data cables, are important infrastructures for ensuring the 

operation of various essential functions of a city. Up-to-date and accurate three-

dimensional (3D) reconstruction, which includes the reconstruction of the horizontal 

position, depth, and topological information of the UU target, is the cornerstone for 

informed decision making in each stage of the UU life-cycle asset management, such 

as UU planning and (re)development, ownership management, construction, safety 

management, and operation and maintenance (O&M). However, obtaining an accurate 

3D reconstruction has always been considered as a challenging task. 

In non-destructive scenarios, where the pipeline is under the soil cover, obtaining 

accurate results for the UU 3D reconstruction task is often difficult. In engineering 

practice, the most popular UU 3D information detection method is ground-penetrating 

radar (GPR), which can efficiently and stably reconstruct most metal and non-metal 

utilities by identifying the hyperbolic apex in GPR B-scan images. However, existing 

image-processing methods are highly sensitive to noise information in the input, and 

the precision of the output results is inadequate. In recent years, although deep-learning 

based object detection method can improve the stability of recognition, it still faces 

the problem of error accumulation due to the decomposition of the apex localisation 

into two sub-problems of bounding box detection and hyperbola fitting, which affects 

the precision of UU positioning. 

In exposed scenarios, asset managers and technicians can inspect the pipeline in the 

maintenance, repair, or installation phase, but it is still very difficult to accurately 

reconstruct the UU target under low-light conditions, such as dusk and night. In 

existing studies, image-based 3D reconstruction and laser scanning have proven to be 

effective and promising for reconstruction. However, the effectiveness of the laser-

scanning method depends heavily on the device itself and is expensive to use. Image-

based 3D reconstruction methods benefit from lower equipment costs as they utilize 

standard photographic equipment, which is generally less expensive and more readily 
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available than specialized laser scanners. Additionally, these methods require less 

specialized training for personnel, further reducing overall project costs compared to 

the 3D laser scanning method. However, the reconstruction effectiveness is greatly 

reduced under low-light conditions. The important issue of improving the UU image-

based 3D reconstruction performance under low-light conditions remains unresolved. 

The collection of UU topological information is an essential task in 3D reconstruction. 

The topological connection between the pipeline (or cable) nodes is related to the 

transportation and connectivity functions of the UU network. However, obtaining 

accurate topological information, owing to the age of installations or imprecise records, 

is often difficult. In existing studies, the traditional manual inspection method is 

primarily used to obtain missing data; however, this method is expensive and 

inefficient. Additionally, there are studies using imputation or machine-learning 

methods to predict the missing attribute information in the UU network; however, 

these methods cannot perform tasks related to the completion of topological relations. 

Alternative low-cost and accurate methods are required for the completion of topology 

information. 

To address the above problems, this study develops a novel approach for improving 

the 3D reconstruction accuracy of UUs at different stages and supplying missing 

topology information. First, an end-to-end UU localisation (EUUL) deep-learning 

model using GPR B-scan data is proposed and validated. It adopts a key point-

regression mode instead of the box-fitting mode that realises end-to-end learning and 

trains the model. An anchor-free structure with a lightweight backbone is applied to 

the EUUL model to improve the processing time. To manage the noise interference of 

the UU positioning data, a channel attention mechanism is added to the EUUL model, 

so that the model can focus on key task features to ensure precision. The experimental 

results with real-site GPR data demonstrate that the proposed EUUL model achieves 

a significant localisation precision of 97.01% and an inference speed of 125 fps. These 

results outperform existing mainstream models, namely YOLOv3 (91.67%, 82 fps) 

and Faster region convolutional neural networks (R-CNNs) (65.52%, 20 fps). This 
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indicates that the proposed method effectively enhances the precision of GPR 

interpretation, while concurrently reducing the processing time. Second, a zero-

reference deep-learning model for low-light image enhancement of UU 3D 

reconstruction (ZDE3D) is proposed and validated. ZDE3D improves the 3D 

reconstruction performance of low-light images using an unsupervised loss-function 

design without paired or unpaired training datasets. Field experiments confirm that 

ZDE3D can effectively increase the quantity of sparse reconstruction point clouds by 

an average of 13.19% compared to the reconstruction output based on original low-

light images. Additionally, the reconstruction accuracy achieves a significant value of 

98.58%. This demonstrates that the proposed method can effectively enhance 3D 

reconstruction in low-light working environments without compromising 

reconstruction accuracy. Third, this thesis introduces the UUs topology-completion 

(UUTC) model based on the application of graph convolutional network (GCN) 

techniques. A comprehensive evaluation of the proposed model is conducted by 

performing a series of experiments using a real wastewater network database in France. 

This evaluation employs five prominent GCN models, focusing on the missing rates 

of topological data. The experimental results demonstrate that the average topological 

relationship completeness ratio of the proposed UUTC model reached 85.33%, which 

surpasses the performance of the existing mainstream methods (GCN 76.78%, 

ChebGCN 76.37%, SAGEGCN 79.37%, GTAGCN 80.85%, and TAGCN 79.44%). 

The proposed method is effective in enhancing the accuracy of UU topological 

information completion, thereby assisting stakeholders in making informed decisions. 

The theoretical contributions of this study are twofold. First, the proposed EUUL 

model overcomes the error accumulation problem in the UU localisation task based on 

GPR B-scan images in existing research. Second, the ZDE3D model integrates domain 

knowledge into unsupervised deep learning, which improves the effectiveness of 

image-based UU 3D reconstruction under low-light conditions. This study has several 

practical implications. First, a more accurate as-built UU 3D reconstruction can 

effectively improve project safety management. Personal injuries and property losses 

caused by accidental damage to pipelines can be avoided by accurately predicting the 
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location of the utilities. Second, unnecessary costs can be reduced using a more 

accurate as-built UU 3D reconstruction model. The number of design and construction 

changes will be significantly reduced, thereby avoiding cost losses due to congestion 

and rework. Third, convenient topological relationship prediction can effectively 

reduce the time required to obtaining all project topological data and improve 

management efficiency. The proposed approach can provide a more systematic and 

precise assessment of UU network topology relationships. This is beneficial for 

shortening the preliminary survey time for new construction UU and maintenance 

projects. 
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Chapter 1 : Introduction 

1.1 Background 

Underground utilities (UUs) play a pivotal role in supporting modern urban life, as 

they are an essential component of urban infrastructure (Yan et al., 2021; Yan et al., 

2019; Meijer et al., 2022). The UU infrastructure is continuously transporting water, 

electricity, gas, and other essential resources that support urban life globally, while also 

collecting and disposing pollutants generated by residents' daily activities. Based on 

their specific functions, the common types of UUs can be classified, as shown in Table 

1-1.  

Table 1-1 Common underground utilities (UUs) and functions 

No. Categories Functions 

1 Water supply pipes Transporting potable water from treatment 

plants or wells to residential, commercial, 

and industrial properties for drinking, 

cooking, cleaning, and other uses. 

2 Sewer pipes Transporting wastewater and sewage from 

residential, commercial, and industrial 

properties to wastewater treatment plants 

for processing and treatment. 

3 Stormwater drainage pipe Collecting and transporting rainwater and 

other surface runoff to prevent flooding and 

erosion in streets and public areas. 

4 Gas pipelines Transporting natural or propane gas to 

residential, commercial, and industrial 

properties for heating and cooking 

purposes. 

5 Electrical cables Transporting electrical power from 
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No. Categories Functions 

substations to homes and businesses for 

lighting, heating, cooling, and operating 

electrical equipment. 

6 Telecommunications cables Providing voice and data communication 

services, such as telephone, internet, and 

video conferencing, to homes and 

businesses. 

7 Fibre optic cables Providing high-speed internet, telephone, 

and cable-TV services to homes and 

businesses. 

8 Heating and cooling pipelines Transporting hot or cold water or steam for 

heating, cooling, or process applications. 

9 Fuel pipelines Transporting liquid or gaseous fuels, such as 

gasoline, diesel, or propane, to fuel stations 

or industrial facilities. 

 

UUs are typically invisible when used. Creating an accurate, up-to-date, and 

comprehensive three-dimensional (3D) reconstruction (digital 3D representation of as-

built UUs) has become one of the most important priorities for infrastructure life-cycle 

management, such as ownership management, land acquisition, planning and 

(re)development, construction recording, operation and maintenance (O&M), and 

safety management. All these activities require an accurate 3D representation of the 

UU. 1) Ownership management. As the urban population continues to increase 

worldwide, the density and complexity of UU distribution are also increasing. In an 

invisible underground space, pipe networks of different ownership types are often 

intertwined. The as-built 3D reconstruction can intuitively and visually help managers 

clarify their scope of ownership and avoid disputes. 2) Land acquisition. Before 

implementing an above-ground construction project, it is necessary to obtain a 

thorough inventory of the UUs within the area it occupies to ensure that there is no 
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design function interference. During this process, management efficiency is greatly 

improved if all stakeholders have an accurate 3D representation model in the target 

area. 3) Planning and (re)development. Whether in a completely new UU or 

reconstruction and expansion project, an accurate 3D reconstruction model is the basic 

information required for the design plan. Accurate and complete as-built information 

can effectively avoid design errors and claims, thereby reducing project costs. 4) 

Safety management. Accidents where pipelines are accidentally damaged during UU 

construction occur occasionally. According to the US Pipeline and Hazardous 

Materials Safety Administration (2021), 12,505 pipeline accidents have occurred 

between 2001 and 2020, resulting in 270 fatalities, 1,176 injuries, and $9.95 billion in 

property losses. According to an investigation report released by the Underground 

Pipeline Professional Committee of the China Urban Planning Association (2022), 737 

underground-pipeline damage accidents occurred in China from October 2019 to 

September 2020, resulting in 166 fatalities, an increase of 130.14% from the previous 

year. 5) O&M. During O&M, a reliable UU 3D-reconstruction model can help 

managers rapidly locate fault locations and reduce management costs. A reliable UU 

3D-reconstruction model enables managers to quickly pinpoint the exact location of 

faults without the need for disruptive and time-consuming ground excavation, thereby 

minimizing the need for extensive physical inspections and reducing the time and labor 

typically required to diagnose and resolve faults. 

The 3D reconstruction of UUs can be divided into three parts according to their 

demands: non-destructive reconstruction, exposed reconstruction, and topology 

reconstruction. 

Non-destructive reconstruction. In most UU 3D-reconstruction scenarios, pipelines 

are covered by soil layers, and special equipment is required for positioning under non-

excavatable conditions to map out a 3D model of the target area. Non-destructive 

reconstructions commonly used in engineering practice include ground-penetrating 

radar (GPR), radio-frequency identification (RFID), electromagnetic induction (EMI), 

acoustic emission (AE), thermography, and IMU-based system methods. What is 
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common among these methods is that without excavation, the signal difference 

generated by physical signals, such as electromagnetic waves, sound waves, and 

thermal radiation passing through the target UU area, is used for positioning analysis. 

Considering the most popular GPR method as an example, it uses the propagation law 

of high-frequency electromagnetic waves in different media to realise the non-

destructive reconstruction of underground pipe networks. Figure 1-1 shows the 

generation principle of a GPR B-scan hyperbola in a UU 3D-reconstruction scene. 

First, the transmitting antenna sends an electromagnetic-wave signal to the UU. 

Subsequently, the signal formed by the UU is received by the receiving antenna. When 

the GPR passes through a position directly above the UU object (such as at the time of 

T1), the antenna can receive the signal reflected by the UU in the shortest duration; 

therefore, the distance between the UU and GPR device recorded in the B-scan image 

is the shortest (S1) for the same signal propagation speed. When the GPR is at other 

target positions (e.g. at the time of T0 and T2), the receiving antenna can similarly 

obtain the signal formed by the reflection of the UU target. However, the distance 

between the GPR and the target (denoted by S0 and S2, respectively) is larger than that 

of S1; consequently, the distance between the UU and GPR devices recorded in the B-

scan image will be larger. Therefore, the radar signal shows a shape resembling a 

hyperbola (lower half) in the B-scan image. Based on the above characteristics, the 

position of the UU can be obtained by detecting the hyperbola area and searching for 

its apex (the red point in the right section of Figure 1-1). 
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Figure 1-1 Schematic of the working principle of ground-penetrating radar 

Exposed reconstruction. In some stages, underground facilities can be temporarily 

exposed, such as when pipeline installation is completed (before covering the soil) and 

during pipeline excavation repair and maintenance. In these scenarios, technologies 

other than non-destructive reconstruction are required to perform exposed 

reconstruction on UU. Currently, the most common exposed reconstruction (or 

destructive reconstruction) technologies include laser scanning and photogrammetry 

(image-based 3D reconstruction): 1) Laser-scanning technology uses laser radar 

equipment to scan the exposed UU surface from multiple angles to form point-cloud 

model information for 3D reconstruction. As shown in Figure 1-2, the laser-scanning 

method can rapidly establish accurate surface information features. The reconstruction 

process includes emitting laser beams, scanning the target surface to obtain point-cloud 

data, and pre-processing the acquired point-cloud data, including denoising, sampling, 

and registration operations. The purpose is to remove unnecessary noise points in the 

point cloud to facilitate further registration or measurement operations on the point 

cloud. The final step is to convert the point-cloud data into a 3D model. 3D-

reconstruction algorithms include voxel-based, surface-based, and image-based 

methods. 2) The photogrammetry (image-based 3D reconstruction) method uses 

pictures or video stream data to collect image information from different angles of the 

same scene to generate a 3D model. The reconstruction process primarily uses image 

matching, triangulation, and beam method techniques to extract 3D coordinate 

information of the object, before converting it into a 3D model. Compared with the 

laser-scanning method, the photogrammetry method based on image data has a lower 

cost of obtaining data and is more convenient. Only a consumer-grade smartphone is 

needed to complete the reconstruction task quickly. More importantly, the 

photogrammetry method can record important attributes, such as the material and 

colour of the target, while collecting 3D spatial coordinate information. In contrast, 

the laser-scanning method can only collect spatial information. Figure 1-2 shows the 

steps and effects of UU 3D reconstruction using laser scanning and photogrammetry, 

respectively. 
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Figure 1-2 Steps and effects of UU 3D reconstruction using laser scanning and 

photogrammetry 

Topology reconstruction. Topological information (interconnection relationship 

between pipelines) is necessary to fully demonstrate the UU network. Relying solely 

on the facilities' surface, the 3D model cannot accurately describe the real structure of 

the UU. However, neither non-destructive nor exposed reconstruction can detect the 

connection relationship between pipelines. The current main UU topological 

relationship reconstruction methods in engineering practice include: 1) Traditional 

manual method. Traversing the manhole and other facilities in the target area according 

to existing drawing records or combining GPR with manual inspection is still the 

mainstream method. This method has the advantage of accurate inspection; however, 

the costs of labour, equipment, and time are extremely high. 2) Database completion. 

Because a pipeline network is a complete system with practical significance, the 

topological relationship between various pipeline parts can be inferred from the 

observed partial information. Specifically, the inference of unknown topological 

relationships can be realised through imputation, machine learning, and graphs. 

Although the database completion method requires a certain amount of known 

information, it is highly effective in engineering practice. This is because, in most 
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cases, the pipeline network in the target area is not completely independent but exists 

as a part of the overall pipeline network. Therefore, the data-driven topology-

completion method has a significant cost advantage, particularly for large-scale data 

scenarios. 

An overview of this thesis is presented in Figure 1-3. The research was based on the 

3D reconstruction key stages mentioned above (non-destructive, exposed, and 

topological), addressing specific engineering scenario requirements, and ultimately 

creating a more effective UU 3D reconstruction model. It is important to note that this 

thesis focuses exclusively on a detailed examination of the region outlined by the red 

dashed box in Figure 1-3. The roles of other areas lie in forming a comprehensive 3D 

reconstruction technical roadmap but are not the primary focus of this research. 

 

Figure 1-3 Study Overview 

1.2 Problem statement 

As cities continue to expand, the difficulty of managing the full life-cycle of UUs is 

also increasing. In response to the complex combination of infrastructure, water pipes, 

power supply, and storage space that crisscross underground spaces, countries have 
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proposed their own digital underground space representations to improve the 

management efficiency of UUs. In 2012, the UK University of Birmingham and other 

research institutions jointly proposed a project called MTU (Mapping the Underworld 

(University of Birmingham et al., 2012)) – which seeks to develop the means to locate, 

map in 3-D, and record using a single shared multi-sensor platform – the position of 

all buried utility assets without excavation. In 2017, the Singapore Land Authority, in 

collaboration with the Singapore-ETH Centre, developed a system called Imagining a 

digitally enabled future (Yan et al., 2021) for the digital twins of UUs to complement 

the 3D maps of the country and facilitate integrated planning and development. In 

Phase 1, it planned and identified what would be required in the roadmap to develop a 

coherent national subsurface utility mapping strategy. Starting in 2019, it embarked on 

a second phase, bringing the roadmap to life and supporting the ecosystem to generate 

and deliver accurate and complete digital data to stakeholders. Beginning in January 

2022, Digital Underground has entered its third phase, and Singapore has the potential 

to become the world's leading laboratory for underground mapping. 

However, the current 3D reconstruction of as-built UUs remains challenging in terms 

of providing accurate 3D representations for practice scenarios. The detailed problems 

are summarised below. 

1.2.1 Inadequate research attention for UU 3D reconstruction 

Various 3D reconstruction techniques have been widely applied to UUs. However, 

existing studies have the following limitations. 1) Some researchers reviewed the 

development process of 3D reconstruction technology and analysed some technical 

details of 3D reconstruction but only focused on the 3D reconstruction technology 

itself and ignored the application of technology in engineering context. For example, 

the works of Mark (2010), Hao et al. (2012), and Yu et al. (2021) provide 

comprehensive summaries of the principles of various technologies. However, they do 

not fully explore the characteristics and limitations of technology applications in 

engineering, such as the scalability of these technologies in large-scale infrastructure 

projects, their adaptability to varying environmental conditions, and the accuracy and 
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reliability of the data in complex urban settings. 2) Other review studies were 

published several years ago, therefore, have not captured recent technological 

advancements. For example, a summary of UU positioning technology and 

requirements was conducted by the US Federal Laboratory in 2000 (Federal 

Laboratory Consortium, 2000). Metje et al. (2007) summarised the MTU technology, 

and Liu and Kleiner (2013) reviewed underground exploration technology for water 

pipes. Therefore, these studies are not sufficiently specific and comprehensive for the 

field of UU 3D reconstruction and cannot guide the selection of UU 3D reconstruction 

technology in engineering practice. 3) There is also a need for research that 

systematically analyse various 3D reconstruction technologies using factors such as 

cost, accuracy, compatibility with existing systems, and operational feasibility to 

determine the most effective solution for specific needs. 

1.2.2 Inefficient UU localisation precision in GPR interpretation 

GPR, the most popular non-destructive method, has been widely applied in UU 3D 

reconstruction tasks. However, UU localisation based on B-scan images is challenging 

for the following reasons: 1) Owing to the electromagnetic-wave principal 

characteristics of GPR, the generation process of B-scan images is affected by various 

interference factors from the environment, such as electrical installations and tree roots, 

as well as from the device (Lei et al., 2019; Singh et al., 2013; Adouane et al., 2021). 

These noise sources further complicate the UU target recognition. 2) Unlike other GPR 

detection tasks, such as reinforcement localisation in concrete structures (Wang et al., 

2020; Liu et al., 2020; Ahmed et al., 2020), UUs are buried deeper, composed of 

various material types, and surrounded by a more complex environment. The 

limitations of the task object are likely to deteriorate B-scan image quality. 

The B-scan image generated by GPR must be analysed by domain experts to obtain 

accurate position information pertaining to the UU. UU localisation in GPR B-scan 

images is highly subjective and significantly depends on expert knowledge and 

engineering experience. Although many studies have been conducted to improve the 

automation of GPR B-scan data interpretation, the following limitations remain. First, 
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conventional methods involve complex processing steps that render them highly 

susceptible to environmental noise and yield unstable precision performance (Maas et 

al., 2013; Harkat et al., 2016; Sagnard et al., 2016). Second, existing deep-learning 

methods separate a problem into two sub-problems: box detection and hyperbola 

fitting (Lei et al., 2019; Harkart et al., 2019; Hou et al., 2021a; Zong et al., 2019). This 

allows the problem's solution to be obtained only from the local optimal solutions of 

the sub-problems and not the global optimal solution. In UU localization using GPR, 

deep learning methods typically divide the problem into sub-problems (the box 

detection and hyperbola fitting), each solved for what seems best within their limited 

scope, termed as "local solutions." However, this step-by-step approach can miss the 

overall best solution—or "global solution"—for the entire dataset, leading to errors 

and suboptimal performance when these local solutions are combined. Furthermore, 

this step-by-step solution results in greater error accumulation, which affects the UU 

localisation precision. 

1.2.3 Inefficient image-based reconstruction performance under low-light 

scenarios 

To date, there are two main technical routes for UU 3D reconstruction: image-based 

3D reconstruction and laser scanning (Pătrăucean et al., 2015). Image-based 3D 

reconstruction utilises multi-view 2D image data to restore the UU target spatial 

information (Döner et al., 2011; Yan et al., 2018). Laser scanning collects 3D spatial 

information of the UU surface through the Time of Fly (ToF), which is the time interval 

between the transmission and reception of pulses (Bosché et al., 2015; Wang et al., 

2021a). However, laser-scanning devices are often limited by high holding costs, 

training costs, and poor convenience. As an alternative method, image-based 3D 

reconstruction requires only an inexpensive camera or even a mobile phone camera to 

obtain accurate 3D information. In addition, there are no pre-training preparation 

requirements or investments before the operation. 

However, image-based 3D reconstruction performance still has challenges in harsh 

conditions, such as a low-light environment during the evening or mid-night. During 
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the construction of UUs, the lighting conditions must be improved owing to the depth 

factor. In the O&M update scenarios of UU, repairs and updates are often required in 

the shortest possible time, making it unavoidable to perform 3D reconstruction in 

scenes with poor lighting or even at night. Under low-light conditions, the degree of 

recognition of the object surface texture decreases, reducing the quantity and quality 

of the generated point clouds (Roncella et al., 2021; Pozo et al., 2019; Burdziakowski 

et al., 2021). To overcome these difficulties, existing studies have primarily focused 

on conventional image-processing algorithms to enhance reconstruction performance. 

The limitations of such methods are that many parameters must be manually input by 

practitioners, and these methods are highly subjective (Guidi et al., 2014; Lu et al., 

2012). With the development of deep learning, several models have been applied to 

enhance low-light images using paired training datasets (low-light input images and 

ideal reference output images) (Wei et al., 2018; Lore et al., 2017). Nevertheless, it 

cannot be directly used to enhance low-light images for a better 3D reconstruction 

outcome, as it is difficult to obtain paired training data and reference data (referring to 

the low-light images and paired ideal reference images that could be used for 3D 

reconstruction) to supervise the training progress. Even with access to the required 

dataset, the reconstruction outcome is still unreliable, as it is heavily dependent on the 

chosen reference images and practitioners’ experience. In addition, few studies have 

incorporated the characteristics of as-built UU scenarios into the conditions for image 

optimisation. 

1.2.4 Inefficient UUs topology-completion accuracy 

Efficient and low-cost solutions for the completion of missing data in UU topology 

information are still lacking. The traditional method, which is also the most widely 

used method in engineering practice, is to detect the connection relationship between 

pipelines using GPR (Birkenfeld, 2010; Skartados et al., 2019), PipeProbe (Lai et al., 

2010), or other manual methods, such as manhole inspection (Alejo et al., 2019). 

Although this approach can achieve high accuracy, it requires substantial human labour 

and expensive resources. Some studies have transformed the missing data-completion 
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problem of general UU attributes (diameter, material, water level, etc.) into an 

imputation problem. They used traditional imputation algorithms: single, linear 

regression-based, and three multiple imputations (Davey et al., 2009; Little et al., 2019; 

Von et al., 2004; Graham et al., 2012; Templ et al., 2011); machine-learning methods: 

principal component analysis (PCA) (Gangopadhyay et al., 2005); K-nearest 

neighbour (KNN) (Woldesellasse et al., 2021); decision trees (Barros et al., 2012); and 

neural networks (NNs) (Bishop, 1995) to accurately predict missing values. However, 

imputation cannot be used to predict the topological relationships. 

1.3 Scope and aim/objectives 

To address these issues, this study aims to improve the data-collection process and 

accuracy of the data used in the 3D reconstruction of as-built UUs. By obtaining better 

data and more accurate 3D reconstructions, the management decision making of UU 

operation maintenance rehabilitation and renewal can be improved. To achieve the aim 

of having more accurate and reliable 3D reconstructions, four objectives were 

established. 

Objective 1: To identify research topics, trends, and limitations of automatic 3D 

reconstruction for as-built UUs. This thesis first identified existing mainstream 3D 

reconstruction technologies and analysed their advantages, disadvantages, and best 

performance. Second, the application research of various technologies was 

summarised from the perspective of engineering practice. Third, a decision-making 

framework for selecting 3D reconstruction technologies was proposed to improve the 

management efficiency of the UU life-cycle. 

Objective 2: To develop a novel GPR-based as-built UU localisation deep-learning 

model for non-destructive scenarios. An end-to-end UU localisation (EUUL) deep-

learning model using GPR B-scan data was proposed. First, unlike other deep-learning 

UU localisation methods, the EUUL model adopts the key point-regression mode 

instead of the box-fitting mode to realise end-to-end learning and train the model. 

Second, an anchor-free structure that does not rely on predefined anchor boxes to 

detect objects, with a lightweight backbone (CSPDarknet53), was applied to the EUUL 
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model to improve speed. Unlike traditional models that use anchors as reference points 

for bounding box predictions, anchor-free models predict the center points of objects 

directly. It increases the accuracy by allowing the model to dynamically adjust to the 

shape and size of the objects being detected without being constrained by preset 

anchors. And the computational overhead was also reduced by eliminating the need 

for calculating and adjusting multiple anchor boxes. Finally, to manage the noise 

interference of the UU positioning data, a channel attention mechanism was added to 

the EUUL model, such that the model focused on key features in the task to ensure 

precision. 

Objective 3: To develop a novel unsupervised image-based 3D reconstruction model 

for the low-light 3D reconstruction of as-built UUs for exposed scenarios. A zero-

reference (unsupervised) deep-learning model for low-light image enhancement for 

UU 3D reconstruction (ZDE3D) was proposed. This model was trained without a 

given reference sample image; that is, no paired or unpaired data were required in the 

training process. The enhancement of the UU 3D reconstruction performance was 

achieved by loss functions, where the design was based on 3D reconstruction 

principles and pixel-wise restricted relationships between the input and output images. 

Therefore, the influence of subjective parameter settings in the optimisation process 

can be avoided to the maximum extent, and the performance of UU 3D reconstruction 

in a low-light environment can be simply and effectively improved. 

Objective 4: To develop a graph convolutional network (GCN)-based topology-

completion model for as-built UUs. A GCN-based UU topology-completion (UUTC) 

model was proposed in this thesis. The model can extract UU attributes and topology 

features simultaneously and combine the correlation between the pipeline network 

topology relationship and attribute features to effectively complement the missing 

topology information. To verify the superiority of the proposed model over the existing 

mainstream GCN model in the UU data-completion task, five mainstream control 

groups were modelled focusing on missing data rates. The actual wastewater pipeline 

database from Angers Metropolis, France, was used as the case study. 



14 

1.4 Significance 

The up-to-date 3D reconstruction of UUs is essential for ensuring safety, cost-

effectiveness, efficient planning, and timely facility maintenance management. 

However, obtaining an accurate UU 3D reconstruction model is affected by many 

factors, and it is still very difficult to reconstruct the topological relationship after 

obtaining the spatial model. This research addresses these issues by developing a novel 

GPR-based as-built UU localisation deep-learning model for non-destructive scenarios, 

improving the UU localisation precision. A novel unsupervised image-based 3D 

reconstruction model was developed to improve the low-light 3D reconstruction of the 

as-built UUs for exposed scenarios. Regarding topology reconstruction challenges, a 

GCN-based topology-completion model for as-built UUs can infer missing topological 

information. Accordingly, this study makes three main contributions. 

(1) Improving the precision of current GPR-based UU localisation 

This study contributes to the knowledge body by proposing an EUUL deep-learning 

model using GPR B-scan data. The prevailing deep-learning approaches decompose 

the problem into two distinct sub-problems, namely box detection and hyperbolic 

fitting (Lei et al., 2019; Harkart et al., 2019; Hou et al., 2021; Zong et al., 2019), which 

leads to the computation of the solution primarily from the local optimal of the sub-

problems rather than the global optimal. Moreover, this incremental approach to 

problem solving results in greater error accumulation, impeding the precision of UU 

localisation. The proposed EUUL model transforms the UU positioning problem into 

an end-to-end problem, from B-scan images to pipeline hyperbolic fixed-point 

coordinates. Simultaneously, it reduces the interference of environmental noise on the 

data by adding an efficient channel attention (ECA) module to achieve a higher 

positioning precision. The proposed methods are validated in experiments with real 

GPR datasets, and the results show that the performance is superior to existing 

mainstream models in terms of precision, operating speed, and robustness. 

(2) Improving the reconstruction performance of image-based UUs in a low-light 

environment 
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The proposed image-based UU reconstruction model is of considerable importance in 

both theory and practice. Previous image-based studies have focused on surface 

reconstruction of UU under normal illumination conditions. However, UU installation 

and maintenance projects have a short construction period and greatly impact residents' 

lives; therefore, low-light scenes such as evening or night are very common. This study 

proposed a zero-reference (unsupervised) deep-learning model for the low-light image 

enhancement of UU 3D reconstruction (ZDE3D). From a theoretical perspective, the 

proposed ZDE3D model compensates for low-light image enhancement based on 

unsupervised learning in existing research on low-light image 3D reconstruction 

blanks. From a practical perspective, the ZDE3D model obtains more matching point 

clouds under the same input conditions, which effectively improves the surface 3D 

reconstruction effect of UU scenes in low-light environments. Field experiment 

implementation confirmed that the capability of ZDE3D can significantly increase the 

quantity of sparse reconstruction point clouds while ensuring high model 

reconstruction accuracy. This study is crucial for enhancing and broadening the scope 

of image-based 3D reconstruction technology in UU scenarios. 

(3) Improving the completion accuracy of graph-based UU topology information 

This study makes a practical contribution by providing a graph convolutional network-

based model (UUTC) for the UU topology completion task. Previous UU database 

completion studies have focused on common attributes such as material depth and 

diameter. However, the topological relationship is very important for UU 3D 

reconstruction, and a model reconstructed with the topological relationship can fully 

represent the pipeline function. The proposed deep-learning model uses a 

convolutional graph neural network to transform the topological relationship 

prediction task into an edge relationship classification task between pipeline nodes. 

Combined with the UUs' greater possibility of topological connections between similar 

pipelines, a graph-based supervised deep-learning model for UU topology database 

completion was developed. The UUTC model can quickly predict the UU topological 

relationship under different missing data conditions, which avoids expensive manual 

inspection costs and achieves fairly reliable prediction accuracy. In this study, a model 

verification experiment based on real wastewater data was conducted. Compared with 

five mainstream GCN models, the proposed UUTC showed the best topological 

relationship completion ability under different missing data rates. The development of 
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UUTC can effectively help stakeholders quickly understand the topological 

relationship of unknown areas and make more scientific management decisions. 

1.5 Thesis structure 

This thesis has seven chapters which are summarised below and in Figure 1-4. 

Chapter 1 describes the background, research problems, aims, and objectives of this 

thesis, as well as the thesis structure. 

Chapter 2 summarises the literature on the current 3D reconstruction technologies for 

UUs, GPR-based 3D reconstruction for UUs, image-based 3D reconstruction for UUs, 

and topology completion for as-built UUs. 

Chapter 3 introduces the study’s research methodology. It outlines the research 

philosophy that underpins research methods. The chapter then introduces the method 

for developing the GPR-based as-built UU localisation deep-learning model (EUUL), 

a method for developing a novel unsupervised image-based 3D reconstruction model 

(ZDE3D), and a method for developing the GCN-based topology information 

completion model. 

Chapter 4 develops an EUUL deep-learning model using GPR B-scan data. The 

EUUL model includes a lightweight backbone (CSPDarknet53) for feature extraction 

of the input data, and the computational cost is reduced to improve the data processing 

efficiency of the model. An ECA module was used to reduce the interference of 

environmental noise by learning to adjust the weight distribution between different 

captured channels. A prediction module that directly predicts the pipe coordinate 

position to achieve end-to-end learning and reduce the localisation error caused by 

step-by-step learning. Detailed experimental results are summarised to compare the 

EUUL model with other popular models for GPR-based UU localisation. 

Chapter 5 develops an unsupervised deep-learning model for low-light image 

enhancement for UU 3D reconstruction (ZDE3D). The proposed ZDE3D model 

enhances the image-based UU 3D reconstruction through the pixel-level unsupervised 

loss functions. The design of these loss functions also considers common low-light 

enhancement, the principle of photogrammetry, and the features of UU projects. Field 

experiments in different scenarios were conducted and analysed to validate the 

performance of the ZDE3D model. In addition, ablation experiments are conducted to 

verify the contribution of the proposed loss functions. 
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Chapter 6 develops a graph convolutional network-based UU topology-completion 

(UUTC) model. The UUTC model comprises of four main modules: input, similarity 

extraction module (SEM), convolution, and link prediction. The model takes the 

observed topological relationships and node attribute information of the UU network 

as input and aims to generate completed network topology relationship data as output. 

The experimental results show that the proposed model can effectively complete the 

UU topological relations (average precision of 85.33%) for different proportions of 

missing topological relations. 

Chapter 7 concludes important findings in the thesis, highlights contributions and 

implications, discusses limitations of this research, and suggests future studies. 
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Figure 1-4 Thesis framework 
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Chapter 2 : Literature review 

2.1 Current status of the UU 3D reconstruction 

2.1.1 Review of the key technologies for 3D UU reconstruction 

After years of development in the field of 3D reconstruction in underground 

engineering, many techniques and methods have been developed to achieve the goal 

of 3D reconstruction. This section summarises the essence and characteristics of the 

existing 3D reconstruction technology from a technical perspective. In Section 2.1, 

non-destructive technologies (NDT) for UU 3D reconstruction are introduced, 

whereas Section 2.2 reviews destructive technologies (DT), which are performed 

under the condition of excavation. Finally, Section 2.3 summarises the advantages and 

limitations of this technology. 

2.1.1.1 Non-destructive technologies 

2.1.1.1.1 GPR 

GPR is one of the most common and efficient non-destructive 3D reconstruction 

techniques for UUs. This is essentially a method that uses antennas to transmit and 

receive high-frequency electromagnetic waves to detect the characteristics and 

distribution rules of matter inside the target area (Lai & Derobert, 2017; Zhao et al., 

2017). In the UU scenario, GPR equipment is always used to scan the specified ground 

area (such as the section method, wide angle method, and transmitted wave method) 

to obtain the reflection characteristic data (mainly referring to B-scan images) of the 

underground hierarchy of the target area, and further analyse the location and 

characteristics of the pipeline according to the dielectric coefficient and waveform 

characteristics. Thus, a 3D model of the UU pipeline in the target areas was obtained 

with relevant engineering experience (Guo et al., 2009; Li et al., 2012; Maas et al., 

2013; Jaw & Hashim, 2013; Zhang et al., 2016). In a recent study, Li et al. (2020a) 

reconstructed an underground-pipeline model fused with GPR and Camera in 2020, 

and the average localisation error was 4.47 centimetres. However, this approach is 

typically less accurate in engineering applications. There are two main reasons for this: 
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1) there are many disturbing factors (such as high-voltage line magnetic field, iron pipe 

corrosion products, and other factors (Hao et al., 2012; Pennock et al., 2010; Bai et al., 

2020; Tosti et al., 2016)) in a complex real engineering environment; and (2) the final 

model reconstruction accuracy of this method relies heavily on manual experience, 

which requires a large amount of engineering experience in both GPR and UU 

engineering (Zhang et al., 2016). 

2.1.1.1.2 RFID 

RFID is a non-contact, fast information exchange, and storage technology realised by 

radio waves. However, in the reconstruction scenario of UUs, this technology 

generally requires binding RFID tags containing specific information during the 

construction of UUs. The signal strength reflection difference obtained at different 

distances is used to locate the depth and direction of pipelines, and is combined with 

engineering data, or GPR, and other methods to achieve 3D pipeline reconstruction 

(Sen et al., 2009; Hao et al., 2008; Zhang et al., 2017; Kumar et al., 2012). Compared 

with GPR, RFID technology has two major advantages: 1) This method can be used 

to overcome the problem of weak radar signals in plastic pipes (Zhang et al., 2017; 

North et al., 2010) when the surrounding soil has attenuation or the pipes and soil have 

similar electromagnetic characteristics, which is a good supplement to GPR 

technology. 2) The relatively low operating frequency (tens of kHz to tens of MHz) 

means that it has a greater coverage range than most pulsed GPR systems used for 

practical detection (hundreds to thousands of MHz). For example, Kumar (2012) 

developed an RFID-based 3D positioning model for underground assets and 

experimentally verified that the 3D reconstruction accuracy of the system was within 

± 100 mm. However, the shortcomings of RFID technology are evident. First, its cost 

is high, and it is not easy to maintain, and replace after embedding. Second, the label 

is subjected to soil corrosion in an underground environment, which affects the 

reception of the signal (Zhang et al., 2017; Kumar et al., 2012). 

2.1.1.1.3 Electromagnetic induction (EMI) 

Electromagnetic induction (EMI) is a method used to locate and map UUs. The basic 
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assumption of this method is that, when the magnetic field peak is measured, the 

equipment position is directly above the UU (i.e., the horizontal position), and the 

buried depth of the pipeline can be estimated according to the signal strength. 

Electromagnetic technologies can be classified into active and passive modes (Lai et 

al., 2017; Jeong et al., 2004; Siu et al., 2019). In the active mode, a voltage was applied 

at the end of an underground metal pipe, and the position and depth of the pipe were 

determined by measuring the peak position and strength of the generated magnetic 

field. Passive means that the UU itself generates a certain magnetic field strength (such 

as a cable) through an ultrasensitive magnetic detection device to determine the depth 

of position and then generate a three-dimensional model of the UU. Magnetic 

technologies commonly used equipment that avoids cable avoidance tools (CATs), 

pipe and cable locators (PCLs), flux-gate magnetometers (FMs), proton precession 

magnetometers (PPMs), alkali vapour magnetometers (AVMs), and superconducting 

quantum interference devices (SQUIDs). (Jeong et al., 2004; Metje et al., 2020; Karaa 

et al., 2014). Magnetic technologies complement GPR detection and reconstruction 

methods because magnetic signals are less attenuated in wet soils with a higher clay 

content than in conventional GPR. The accuracy of this method was 3% in the range 

of 3 m, and 5% in the range of 3–5 m (Yan et al., 2019). Together with Geographic 

Information Systems (GIS), a promising storage technology for utility location and 

attribute data, these methods can achieve good 3D reconstruction (Karaa et al., 2014; 

Liu et al., 2012). However, this method is only effective for metal pipelines. 

Simultaneously, it is extremely difficult to apply when the underlying infrastructure 

conditions are complex (e.g. with multiple staggered metal pipelines) (Jeong et al., 

2004; Siu et al., 2019). Therefore, the electromagnetic-technology-based UU 

reconstruction method still has a narrow application range. 

2.1.1.1.4 Acoustic emission 

AE methods involve using sensors, such as hydrophones, to detect and measure the 

acoustic signals generated by UUs. These methods can be used to locate and map 

various utilities, including pipes, cables, and other infrastructure (Khan et al., 2010; 
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Talmaki et al., 2013; Metcalf et al., 2020; University of Birmingham et al., 2012). AE 

methods detect sounds or vibrations generated by utilities as they operate. For example, 

the water flow in a pipe can generate a characteristic acoustic signal that can be 

detected and used to locate utilities. Similarly, the movement of electrical cables can 

generate an acoustic signal that can be detected and used to locate the cables. AE 

methods can be used to locate both metallic and non-metallic utilities, and they are 

often used in conjunction with other methods, such as EMI or GPR, to provide a more 

complete picture of the underground environment. Acoustic methods have the 

advantages of low acoustic attenuation and effective propagation in both solids and 

liquids (Smith et al., 2019; Volker et al., 2013). However, ultrasonic technologies also 

have some clear limitations, such as the dry and wet degree of the soil, hard surfaces 

(such as pipes under the surface of concrete), and rock roots near the target pipes and 

other pipes. These factors affect measurement results (Rachev et al., 2018; Muggleton 

et al., 2002; Leinov et al., 2015). This method can track pipelines buried less than 0.5 

m (Metje et al., 2007) without noise interference. 

2.1.1.1.5 Thermography 

Thermography is a method by which the invisible infrared energy emitted by UUs is 

transformed into visible thermal images to obtain the location information of pipelines 

for 3D reconstruction modelling. The instrument commonly used in this method is 

infrared thermography (IRT), which comprises an infrared detector and optical 

imaging objective lens (Lagüela et al., 2018; Solla et al., 2016). The IRT data of the 

UU were acquired through the detection and measurement of the infrared radiation 

energy emitted by the target under examination and subsequently capturing the 

distribution pattern of the energy via the photosensitive component of the infrared 

detector. This thermal image corresponds to the thermal distribution field on the 

object’s surface. This is similar to the acoustic and electromagnetic-wave methods, 

which can achieve trenchless reconstruction (Fan et al., 2005; Capozzoli et al., 2017). 

The most recent study in Singapore by Capozzoli et al. (2017) explored this approach. 

The thermography method provides an accurate distance between tubes. However, the 
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depth and characteristics of the surrounding media were not well defined (the pipeline 

depth in the experiment was only approximately 0.2 m). Therefore, thermography is a 

reliable method for NDT reconstructions. However, in other studies, the accuracy of 

this method must be clarified. 

2.1.1.1.6 IMU-based system 

An inertial measurement unit (IMU) is a sensor that records the speed, acceleration, 

and direction of rotation of its inertia. As one of the trenchless pipeline detection 

modelling methods in the UU scene, this method mainly records the velocity, rotation 

angle, and other parameters using an IMU sensor mounted on the robot equipment to 

obtain the depth and strike data of the pipeline, and finally draws a three-dimensional 

model of UUs (Hyun et al., 2010; Lee et al., 2011; Wang et al., 2012). The IMU method 

can obtain the most accurate 3D pipeline reconstruction data under non-destructive 

conditions. The general horizontal accuracy was 0.25% of the total pipeline length and 

the depth accuracy was 0.1% (Yan et al., 2019). In the latest study, Zhang et al. (2019b) 

reported that the maximum horizontal error was 0.10 m, and the maximum height error 

was only 0.04 m (5x6 m pipes with four joint sockets). It should be noted that low-cost 

IMU equipment was used in the research by Zhang et al. (2019b); therefore, the IMU 

method can achieve higher accuracy if cost factors are not considered. In addition, the 

IMU-based method also has the advantage of not being affected by the soil 

environment (e.g. soil composition and water content) and deep application depth. 

However, compared with other trenchless methods, the IMU method has the following 

limitations: 1) it is vulnerable to electromagnetic interference; 2) it cannot be used in 

working pipes (such as water pipes); and 3) solid pipes, such as cables, cannot be used. 

(Lee et al., 2011; Chowdhury et al., 2016; Reyes-Acosta et al., 2019). These defects 

lead to a status quo applicable to only a few scenarios. 

2.1.1.2 Destructive technologies 

2.1.1.2.1 laser scanning 

Laser scanning has been widely used in the three-dimensional model reconstruction of 
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pipelines during the excavation stage (Duran et al., 2003; Stanić et al., 2017). This 

method is based on the principle of laser ranging, which collects the spatial position 

of the surface points of the target utility to form a three-dimensional model. Similar to 

total station technology, laser scanning also needs to be used in the scenario of pipeline 

exposure, which is characterised by its ability to obtain high-precision object surfaces 

in large-scale environments. Compared with other methods, the advantages of laser 

scanning are as follows: 1) it has the best automatic performance (Lee et al., 2013; 

Wang et al., 2022(a); Maalek et al., 2018); 2) it can realise model reconstruction with 

millimetre-level accuracy (Patel et al., 2010b; Wang et al., 2021a; Guo et al., 2020b); 

and 3) owing to the use of laser information acquisition, it has a strong anti-

environmental interference ability and is suitable for large-scale three-dimensional 

reconstruction of UUs in an open environment (Patel et al., 2010b; Son et al., 2016). 

However, its fatal disadvantage is that it cannot be used in the pre-excavation phase, 

which significantly reduces the engineering practicability of the method. In addition, 

laser scanning alone can only reconstruct the spatial information of reconstructed 

objects, and it is not easy to obtain information other than the shape of the surface. 

2.1.1.2.2 Photogrammetry 

Photogrammetry is another method that can be performed only in open scenes. 

Photogrammetry refers to the technique of using optical sensors to record images of 

target objects and analyse object shapes and spatial positions using image features 

(Richard & Canberra, 2003). This technique was applied to the 3D reconstruction of 

pipeline utilities by Veldhuis and Vosselman (1998). Photogrammetry has the 

following advantages: 1) data collection is convenient, and only photos are required; 

2) low cost of data acquisition equipment, a common digital camera (or even a mobile 

phone camera) can meet the requirements; and 3) on the basis of obtaining the spatial 

features of the target, RGB pixel information can also be obtained, which can be used 

for further analysis of the target object (Yılmaztürk et al., 2010; Maalek et al., 2021; 

Javadnejad et al., 2017; Lueke et al., 2011). However, similar to total station and laser 

scanning, photogrammetry can only be used for 3D reconstruction of UUs during 
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specific stages of pipeline exposure. However, compared to laser scanning, 

photogrammetry has three important characteristics: high accuracy, automation, and 

low cost. Therefore, it has evident engineering application potential (Javadnejad et al., 

2017; Yang et al., 2021; Elkhrachy, 2021). In addition, existing research teams have 

combined photogrammetry, laser scanning, and GPR technology to perform 3D 

reconstruction tasks for UUs (Yan et al., 2019; Li et al., 2020a) and have shown great 

potential. 

2.1.1.3 Summary 

The above review shows that every 3D reconstruction technique, whether NDT or DT, 

is not a perfect choice for every scene. Figure 2-1 summarises the advantages and 

limitations of all types of mainstream 3D reconstruction technologies mentioned above, 

as well as the limitations and best performance reported in the current literature. 

 

Figure 2-1 Limitations and best performance of 3D reconstruction technologies 

In addition, multi-sensor fusion is an important implementation path in underground 

3D reconstruction. It includes the following three types: 1) NDT + NDT. For example, 

when one PCL and GPR are used, the depth measurement accuracy error can reach 40% 

of the buried depth; when both are used, the depth measurement accuracy error can 

reach 15% of the buried depth (Yan et al., 2019). In addition, some studies have 
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integrated GPR technology and acoustic technology for the three-dimensional 

reconstruction of UU (Yan et al., 2019) or improved position accuracy through GPS 

(Khan et al., 2010; Šarlah et al., 2020; Li et al., 2016). 2) DT+DT: The first combines 

DT technology with GPS to improve the accuracy of the reconstructed position (Patel 

et al., 2010). In the other category, photogrammetry was combined with laser scanning 

to overcome the degenerate phenomenon in the absence of the geometric features of 

the laser method and the difficulty of improving accuracy when only the 

photogrammetry method was used (Lin et al., 2021; Ye et al., 2019). 3) NDT was 

integrated with DT variants. For example, GPR has been combined with visual 

simultaneous localisation and mapping (vSLAM) based on photogrammetry to 

establish a 3D reconstruction system for multi-pipeline groups (Li et al., 2020a). In 

addition, Virtual Reality (VR), Augmented Reality (AR), and other technologies have 

been used in 3D reconstruction to improve the display effect (Fenais et al., 2020; 

Childs et al., 2020) in recent years. 

2.1.2 Review of the current applications of 3D reconstruction methods 

Although categorised under the term ‘UU 3D reconstruction methods’, the techniques 

discussed above exhibit significant variations in their respective applicability to 

specific scenarios. Such differences in the implementation details can significantly 

influence the selection of appropriate engineering technology routes. As a result, this 

section reviews the present applications of 3D reconstructed models, as shown in Table 

2-1, which may aid decision makers in identifying appropriate 3D reconstruction 

technologies or combinations based on their suitability for particular scenarios. 

Table 2-1 Applications of the 3D reconstructed models 

Stage Classification  Category Application Details 

Before 

Construction 

UU Inspection  GPR 

RFID 

EMI 

AE 

Hebsur et al. (2013) utilised GPR 

technology for reconstructing the UUs of 

ancient cities to establish an information 

base for urban models.  
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Stage Classification  Category Application Details 

Thermography 

IMU-based 

system 

Ristić et al. (2014) used GPR technology 

for identifying the subterranean structure of 

a flooding bank in Novi Sad, Serbia, as well 

as for delineating the geometry of man-

made public utilities (pipelines).  

Deng et al. (2020) applied GPR technology 

to detect and reconstruct water supply 

pipelines in older communities of China. 

Additionally, in the same year, Cai et al. 

(2020) established a robust and accurate 

method for inventorying UUs by utilising 

GPR in conjunction with existing utility 

records as two independent sources of 

information. 

Network 

Planning 

 GPR 

RFID 

EMI 

AE 

Thermography 

IMU-based 

system 

Mooney et al. (2010) used multi-channel 

ground-penetrating radar (GPR) to conduct 

three-dimensional reconstruction of 

underground cables in Yonkers, NY to 

verify the influence of this method on the 

design and planning of UU project and 

found many unknown public utilities that 

had major conflicts with the planned 

construction. 

Harbin et al. (2016) collected the required 

UU data to reduce existing pipeline and 

newly designed UUs and to plan by 

identifying potential expansion areas of the 
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Stage Classification  Category Application Details 

existing network at the University of 

Alabama. 

Zhang et al. (2020a) proposed the UU 

Occupation Index (UUOI) based on 

existing UUs, occupied underground space 

and space models for future use, which is 

used to provide abstract utility and space 

use information for the government's urban 

planning and development. 

During 

Construction 

Machine Guide  GPR 

EMI 

Laser scanning 

Photogrammetry 

Talmaki et al. (2012) developed a 

comprehensive computing framework for 

real-time monitoring of construction 

activities in a concurrent 3D virtual world 

to reduce the possibility of accidental 

pipeline collision by excavators. 

Al-Bayati et al. (2019) Collected and 

analysed 11,160 damages in the state of 

North Carolina to reduce the risk for the 

damages to UUs while machine work. 

Tanoli et al. (2019) proposed a new 

approach to modelling UUs for machine 

navigation systems to provide visual 

guidance to operators and prevent 

accidental damage to underground pipes. 

3D record 

generating 

 Laser scanning 

Photogrammetry 

Son et al. (2015) developed a fully 

automatic system for as-built pipeline 3D 

reconstruction based on laser technology. 
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Stage Classification  Category Application Details 

However, it may inaccurately segment a 

single pipeline into multiple parts due to 

occlusion. 

In 2017, Ahmad et al. (2017) proposed a 

modified global ICP (Iterative Closest 

Point) method for automatic 3D models 

recording of the UU. While promising, the 

adaptation for complex UU networks and 

its cost-effectiveness remains unexplored. 

Stylianidis et al. (2020) validated a new 

system (LARA) that integrates handheld 

and mobile devices for monitoring, 

recording, and managing utility-based 

geospatial data products and services. 

However, it depends on the accuracy of GIS 

data in network operators’ databases, which 

can result in discrepancies between the 

virtual and actual positions of underground 

pipes. 

After 

Construction 

Asset 

management 

 GPR 

RFID 

EMI 

AE 

Thermography 

IMU-based 

system 

Ortega et al. (2019) demonstrated an 

effective way to manage urban 

infrastructure by visualising underground 

infrastructure in an interactive 3D 

immersive environment. The dependence 

on the accuracy and precision of GIS data 

in network databases which can also lead to 

discrepancies between the virtual and actual 
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Stage Classification  Category Application Details 

positions of underground pipes.  

Yan et al. (2019) connected the UU 3D 

model to the government database of 

cadastral plots for land management in 

Singapore. And the study highlighted the 

lack of reliable, comprehensive, and 

accurate 3D data on underground utilities, 

which hampers effective urban planning 

and management of underground 

infrastructure. 

Yan et al. (2021) proposed UUDM (UU 

data model) to help ownership 

management, land acquisition, planning 

and (re)development of the UU based on his 

previous work. 

Defect 

Detection 

 GPR 

AE 

IMU-based 

system 

Zhang et al. (2019a) developed a low-cost 

IMU and odometer integrated system that 

can effectively detect pipeline settlement 

with a depth accuracy of 0.11 m. However, 

underground utility companies are often 

reluctant to share accurate information 

about their existing utilities, which hinders 

effective urban planning and utility 

management due to missing historical as-

built records and the unavailability of 

accurate utility data for governmental 

planning. 
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Zhang et al. (2019b) verified the rapid and 

high-precision detection of pipelines based 

on internal images of pipelines and 

achieved good experimental results. While 

the primary limitation is the challenge of 

obtaining accurate and comprehensive 

internal damage and erosion data within 

urban drainage pipe networks due to the 

complex and irregular distribution of 

defects. 

Shokri et al. (2020) accurately mapped the 

old, corroded pipes in Malaysia. However, 

variations in soil electrical resistivity and 

moisture content can have the effect of 

reduced accuracy. 

Gunatilake et al. (2020) combined stereo 

vision with laser profiling realised the 

imperfections monitor of the pipe linings 

under unfavourable environmental 

condition. 

 

2.1.2.1 Application before construction 

Before UU construction, 3D reconstruction techniques, mainly NDT, were generally 

used in UU inspection and planning for unknown target areas. 

2.1.2.1.1 UU inspection 

However, urban UUs generally have explicit electronic or paper-based drawings. 

However, problems such as loss of records, failure to construct according to drawings, 
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and location changes owing to pipeline settlement pose a huge challenge to city 

management, especially in old urban areas. The non-destructive 3D reconstruction 

technique can reconstruct UU under completely unpredicted conditions at minimum 

cost. Obtaining the exact locations and depths of unknown utilities is crucial for urban 

management. Only with a clear grasp of the detailed underground location information 

of various types of pipelines can the government form a complete and effective asset-

management system. 

2.1.2.1.2 Network planning 

The planning of UU networks is an important part of overall urban design and planning. 

Unreasonable UU network planning leads to wasting workforce and material resources, 

particularly when urban areas are to be developed. However, pipeline network 

planning is a systematic project that requires coordination. This project is fundamental 

to the reconstruction of the localisation and dimensions of various utilities. A clear 3D 

reconstruction of the UU can effectively avoid repeated network construction, reduce 

the construction cycle of utilities, and select the best layout path. The employment of 

UU in new urban development is driven by various factors, including the need for 

intensive utilisation of land resources, accessibility considerations, the desire to avoid 

the challenges faced by old cities, cultural and modernity concerns, and the aim of 

constructing intelligent, environmentally friendly, and sustainable urban spaces. 

2.1.2.2 Application during construction 

2.1.2.2.1 Machine guide 

Mechanical excavation is essential in the construction of UU projects. Simultaneously, 

accidental damage to pipelines around other construction sites is the most important 

risk factor in implementing UU projects. In the case of accidental pipeline breakage, 

the project progress may be stalled, and traffic congestion around the site may occur. 

Serious casualties can occur (such as injuries caused by accidental gas-pipeline 

explosions). In this scenario, UU real-time 3D reconstruction can effectively solve the 

problem of the pipeline being destroyed and pipeline for construction machinery 
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(primarily excavators) to visualise construction guidance (Tanoli et al., 2019; Li et al., 

2018b). 

2.1.2.2.2 3D record generating 

In the construction stage of a UU project, the UU's specific buried location, including 

its size or material, may change owing to various environmental factors. In such 

situations, UU 3D reconstruction technology (mainly DT) can effectively aid the 

construction and owner units form three-dimensional and reliable UU construction-

information records. Laser scanning and photogrammetry satisfy this requirement in 

terms of accuracy and reconstruction speed. Compared with complex two-dimensional 

information recording, three-dimensional reconstruction helps managers quickly 

generate a clear and intuitive engineering record model, which can lay a good 

foundation for subsequent communication. Accurate electronic models and rich 

information (such as pipeline material, construction time, construction unit, and 

construction method attached to the 3D pipeline model) can effectively avoid the loss 

or defect in drawing information, which is conducive to the maintenance and 

management of UU throughout its life-cycle. 

2.1.2.3 Application after construction 

2.1.2.3.1 asset management (information exchange) 

For UU managers, the most onerous task after the construction of UU is to manage a 

large number of underground invisible assets. As mentioned previously, the application 

of 3D reconstruction technology, such as coordinating resources, information sharing, 

and efficient communication between economic construction personnel and utility 

owners, provides great convenience. Related faculty objects can be easily identified. 

2.1.2.3.2 Detection of pipe defects and settlement 

The UU 3D reconstruction process also identifies the utility exceptions. Over time, 

congestion of all types, settlement, or congestion of utilities undertaking all types of 

tasks appear. Owing to the invisibility of utilities, these problems are often difficult for 
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managers to detect. However, these problems can be extremely damaging. The leakage 

of sewage pipelines seriously damages the ecological environment of the surrounding 

area and significantly impacts the surrounding residents. Leaks in water supply pipes 

can cause water shortages for many urban residents. Settling pipes are one of the main 

causes of road collapses. Moreover, pipeline congestion causes a task to strike 

completely. Each item consumes a large amount of government or private funding. 

Through various non-destructive 3D reconstruction techniques, defects in these buried 

utilities can be recognised. 

2.1.3 Current challenges 

From the perspective of engineering practice, this section summarises the core 

challenges that are often encountered in the process of UU 3D reconstruction through 

literature review and induction. We hope that a summary of these core issues will 

promote research in this field. 

2.1.3.1 Accuracy 

The first and most important challenge is the accuracy of 3D reconstruction. This 

problem refers to the accuracy challenge of 3D reconstruction models under the 

requirements of non-destructive scenes. The accuracy of UU 3D reconstruction can be 

summarised in terms of depth and size. 

The depth of pipeline utilities is the most important information in the UU 3D 

reconstruction task. Unlike common 3D reconstruction tasks, the UU 3D 

reconstruction task cannot be easily explored because its location is below the surface, 

and the owner has clear and strict requirements on its spatial location. The spatial 

position of a pipeline is represented by its direction and depth. Information on pipeline 

direction is often easy to obtain. It only needs to determine the position of two points 

of the utilities (or more for curved utilities, such as cables) (Zhou et al., 2022; Jiang et 

al., 2019). However, accurate depth information is often obscured by the complex 

underground ambient noise (Zong et al., 2019; Hartshorn et al., 2022; Bach et al., 

2017). Therefore, pipeline depth is the most important part of the 3D reconstruction of 
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UUs. Whether using GPR or other technical methods, the determination of pipeline 

depth under trenchless conditions is unsatisfactory (Karsznia et al., 2021; Oliver et al., 

2020; Wu et al., 2019). According to various technologies and engineering reports, the 

judgement accuracy of pipeline depth is approximately 1/10 of the actual buried depth 

of the pipeline. 

Another challenge in UU 3D reconstruction accuracy is the pipeline size. The diameter 

information often plays a key role in engineering practice, especially in 3D 

reconstruction projects of old utilities (Hashemi et al., 2011; Rashed et al., 2015). For 

example, Naghshbandi et al. (2021) reported in his study in 2021 that pipeline size 

often indicates important information such as their purpose and working state (whether 

there is aperture deformation). However, in current studies of non-destructive methods, 

accurate information on utility size is often unavailable (Yan et al., 2019; Mat Junoh 

et al., 2022). 

2.1.3.2 Automation 

The second challenge, the most popular in this field, is the automation of three-

dimensional reconstruction of UUs. As can be seen from the summary of various 

techniques in Section 3, all non-destructive techniques need to be further processed to 

transform into the final three-dimensional models (Manataki et al., 2021; 

Chrysostomou et al., 2020; Cloete et al., 2020). However, only some automatic 

methods, such as laser scanning and photogrammetry, are suitable when pipelines are 

exposed during the construction or maintenance stages. Although the degree of 

automation in intermediate data processing for these non-destructive techniques varies, 

they all require many manual operations, even by experts with specialised knowledge. 

This greatly reduces the efficiency of the UU 3D reconstruction. Taking the most 

widely used and mature GPR method as an example, the translation of raw data output 

by GPR equipment mainly needs to go through: 1) Data conversion (i.e. raw data 

decoding, image conversion); 2) Data processing (i.e. noise filtering, frequency gain, 

etc.)3) Manual interpretation (i.e. judging a specific target situation using B-scan 

images) and other steps (Šarlah et al., 2020; Al-Nuaimy et al., 2000; Wang et al., 2020b; 
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Hou et al., 2021b), especially in the B-scan image interpretation stage, the staff require 

significant professional knowledge and years of engineering experience. In recent 

years, significant progress has been made in the field of automation (Feng et al., 2022; 

Jaufer et al., 2021; Son et al., 2021; Liu et al., 2023); however, achieving reliable 

automatic UU reconstruction without manual participation remains an open problem. 

2.1.3.3 Semantic enrichment 

The third main challenge is the semantic enrichment of the 3D model of the UU Project. 

In the process of 3D reconstruction of the underground, shareholders often want to 

know not only the geometric information of UUs, but also the semantic information of 

the entire system; that is, material, slopes, manufacturer, and ownership form the core 

information related to major economic benefits or safety indices that concern owners 

(Yan et al., 2021; Wang, 2021b; Lau et al., 2021). For example, Tanoli et al. (2019) 

reported that rich semantic information could significantly protect the personal safety 

of construction personnel (i.e., natural gas-pipeline systems) (Tanoli et al., 2019). Lau 

(2021) and De Coster et al. (2019) reported that pipeline leakage detection is feasible 

by three-dimensional pipeline reconstruction combined with other prior information. 

In addition, semantic information is an important part of the data in the maintenance 

management stage of UU during the entire life-cycle. Research on semantic 

information can significantly promote the intelligent process of UU engineering 

maintenance. 

2.1.4 Potential research directions 

2.1.4.1 Integration of artificial intelligence technologies and methods 

From the perspective of 3D reconstruction technology, replacing human labour in the 

complicated 3D reconstruction of UU with artificial intelligence is inevitable. In recent 

years, with the continuous maturation and development of artificial intelligence (AI) 

technology, the integration of an increasing number of AI and 3D reconstruction 

technologies has provided excellent solutions for the 3D reconstruction and 

management of UUs (Cheng et al., 2020; Lee et al., 2020; Bilal et al., 2018). Currently, 
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research in this field is in its infancy. Among NDT technologies, GPR is the most 

promising. It has the features of fast and convenient use, a wide range of applications 

(i.e., metal and non-metal pipelines can be used (Yan et al., 2019; Prego et al., 2017)), 

and the data are uniform and sufficiently rich for data-driven methods. Therefore, it is 

suitable for use in combination with AI algorithms. Among DT technologies, the most 

promising is the automated and low-cost 3D reconstruction mode realised based on 

laser scanning and photogrammetry combined with AI technology (Maalek et al., 2021; 

Lin et al., 2021; Ye et al., 2019). Owing to the large-scale and long cycle of UU 

engineering scenes, such projects are generally highly sensitive to cost (Yan et al., 

2021; Biersteker et al., 2021; Glass et al., 2019). Therefore, the 3D reconstruction of 

laser scanning and photogrammetry fusion at low cost may result in a huge 

development space. 

2.1.4.2 Underground world digital twin 

The underground placement of utility pipes and cables can be attributed to various 

factors, such as shielding against harm from surface activities, exposure to harsh 

weather, and structural reinforcement against differential movements. Despite these 

benefits, when it comes to conducting maintenance or establishing new service 

connections, the subterranean terrain poses a formidable challenge by impeding our 

ability to determine the location and nature of subsurface infrastructure. 

Therefore, from a management perspective, virtual revisualisations of UU projects 

should be built. Span lifecycles may become the best way to solve most UU project 

problems. Once informed with sufficient data, such as geometric and semantic 

information, the underground world digital twin (UWDT) can be used to run 

simulations, study performance issues, and generate possible improvements to 

generate valuable insights, which can then be applied back to the original physical 

projects. This idea has been reflected in research worldwide (Saeed et al., 2019; Huang 

et al., 2021; Rogage et al., 2022). However, more research is needed to integrate 

existing scattered data acquisition, data processing, project practice, and other research. 

Thereafter, a complete underground system and standard decision-making pattern are 
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formed. In summary, the formation of digital records during the initial stages of the 

UU project forms the basis for implementing all the UWDT visions. An accurate 

reconstruction of as-built UUs is the first step in the UWDT. 

2.2 GPR-based 3D reconstruction for UUs 

Ground Penetrating Radar (GPR) is a prevalent non-destructive technique utilized 

extensively in urban utility (UU) 3D reconstruction tasks. Despite its widespread 

application, achieving high precision in UU localisation using GPR B-scan images 

presents several challenges: 1) Interference factors: GPR operates based on the 

propagation characteristics of electromagnetic waves, which are susceptible to various 

environmental interferences. These include electromagnetic disruptions from nearby 

electrical installations, physical obstructions like tree roots, and inherent noise from 

the GPR device itself (Lei et al., 2019; Singh et al., 2013; Adouane et al., 2021). Such 

disturbances can obscure or distort the B-scan images, complicating the recognition 

and accurate localisation of UU targets. 2) Complexity of underground environments: 

unlike tasks such as reinforcement localisation within concrete structures, UUs are 

typically buried deeper and consist of diverse materials, adding layers of complexity 

to the GPR detection process (Wang et al., 2020; Liu et al., 2020; Ahmed et al., 2020). 

These factors can degrade the quality of B-scan images, making it difficult to discern 

and accurately map the utilities. 

The interpretation of B-scan images for precise UU localisation largely depends on the 

expertise and experience of domain experts. This requirement for specialist input 

highlights the subjectivity and variability in interpreting GPR data. Although 

numerous studies have aimed to enhance the automation of B-scan data analysis, two 

primary limitations persist: 1) Conventional methods' susceptibility to noise: 

traditional processing techniques for GPR data involve complex steps that are highly 

sensitive to environmental noise. This sensitivity often results in unstable precision, as 

the methods can yield varied outcomes depending on the ambient interference 

encountered during scans (Maas et al., 2013; Harkat et al., 2016; Sagnard et al., 2016). 

2) Segmented approach of deep-learning methods: modern deep-learning strategies 
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typically divide the task into two stages: detecting bounding boxes around potential 

UU locations and fitting hyperbolic curves to these detections. While this segmented 

approach allows for tackling each sub-problem effectively, it also leads to potential 

error accumulation. Each stage generates errors that propagate to the next, 

compounding inaccuracies and affecting the overall precision of UU localisation (Lei 

et al., 2019; Harkart et al., 2019; Hou et al., 2021a; Zong et al., 2019). 

These challenges underscore the need for developing more robust GPR analysis 

techniques that can mitigate the effects of environmental noise and provide a more 

holistic solution rather than relying on local optima obtained from subdivided 

problem-solving approaches. 

2.2.1 Conventional image-processing methods for GPR UU localisation 

In the early stages of GPR automated interpretation research, researchers primarily 

focused on using image-processing technologies to analyse image features to locate 

hyperbolas. The most used methods in these studies are the Hough transform (HT), 

template matching (TM), and edge detection, as listed in Table 2-2. 

Table 2-2 Conventional image-processing methods for GPR UU localisation 

Type Title Advantages Limitations 

Hough 

transform 

Advanced image‐

processing technique 

for real-time 

interpretation of 

ground‐penetrating 

radar images 

(Capineri, 1998) 

Automatic processing 

involves minimal 

operator intervention; 

real-time recognition 

provides position and 

size information 

simultaneously. 

Parameters must be 

manually set in 

advance; 

computing 

resources are 

required. 

Using pattern 

recognition to 

automatically localise 

The Viola–Jones 

algorithm is applied to 

reduce the 

Parameters must be 

manually set in 

advance; 
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Type Title Advantages Limitations 

reflection hyperbolas 

in data from GPR 

(Maas et al., 2013) 

computational resource 

requirement; it can be 

used in unprocessed 

radargrams. 

sensitiveness to 

background noise. 

GPR hyperbola 

detection using scale-

invariant feature 

transforms (Harkat et 

al., 2016) 

Improved robustness 

compared with the 

previous Hough 

transform (HT) 

algorithm; execution 

time is only 1/4 of the 

original HT algorithm. 

Parameters must be 

manually set in 

advance; 

vulnerability to 

colour images. 

GPR objects 

hyperbola region 

feature extraction 

(Rajiv et al., 2017) 

Real-time detection 

realised; favourable 

accuracy and 

robustness performance 

compared with 

previous template-

matching algorithms. 

Parameters must be 

manually set in 

advance. 

Template 

matching 

Two fast buried pipe 

detection schemes in 

GPR images (Gamba 

et al., 2003) 

High operating speed; 

detection of small 

targets is allowed; 

offline system training 

is allowed. 

Parameters must be 

manually set in 

advance; sensitive 

to background 

noise. 

An approach for 

predicting the shape 

and size of a buried 

basic object on 

Different shapes of 

actual buried object are 

tested. 

Parameters must be 

manually set in 

advance. 
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Type Title Advantages Limitations 

surface GPR system 

(Syambas et al., 2012) 

Template-matching 

based detection of 

hyperbolas in ground-

penetrating 

radargrams for buried 

utilities (Sagnard et 

al., 2016) 

High operating speed; 

algorithm robustness is 

strengthened via the 

benefit of diverse 

polarisations. 

Parameters must be 

manually set in 

advance; sensitive 

to background 

noise; no actual 

data are used for 

verification. 

Estimating 

geometrical 

parameters of 

cylindrical targets 

detected by GPR 

using template-

matching algorithm 

(Ahmadi et al., 2017) 

The algorithm 

robustness is 

strengthened via pre-

processing and post-

processing steps; 

automatic fitting of 

hyperbola is realised. 

Complex pre-

processing prior to 

system operation; 

parameters must be 

manually set in 

advance. 

Automatic 

localisation of gas 

pipes from GPR 

imagery (Terrasse et 

al., 2016) 

Automatic real-time 

detection; effect of 

image background is 

reduced by detecting 

the correlation between 

a hyperbola dictionary 

and B-scan. 

Parameters must be 

manually set in 

advance. 

Edge 

detection 

Automatic and fast 

detection of buried 

utilities positions and 

High operating speed; 

low detection error; 

pipe position and soil 

Noise filtering 

required; sensitive 

to non-removed 
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Type Title Advantages Limitations 

estimation of soil 

permittivity using 

GPR (Ardekani et al., 

2006) 

permittivity are 

obtained 

simultaneously. 

background clutters 

and high-frequency 

noise in horizontal 

dimension. 

A novel edge 

detection for buried 

target extraction after 

SVD-2D wavelet 

processing (Zheng et 

al., 2014) 

False detection results 

are reduced via cross-

correlation calculation 

of background and 

target signals; better 

robustness against 

noise. 

Parameters must be 

manually set in 

advance; pre-

processing 

required. 

Improving GPR 

imaging of the buried 

water utility 

infrastructure by 

integrating the multi-

dimensional non-

linear data 

decomposition 

technique into the 

edge detection (Chen 

et al., 2021) 

The signal-to-noise 

ratio before edge 

detecting is increased 

using the multi-

dimensional ensemble 

empirical mode 

decomposition 

algorithm. 

The complexity of 

the calculation 

process with 

considerable labour 

prevents wider 

application; 

processed image 

may not fully 

express the original 

information. 

On the introduction of 

the Canny operator in 

an advanced imaging 

algorithm for real-

time detection of 

The detection speed is 

increased by 

eliminating 

unnecessary edge 

pixels from Canny-

Apexes of target 

hyperbolas cloud 

may be removed 

accidentally, which 

may result in 
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Type Title Advantages Limitations 

hyperbolas in GPR 

data (Bugarinović et 

al., 2020) 

processed data; 

localisation robustness 

is improved by 

removing horizontal 

reflections from road 

and soil layers. 

localisation error; 

parameters must be 

manually set in 

advance. 

 

2.2.1.1 HT 

HT, which was first introduced by Duda and Hart (1972), is used for feature extraction 

in image analysis, computer vision, and digital image processing. In 1998, Capineri et 

al. (1988) first proposed a real-time method based on HT, which was used to detect 

straight lines and hyperbolas in B-scan images with errors of less than 7% and 2% in 

the pipe position and location, respectively. However, HT operations are time 

consuming and yield random results. The original HT algorithm for UU localisation 

has been improved over the years to address the time-consumption issue. In 2013, 

Maas et al. (2013) combined the Viola–Jones algorithm (Viola et al., 2004) with HT to 

significantly reduce the computation required for HT and enable its deployment on 

ordinary computers. In 2016, Harkat et al. (2016) proposed the application of a scale-

invariant feature transform-based HT to detect hyperbolas in GPR B-scan data. 

HT-based methods significantly reduce the calculation costs. However, these methods 

involve several manual steps and are difficult to apply to areas with significant noise 

interference, thus necessitating GPR pre-processing operations. 

2.2.1.2 TM 

TM is an image-processing technique that locates objects by matching image sections 

with templates. It requires only the discrimination of hyperbolas from the background 

instead of including all patterns (Ali et al., 2021). In 2003, Gamba et al. (2003) first 

implemented a TM approach for GPR data analysis, which allowed for rapid detection 

of GPR hyperbolas. A TM approach was used to locate and detect pipe signatures in 
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two perpendicular antenna polarisations (Sagnard & Tarel, 2016). The use of TM 

methods has expanded further (Syambas et al., 2012; Ahmadi et al., 2017; Terrasse et 

al., 2016). 

However, in TM methods, several parameters must be manually adjusted for different 

target features (Sagnard et al., 2016). Therefore, achieving fully automated localisation 

via the TM requires considerable effort. Additionally, TM-based methods cannot 

accommodate the B-scan pollution caused by complex underground environments 

(Sagnard et al., 2016; Rajiv et al., 2017). 

2.2.1.3 Edge detection 

In general, the edges of an image provide the most information. In this regard, edge 

extraction can remove a significant amount of interference information and improve 

data processing efficiency. In 2006, Ardekani (2006) proposed a new edge-detection 

method for separating useful data from GPR images where the apex coordinates were 

precisely located. However, the auto-detection results contained a few errors, owing to 

the non-removed background clutter and high-frequency noise in the horizontal 

dimension. In 2014, Zheng et al. (2014) introduced a cross-correlation calculation to 

improve noise filtering. In 2020 and 2021, Chen et al. (2021) and Bugarinović et al. 

(2020) introduced enhanced edge-detection methods for GPR interpretation by 

embedding a Canny edge detector and using a multi-dimensional non-linear data 

decomposition technique. 

However, the limitations of edge-detection methods are evident, including 

unsatisfactory processing of complex image data containing noise. Similar to other 

conventional methods, these methods require several parameters to be set in advance 

(Khan et al., 2021; Kaur et al., 2016). 

2.2.2 Deep-learning-based GPR methods for UU localisation 

In contrast to conventional methods, deep-learning-based methods directly learn high-

dimensional features via convolutional operations from B-scan images, instead of 

selecting specific features and parameters (Ali et al., 2021; Amaral et al., 2022). NNs 
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were first applied to GPR data interpretation in 1995 (Molyneaux et al., 1995). A deep-

learning method was developed for rebar size and depth detection by stacking three 

fully connected ANN layers using a back-propagation mechanism. In UUs localisation 

tasks, these deep-learning methods are primarily used to solve two problems: one is to 

detect the region (containing hyperbolic features) where the UUs are located in the 

GPR B-scan input image (Özkaya et al., 2021; De Coster et al., 2019; Kim et al., 2019b; 

Onyszko et al., 2021), and the other involves processing the hyperbola and obtaining 

its apex to specify the coordinates of the target (Lei et al., 2019; Harkat et al., 2018). 

Deep-learning-based methods for UU localisation can be classified into two categories, 

that is, one-stage and two-stage methods, owing to developments in deep-learning 

object detection (Table 2-3). 

2.2.2.1 Two-stage methods 

In the two-stage method, the regions of interest (region proposal) are first identified 

and then used for classification. The earliest two-stage detector was the R-CNN 

(Girshick et al., 2014). Subsequently, similar two-stage NNs have been introduced 

based on the R-CNN, including the R-CNN series (fast R-CNN and Faster R-CNN) 

and SPPNet (Girshick, 2015; Ren et al., 2017; He et al., 2015). Hou et al. (2021a) and 

Li et al. (2021) developed and tested their R-CNN-based model using actual GPR B-

scan images for automatic object signature detection and segmentation, respectively. 

Meanwhile, Lei et al. (2019), Pham et al. (2018), and Ko et al. (2019) applied the 

advanced fast R-CNN models. The accuracy of two-stage methods reported in existing 

studies is generally higher than 90%, and these methods can effectively locate pipeline 

targets in different scenarios. In addition to accuracy, previous studies have focused on 

reducing the computational resource requirements (Xiao et al., 2021; Jaufer et al., 2021) 

required for GPR interpretation to accommodate more complex construction scenarios. 

However, such methods are relatively time consuming for two reasons: 1) The 

generation of region proposals, for example, via selective search in an R-CNN and a 

fast R-CNN or a region proposal network in a Faster R-CNN. 2) Object classification 

operations for each region proposal. Therefore, time consumption has become the most 
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significant obstacle in the implementation of two-stage methods. To achieve accurate 

localisation, hyperbola fitting is required after the UUs region detection. 

2.2.2.2 One-stage methods 

In the one-stage method, the class probability and position coordinate values of an 

object are determined without an area proposal. This affords a higher detection speed 

because the final result can be obtained immediately after a single detection (Amaral 

et al., 2022). Typical algorithms include the YOLO series (Redmon et al., 2016; 

Redmon et al., 2018), SSD (Liu et al., 2016), and RetinaNet (Lin et al., 2017). In 2019, 

Zong (2019) applied YOLOv3 to real-time localisation in a B-scan dataset. The 

experimental results showed that the average one-stage UU detection accuracy and 

recall rates exceeded 85%. In other studies, one-stage methods have been improved by 

applying K-means to select anchor boxes (Li et al., 2020b) or adding a penalty term to 

minimise the normalised distance (Zhang et al., 2021). 

However, the accuracy of the one-stage method is lower than that of the two-stage 

method, even though the former is more advantageous in terms of the operating speed 

(Ali et al., 2021; Amaral et al., 2022). In addition, the accuracy of these methods may 

be further reduced in the presence of complex noise. 

Table 2-3 Deep-learning-based GPR methods for UU localisation 

Type Title Mode Advantages Limitations 

Two-

stage 

Deep-learning-

based subsurface 

target detection 

from GPR scans 

(Hou et al., 

2021a) 

box 

fitting 

The anchor scheme 

design of R-CNN 

model is improved to 

obtain a better 

‘candidate box’. 

Transfer learning is 

performed to solve 

the problem of 

The GPR dataset is 

extremely difficult to 

obtain, and the amount 

of data is insufficient. 

The features extracted 

by DL models are not 

intuitive; the validity 

depends on the quality 
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Type Title Mode Advantages Limitations 

insufficient GPR 

dataset. 

of the root dataset, and 

the interpretability of 

the model is 

unsatisfactory. 

 

Research on 

hyperbola 

detection and 

fitting in GPR B-

scan image 

(Xiao et al., 

2021) 

box 

fitting 

The calculation cost 

is reduced 

significantly via 

randomised HT. 

The error from mean-

position hyperbola 

fitting is not considered. 

 

GPR-R-CNN: an 

algorithm of 

subsurface 

defect detection 

for airport 

runway based on 

GPR (Li et al., 

2021) 

box 

only 

GPR B-scan two-

dimensional 

information and C-

scan three-

dimensional features 

are fused based on 

the R-CNN model to 

improve the 

robustness. 

Only hyperbola regions 

are detected; further 

hyperbola apex 

positioning to clarify 

pipeline location 

information is not 

mentioned. 

 

Deep-learning-

based automatic 

hyperbola 

detection on 

GPR data for 

buried utility 

pipes mapping 

Box 

only 

The proposed model 

significantly reduces 

the probability of 

false-positive 

detection by 

improving the Faster 

R-CNN model. 

Pre-processing 

required; only 

hyperbola regions are 

detected; further 

hyperbola apex 

positioning to clarify 

pipeline location is not 
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Type Title Mode Advantages Limitations 

(Jaufer et al., 

2021) 

mentioned. 

 

Automatic 

hyperbola 

detection and 

fitting in GPR B-

scan image (Lei 

et al., 2019) 

Box 

fitting 

A new double cluster 

search estimation 

algorithm is 

proposed to separate 

the target point 

clusters and realise 

hyperbolic feature 

recognition for apex 

localisation. 

Pre-processing 

required; error from 

mean-position 

hyperbola fitting is not 

considered. 

 

Performance 

analysis of 

detecting buried 

pipelines in GPR 

images using 

Faster R-CNN 

(Ko et al., 2019) 

Box 

fitting 

Few deep-learning 

models are 

compared with the 

Faster R-CNN 

model for pipeline 

localisation. 

Owing to insufficient 

actual data, the data 

generated by the 

gprMax simulation 

software is used for 

model training and 

validation. 

 

Buried object 

detection from 

B-scan GPR data 

using faster-R-

CNN (Pham et 

al., 2018) 

Box 

only 

The proposed Faster 

R-CNN-based deep-

learning model 

requires only a small 

amount of actual 

data for training and 

can achieve better 

localisation accuracy 

than classical 

Owing to insufficient 

actual data, the data 

generated by the 

gprMax simulation 

software are used for 

model training and 

validation. Only 

Hyperbola regions are 

detected; further 
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Type Title Mode Advantages Limitations 

machine-learning 

methods. 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 

One-

stage 

Radar 

assessment of 

structural 

concrete using 

neural networks 

(NNs) 

(Molyneaux et 

al., 1995) 

Box 

only 

This study is the first 

to propose the 

application of 

artificial NNs for 

GPR image 

interpretation. 

Only hyperbola regions 

are detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 

 

A deep-learning 

approach for 

urban 

underground 

objects detection 

from vehicle-

borne GPR data 

in real-time 

(Zong et al., 

2019) 

Box 

only 

The constructed 

dataset is composed 

of different types of 

targets, including 

cables and 

metal/non-metal 

pipes; the small 

target recognition 

problem is solved 

using the YOLOv3 

framework; the 

localisation speed is 

much higher than 

that of two-stage 

methods (16 fps). 

Only hyperbola regions 

are detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 
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Real-time 

pattern 

recognition of 

GPR images 

with YOLO V3 

implemented by 

TensorFlow (Li 

et al., 2020b) 

Box 

only 

The K-means 

algorithm is applied 

to select anchor 

boxes to improve the 

accuracy of 

positioning 

hyperbolic vertices; 

results from multiple 

experiments show 

that the proposed 

YOLOv3-based 

model offers 

significant 

positioning speed 

advantage (12 fps on 

a CPU). 

Complex anchor point 

selection mechanism 

and low localisation 

accuracy; only 

hyperbola regions are 

detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 

 

A GAN-based 

deep-learning 

framework for 

automatic 

subsurface 

object 

recognition from 

GPR data 

(Zhang et al., 

2021) 

Box 

only 

A deep-learning 

framework based on 

generative 

adversarial networks 

is proposed to solve 

the problem of 

insufficient GPR 

data; the average 

localisation accuracy 

is higher than that of 

other one-stage 

Only hyperbola regions 

are detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 
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methods. 

Others 

 

Residual CNN+ 

Bi-LSTM model 

to analyse GPR 

B-scan images 

(Özkaya et al., 

2021) 

Box 

only 

Bidirectional long 

short-term memory 

is proposed to 

achieve better metric 

performances than 

those afforded by 

transfer learning 

models. Results of 

multiple experiments 

show that the 

proposed model 

yields superior 

recognition accuracy 

(F1 score of 

97.42%). 

Only hyperbola regions 

are detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 

 

Towards an 

improvement of 

GPR-based 

detection of 

pipes and leaks 

in water 

distribution 

networks (De 

Coster et al., 

2019) 

Box 

only 

The proposed 

convolutional 

support vector 

machine (CSVM) 

network yields 

improved 

classification 

performance; the 

number of 

parameters in the 

Most of the 

experimental data are 

generated using the 

gprMax simulator 

software; only 

hyperbola regions are 

detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 
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proposed CSVM 

models is 

considerably lower 

than that in 

pretrained CNN 

model. 

not mentioned. 

 

Classifier design 

by a multi-

objective genetic 

algorithm 

approach for 

GPR 

automatic target 

detection 

(Harkat et al., 

2018) 

Box 

only 

A multi-objective 

genetic approach is 

used to design a 

radial basis function 

classifier that can 

achieve similar 

results but with 

much lower 

complexity. 

Pre-processing 

required; GPR 

hyperbolas cannot be 

identified from an 

entire radiogram; only 

hyperbola regions are 

detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 

 

A novel 3D GPR 

image 

arrangement for 

deep-learning-

based 

underground 

object 

classification 

(Kim et al., 

2019b) 

Box 

only 

The proposed model 

yields extremely low 

false-positive errors 

by combining B- and 

C-scan GPR images 

for model training; 

Several pre-processing 

steps must be 

conducted manually; 

only hyperbola regions 

are detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 
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A new 

methodology for 

the detection and 

extraction of 

hyperbolas in 

GPR Images 

(Onyszko et al., 

2021) 

Box 

only 

The proposed model 

demonstrates 

excellent robustness 

in noisy 

environments; the 

localisation recall 

rate is 100% in the 

experiments. 

Pre-processing 

required; several pre-

processing steps must 

be conducted manually; 

only hyperbola regions 

are detected; further 

hyperbola apex 

positioning to clarify 

the pipeline location is 

not mentioned. 

 

In the table above, ‘box only’ indicates that the proposed model can only detect the 

bounding box area of the UUs hyperbolas. Meanwhile, ‘box fitting’ indicates that the 

proposed model can locate the accurate coordinates of the UUs hyperbola apex after 

the bounding box is detected. 

2.2.2.3 Summary 

The advantages of deep-learning methods, such as high automation and versatility, are 

evident. However, current deep-learning methods have the following limitations. 

1) Box-fitting mode. The box-fitting mode was used in all the one- and two-stage 

methods to locate the hyperbola apexes, as shown in Figure 2-2. The location problem 

can be classified into two aspects: hyperbola region detection and hyperbola fitting 

(point location) (Ali et al., 2021; Zheng et al., 2014; Amaral et al., 2022). In some 

studies, the pre-processing of B-scan images had to be increased to remove noise. 

Consequently, the model could not adjust the parameters globally to obtain optimal 

weight results; thus, the localisation precision deteriorated. In these methods, the 

bounding box can only provide an approximation of the hyperbolic range in a B-scan 

image. In contrast, a hyperbola that represents the location of the UUs and the 

corresponding apex may exist in multiple potential hyperbolas within the bounding 
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box range. Different fitting processing methods yielded different hyperbolic results. 

The localisation error caused by the fitting has not been considered in previous studies. 

 

Figure 2-2 Overview of box-fitting mode 

2) Dilemmas in anchor-based methods. The anchor-based method is currently used in 

all relevant studies, regardless of whether a one- or two-stage method is used. However, 

only a few target hyperbolas are present in the B-scan images. Setting many anchor 

boxes generates numerous simple samples, which substantially imbalance the 

populations of positive and negative samples. The two-stage method improved the 

positive and negative sample screening mechanisms but resulted in a significantly 

reduced operating speed. 

3) Pre-processing. The B-scan image data obtained by GPR include all types of 

background noise, particularly in a complex fieldwork environment. Reducing noise 

interference through pre-processing increases the workload and renders it more 

difficult to realise a high degree of automation for UU localisation. 

2.3 Image-based 3D reconstruction for UUs 

Image-based 3D reconstruction is a pivotal technique in computer vision, widely 

utilized to capture the spatial attributes of objects from multiple images. This method 

supersedes traditional labor-intensive approaches, offering a cost-effective solution 

with broad applications in fields like construction monitoring, mining surveying, and 

medical diagnostics. Despite its extensive use, image-based 3D reconstruction faces 
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specific challenges when applied to underground utilities (UUs), particularly under 

varied lighting conditions. 

The process of image-based 3D reconstruction involves two critical stages: sparse and 

dense reconstructions. Initially, sparse reconstruction focuses on extracting and 

matching features across different images to establish a relationship between camera 

perspectives and the object. This foundation is crucial as it involves detailed 

algorithms for feature point analysis, and methods such as Structure from Motion 

(SFM) for camera parameter estimation. The accuracy of this stage is paramount in 

determining the overall success of the 3D reconstruction. Following the sparse 

reconstruction, the dense reconstruction phase uses the sparse point cloud data to 

compute dense 3D point clouds. Techniques such as Multi-view Stereo (MVS) and 

voxel-based reconstruction play significant roles here. However, the effectiveness of 

these methods heavily depends on the initial sparse data quality, which can be 

compromised under suboptimal conditions (Guidi et al., 2014; Lu et al., 2012). 

A major challenge for image-based UUs reconstruction is its sensitivity to lighting. 

Inadequate lighting conditions, such as those found in underground or nighttime 

environments, significantly hinder the ability to capture high-quality images. Poor 

lighting affects the detection and matching of features, leading to less reliable camera 

parameter estimation and, subsequently, inaccurate 3D models (Roncella et al., 2021; 

Pozo et al., 2019; Burdziakowski et al., 2021). The dependence on lighting is a 

substantial limitation, especially considering the critical nature of accurate UU 

mapping for maintenance and planning. 

To address the lighting issue, significant research has been directed towards enhancing 

image quality in low-light conditions using both conventional methods (like histogram 

adjustments and white balance techniques) and advanced deep learning approaches. 

Despite these efforts, achieving consistent quality in image enhancement remains a 

challenge due to the subjective nature of manual adjustments and the dependence on 

empirical parameters, which can vary significantly between users and environments. 
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2.3.1 Image-based 3D reconstruction 

Image-based 3D reconstruction is a popular topic in the field of computer vision (CV). 

It automatically captures the intuitive spatial information of objects from images, thus 

replacing the traditional modelling methods that are intrinsically labour intensive and 

low cost. For decades, image-based 3D reconstruction has been widely used in various 

fields, such as construction progress monitoring (Xue et al., 2021; Kropp et al., 2018), 

mining surveying and mapping (Ren et al., 2019), and medical diagnosis (Widya et al., 

2021). This section reviews research on 3D reconstruction based on RGB images. 

RGB-D-type and single-image inputs were excluded because they cannot be applied 

to large-scale scenarios (Zollhöfer et al., 2018; Azinovic et al., 2021). Image-based 3D 

reconstruction restores the surface model of an object from multi-view images 

captured from various angles. This process includes two main steps: sparse and dense 

reconstruction, as shown in Figure 2-3. 

 

Figure 2-3 General pipeline of the image-based 3D reconstruction 

2.3.1.1 Sparse reconstruction 

Sparse reconstruction is the upstream core foundation of the image-based 3D 
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reconstruction task, which aims to determine the relationship between the shooting 

perspective of multiple-input RGB images and the target object. The three basic steps 

of sparse reconstruction are feature extraction, matching, and camera parameter 

estimation. 

Extracting and matching (matching of the same point on an object from different 

angles) feature points (spots, corners, etc.) is the core basis for determining the 

performance of a 3D reconstruction. In 1999, Lowe (1999) proposed the renowned 

scale-invariant feature transform (SIFT) algorithm, which uses Euclidean distance to 

calculate the matching degree between feature points and subsequently improved it in 

2004 (Lowe, 2004). In 2006, Bay (2006) and Rosten (2006) proposed speeded up 

robust features (SURF) and features from accelerated segment test (FAST) algorithms, 

which have less computation and robustness than SIFT. Subsequently, Rublee (2011) 

proposed a new ORB algorithm with rotation invariance based on BRIEF in 2010 

(Calonder et al., 2010). 

The camera parameter estimation process determines the position and orientation of 

the camera relative to the object using the correspondence between the pixel features 

of the 2D image and the target object. Structure from motion (SFM) (Hartley et al., 

2003) is the most widely used methodology for estimating camera parameters using 

camera motion trajectories. The SFM was further developed into two main 

reconstruction modelling techniques: incremental reconstruction and global 

reconstruction (Jiang et al., 2020; Zhu et al., 2018). Incremental reconstruction 

involves triangulation and point-n-points (PnP), while applying partial bundle 

adjustment (BA) (Azzam et al., 2020; Jiang et al., 2020). In contrast, global 

reconstruction can obtain all camera poses and scene structures simultaneously and 

only requires BA once, but it is less robust (Schonberger et al., 2016). 

2.3.1.2 Dense reconstruction 

Dense reconstruction, as a downstream task in the process of 3D reconstruction, refers 

to the gradual calculation of dense 3D point clouds on the surface of scene objects 

based on the sparse point-cloud information obtained from sparse reconstruction (Ma 
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et al., 2018). Multi-view stereo (MVS) (Furukawa et al., 2015) is the core method for 

cross-image pixel matching in dense reconstruction and includes voxel-based dense 

reconstruction (Eigen et al., 2014; Choy et al., 2016), feature point growing (Lhuillier 

& Lin, 2005; Wu et al., 2010; Furukawa et al., 2010), and depth map fusion (Weder et 

al., 2020; Riegler et al., 2017). 

2.3.2 3D reconstruction from low-light images 

As mentioned above, sensitivity to lighting conditions is the main issue that image-

based approaches for as-built UU records must address (Burdziakowski et al., 2021). 

Exposure is one of the most important factors for determining the quality of a photo. 

For example, in overexposed or underexposed areas, image details can be lost and 

colour-diluted. The core task of this study is to develop a low-light UU record model. 

Therefore, this section reviews the existing research on image enhancement for 3D 

reconstruction tasks in low-light environments. 

2.3.2.1 Conventional methods 

Conventional methods are still dominant in the relevant research to optimise the 3D 

reconstruction performance in a low-light environment, such as colour balance 

(Pascale, 2006; Ancuti et al., 2018), histogram distribution (Coltuc et al., 2006; 

Ibrahim et al., 2007), RGB to grey (Lu et al., 2012; Grundland et al., 2007), white 

balance (Grundland et al., 2007; Liu et al., 1995; Weng et al., 2005), and image content 

enhancement algorithms (MacDonald et al., 2014; Vedaldi et al., 2010). In 2013, 

Sohaib et al. (2013) developed an image-based system to extract useful 3D 

reconstruction information from images captured in various environments. In 2014, 

Guidi et al. (2014) and Ballabeni et al. (2015) utilised digital pre-processing and colour 

enhancement of high-dynamic range (HDR) imaging to improve automatic 3D 

reconstruction based on SFM and image matching. Santise et al. (2018) proposed a 

stereo photogrammetry system based on the time of exposure and degree of aperture 

of the shutter for low-light and night-time image analysis. The reconstruction of the 

rock mass surface in a low-light environment was realised. Alasal et al. (2018) and 

Aldeeb et al. (2018) used image enhancement technology, respectively, to increase 
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image contrast to improve the quality of 3D model construction. Kanellakis et al. (2019) 

developed an algorithm based on contrast-limited adaptive histogram equalisation 

(CLAHE), which achieves 3D image reconstruction in low-light environment by 

suppressing noise while enhancing image contrast. Yeh et al. (2021) proposed a robust 

system based on HDR technology to achieve object reconstruction in a low-light 

environment; however, this method requires RGB-D equipment. 

All these studies would aid in obtaining better image-based 3D reconstruction 

performance. However, a common problem is that empirical input parameters are 

required for the modelling process, leading to the reconstruction performance being 

subject to the users’ experience. For example, explicit and accurate thresholds must be 

assigned to parameters such as the brightness, contrast, histogram distribution, and 

white balance for processing. 

2.3.2.2 Deep-learning methods 

Image enhancement methods based on deep learning are constantly emerging 

algorithms (for example, Retinex-Net and LLNet) (Lu et al., 2012; Lore et al., 2017). 

However, studies of image enhancement for 3D reconstruction in low-light 

environments are limited. Tang et al. (2019) proposed a stereo matching reconstruction 

network based on the Pyramid Stereo Matching Network (PSMNet) and a 

reconstruction module for determining the characteristics of low-light level images. 

To mitigate serious and complex noise in low-light images, an image reconstruction 

module was added to the traditional stereo matching network for automatic denoising. 

Other methods have only been studied from the perspective of low-light image quality 

improvement without considering the content of 3D object reconstruction (Sobbahi et 

al., 2022). In 2018, LightenNet (Li et al., 2018a) was proposed for learning an image 

for illumination map translation using a conventional CNN. Subsequently, models 

(LowLightGAN (Kim et al., 2019a) and EnlightenGAN (Jiang et al., 2021)) based on 

generative adversarial networks (GANs) were introduced using synthetic DIV2K 

datasets (Agustsson et al., 2017). More recently, advanced zero-reference models 

(zero-DCE (Guo et al., 2020a), SCI (Ma et al., 2022), and (Zhang et al., 2020b)) have 
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been proposed to overcome the problem of matching the data for training. 

The image enhancement method based on a deep-learning cloud avoids the manual 

parameter setting and selection process of the most appropriate conventional method, 

subject to various site conditions. However, it converts the low-light enhancement 

problem into the problem of finding the optimal mapping between the input images 

and target reference images, regardless of the site conditions. To solve this problem, 

paired or unpaired template ground-truth images (reference images) are required for 

model training supervision. In other words, the optimised target images (reference 

images) should be clarified in advance. Although this technique is much more 

convenient than conventional methods, it still fails to avoid the subjective impact of 

the ‘template ground-truth images’ leading to the limitations in the model learning. 

This is challenging to achieve because the collection of reference images is difficult. 

2.3.2.3 Summary 

Conventional methods introduce numerous human factors, making the 3D 

reconstruction process time consuming and highly subjective. Deep-learning methods 

can effectively avoid subjectivity in the 3D reconstruction process and realise real-

time operation. However, applicable reference images are still inevitable for the model 

training of the supervision mechanism. The subjective parameters or rarely appropriate 

reference image settings of the above methods restrict the optimisation potential of 

low-light images, thereby disabling the deep-learning model for autonomous learning 

and adjustment. As a result, establishing an unrestricted deep-learning model with 

loose assumptions on reference images is essential to that no paired or unpaired data 

reference images as the ‘ground truth’ are needed in the training process. 

2.3.3 Image-based UU 3D reconstruction 

UUs are usually not exposed, but when depth, material, size, and other information are 

speculated through non-destructive techniques, such as GPR (Özkaya et al., 2021; De 

Coster et al., 2019), the best opportunity for UU documentation has been missed 

(Bureau of Transportation Statistics, 2016; Van et al., 2019; Wang et al., 2022b; Yan et 
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al., 2019). In the exposed stage (construction or maintenance), the image-based 3D 

reconstruction method showed remarkable advantages, such as fast speed, low cost, 

high precision, and no training required. 

Image-based UU 3D reconstruction has demonstrated an infinite potential under 

normal lighting conditions. In an earlier study, Hu (2005) developed a 3D 

reconstruction system for UUs using photogrammetric methods and validated its 

effectiveness and cost advantage. Tulloch et al. (2006) proposed a mobile 

photogrammetric mapping system to map exposed utilities on construction sites in 

2006. The system comprised a global positioning system (GPS), tablet computer, and 

high-quality camera (Nikon Coolpix 8800). Although the system had a slightly lower 

accuracy (absolute horizontal accuracy of 0.33 m), it still showed promising 

reconstruction cost advantages and ease of use. In 2021, smartphone-based 

photogrammetry was used for as-built 3D documentation during the open excavation 

replacement of water pipes in Denmark (Hansen et al., 2021a; Hansen et al., 2021b). 

In the most recent 2022 study, Yuen et al. (2022) proposed a low-cost 3D 

reconstruction system based on a digital camera and applied it to an actual engineering 

site. The efficiency and accuracy of the reconstruction have been widely recognised. 

Although existing studies have recognised the limitations of illumination conditions in 

image-based UU 3D reconstruction, an effective solution has yet to be proposed. Hu 

(2005) and Tulloch et al. (2006) point out that the light condition of acquired image 

datasets is crucial to the reconstruction tasks. The blur image/video collected from real 

sites can lead to a sharp decline in the effect of the point-cloud reconstruction, which 

has been experimentally validated (Hansen et al., 2021a; Hansen et al., 2021b). 

Different camera image capture protocols using consumer-grade smartphones were 

examined by Yuen et al. (2022), but they needed to provide a reasonable plan to 

improve the quality of these inputs. 

2.4 Topology completion for as-built UUs 

In the management of underground utilities (UUs), the accurate completion of missing 

topology information remains a challenging task. Despite the critical need for efficient 
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solutions, current methods often fall short. Traditional techniques such as Ground 

Penetrating Radar (GPR) (Birkenfeld, 2010; Skartados et al., 2019), PipeProbe 

PipeProbe (Lai et al., 2010), and manual manhole inspections (Alejo et al., 2019), 

though widely used, are labor-intensive and costly. These methods, while precise, do 

not offer a scalable or cost-effective solution for widespread data collection. 

To combat these issues, recent studies have shifted focus toward transforming the 

completion of general UU attributes—such as diameter, material, and water levels—

into an imputation problem (Davey et al., 2009; Little et al., 2019; Von et al., 2004; 

Graham et al., 2012; Templ et al., 2011). Techniques including traditional single and 

linear regression-based imputation, as well as more sophisticated multiple imputation 

methods (e.g., AMELIA and IMPSEQ), along with machine learning strategies like 

Principal Component Analysis (PCA) (Gangopadhyay et al., 2005), K-Nearest 

Neighbour (KNN) (Woldesellasse et al., 2021), decision trees (Barros et al., 2012), and 

neural networks (Bishop, 1995) have been explored for their potential to accurately 

predict missing values. However, these imputation and machine learning methods are 

currently inadequate for predicting the complex topological relationships essential for 

comprehensive UU management. 

This section aims to explore the existing gaps in these methodologies and discuss 

potential advancements that could enhance the accuracy and reduce the costs 

associated with topology completion in UU systems. By addressing these 

inefficiencies, we can better equip engineers and managers with the tools needed for 

effective UU lifecycle management. 

2.4.1 Topology completion for UUs 

Topology completion for UUs is important for full life-cycle management. However, 

missing data are common in UU scenarios. To solve this problem, the existing data-

completion methods can be divided into traditional, imputation, machine-learning, and 

graph-based methods. 

2.4.1.1 Traditional methods 
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The first reaction of most managers is to obtain relevant information and collect 

relevant data. Finding data backups or mutually corroborating data records from other 

relevant materials can partially solve the missing data problem to a certain extent. The 

use of GPR (Birkenfeld et al., 2010; Skartados et al., 2019; Zeng et al., 1997) or manual 

surveys (Lai et al., 2010; Alejo et al., 2019) is a common method for data completion. 

However, these methods can only be used in a very small target area, and their 

implementation costs increase rapidly as the volume of UU data that must be 

completed increases. In addition, large-scale pipeline network investigations are 

limited by factors, such as time and equipment.  

2.4.1.2 Imputation 

Unlike traditional methods, imputation completes the task of missing data through 

reasonable differences from a data-analysis perspective. Kabir et al. (2020) conducted 

a study on the efficacy of various imputation methods for completing the water 

network database. This study evaluated three single imputation methods, namely, 

mean imputation (Davey et al., 2009), median imputation (Little et al., 2019), and 

linear regression-based imputation (Von et al., 2004; Graham et al., 2012), as well as 

three multiple imputation methods: iterative robust model-based imputation (IRMI) 

(Templ et al., 2011), multiple imputations of incomplete multivariate data (AMELIA) 

(Honaker et al., 2011), and sequential imputation for missing values (IMPSEQ) 

(Verboven et al., 2007). The findings suggest that the IMPSEQ method demonstrated 

superior performance in terms of completing the missing values in the water network 

with biases of only −0.900, 2.100, 0.800, and −0.400 for the pipe age, diameter, 

number of valves, and number of service connections, respectively. In recent years, the 

imputation method has been used in pipeline damage prediction (Xu et al., 2021), 

water quality detection (Srebotnjak et al., 2012), and demand forecasting (Zanfei et al., 

2022). 

2.4.1.3 Machine-learning methods 

Machine-learning methods predict missing values by learning the intrinsic structure 

and patterns of data. In 2017, a Gaussian process regression method (Samuelsson et 
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al., 2017) was applied to a wastewater treatment plant (WWTP) monitoring application 

scenario, and missing data in the flow-rate signal were accurately estimated. PCA was 

used to predict the dynamic variation in the potentiometric head in Bangkok 

(Gangopadhyay et al., 2005). Woldesellasse (Woldesellasse & Tesfamariam, 2021) 

carried out neural network construction based on algorithms such as 𝐾-Nearest 

Neighbour (KNN), AMELIA, and IMPSEQ (Batista & Monard, 2002; Honaker et al., 

2011; Verboven et al., 2007) in his research to deal with incomplete and missing data 

in the corrosion pit measurement database. Osman et al. (2018) conducted a 

comparative study on traditional interpolation methods and various machine-learning 

methods and sorted out the advantages and disadvantages of various methods in the 

missing data-completion scenario of Water distribution systems (WDSs). 

2.4.1.4 Graph-based methods 

Graph-based methods have achieved widespread success in different areas of missing 

data handling, such as transportation, smart power grids, and gene expression (Chan 

et al., 2023; Kuppannagari et al., 2021; Xiang et al., 2021). Because UU networks have 

significant topological connections, graph-based methods have received increasing 

attention in recent years. Belghaddar et al. (2021) conducted a study on a range of 

prevalent machine-learning techniques, including Support Vector Machine (SVM) 

(Belghaddar et al., 2021), decision trees (Cortes et al., 1995), feedforward artificial 

NNs (ANNs) (Safavian & Landgrebe, 1991), and Multilayer Perceptron (MLP) 

(Rumelhart et al., 1986), as well as graph-based models, such as GCN (Kipf & Welling, 

2017), ChebNet (Defferrard et al., 2016), GraphSAGE (Hamilton et al., 2017), and 

TAGCN (Du et al., 2017). The results showed that graph-based models have 

significant data-completion advantages, particularly with less available data. 

Additionally, Joakim et al. (2022) proposed a novel decoder-focused multitask 

classification architecture termed the cross-task graph neural network (CT-GNN), 

which can be used for sewer defects and attribute (water level, pipe material, and pipe 

shape) classification. 

However, these methods were only applied to complete the common attributes of 
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missing data, such as the material, diameter, and age of the pipe. However, the 

completion of the topological UU relationship must be explored. Topological 

relationships, as important information for UU management, are more difficult to 

obtain than general attribute characteristic data, such as diameter, depth, and material, 

because of their complexity. If topological data are missing, finding them is often 

costly. To the best of our knowledge, there is a need for research on the completion of 

missing topology data for an underground pipe network. However, this is a challenging 

task. 

2.4.2 Graph convolution networks 

GCNs are generalisations of classical CNNs (LeCun et al., 1998) used to handle graph 

data. As proposed by Kipf and Welling (2017), this is an effective graph model for 

semi-supervised learning. Unlike traditional convolutional neural networks (CNNs), 

GCNs operate directly on graph-structured data, enabling them to capture the 

relationships between nodes and neighbours. GCNs stack layers of learned first-order 

spectral filters followed by a non-linear activation function to learn graph 

representations (Wu et al., 2020). In recent years, GCN and its variants have been 

applied in various applications and multiple tasks. 

With the foundation of GCN, many researchers have begun to study its improvements 

and variants. Hamilton et al. (2017) proposed GraphSAGE (SAGEGCN), a general 

inductive framework that leverages node feature information to generate node 

embeddings for previously unseen data efficiently. To a certain extent, SAGEGCN can 

be seen as a special case of GCN, because the aggregation method in SAGEGCN can 

be seen as a form of GCN. The key idea is to aggregate the feature information from a 

node’s local neighbourhood. However, it only considers the information of first-order 

neighbour nodes and ignores the keyness of higher-order neighbour nodes. A graph 

attention network (GATGCN) is a graph neural network model based on the attention 

mechanism first proposed by Veličković et al. (2018). The GATGCN is a variant of the 

GCN that is more flexible and interpretable for node feature aggregation and 

interaction than the GCN, especially when dealing with complex graph structures. The 
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core idea of the GATGCN model is to apply the attention mechanism to calculate the 

weights between each node and its neighbours to better use the neighbours’ 

information. In the convolution layers, the GATGCN model employs a multi-head 

attention mechanism to calculate the weights between the nodes. By learning the 

weights between each node and its neighbours, it can better integrate the neighbours’ 

information. Simultaneously, the GATGCN model uses residual links to prevent 

information loss. However, it faces issues of high computational complexity and poor 

interpretability. 

In the same year, Du et al. (2017) proposed TAGGCN, which is a GCN defined in the 

vertex domain. TAGGCN not only inherits the properties of convolutions in CNN for 

grid-structured data, but is also consistent with convolution, as defined in graph signal 

processing. It exhibits better performance than existing spectral CNNs on many 

datasets and is computationally simpler than other recent methods. The TAGGCN 

increases the flexibility and robustness of the model through adaptive convolutional 

kernels and adaptive layer selection mechanisms, thereby addressing the challenges of 

complex graph structures and practical problems. Chen et al. (2018) proposed 

FastGCN, which accelerates the convolution operation using sampling technology and 

introduces block technology to improve the training speed. ChebNet (ChebGCN) 

(Defferrard et al., 2017) is a GCN based on spectral graph theory, which was proposed 

in 2019. ChebGCN is based on GCN and uses Shebyshev polynomials instead of an 

adjacency matrix for the convolution operation, thus improving the calculation 

efficiency and network depth and enhancing the generalisation of the model. The basic 

idea of ChebGCN is to represent a graph as an eigen decomposition of its Laplacian 

matrix and utilise Chebyshev polynomials to approximate the Laplacian matrix. 

However, one drawback of ChebGCN is its weak ability to process high-frequency 

information in graphic signals, which may be limited by the sampling rate of the 

waveform signals. 

2.4.3 Summary 

The review of existing data completion methods for UUs highlights a critical need for 
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specialized approaches that can address the unique challenges of predicting topology 

reconstruction issues within these complex systems. Traditional, imputation, machine-

learning, and graph-based methods provide a solid foundation of techniques that have 

enhanced our understanding and capability in managing data incompleteness. 

However, these methods primarily focus on attribute data completion, such as material, 

diameter, and age of pipes, without a specific emphasis on the connectivity and 

topological relationships essential for comprehensive UU network management. 

From the literature, it is evident that machine-learning and graph-based methods, 

particularly those involving Graph Convolutional Networks (GCNs) and their variants 

offer promising frameworks for addressing non-trivial problems in structured data 

environments. These methods effectively utilize the relational information between 

data points, which is crucial for understanding the connectivity in UU networks. 

Despite these advances, there remains a substantial gap in applying these methods 

specifically for predicting and managing the UU topology reconstruction issues. 

Connectivity in UU networks entail more than just identifying physical links—it also 

involves comprehending the operational dependencies and resilience of the network 

against failures or disruptions. The current research lacks focused studies on how these 

advanced data completion techniques can be precisely tailored to predict and address 

connectivity failures in UU networks. Traditional methods, such as using GPR and 

manual inspections, while accurate, are labor-intensive and costly. On the other hand, 

conventional imputation methods are ill-suited for predicting the complex topological 

relationships critical for effective UU management. This gap highlights the need for 

developing accurate, low-cost, and efficient strategies tailored to address these 

topological challenges in UU networks. 

2.5 Chapter Summary 

This chapter reviews the current advancements and ongoing challenges in the 3D 

reconstruction of underground utilities, a field increasingly vital as urban 

infrastructures become more complex and densely packed. The exploration of the 

various methodologies, from non-destructive techniques like Ground Penetrating 
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Radar (GPR) to image-based reconstructions and topological data completion, reveals 

a landscape of innovation aimed at enhancing the accuracy and efficiency of 

subsurface utility mapping. 

Despite these efforts, the chapter identifies critical limitations in current research that 

hinder the practical application of 3D reconstruction technologies: 1) Inadequacies in 

gpr-based localization: GPR, though popular, faces significant challenges in accurately 

localizing UUs due to its susceptibility to environmental interferences and the inherent 

complexity of subsurface environments. The subjective nature of interpreting GPR B-

scan images, which heavily relies on expert knowledge, adds another layer of 

complexity. While deep-learning methods have been explored to automate data 

interpretation, they often break down the problem into sub-tasks (e.g., box detection 

and hyperbola fitting) that only achieve local optimality without ensuring the best 

overall solution. 2) Image-based reconstruction under low-light conditions: Image-

based 3D reconstruction techniques, while cost-effective compared to laser scanning, 

struggle in low-light conditions common in underground settings. Current image 

enhancement algorithms require manual tuning and are heavily influenced by operator 

experience, which can lead to inconsistent results. Despite advancements in deep 

learning for image enhancement, the lack of suitable training data (paired low-light 

and ideal reference images) and the reliance on subjective reference standards severely 

limit the reliability of reconstructed outputs. 3) Topology Completion for UUs: 

Efficiently completing missing topology data for UUs remains a significant challenge. 

Traditional methods like manual manhole inspections, though accurate, are labor-

intensive and costly. Machine learning and imputation strategies, successful in 

predicting some data attributes, fall short in accurately mapping complex topological 

relationships essential for comprehensive UU management. 

In conclusion, this chapter not only comprehensively explains the decisive methods 

for UU 3D reconstruction at various stages of existing research but also identifies 

current unresolved issues. The subsequent chapters will each focus on these research 

issues, aiming to resolve the precision problems in GPR-based UU reconstruction, the 
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challenges of 3D reconstruction under low-light conditions during the exposure phase 

of UUs, and the reconstruction of underground pipeline network topology under 

conditions of missing records. 
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Chapter 3 : Research methodology 

This chapter outlines the research methodology, which comprises four distinct sections, 

corresponding to the four objectives outlined in Section 1.3. Section 3.1 provides an 

overview of the research philosophy, while Section 3.2 illustrates the research design 

and alignment between research methods and objectives. The methods employed to 

accomplish Objectives 1 to 4 are presented in Sections 3.3 to 3.6, respectively. Finally, 

Section 3.7 provides a concise summary of this chapter. 

3.1 Research paradigm 

This research aims to improve the life-cycle management efficiency of as-built UUs 

by enhancing the 3D reconstruction performance. The positivist research paradigm 

was applied in this study. 

Positivism is a philosophical approach that emphasises the use of scientific methods 

and empirical data to understand natural and social worlds. Positivists believe that 

knowledge can only be obtained through observation and measurement and that 

scientific enquiry is the best way to achieve this. This study uses scientific methods 

and empirical data to understand the natural and social worlds. Therefore, in this 

research, the positivist research paradigm, which insists on realism, objectivism, 

deductive, and quantitative research methods, will be applied as ontology, 

epistemology, and methodology, respectively. 

(1) Ontology 

Ontology is a philosophical discipline concerned with the fundamental nature of 

existence, the interrelationships among entities, and their essential attributes. 

Ontologies can be classified into two contrasting types, realism, and relativism. 

Realists contend that a single reality can be objectively measured and discovered by 

various observers and researchers. Conversely, relativists assert that the 'truth' is 

subjective and dependent on the observer. Therefore, multiple realities can be 

constructed based on individual perspectives and experiences, each of which is valid 

for the respective observer or researcher (Killam, 2013). In this research, the objects 
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of study are physical entities and their phenomena in the natural sciences. Therefore, 

only one realism of the ultimate truth was selected as the ontology for this study. 

(2) Epistemology 

Epistemology is a philosophical discipline dedicated to investigating the fundamental 

nature of knowledge and its acquisition, justification, and connection to truth. It delves 

into a range of issues, such as the distinction between knowledge, beliefs, and opinions; 

methods of determining truth; the influence of perception, reason, and experience on 

knowledge acquisition; and assessment of the reliability and validity of knowledge 

claims. The primary objective of epistemology is to understand the sources, limitations, 

and essence of human knowledge comprehensively. According to Wilson (2001), 

researchers can hold divergent epistemological positions, namely, objectivism and 

subjectivism, which are typically informed by their underlying ontological 

perspectives. A researcher who adheres to realism typically employs objective 

techniques to observe phenomena and uncover the singular, objective truth that exists 

independently of the researcher. Realism ontology is the basis of this research, so 

objectivist epistemology will be applied as the starting point of the research. 

(3) Methodology 

Methodology denotes a systematic and structured approach to problem solving that 

emphasises how research is conducted. Research methodologies, including deductive 

and inductive approaches, and quantitative and qualitative methods, are determined by 

a researcher's adherence to either objectivism or subjectivism (Aliyu et al., 2015). 

Deductive research starts with a general principle or hypothesis, and then draws 

specific conclusions based on that principle. However, inductive reasoning starts with 

specific observations or data, and then uses that information to make broader 

generalisations or theories. This research began with a theory or hypothesis, and 

experiments were conducted to test this theory. Therefore, deductive research is 

applied to the problem solving conducted in this research. 

Quantitative research is an empirical research methodology aimed at quantifying and 

measuring data through statistical analysis. It involves collecting numerical data that 

can be analysed using mathematical or statistical techniques to describe and explain 
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phenomena through numerical patterns and relationships. In contrast, qualitative 

research is an exploratory approach that seeks to understand social phenomena by 

gathering data through observation, interviews, and other non-numerical methods. The 

main objective of qualitative research is to gain an in-depth understanding of a 

phenomenon and to explore its complexity, nuances, and underlying meanings. In this 

study, quantitative methods and experiments were applied to the analysis and 

explained the observed phenomena. 

(4) Axiology 

Axiology is a philosophy that studies how people determine the value of different 

things. Those who work in this field examine the nature and different types of value, 

including ethical, moral, religious, and aesthetic values. Axiologists study how people 

compare and value things, and the impact of those values on reality. In this study, the 

core value consideration is a practical promotion value for UU project management. 

3.2 Overview of the proposed method 

An overview of the adopted research methods is shown in Figure 3-1. Each approach 

can be used to achieve at least one objective. As shown in Figure 3-1, this study 

includes four parts: a literature review (Objective 1) and the development of three 

specific models (Objectives 2, 3, and 4). The development of three key models is used 

to solve the limitations of UU 3D reconstruction in the non-destructive and exposed 

stages and the problem of topological relationship reconstruction after obtaining the 

surface reconstruction model. The outputs of Objectives 2 and 3 are part of the inputs 

of Objective 4. The flow of the research design was structured around four main 

objectives, each contributing to the overarching goal of advancing the field of UU 

reconstruction. 

Objective 1: Literature Review 

The research begins with a thorough examination of existing knowledge and identifies 

gaps in the current research related to UUs. The literature review encompasses diverse 

sources including academic journals, books, published standards, electronic databases, 

and government websites. Critical issues such as limited research attention, inefficient 

localisation precision in GPR interpretation, challenges in low-light image-based 
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reconstruction, and inaccuracies in UU topology completion were identified. 

Objective 2: GPR Localisation 

Building on the insights gained from the literature review, the second objective was to 

enhance the precision of localising UUs using GPR. The process involves data 

collection by gathering raw GPR B-scan data, followed by data processing using the 

RADAN 7 software and Gaussian processing. A localisation model was developed to 

improve the anti-interference capabilities and accurately predict the UU coordinates. 

The performance of the model was rigorously validated in terms of its precision, speed, 

and robustness. 

Objective 3: Low-Light Enhancement 

To address the challenges posed by low-light conditions, the third objective was to 

enhance the images of UUs. The method involves image collection under varied 

illumination, the development of an enhancement mechanism to improve low-light 

image quality, and integration into 3D reconstruction using COLMAP. The outcome is 

an improved 3D reconstruction model for UUs under low-light conditions, validated 

through experiments that focus on the reconstruction amount, accuracy, and efficiency 

of the proposed loss-function ablations. 

Objective 4: Topology Completion 

The fourth objective is to complete the topology of an incomplete UU database. This 

involves the utilisation of a graph-based convolutional network model to enrich the 

feature dimensions and classify the node topology. The model was employed to 

achieve a complete topology of the UU database, and controlled experiments were 

conducted to validate the accuracy of topology completion. 

Throughout the research, advanced methods were employed, including GPR-based 

localisation, image enhancement techniques for low-light conditions, and GCNs for 

topology completion. Collectively, these methods contribute to the development of a 

comprehensive 3D reconstruction model for UUs. 

The culmination of this study was the development of a comprehensive UU 3D 

reconstruction model. This model is expected to provide high spatial accuracy and 

complete topology information for UUs, addressing the challenges identified in the 
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literature review. The final output aims to improve the accuracy, efficiency, and 

reliability of 3D reconstructions, thereby potentially enhancing the life-cycle 

management of UUs. 

This research design is poised to significantly advance the field of UU management 

by systematically addressing key challenges in localisation, image enhancement, and 

topology completion. The project's comprehensive approach aims to provide practical 

solutions that contribute to the overall improvement in accuracy and reliability in the 

3D reconstruction of UUs, thereby enhancing their life-cycle management. 
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Figure 3-1 Overview of the proposed method 
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3.3 Literature review method (Objective 1) 

This section introduces the research methods and procedures for Objective 1 (literature 

review). As shown in Figure 3-2, the literature review identified the research topics, 

trends, and limitations of the automatic 3D reconstruction for as-built UUs and the 

main research gaps of this thesis by collecting existing research outcomes from 

academic journals and other sources. The specific steps included scope determination, 

data collection, and content analysis. 

 

Figure 3-2 Overview of the methodology for Objective 1 (Literature review) 

3.3.1 Scope determination 

Given the research aim and objectives, the scope of this review includes the following 

aspects: 1) the advantages, limitations, and application performance of each current 

3D reconstruction technique; 2) common challenges and future research directions in 

the field of 3D reconstruction of UUs; 3) conventional image-processing methods and 

deep-learning-based UU GPR localisation methods; and 4) image-based 3D 

reconstruction technology, 3D reconstruction from low-light images, and image-based 

3D reconstruction of UUs. 5) Topology completion for UUs and GCN research status. 
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3.3.2 Data collection 

The Web of Science, ASCE databases, and official government websites were selected 

for data collection in this study because of their wide coverage and high quality. The 

following keywords were chosen to cover as much of the research area as possible: 

UU 3D reconstruction/mapping, subsurface utility reconstruction/detection, 

pipeline/cable detection, GPR interpretation, UU localisation, image-based 3D 

reconstruction/photogrammetry, low-light image reconstruction, low-light image 

enhancement, as-built UU records, GCN, and topology completion. To ensure the 

quality of the articles, they were selected according to the following two criteria: 1) 

They must be peer-reviewed articles. 2) Check the abstract of the article, which meets 

the scope of this thesis. 

3.3.3 Content analysis 

To systematically process and analyse the content of the selected studies. To perform 

the content analysis, the textual data were systematically deconstructed and 

categorised through coding. The categories and codes used for the content analysis are 

listed in Table 3-1. 

Table 3-1 Analysing codes of the selected contents 

Categories Codes 

UU 3D reconstruction (1) UU reconstruction technologies, (2) UU reconstruction 

applications, (3) best UU reconstruction performance, (4) 

implementation challenges 

GPR UU localisation (1) GPR technology, (2) GPR B-scan interpretation, (3) 

Deep-learning objects detection models, (4) Image 

processing for GPR B-scan 

Exposed low-light UU 

reconstruction 

(1) Image-based 3D reconstruction (photogrammetry), (2) 

Low-light 3D reconstruction enhancement, (3) Image 

enhancement, (4) Unsupervised deep learning, (5) Multi-
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Categories Codes 

view stereo 

GCN-based UU 

topology completion 

(1) Graph Convolutional Network, (2) Database 

completion, (3) Topology prediction, (4) GCN-based 

database completion 

 

The review addresses the questions that guide the research: 1) What are the prevailing 

3D reconstruction technologies extensively employed in the domain of UUs? 2) What 

are the underlying principles and classification attributes of these technologies? 3) 

What are the notable advantages, disadvantages, and practical effects of these 

technologies? 4) What are the primary challenges and limitations encountered in UU 

3D reconstruction? 5) What is the current research status of UU 3D reconstruction 

based on GPR, and what are the key issues to be addressed? 6) What factors contribute 

to the difficulty in improving the precision of the existing GPR-based UU 3D 

reconstruction research? 7) What are the underlying principles and research progress 

in image-based 3D reconstruction technology? 8) What are the conventional methods 

for enhancing low-light images, and how effective are they? 9) Which deep-learning 

models have been utilised for low-light image enhancement, and what principles can 

be derived from their application? 10) What are the specific characteristics of image-

based 3D reconstructions in UU scenarios? 11) What is the current development status 

of the GCN model? 12) In the absence of a comprehensive UU database, what methods 

can be employed to effectively and scientifically complete the missing data? 

3.4 GPR-based UUs localisation model development (Objective 2) 

An end-to-end deep-learning model (EUUL) using GPR B-scan data was proposed in 

this study to improve the precision of UU localisation. As shown in Figure 3-3, the 

EUUL model first extracts the information features in the GPR B-scan image and then 

directly establishes the mapping relationship between the features and the UU 

coordinate point position to reduce the precision loss caused by the step-by-step 

localisation mode. 
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Figure 3-3 Overview of the methodology for Objective 2 (GPR localisation) 

3.4.1 Inputs and outputs 

EUUL's input data were GPR B-scan data collected by GPR equipment in real 

municipal road areas and processed using specific software (RADAN (Geophysical 

Survey Systems, Inc., 2011)). In this study, GPR B-scan data were saved as a JPEG 

file, which is commonly used in the object-recognition field. EUUL's output data 

consist of two items: a GPR B-scan image (in jpeg) with the UU position marked and 

the pixel coordinates of the target apex position in that image. 

3.4.2 Data preparation 

To emulate the actual data acquisition scene to the greatest extent possible, all data in 

this study were obtained using GPR equipment instead of virtually generated using 
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signal simulation software (e.g. GPRmax (De Coster et al., 2019; Pham et al., 2018; 

Ko et al., 2019)). A GSSI SIR4000 GPR device and a 400 MHz antenna were used for 

data acquisition in this study. 

Over 8 km of municipal roads were scanned to generate the GPR B-scan data. The 

pipes in the area where data were collected were concrete, and metal pipes with a 

diameter of 500 mm to 1200 mm, and the depth of these pipes was 1.0 to 3.0 m from 

the surface, as shown in Figure 9. 

Subsequently, the raw data were transferred to B-scan images using RADAN software 

(Geophysical Survey Systems, Inc., 2011) after removing all data that did not satisfy 

the requirements, such as data that did not include the pipeline target or data that were 

severely affected by environmental noise (primarily from the steel mesh placed under 

the road surface). Finally, 400 GPR B-scan images were filtered for this experimental 

study, as shown in Figure 3-4. In addition, to measure the robustness of the model, B-

scan images in the test set were processed using a Gaussian blur operation (Youn et al., 

2002; Feng et al., 2021b; Pasolli et al., 2010). A new blur dataset for robustness testing 

was generated using the Python Imaging Library, and the radius was set to 2 to simulate 

the typical noise scenario when the features faded, as shown in Figure 3-5. The GPR 

B-scan dataset was segregated into training, verification, and test sets for all studies at 

a ratio of 6:3:1. The details are presented in Table 3-2. 
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Figure 3-4 Depth distribution of the UUs 

 

Figure 3-5 Dataset generation process 

Table 3-2 Details of training and experimental data 

Data type Number of images 

Normal dataset Original data 400 

Training data 240 

Validation data 120 

Test data 40 

Gaussian dataset Test data 40 
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3.4.3 Overall design of EUUL model 

In the existing research, B-scan target positioning of GPR is performed using the ‘box-

fitting’ mode, which divides the target positioning problem of UUs into two sub-

problems: regional detection and hyperbolic fitting. The ‘box-fitting’ splitting mode 

seems to simplify the problem; however, it results in possible error accumulation and 

fails to give full play to the autonomous learning potential of the deep-learning model. 

The EUUL model proposed in this thesis uses a 'key point-regression' mode to link the 

entire task in an end-to-end form, which avoids error accumulation and maximally 

releases the optimisation potential of the deep-learning model. A detailed model design 

is introduced in Section 4.2. 

3.4.4 Model experiments 

To validate the model and improvements proposed herein, the EUUL model was 

separated into three branches with different improvement features for comparison: 

EUULori, using ResNet50 as the backbone; EUULcsp, using CSPDarknet53 as the 

backbone; and EUULcspeca, which embeds the ECA module based on EUULcsp (the 

EUUL model). Two models published in 2019, the one-stage UU localisation model 

based on YOLOv3 (Zong et al., 2019) and the two-stage UU localisation model based 

on the Faster R-CNN for the same task (Lei et al., 2019; Amaral et al., 2022), were 

selected as comparison models to verify the effectiveness of the EUUL model. 

Therefore, EUULori, EUULcsp, EUULcspeca, YOLOv3, and Faster R-CNN were trained 

and tested in terms of precision, operating speed, and robustness. To ensure 

comparability among the models, all the training and testing datasets were rendered 

identical. In addition, the same environment (NVIDIA RTX 3090, GPU-based 

computer) was used during the model training and verification to ensure the 

effectiveness of the experiments. 

3.4.4.1 Model evaluation metrics 

The EUUL model detects the position of the UU target based on a GPR B-scan image. 

Therefore, precision, recall, and F1 were applied to measure the ability of the model 
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to locate the region where UU was located. The point precision metric was applied to 

measure the ability of the EUUL model to accurately determine the points representing 

UU. 

3.4.4.1.1 Precision, recall, and F1 

Precision: In the context of UU localisation, precision is important because it measures 

the accuracy of positive predictions. High precision means fewer false positives, which 

is critical for avoiding unnecessary excavations or disturbances in areas where utilities 

might not exist. Recall: In the context of utility localisation, recall is important because 

it measures the ability of the model to correctly identify all relevant instances of UUs. 

A high recall means fewer false negatives, reducing the chances of missing actual 

utilities, which is crucial for safety in applications, such as GPR. F1-Score: F1 

combines precision and recall, providing a balance between false positives and false 

negatives. Achieving balance in utility localisation is essential. The F1-score is 

particularly useful when there is an imbalance between the positive and negative 

classes, ensuring that the model performs well in both aspects of utility detection. 

In this thesis, precision, recall, and the F1-score collectively provide a well-rounded 

evaluation, emphasising the importance of both precision and recall in the detection of 

UUs, as shown in Eq. 3-1, Eq. 3-2, and Eq. 3-3. Other metrics commonly used in object 

detection problems, such as accuracy, ROC, and IoU, were not selected because of 

specific considerations of the problem domain. The accuracy may be skewed by 

imbalanced training data. The ROC curve may not provide a clear assessment in 

scenarios where the focus is on correctly identifying the positive class (utilities). 

Additionally, metrics such as intersection over union (IoU) are more suitable for image 

segmentation, which involves precise region delineation. The chosen metrics of 

precision, recall, and F1 were deemed more appropriate for emphasising the correct 

identification of utilities while balancing the training data in the context of the research 

object. The three indicators were calculated as follows: TP, FP, and false negative (FN) 

represent the number of correctly identified, overlooked, and mistakenly discovered 

targets, respectively. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  Eq. 3-1 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   Eq. 3-2 

𝐹1 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  Eq. 3-3 

3.4.4.1.2 Point precision 

As shown in Figure 3-6, obtaining the bounding box can only provide an 

approximation of the hyperbolic range in the B-scan image. In contrast, a hyperbola 

that represents the location of the UUs pipeline and the corresponding apex may exist 

in multiple potential hyperbolas within the bounding box range. Different fitting 

processing methods yielded different hyperbolic results. If the localisation ability of a 

model is evaluated based only on the precision indicator (see Section 3.4.1), the 

localisation error caused by the fitting process is not considered. 

Therefore, point precision was utilised to evaluate the model in this thesis as an index 

for evaluating precision. Point precision refers to the ratio between the difference in 

the apex-predicted coordinate output by the model and that between the actual field-

measured coordinates (Eq. 3-4 and Eq. 3-5). 

𝑃𝑜𝑖𝑛𝑡 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥 =
𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡−𝑋𝑡𝑟𝑢𝑡ℎ

𝑋𝑡𝑟𝑢𝑡ℎ
 Eq. 3-4 

𝑃𝑜𝑖𝑛𝑡 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑦 =
𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡−𝑌𝑡𝑟𝑢𝑡ℎ

𝑌𝑡𝑟𝑢𝑡ℎ
 Eq. 3-5 

Here, the point precisionx and point precisiony represent the abscissa and ordinate 

accuracies of the model on the B-scan image, respectively; Xpredict and Ypredict represent 

the apex abscissa and ordinate predicted by the model, respectively; and Xtruth and Ytruth 

represent the actual apex coordinates of the UU in the GPR B-scan image. 
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Figure 3-6 Comparison between point precision and box precision 

3.4.4.1.3 Speed 

In this study, Fps was used to measure the operating speed of the model. It is expressed 

in Eq. 3-6, where F represents the number of all B-scan images (frames) input into the 

model, and T represents the length of time from the beginning of the operation 

instruction to the moment all operation results are output. 

𝐹𝑝𝑠 =
𝐹

𝑇
  Eq. 3-6 

3.5 Image-based low-light utilities localisation reconstruction model development 

(Objective 3) 

An unsupervised deep-learning model (ZDE3D) was proposed in this study to enhance 

the 3D reconstruction performance of UUs in low-light environments. The proposed 

ZDE3D model first extracts the pixel features in low-light images and uses different 

loss functions to highlight the hidden spatial feature information from five aspects to 

improve the matching success rate of the same position between multiple images and 

realise UU 3D improvements to the reconstruction effects. Figure 3-7 illustrates the 

research flow for this objective. 
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Figure 3-7 Overview of the methodology for Objective 3 (low-light enhancement) 

3.5.1 Inputs and outputs 

The input of the ZDE3D model was low-light images of exposed UUs captured from 

real construction sites. Input image data were obtained using consumer smartphones. 

The output data of the model were low-light image data after the effect was improved. 

After the output data were processed using MVS, point-cloud 3D-reconstruction 

models in ply format can be generated. 

3.5.2 Data collection 

To train the ZDE3D model, the image enhancement dataset from zero-DCE (Guo et 

al., 2020a) containing 2002 images was used. The training dataset comprises multiple 

groups of images of the same scene under different lighting conditions. See Figure 3-

8 for details. 

 

Figure 3-8 Training data samples 
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To verify the capability of the proposed ZDE3D model to improve the 3D 

reconstruction performance of the as-built UUs in the low-light actual construction site 

environment, ten sets of data were collected from a housing construction site in Perth, 

Western Australia. The 3D reconstruction target in the validation experiment was the 

domestic sewage drainage pipes installed, which still needed to be completely buried. 

It is noteworthy that the low-light data environment in the experiment only retained 

the lighting conditions of the construction site in a completely dark outdoor 

environment (after 7:00 pm). For a better representation, the pipeline video data under 

three different buried depths (300, 500, and 700 mm) for two types of pipe-laying 

methods (one pipe in the trench and two pipes in the trench) subject to different lighting 

conditions (normal and low light) were collected. The data samples are shown in 

Figure 3-9. The device used for data collection was an iPhone 12 (1080p, 60 FPS, with 

all intelligent optimisations turned off). 

 

Figure 3-9 Data-collection samples 

3.5.3 Data processing 

To improve the efficiency of field data collection and work convenience, the original 

data acquired in the experiment were video-format data (mp4). The video data were 

then extracted using a Python script every 50 frames into a multi-view image dataset. 
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Thereafter, the multi-view images were imported into the COLMAP software 

(https://colmap.github.io/) for sparse and dense reconstruction to obtain the final point-

cloud files. The pipe size was measured manually using Compare software 

(https://www.danielgm.net/cc/). All the data processing flows are shown in Figure 3-

10. 

 

Figure 3-10 Data processing steps 

3.5.4 Overall design of the ZDE3D model 

In traditional or deep learning, the essence of a low-light image enhancement task is 

to adjust the image features (such as local brightness and contrast) at the pixel level. 

The deep-learning model can establish mapping from a low-light image to an 

optimised image, and the effect of this process depends on the reference image used in 

the model training. However, in low-light three-dimensional reconstruction scenes, 

there needs to be a reference image that can be determined by research, and it is more 

difficult to identify the most appropriate reference image for supervision and training 

under different UU construction scenes. Therefore, this thesis proposes an 

unsupervised deep-learning model without reference images. Through the design of 

the loss function, the prior knowledge of low-light three-dimensional reconstruction 

and the UU engineering scene is solidified into the deep-learning model. Thus, low-

light image enhancement at the pixel level was implemented to generate a better UU 

three-dimensional point-cloud model. 

3.5.5 Model experiments 

3.5.5.1 Model evaluation metrics 
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The purpose of the ZDE3D model is to optimise low-light images at the pixel level to 

achieve a better 3D reconstruction performance. To measure the performance of the 

point-cloud model generated from images processed by the model, three metrics were 

adopted in this study for evaluation: point-cloud quantity, enhanced ratio, and record 

accuracy. 

3.5.5.1.1 Point-cloud quantity 

The point-cloud quantity refers to the number of point clouds generated during the 

sparse 3D reconstruction phase. In a 3D reconstruction task, the number of point 

clouds generated by sparse reconstruction is the basis for the subsequent dense 

reconstruction of the point clouds, which determines the performance quality of the 

point clouds. If the number of point clouds is too small, the spatial information of the 

target scene cannot be fully expressed, particularly the enlarged local details. Therefore, 

this study adopted the point-cloud quantity as one of the measurement indicators of 

model performance. The larger its value, the better the 3D reconstruction performance 

of the target UU scene. 

3.5.5.1.2 Enhanced ratio 

The enhanced ratio refers to the ratio of the reconstruction performance between the 

low-light image enhanced by the ZDE3D model and original input data. This metric 

was used to quantify the 3D reconstruction effect of the optimised discriminant model, 

as shown in Eq. 3-7, where Qr represents the number of sparse point clouds generated 

by the 3D reconstruction of the original low-light image, and Qe represents the number 

of sparse point clouds generated by the 3D reconstruction of the image enhanced by 

ZDE3D. 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝑄𝑒−𝑄𝑟

𝑄𝑟
× 100% Eq. 3-7 

3.5.5.1.3 Record accuracy 

Record accuracy refers to the difference between the spatial information expressed by 

the point cloud from the 3D reconstruction and size information from the actual 
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construction site. The core scenario of this study was the as-built UU; therefore, the 

pipe diameter was used as a representative value in the experimental record, as shown 

in Eq. 3-8. Where Dr represents the pipe diameter of the point-cloud model generated 

by 3D reconstruction, and D represents the pipe diameter size obtained from actual 

measurements at the construction site. 

𝑅𝑒𝑐𝑜𝑟𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
|𝐷−𝐷𝑟|

𝐷
× 100% Eq. 3-8 

3.5.5.2 Experiment design 

To verify the practicability of the ZDE3D model, two parts were designed: an 

experimental and construction environment. Three embedment depths and two 

pipeline arrangement modes were designed for the experimental environment. Under 

the condition of lack of a light source, the acquisition was carried out, and then the 

effects of 3D reconstruction after the acquisition of the original low-light image and 

the model-enhanced image were compared. In addition, the influence of different loss 

functions on the reconstruction results proposed by ablation experiments was 

investigated. In the construction environment section, three low-light images from 

different UU scenarios at different construction sites are collected, and the point clouds 

generated by the original low-light images are compared with those generated by the 

enhanced images to illustrate the effectiveness of the model. Simultaneously, 

traditional, and mainstream unsupervised deep-learning method models were applied 

to the same dataset for comparative experiments to verify the superiority of the 

proposed ZDE3D model. 

3.6 Graph-based UU topology-completion model development (Objective 4) 

In this study, a GCN-based deep-learning model (UUTC) was proposed for an UU 

topology information completion task. The UUTC model first converts the table 

database into graph-structured data, then extracts the correlation information between 

each observed node through the GCN architecture, and finally predicts the missing 

topological relationship by combining multi-dimensional information, such as node 

attribute characteristics and similarity. Figure 3-11 illustrates the research flow for 
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achieving this objective. 

 

Figure 3-11 Overview of the methodology for Objective 4 (Topology completion) 

3.6.1 Inputs and outputs 

The input data of the UUTC model were graph data with different proportions of 

missing topological relationships. The model's output data were the graph data after 

completing all topological relationships. 

3.6.2 Data collection 

Data source. All the UU data used in this thesis are collected from the real wastewater 

network official data of Angers Metropolis City, France, and are available through the 

French Government's open access (https://www.data.gouv.fr/ (accessed on 1 May 

2023)). Three groups of real UU data from different scales of buildings in different 

locations and periods were selected to ensure the repeatability of the experimental 

results and normalisation ability of the model. The three sets of experimental data 

included 26,627, 10,227, and 1,059 UU nodes, and 32,379, 12,369, and 1,031 pairs of 
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UU topological relationships, respectively. Each set of data was divided into training, 

verification, and test sets. The division ratio is determined according to the missing 

rate setting, where the proportion of the test set equals the missing rate, the proportion 

of the verification set is constant (10%), and the rest of the data is the training set. 

Data processing. Figure 3-12 shows the processing flow of the raw data. First, the raw 

data file, in .shp format, was processed into a commonly used graph data format (CSV) 

using professional software (ArcGIS) to ensure that the model correctly read the data. 

Second, the obtained data attributes were filtered. The main consideration was to retain 

a few attribute features (material, depth, length, and diameter) that were closely related 

to the UU topology. The remaining features were not closely related to the topology of 

the UU network; therefore, they were excluded from the study. In addition, keeping 

materials and other attributes that reflect UU characteristics as small as possible can 

maximise the possibility of model promotion in other types of UU fields, because 

information such as laying date and gravity type is not recorded in all UU scenarios. 

Third, the material was a typical discrete attribute among the four selected attribute 

characteristics. To facilitate the deep-learning calculation and avoid the data 

interference problem caused by the assignment of the scalar form, this thesis adopted 

the one-hot (Shen et al., 2022) encoding form for processing. Each material was 

recorded as a unique representation vector. Fourth, in machine learning, different 

evaluation indicators (i.e. different features in the feature vector are different 

evaluation indicators) often have different dimensions and dimensional units, which 

will affect the results of data analysis. Therefore, to eliminate the dimensional 

influence between indicators, this study normalised the data to solve the comparability 

problem between data indicators. 
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Figure 3-12 Data processing steps and illustrations 

3.6.3 Overall design of UUTC model 

In this study, topological relationship completion among UUs was transformed into an 

edge prediction of the graph structure. Each pipe target corresponds to a node in the 

graph data, the attribute characteristics of the pipe itself correspond to node attributes, 

and the connection relationship (topology) between pipes corresponds to the edge. If 

there is a topological connection between the pipelines, an undirected edge exists 

between the corresponding nodes; otherwise, the nodes are independent. The UUTC 

model comprises of four main modules: input, SEM, convolution, and link prediction. 

The model takes the observed topological relationships and node attribute information 

of the UU network as input and aims to generate completed network topology 

relationship data as output. To improve the accuracy of topological relationship 

completion, this thesis constructs a SEM combined with professional knowledge in the 

field of UU to help a deep-learning network identify the connection possibilities 

between pipeline nodes. A detailed model design is introduced in Section 6.2. 

3.6.4 Model experiments 

3.6.4.1 Model evaluation metrics 
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To evaluate the effectiveness of the proposed UUTC model in the UU topological 

relationship completion scenario, the following four mainstream model evaluation 

metrics in the field of machine learning were applied. The definitions of 𝑇𝑃 (True 

Positive), 𝑇𝑁 (True Negative), 𝐹𝑃 (False Positive) and 𝐹𝑁 are listed in Table 3-3. 

Table 3-3 Definition of TP, TN, FP, and FN 

 Model predicted as true Model predicted as false 

Actual true TP (True positive) FN (False negative) 

Actual false FP (False positive) TN (True negative) 

 

3.6.4.1.1 Accuracy 

Accuracy (𝐴𝐶𝐶) indicates the proportion of the number of samples predicted by the 

model to the total number of samples. The ACC calculation equation is given by Eq. 

3-9. 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  Eq. 3-9 

3.6.4.1.2 Area Under Curve 

The area under curve (AUC) is the area under the receiver operating characteristic 

(ROC) curve, which is typically used for binary-classification problems. The ROC 

curve is a curve with the False-Positive Rate (FPR) as the abscissa and the True 

Positive Rate (TPR) as the ordinate, as shown in Figure 3-13 Eq. 3-10, and Eq. 3-11. 

The closer the AUC is to 1, the better the performance of the model. The calculation 

equation for AUC is shown in Figure 3-13. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 Eq. 3-10 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 Eq. 3-11 
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Figure 3-13 Area under curve (AUC) and receiver operating characteristic (ROC) 

curve 

3.6.4.1.3 F1 

𝐹1  is the harmonic mean of Precision and Recall. The precision rate indicates the 

proportion of predicted positive samples that are positive samples, and the recall rate 

indicates the proportion of actual positive samples that are correctly predicted as 

positive samples. The 𝐹1 value can comprehensively consider the impact of precision 

and recall. This is a commonly used indicator in binary-classification problems. See 

the equation Eq. 3-12 for the calculations. 

𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
   Eq. 3-12 

3.6.4.1.4 average precision 

The average precision (AP) is the area under the curve of the precision and recall rate 

(P-R curve), as shown in Figure 3-14. Compared with other indicators, the AP can 

better reflect the performance of the algorithm in practical applications, and it 

considers the ranking order of the prediction results and the importance of related 

targets, not just the accuracy of the classification results. See Eq. 3-13 and Eq. 3-14 

for the calculation details. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  Eq. 3-13 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   Eq. 3-14 

 

Figure 3-14 P-R Curve (AUC) and AP 

3.6.4.2 Model experiments design 

The model was verified using the data officially recorded from a real wastewater 

network. The verification is divided into two steps: 1) The experimental data are 

randomly removed according to different missing proportions, and then the defective 

data are imported into the UUTC model for completion. Finally, the topological 

relationships before and after completion were recorded and compared to verify the 

effectiveness of the proposed UUTC model. 2) Import the same incomplete dataset 

from 1) into the mainstream data-completion baseline models in existing studies for 

comparison, and then record the experimental results and perform a comparative 

analysis with the experimental data in 1) to illustrate the superiority of the UUTC 

model over the existing models. 

3.7 Chapter summary 

This chapter summarises the research methodology. First, research philosophy is 

introduced as the foundation of this thesis. This study is based on a positivist paradigm. 

The research methodology was deductive and quantitative, based on objectivist 

epistemology and realist ontology. Sections 3.4-3.6 introduce specific research 
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methods. In summary, the EUUL model was utilised to localise the positions of UUs 

under non-destructive conditions. The ZDE3D model was developed to enhance the 

3D reconstruction performance of the exposed UUs. Finally, the UUTC model was 

proposed to complete the missing topological relationship of the UU nodes. By 

applying these three components, a 3D model of the UUs can be effectively, 

automatically, and accurately reconstructed. 
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Chapter 4 : Developing GPR-based automatic UU localisation model 

4.1 Chapter introduction 

This chapter presents the detailed design of the GPR-based automatic UU localisation 

model (EUUL) in Section 4.2. Cross-comparison results are demonstrated to prove the 

usefulness of the model, and the contributions of the EUUL model are discussed in 

Section 4.3. All models were developed using a NVIDIA RTX 3090, GPU-based 

computer, and a Pytorch environment. 

4.2 Detailed design of the EUUL model 

4.2.1 Framework of EUUL model 

 

Figure 4-1 Overview of EUUL model 

Inspired by CenterNet (Zhou et al., 2019), the EUUL framework was designed to 

feature three main components: feature extraction, ECA, and prediction, as described 

in detail in Sections 3.2, 3.3, and 3.4, respectively (see Figure 4-1). 

Feature extraction. The CSPDarknet53 backbone (Bochkovskiy et al., 2020) was 

applied to the EUUL model to extract features from the B-scan image data. To achieve 

higher deep learning, too large backbone structure will seriously affect the model's 

speed, whereas too small will reduce the extraction effect of target features. In this 

thesis, a CSPDarknet53 network with a cross-stage partial (CSP) structure was applied. 

The addition of the CSP structure can solve the problem of information duplication in 
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the backbone network, particularly in the neural network gradient optimisation process, 

which can significantly reduce the number of parameters and floating-point operations 

of the model, thus improving the reasoning speed of the final model. This operation 

significantly reduces the overall number of parameters in the model and is conducive 

to solving the issue of a large data volume in UU localisation. Further details are 

presented in Section 3.2. 

ECA. After switching the lightweight backbone model during the test for improvement, 

the localisation precision of the model decreased significantly. Therefore, an ECA 

module was embedded into the EUUL model to ensure precision from lightweight 

modifications and to manage noise interference in the UU localisation. Compared with 

other attention mechanisms, the ECA mechanism has higher computational efficiency 

and less influence on network processing speed, which is suitable for this research 

scenario. Studies on many other image recognition tasks have confirmed that the ECA 

mechanism can significantly improve the performance by adding only a few 

parameters. The ECA module weights the feature channels and ensures that the model 

focuses on key features. Details regarding the ECA module are provided in Section 

3.3. 

Prediction. Based on the high-dimensional image features obtained from the above 

steps, the prediction component was classified into three branches to obtain the heat 

map, object width and height, and offsets of the UUs target. Subsequently, a regression 

structure was used to generate the offsets, object size (hyperbola width and height), 

and point coordinates that represent the UU location as the model's output. The details 

are presented in Section 3.4. 
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4.2.2 Feature extraction 

 

Figure 4-2 Architecture of EUUL backbone 

CSPDarknet53 (Bochkovskiy et al., 2020), a deep-learning backbone for object 

detection, was used for feature extraction. A CSPNet strategy was applied to segment 

the feature map into two regions and merge them into a cross-stage hierarchy. Figure 

4-2 shows details of the CSPDarknet53 structure. 

The main features of CSPDarkNet53 include the addition of a CSP (Bochkovskiy et 

al., 2020) structure to each residual block and the removal of the bottleneck structure. 

From the standpoint of network structure design, CSP is primarily utilised to solve 

problems that require extensive calculations. The problem of high inference 

calculation is caused by the repetition of gradient information in network optimisation. 

The CSP structure reduces the computational effort while ensuring precision by 

integrating gradient changes into the feature map from beginning to end. Consequently, 

the number of model parameters and floating-point operations per second were 

reduced, which ensured both the speed and precision of inference and reduced the 

model size. The training was simplified by removing the bottleneck structure, and the 

number of parameters was reduced. 
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4.2.3 ECA module 

GPR B-scan data often contain noise owing to the complexity of the underground 

environment. These noise and interference factors include the electrical installations, 

tree roots, and devices. The complete removal of all these interference factors in 

engineering practice is unrealistic. Therefore, an ECA (Wang et al., 2020a) module 

was added to the EUUL model to enhance the operational robustness. The principle of 

the ECA module is as follows: 

When the model processes the input B-scan images, different features are captured by 

different channels; however, the importance of each channel feature differs. As shown 

in Figure 4-3, the ECA module allows the model to focus on the key feature channels 

by assigning different weight evaluations to each channel’s information. The first step 

is to perform a global average pooling operation on the input feature map, which 

involves calculating and transforming the pixel value of each feature layer into a mean 

output to create a one-dimensional (1D) vector. Second, 1D convolution with 

convolution kernel size k is performed on the 1D vector to realise local cross-channel 

interactions and extract the dependencies between channels, where k is determined by 

the input characteristic channel C. To obtain the weight w of each channel, the vector 

obtained after the 1D convolution is passed through the sigmoid activation function 

(Eq. 4-1 to Eq. 4-5). After performing the above steps, more computing power is 

directed toward the effective channel information, and noise interference in the input 

is effectively mitigated. The experiments are detailed in Section 4.3. 
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Figure 4-3 Framework of ECA 

The weight of each channel w is calculated as follows: 

w = σ(C1Dk(y)),     Eq. 4-1 

C=Φ(k),       Eq. 4-2 

𝛷(𝑘)  =  𝛾 ∗  𝑘 −  𝑏,   Eq. 4-3 

C=Φ(k)=2
（γ*k-b）,    Eq. 4-4 

𝑘 = 𝛹 (𝐶) = |
𝑙𝑜𝑔2(𝐶)

𝛾
+

𝑏

𝛾
|𝑜𝑑𝑑 . Eq. 4-5 

Here, C1D represents a 1D convolution known as the ECA module, and k is the size 

of the convolution kernel, which is a parameter related only to C. 

Therefore, a solution is to extend the linear function (Eq. 4-3) to a non-linear function 

(Eq. 4-4). Subsequently, for channel dimension C, kernel size k can be adaptively 

determined using Eq. 4-5. 

The approximate range of the channel interaction information must be established 

because the ECA module seeks to accurately capture the local cross-channel 

information interaction (convolution kernel size k of 1D convolution). The kernel size 

k of the 1D convolution is directly proportional to the channel dimension C with 
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respect to the coverage of cross-channel information exchange. In other words, 

mapping exists between k and C, as expressed in Eq. 4-2. The most straightforward 

mapping is a linear function, as shown in Eq. 4-3. However, linear-function-based 

relationships are overly constrained. A power of two is specified for channel dimension 

C (i.e. the number of filters) (Wang et al., 2020). Hence, a potential solution was 

obtained by converting a linear function (Eq. 4-3) to a non-linear function (Eq. 4-4). 

The kernel size k can be expressed based on C, as shown in Eq. 4-5. 

4.2.4 Prediction module 

 

Figure 4-4 Prediction architecture 

The prediction comprises up-sampling, head, and regression. It was used to predict the 

apex coordinates that represented the position of the top of the pipelines on a B-scan 

image. The prediction architecture is shown in Figure 4-4. 

First, three up-samplings (ConvTranspose2d layers) were employed to avoid 

resolution degradation after restoring the image to its original size. After a complex 

series of convolution operations, the higher-dimensional features of the input image 

were extracted. This feature of CNN is particularly beneficial for classification and 

detection. However, because the resolution of the input image decreases significantly, 

the precision of the model in performing UU localisation also decreases. Therefore, to 

achieve greater localisation precision, the spatial dimension of the object in the original 
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image should be effectively restored using up-sampling operations. 

Second, three branch heads were applied to predict the heat map, i.e., ‘offset’, ‘width’, 

and ‘height’. As shown in Figure 4-4, Head 1 generates the approximate centre position 

of the target object in the image. Head 2 was used to predict the correction offset of 

the target centre position to correct the precision loss caused by the model in the down-

sampling process. The pixel width and height of the target were predicted using Head 

3. 

Finally, the coordinates of the UU objects were obtained via regression processing 

using the output information of the prediction heads, as illustrated in Figure 4-5. The 

left- and right-bottom-point pixel coordinates can first be calculated based on the 

coordinates of the heat map, offset, and object size (width and height). Subsequently, 

the predicted coordinates of the apex can be obtained by the regression of the 

coordinates of the abovementioned three points. 

Through the operations above, the EUUL model circumvented the box-fitting mode in 

previous studies, in which hyperbola targets were searched first, and apex coordinates 

were searched via fitting steps. Moreover, the EUUL model directly searches for the 

apex coordinates on the input image. In this key point-regression mode, global 

optimisation results were obtained rather than the superposition of two local 

optimisations (box and fitting results). Under the new key point-regression-end-to-end 

framework, the UU localisation task model yielded a larger parameter optimisation 

space and more convenient operation process. 
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Figure 4-5 Regression processing 

4.3 Experiment results and discussions 

4.3.1 Experiment to verify precision 

An experiment was performed to verify the localisation precision of the proposed 

EUUL model and the effects of the lightweight improvement and the ECA module on 

the model function. Therefore, all EUUL searer and composition models were tested 

based on the same normal dataset in the experiment, and the parameters, precision, 

point precision, recall, and F1 values were recorded to evaluate the model performance. 

As shown in Table 4-1 and Figure 4-6, the accuracies of the EUULori (96.49%), 

EUULcsp (93.10%), and EUULcspeca (97.01%) models based on the key point-

regression mode were significantly higher than those of the one-stage model YOLOv3 

(91.67%) and two-stage model Faster R-CNN (65.52%). A comparison of the F1 

values showed the superiority of the proposed EUUL model. Although the parameters 

of the modified EUULcsp model reduced significantly after replacing the backbone 

(from 136.0 M to 37.0 M), the precision decreased (93.10%), the recall decreased 

significantly (36.00%), and the F1 value was only 0.52. This indicates that the 

lightweight transformation deteriorates the recognition ability of the model. However, 

after embedding the effective channel attention module, the EUULcspeca model 
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demonstrated high precision (97.01%) and achieved the highest F1 value (0.92) among 

all the models. This shows that the ECA mechanism effectively improves the model's 

recognition precision and ensures its localisation performance after lightweight 

transformation. In addition, the point precision verification results of the model 

support the conclusions above. 

Table 4-1 Results of precision based on experiments 

 

 

Figure 4-6 Comparison of precision results based on experiments 

Model Parameter 
Test 

number 
Precision Recall F1 

Point 

precisionx 

Point 

precisiony 

Point 

recall 

EUULori 136.0 M 40 96.49% 76.39% 0.85 97% 98% 100% 

EUULcsp 37.0 M 40 93.10% 36.00% 0.52 99% 99% 70% 

EUULcspeca 37.0 M 40 97.01% 86.67% 0.92 98% 98% 100% 

YOLOv3 237.0 M 40 91.67% 27.50% 0.42 / / / 

Faster R-

CNN 
113.4 M 40 65.52% 95.00% 0.78 / / / 
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4.3.2 Experiment to verify robustness 

An experiment was performed to determine whether the proposed EUUL model 

(EUULcspeca) performs better than other existing models in terms of robustness, and to 

verify the effects of the lightweight model and ECA improvements on the robustness 

of the model. Therefore, the B-scan image data in the test set were subjected to 

Gaussian blur processing, as shown in Figure 4-7, to improve the difficulty of model 

localisation. Subsequently, the processed test images were imported into EUULori, 

EUULcsp, EUULcspeca, YOLOv3, and Faster R-CNN for testing. 

 

Figure 4-7 Sample of normal and Gaussian test set data 

For comparison, Table 4-2 shows the test performance of each model for the normal 

and Gaussian datasets. The results presented in Figure 4-8 provide a better 

visualisation of the comparison. 

First, the precision of the EUULcspeca model decreased, whereas the performances of 

EUULori and YOLOv3 on the Gaussian test set improved. Meanwhile, the precision of 

EUULcsp and Fast R-CNN did not change. This shows that the noise produced by the 

Gaussian blur processing affected the performance of the models; however, it was not 

reflected by the precision index alone. Second, regarding recall, except for the 
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EUULcsp and Faster R-CNN models, the recall of all other models decreased 

significantly. The recall values of the EUULori, EUULcspeca, and YOLOv3 models 

decreased by 11.11%, 8%, and 7.5%, respectively. This shows that when noise 

interference occurred, the retrieval ability of the EUULori, EUULcspeca, and YOLOv3 

models for UUs targets in the B-scan images deteriorated. Additionally, this indicates 

that the increase in the precision of EUULori and YOLOv3 on the Gaussian test set was 

due to a significant decrease in the number of UUs targets retrieved by the models. 

Third, considering the changes in precision and recall in the two datasets, the F1 values 

of models other than the EUULcsp and Faster R-CNN models decreased significantly, 

and the EUULcspeca model (0.87) indicated the highest F1 value. This shows that, when 

subjected to the same noise interference, the EUULcspeca model was the best-

performing model among all the experimental models. A comparison between 

EUULcspeca and EUULcsp indicates that the ECA module improves the robustness of 

the EUUL model. Finally, the point precision of the models supported this statement. 

Table 4-2 Results of robustness based on experiments 

Model Parameter 
Test 

number 
Precision Recall F1 

Point 

precisionx 

Point 

precisiony 

Point 

recall 

 Normal test data set   

EUULori 136.0 M 40 96.49% 76.39% 0.85 97% 98% 100% 

EUULcsp 37.0 M 40 93.10% 36.00% 0.52 99% 99% 70% 

EUULcspeca 37.0 M 40 97.01% 86.67% 0.92 98% 98% 100% 

YOLOv3 237.0 M 40 91.67% 27.50% 0.42 / / / 

Faster R-

CNN 
113.4 M 40 65.52% 95.00% 0.78 / / / 

 Gaussian test data set   

EUULori 136.0 M 40 97.92% ↑ 65.28% ↓ 0.78 ↓ 99%↑ 98%- 90%↓ 

EUULcsp 37.0 M 40 93.10% - 36.00% - 0.52 - 95%↓ 96%↓ 42.5%↓ 

EUULcspeca 37.0 M 40 96.72% ↓ 78.67% ↓ 0.87 ↓ 98% - 98% - 100% - 
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Model Parameter 
Test 

number 
Precision Recall F1 

Point 

precisionx 

Point 

precisiony 

Point 

recall 

         

YOLOv3 237.0 M 40 100.00%↑ 20.00% ↓ 0.33 ↓ / / / 

Faster R-

CNN 
113.4 M 40 65.52% - 95.00% - 0.78 - / / / 

Note: In this table, ↑ implies a value increase, ↓ implies a value decrease, and - implies 

unchanged compared to the value in the normal test dataset. 

 

Figure 4-8 Comparison of robustness based on experiments. (Percentages indicated 

in black and red represent results based on normal and Gaussian test datasets, 

respectively) 

4.3.3 Experiment to verify speed 

An experiment was performed to validate whether the proposed anchor-free models 

(EUUL series) offered a significant advantage over the comparative models in terms 

of operating speed. Another purpose of this experiment was to verify that the 

lightweight improvement proposed herein can enhance the operating speed (EUULcsp 



110 

and EUULcspeca). Therefore, in this experiment, the same test dataset was used to record 

the processing speed (fps) and parameter quantity for each model. 

As shown in Table 4-3, the fps of the EUULori, EUULcsp, EUULcspeca, YOLOv3, and 

Faster R-CNN models under the normal test dataset were 105, 125, 125, 82, and 20, 

respectively. Among them, the lightweight-improved EUULcsp and EUULcspeca models 

indicated the highest operating speeds, which satisfied engineering requirements for 

real-time applications. However, the operating speed of EUULori without lightweight 

improvement was slightly lower than those of the two aforementioned models, 

although its fps reached 105. Therefore, compared with the comparison models 

YOLOv3 and Faster R-CNN, the EUUL series models offered a significant advantage 

in terms of operating speed, which was five to six times that of the Faster R-CNN. In 

addition, the number of parameters in the lightweight-improved EUULcsp and 

EUULcspeca models (37.0 M) was significantly less than those in the comparison 

models YOLOv3 (237.0 M) and Fast R-CNN (113.4 M). This shows that the GPR B-

scan localisation models based on the key point-regression mode proposed herein can 

eliminate the dependence on expensive hardware under the same conditions more 

effectively to better adapt to the harsh engineering practice environment. 

Table 4-3 Results of speed based on experiments 

Model Test number Parameter fps 

EUULori 40 136.0 M 105 

EUULcsp 40 37.0 M 125 

EUULcspeca 40 37.0 M 125 

YOLOv3 40 237.0 M 82 

Faster R-CNN 40 113.4 M 20 

Note: Experiments were conducted using a NVDIA RTX 3090, GPU-based computer.  

4.4 Experiments based on different soil types 

To verify the localisation performance of the proposed models under different soil 

conditions, pipeline data from two different areas (Areas 1 and 2) were obtained by 

using the same GPR equipment with the same operating frequency (400 MHz). In total, 

450 frames were obtained. For each area, 185 and 40 of 225 frames were used for 
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training and testing, respectively. 

The geological conditions in Area 1 were relatively complex, featuring a backfilled 

soil layer containing large pieces of gravel and holes in the working sections. In Area 

2, the backfill soil layer was more uniform; however, the pipelines were densely 

distributed, and the signals between the pipelines interfered. Sample data from Areas 

1 and 2 are shown in Figure 4-9. 

 

Figure 4-9 Sample data from Areas 1 and 2 

Five models (EUULcsp, EUULcspeca, EUULori, YOLOv3, and Faster R-CNN) were 

trained and tested on the same dataset. The experimental results are presented in Table 

4-4 and Figure 4-10. The proposed EUULcspeca model exhibited promising 

performance in terms of precision, recall, and F1. 

Regarding precision, EUULcsp performed the best on both test datasets for Areas 1 and 

2 (94.64% and 92.75%, respectively). However, the recalls of the proposed EUULcspeca 

model in these two datasets were 2.35% and 3.61% higher than that of the EUULcsp 

model. This indicates that the EUULcspeca model cloud obtained more detection targets. 

Regarding F1, the proposed EUULcspeca model (0.87 and 0.85) exhibited the best 

performance compared with the other models. 

Table 4-4 Experimental results based on different soil types 
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Model Parameter 
Test 

number 
Precision Recall F1 

Area 1 

EUULori 136.0 M 40 92.00% 72.63% 0.81 

EUULcsp 37.0 M 40 94.64% 76.70% 0.85 

EUULcspeca 37.0 M 40 90.59% 83.05% 0.87 

YOLOv3 237.0 M 40 90.14% 67.37% 0.77 

Faster R-

CNN 
113.4 M 40 58.26% 95.49% 0.72 

Area 2 

EUULori 136.0 M 40 90.91% 72.29% 0.81 

EUULcsp 37.0 M 40 92.75% 77.11% 0.84 

EUULcspeca 37.0 M 40 89.33% 80.72% 0.85 

YOLOv3 237.0 M 40 89.23% 69.88% 0.78 

Faster R-

CNN 
113.4 M 40 59.23% 92.77% 0.72 
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Figure 4-10 Comparison of experimental results based on different soil types. 

(Percentages in black and red represent results based on test datasets of Areas 1 and 

2, respectively.) 

4.5 Chapter summary 

In this section, an EUUL model is developed using the GPR B-scan images. Three 

experiments were conducted to validate the proposed model and its improvements on 

an actual site. The experimental results showed that the precision of the proposed 

EUUL model was 97.01%, operating speed was 125 fps, and precision was 96.72% in 

a noisy environment. The EUUL model was superior to the existing mainstream 

models in terms of precision, operating speed, and robustness. The model satisfied the 

requirements of UU localisation in engineering practice and promotes the development 

of automatic GPR-based UU localisation. 
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Chapter 5 : Developing image-based UU 3D reconstruction model 

5.1 Chapter introduction 

This chapter presents a detailed design of the ZDE3D model for low-light 

enhancement of the UU 3D reconstruction task. An unsupervised architecture and five 

loss functions were proposed based on the UU domain knowledge and image-based 

3D reconstruction principles. Cross-comparison experiment results using real-site 

datasets are introduced to demonstrate the effect of 3D reconstruction by measuring 

the sparse reconstruction quality and the resulting point-cloud model precision. The 

ablation experiment results were also introduced to demonstrate the usefulness of each 

loss function in practice. The ZDE3D model was developed using Python and Pytorch 

deep-learning frameworks for model training, validation, and testing on the Google 

Colab cloud-computing platform. 

5.2 Detailed design of the ZDE3D model 

5.2.1 Framework and architecture 

 

Figure 5-1 Framework of the ZDE3D model 

Inspired by zero-DCE (Guo et al., 2020a), ZDE3D adopts a deep-learning method to 

establish a pixel-wise mapping relationship between the input low-light image and 

output-enhanced image to improve the 3D reconstruction performance. As shown in 
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Figure 5-1, the ZDE3D model employed a CNN with seven convolutional layers with 

symmetrical concatenation. Each layer consisted of 32 convolutional kernels of size 

3×3 and stride 1, followed by the ReLU activation function. Because the up-sampling 

and pooling layers could interfere with the interpixel relationship of the input image 

and lead to the loss of important information, these layers were completely discarded 

in the model. The last convolutional layer was followed by the Tanh activation function, 

which produced 24 parameter maps for eight iterations (n = 8), where each iteration 

required three curve parameter maps for the three channels. 

To improve the 3D reconstruction performance of the input low-light images, the 

overall goal of ZDE3D was primarily achieved through the following five loss 

functions: LSpa (spatial loss), LCol (colour loss), LExp (exposure loss), LBou (boundary 

loss), and LGro (group loss). LSpa was used to improve the image contrast, LCol was used 

to improve the image brightness reasonably, LExp was used to adjust the image 

exposure, LBou was used to generate a boundary penalty mechanism, and LGro was used 

to control the direct difference of the same group of images. The working principle 

and details of the loss function are described in Section 3.2. By optimising the ZDE3D 

model, the image data collected in a low-light environment automatically learn how to 

better generate the mapping relationship of 3D point-cloud images without any paired 

or unpaired data. 

5.2.2 Loss-function design 

Because no paired or unpaired reference data were used in the learning process of the 

ZDE3D model, the effect of the optimisation task depended completely on the design 

of the loss functions. In the design process of the following loss functions, the 

requirements of feature point extraction and matching in the 3D reconstruction process 

are considered. By designing different loss-function features, the enhanced images 

could reflect as many pixel-level features as possible without losing the original 

information to improve the 3D reconstruction performance in a low-light environment. 

Therefore, we designed the following loss functions: 

5.2.2.1 Spatial loss 
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Spatial loss (LSpa) stimulates the pixel difference features in low-light images. By 

comparing the pixel values of the corresponding positions before and after mapping in 

some pixel areas (the 4×4 area was adopted in this study following the experience of 

zero-DCE (Guo et al., 2020a)), the original areas that may contain feature points were 

enhanced, as shown in Eq. 5-1, where K is the number of local regions and Ω(i) is the 

four neighbourhoods centred around region i (upper, lower, left, and right). I represents 

the pixel value in the input picture, and E represents the pixel value after mapping 

optimisation. C is a small normal number that avoids inoperable problems without 

affecting the equation. 

𝐿𝑆𝑝𝑎 =
1

𝐾
∑ ∑

(𝐼𝑖−𝐼𝑗)2+𝐶

(𝐸𝑖−𝐸𝑗)
2

+𝐶
𝑗∈𝛺(𝑖)

𝑘
𝑖=1   Eq. 5-1 

5.2.2.2 Colour loss 

Colour loss (LCol) is used to reasonably improve the brightness of pixels in low-light 

images. Extensive studies have shown that image feature degradation is closely related 

to the pixel intensity (i.e. image brightness). From the perspective of the pixel value 

distribution, the pixel values of low-light images are densely distributed in the range 

of low-brightness areas, which leads to insufficient utilisation of the brightness space. 

Much effective information is crowded within a narrow range and cannot be used by 

3D reconstruction algorithms. Therefore, based on the colour balance algorithm 

(Pascale et al., 2022), the ZDE3D model adopts LCol to effectively expand the pixel 

representation space of low-light images, as shown in Eq. 5-2. K represents the number 

of pixels in each channel and R, G, and B represent the red, green, and blue channels 

of the colour image, respectively. Ei represents the pixel value of the enhanced image 

at position i, and j is the channel where the pixel resides. Emax represents the maximum 

pixel value of the enhanced image on a given channel. By adjusting LCol, the pixel 

values of low-light images in the input model are evenly distributed in the brightness 

space of 0-255, to obtain better reconstruction performance. 

𝐿𝐶𝑜𝑙 =
1

𝐾
∑ ∑ (𝐸𝑖 −

𝐸𝑖

𝐸𝑚𝑎𝑥
)2

𝑗∈(𝑅,𝐺,𝐵)
𝑘
𝑖=1   Eq. 5-2 

5.2.2.3 Exposure loss 
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The exposure loss (LExp) was used to prevent abnormal exposure to low-light images 

after adjustment. Pictures that are too bright or too dark cannot effectively show the 

characteristics of the target object. This feature is also important for 3D reconstruction. 

Therefore, the ZDE3D model retains the loss function used by the zero-DCE model to 

control the exposure (see Eq. 5-3). M represents the number of non-overlapping local 

regions of size 16×16, and E represents the average intensity value of local regions in 

the enhanced image. Based on the experimental results of zero-DCE, B was set as a 

constant value (0.6) in the model (Guo et al., 2020a). 

𝐿𝐸𝑥𝑝 =
1

𝑀
∑ |𝐸𝑘 − 𝐵|𝑀

𝑘=1   Eq. 5-3 

5.2.2.4 Boundary loss 

Boundary loss (LBou) implements a linear boundary penalty mechanism in as-built UU 

scenarios. Linear features appear frequently in the image data used for the UU 3D 

reconstruction. The main reason for this is that the boundary between the underground 

pipelines and background is linear when mapped to a two-dimensional plane. Based 

on this feature, the ZDE3D model adds LBou based on the above loss functions to 

increase the prominence of the UU target in the scenarios. LBou is implemented by 

adjusting the gradient relationship between the pixels, as shown in Eq. 5-4. Here, N is 

the number of iterations, and j denotes the different channel positions. ∇X and ∇Y 

represent the horizontal and vertical gradient operations, respectively. At the boundary 

position, ∇X and ∇Y are encouraged to lift the gradient to obtain more prominent 

features. 

𝐿𝐵𝑜𝑢 = ∑ ∑
𝑁

(∇𝑋+∇𝑌)+𝐶𝑗∈(𝑅,𝐺,𝐵)
𝑁
𝑖=1   Eq. 5-4 

5.2.2.5 Group loss 

Group loss (LGro) balances the pixel difference features between adjacent low-light 

image inputs. The image 3D reconstruction based on SFM does not input image data 

in order but inputs the same batch of images used to reconstruct a certain scene together 

(Jiang et al., 2020). Therefore, important matching features may be missed if the 

difference between the adjacent low-light images is too large. Based on this, LGro in 
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the ZDE3D model balances images from different angles in a unified scene in terms 

of adjacent similarity to obtain better 3D reconstruction effects, as shown in Eq. 5-5. 

Where N represents the number of pictures in the same group, Eave represents the 

average pixel value of the pictures, i represents the serial number of images in the 

group, and j represents the channel information. 

𝐿𝐺𝑟𝑜 = ∑ ∑ (𝐸𝑎𝑣𝑒(𝑖) − 𝐸𝑎𝑣𝑒(𝑖+1))2
𝑗∈(𝑅,𝐺,𝐵)

𝑁
𝑖=1   Eq. 5-5 

5.2.2.6 Total loss 

In summary, the total loss of the model can be expressed as Eq. 5-6. W represents the 

weight of LSpa, the function of which ensures that each loss is of the same order of 

magnitude to avoid the problem of decreasing the training effect caused by the 

imbalance between them. 

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝑊𝐿𝑆𝑝𝑎 + 𝐿𝐶𝑜𝑙 + 𝐿𝐸𝑥𝑝 + 𝐿𝐵𝑜𝑢 + 𝐿𝐺𝑟𝑜  Eq. 5-6 

5.3 Experiments results 

5.3.1 Laboratory environment experiment results 

First, 3D reconstruction experiments were conducted on UU scenes with different 

arrangements and buried depths under different illumination conditions in a laboratory 

environment under controlled conditions. Table 5-1 illustrates all parameters and 

results of the experiments. Under the different experimental environmental conditions 

mentioned above, the 3D reconstruction effect of the pipeline shows different degrees 

of quality improvement compared to the original low-light inputs. Simultaneously, the 

UU point-cloud 3D model generated after enhancement still has high record accuracy. 

Table 5-1 Experiment results 

Depth 

 

Categories Input 

frames 

Point cloud 

quantity 

Enhanced 

ratio 

Utility 

size 

Point-

cloud size 

Record 

accuracy 

One pipe in trench 

300 mm Normal 47 23,217 / 90 mm 88 mm 97.78% 
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Depth 

 

Categories Input 

frames 

Point cloud 

quantity 

Enhanced 

ratio 

Utility 

size 

Point-

cloud size 

Record 

accuracy 

 Low light 47 3,162 / 90 mm 91 mm 98.89% 

 Enhanced 47 3,804 20.30 % 90 mm 92 mm 97.78% 

500 mm Normal 45 22,122 / 90 mm 87 mm 96.67% 

 Low light 45 4,137 / 90 mm 89 mm 98.89% 

 Enhanced 45 4,724 14.19 % 90 mm 91 mm 98.89% 

700 mm Normal 43 26,530 / 90 mm 90 mm 100.00% 

 Low light 43 36,99 / 90 mm 92 mm 97.78% 

 Enhanced 43 4,024 8.79 % 90 mm 92 mm 97.78% 

Two pipes in trench 

300 mm Normal 49 22,736 / 90 mm 90 mm 100.00% 

 Low light 49 4,069 / 90 mm 89 mm 98.89% 

 Enhanced 49 4,553 11.40 % 90 mm 88 mm 97.78% 

500 mm Normal 42 20,655 / 90 mm 91 mm 98.89% 

 Low light 42 2,949 / 90 mm 92 mm 97.78% 

 Enhanced 42 3,115 5.63 % 90 mm 90 mm 100.00% 

700 mm Normal 43 25,946 / 90 mm 89 mm 98.89% 

 Low light 43 6,934 / 90 mm 91 mm 98.89% 

 Enhanced 43 8,240 18.83 % 90 mm 91 mm 98.89% 

Average    13.19 %   98.58% 

 

5.3.2 On-site validations 

To further verify that the proposed ZDE3D model is suitable for various real UU 

construction scenarios, three verification experiments with different reconstruction 

targets were conducted at three construction sites. Section 4.4.1 describes the 

background of the three experiments. Section 4.3.2 shows the experimental results. 

Section 4.3.3 analyses the experimental results. 
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5.3.2.1 Background 

Three group images (248 frames total) were collected from the UU projects in Jiangxi 

Province, China, where Groups 1 and 3 were bridge-supporting engineering projects, 

and Group 2 was a civil housing project. In these verification experiments, the data 

collection and processing procedures were the same as those described in Section 4.2. 

Moreover, 46, 34, and 45 low-light image frames were obtained, respectively. 

During the data-collection process, the real construction site process was restored to 

the greatest extent, and the datasets were captured using a personal smartphone. 

Notably, the data collection in these validation experiments involved all frontline 

construction personnel without professional training. Details of the experimental 

objectives are listed in Table 5-2. 

Table 5-2 Validation scenario details 

Group Frames Category Depth Diameter Description 

Group 1 92 Weak Electricity 1.5 m 200 mm Change of Plan 

Group 2 68 Sewer Pipeline 1.8 m 500 mm Pipeline 

Connection 

Group 3 88 Strong Electricity 2.0 m 400 mm Set Arrangement 

 

Figure 5-2 shows sample images of the three groups of field-verification experiments. 
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Figure 5-2 Samples images of the on-site validation experiments 

5.3.2.2 Validation results 

Table 5-3 illustrates the 3D reconstruction performance of the above three groups of 

scenarios under normal and low-light conditions, and the proposed model enhances 

the conditions. 

Table 5-3 Experiment results 

Categories Input 

frames 

Point-cloud 

quantity 

Enhanced 

ratio 

Utility 

size 

Point-

cloud 

size 

Record 

accuracy 

Group 1 

Normal 46 54,040 /  200 mm  205 mm 97.52% 

Low light 46 38,372 /  200 mm  203 mm 98.55% 
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Categories Input 

frames 

Point-cloud 

quantity 

Enhanced 

ratio 

Utility 

size 

Point-

cloud 

size 

Record 

accuracy 

Enhanced 46 53,519 39.47 %  200 mm  205 mm 97.53% 

Group 2 

Normal 34 19,639 /  500 mm  502 mm 99.63% 

Low light 34 12,566 /  500 mm  510 mm 98.01% 

Enhanced 34 16,984 35.16%  500 mm  508 mm 98.41% 

Group 3 

Normal 45 44,378 /  400 mm  406 mm 98.53% 

Low light 45 28,596 /  400 mm  406 mm 98.57% 

Enhanced 45 37,195 30.07 %  400 mm  408 mm 98.08% 

5.4 Discussion on image-based UU 3D reconstruction model (Objective 3) 

The effectiveness of the proposed ZDE3D model for 3D reconstruction under low-

light conditions was evaluated through three sets of on-site validation experiments. In 

the first experiment, the quantity of 3D reconstructed point clouds increased by 39.47% 

after applying the unsupervised optimisation model. The Group 1 scene showed the 

most significant improvement, and the number of point clouds after optimisation was 

very close to the number obtained under normal lighting conditions. The Group 2 and 

3 experiments resulted in 35.16% and 30.07% increases in the quantity of 

reconstructed point clouds, respectively. Moreover, all three experiments achieved an 

accuracy rate of over 30.00% for the reconstruction record. 

5.4.1 Loss-function ablations 

The aim of the ablation study was to assess the contribution of each proposed loss 

function. In our study, one of the five proposed loss functions was removed while 

maintaining all the other conditions constant. We then compared the 3D reconstruction 

results to evaluate the impact of each loss function on the overall performance, as 

intended in our experimental design. The optimisation performance of different 
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combinations of the loss functions on the same sample image is shown in Figure 5-3, 

and Table 5-4 illustrates the ablation experiment results. 

The contrast of the low-light images decreases when the spatial control loss LSpa is 

removed. The pipe position can be recognised; however, 3D point clouds cannot be 

generated. This indicates that the influence of LSpa is primarily reflected in the contrast 

constraint. 

The result without brightness distribution loss, LCol, lost colour features, whereas the 

3D model could not be generated. This indicates that LCol significantly affects the 

distribution of pixel values in each channel (RGB) of the image. 

There was no significant degradation in the image quality, and the original pixel 

features were retained even more when the exposure control loss LExp was discarded. 

However, the 3D reconstruction results indicated that the absence of LExp reduced the 

number of sparse point clouds. This indicates that LExp is still necessary for low-light 

enhancement, although it may be counterintuitive. 

The ablation results of the boundary penalty loss LBou show that all boundaries of the 

pipe targets and the background disappear. In this case, 3D reconstruction was 

impossible. This differs from the assumption that only the pipeline boundary is 

affected when the LBou is designed, as expected. However, this also showed that the 

restriction of the horizontal and vertical gradient operations by LBou affected the 

improvement in the low-light boundary. 

The average enhancement ratio (15.63%) after LGro removal was higher than the total 

loss ratio (11.52%). However, the performances of some groups decreased (500 mm 

and two pipes). This finding suggests the following. 1) The ZDE3D model still has the 

potential to continue improving the 3D reconstruction performance under low-light 

conditions. 2) Removing LGro affects the robustness of the model. The current study 

primarily considered the stability performance of the model to be more suitable for the 

complex environment at the construction site; therefore, LGro was retained. If others 

value the enhanced capability of the model for low-light 3D reconstruction, they can 
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choose to remove it. 

 

Figure 5-3 Enhanced output samples under difference loss functions 

 

Table 5-4 Loss-function ablation experiment results (This table only shows the 

results of removing the LExp loss or LGro loss; the other three types of loss (LSpa, LCol, 

and LBou) are not listed because they are critical to the success of the final 3D point-

cloud generation. If remove any one of them, the generation process will fail.) 

Categories 

Point-

cloud 

quantity 

(low light) 

Point-

cloud 

quantity 

(total loss 

enhanced) 

Point-cloud 

quantity 

(partial loss 

enhanced) 

Enhanced 

ratio 

Record 

accuracy 

Exposure loss (LExp) ablation 

300 mm & 

One pipe 
3162 3804 1284 - 59.39% 100.00% 

300 mm & 

Two pipes 
4069 4553 2033 - 50.03% 97.78% 

500 mm & 

One pipe 
4137 4724 2967 - 28.28% 98.89% 

500 mm & 

Two pipes 
2949 3115 1792 - 39.23% 96.67% 

700 mm & 3699 4024 1880 - 49.17% 97.78% 
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Categories 

Point-

cloud 

quantity 

(low light) 

Point-

cloud 

quantity 

(total loss 

enhanced) 

Point-cloud 

quantity 

(partial loss 

enhanced) 

Enhanced 

ratio 

Record 

accuracy 

One pipe 

700 mm & 

Two pipes 
6934 8240 3962 - 42.36% 98.89% 

Average / / / - 44.74% 98.34% 

Group loss (LGro) ablation 

300 mm & 

One pipe 
3162 3804 4101 29.69% 97.78% 

300 mm & 

Two pipes 
4069 4553 4908 20.61% 100.00% 

500 mm & 

One pipe 
4137 4724 4167 0.72% 98.89% 

500 mm & 

Two pipes 
2949 3115 2730 - 7.42% 97.78% 

700 mm & 

One pipe 
3699 4024 4437 19.95% 98.89% 

700 mm & 

Two pipes 
6934 8240 9032 30.25% 97.78% 

Average / / / 15.63% 98.52% 

 

5.4.2 Comparison experiments with existing methods 

To verify whether the proposed ZDE3D model has significant advantages over existing 

methods, three groups of actual construction site datasets mentioned in Section 4.4 

(Group 1, Group 2, and Group 3) were used to verify the effects of different models. 
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To be representative, the brightness, contrast, supervised deep learning (LLNet), zero-

DCE (unsupervised deep learning), and ZDE3D (this study) were tested. The 

experimental results are presented in Table 5-5. 

Table 5-5 Comparison experiments results 

Categories 

Point-

cloud 

quantity 

(low light) 

Point-cloud 

quantity 

(ours) 

Point-cloud 

quantity 

(compare 

method) 

Enhanced 

ratio 

Record 

accuracy 

Brightness 

Group 1 38,372 53,519 44,551 16.10% 96.78% 

Group 2 12,566 16,984 15,768 25.48% 97.06% 

Group 3 28,596 37,195 35,885 25.60% 97.34% 

Average / / / 22.39% 97.06% 

Contrast 

Group 1 38,372 53,519 46,164 20.30% 99.30% 

Group 2 12,566 16,984 16,714 33.00% 96.89% 

Group 3 28,596 37,195 36,805 28.71% 97.17% 

Average / / / 27.33% 97.79% 

RetinexNet (Supervised Deep learning) 

Group 1 38,372 53,519 48,210 25.64% 97.73% 

Group 2 12,566 16,984 5,773 -54.06% 98.01% 

Group 3 28,596 37,195 31,121 8.83% 98.29% 

Average / / / -6.53% 98.01% 

Zero-DCE (Unsupervised deep learning) 

Group 1 38,372 53,519 41,091 7.09% 98.85% 

Group 2 12,566 16,984 10,544 -16.09% 99.13% 

Group 3 28,596 37,195 37,431 30.90% 99.41% 
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Categories 

Point-

cloud 

quantity 

(low light) 

Point-cloud 

quantity 

(ours) 

Point-cloud 

quantity 

(compare 

method) 

Enhanced 

ratio 

Record 

accuracy 

Average / / / 7.30% 99.13% 

ZDE3D (Ours) 

Group 1 38,372 53,519 / 39.47 % 97.53% 

Group 2 12,566 16,984 / 35.16% 98.41% 

Group 3 28,596 37,195 / 30.07 % 98.08% 

Average / / / 34.90% 98.01% 

 

The comparison experiments showed that the proposed ZDE3D model had the best 

UU 3D reconstruction enhancement performance among all tested models. Among 

them, the parameters of traditional methods (Brightness, Contrast) are prior set 

manually respectively (brightness: (G1:0.4, G2:0.4, G3:0.3) and contrast: (G1:0.4, 

G2:0.5, G3:0.4)). Other models applied optimal weights, which have been verified in 

previous studies. Except for the zero-DCE method in Group 3 (only 0.83% higher than 

ours), the enhanced ratios of the comparison methods were lower than that of the 

proposed ZDE3D model. 

5.5 Chapter summary 

To improve the 3D reconstruction performance of the as-built UU in low-light 

environments, a zero-reference (unsupervised) deep-learning model for low-light 

image enhancement in UU 3D reconstruction is proposed (ZDE3D) in this thesis. The 

main innovations are as follows: (1) A new unsupervised learning model is proposed 

that can effectively improve the 3D reconstruction effect of UU in a low-light 

environment. (2) Filling the gap in the image-based UU documentation 

implementation field in low-light environments. (3) This thesis attempts to use a deep-

learning method to learn mapping from the perspective of the relationship between 
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pixels to achieve a better 3D reconstruction effect. 

Real construction site experiments showed a promising result that the ZDE3D model 

could effectively improve the image-based 3D reconstruction performance in a low-

light environment. The number of sparse reconstruction point clouds was improved by 

13.19 % on average, and the average reconstruction accuracy was 98.58%. The 

improvement in 3D reconstruction in a low-light environment can expand the 3D 

recording efficiency and feasibility of image-based as-built UU projects. The O&M of 

the UU project cloud also benefits from the as-built 3D information collected on-site 

in the future. 
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Chapter 6 : Developing GCN-based UU topology information completion model 

6.1 Chapter introduction 

This section presents the details of the UUTC. Comparative experiments with different 

missing data ratios (from 5% to 80%) in real-world datasets are introduced. Five 

mainstream GCN models (GCN (Kipf & Welling, 2017), ChebGCN (Defferrard et al., 

2017), SAGEGCN (Hamilton et al., 2017), GATGCN (Veličković et al., 2018), and 

TAGCN (Du et al., 2017)) were used as control groups to verify the effectiveness of 

the UUTC model by completing the UU topological information. The Discussion 

section compares the effects of the proposed UUTC and GATGCN models and 

analyses the misjudgement scenarios. All experimental work in this study was 

completed in a Python 3.8 environment with a Deep Graph Library (DGL 

(https://www.dgl.ai/)). 

6.2 Detailed design of the UUTC model 

6.2.1 Overview of the UUTC model 

 

Figure 6-1 Framework of UUTC model 

The UUTC model comprises four main modules: input, SEM, convolution, and link 

prediction, as shown in Figure 6-1. The model takes the observed topological 

relationships and node attribute information of the UU network as input and aims to 
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generate completed network topology relationship data as output. The input module 

plays a crucial role in converting the UU network information into graph structure data 

that the GCN model can effectively recognise. Subsequently, the SEM module 

leverages the attribute features of each node from the input data to create additional 

feature attributes, enrich the node features, and provide essential information for 

subsequent topological completion prediction tasks. The convolution module serves 

as the central functional component of the UUTC model. Inspired by the working 

principles of CNNs, it facilitates network operations compatible with graph structures, 

enabling the learning and updating of weight parameters. Furthermore, drawing 

inspiration from the GATGCN model, the convolution module incorporates a multi-

head self-attention mechanism to enhance information interaction and feature 

aggregation between nodes more effectively. Finally, the link prediction module 

quantitatively assesses the potential connection likelihood between each node and 

delivers comprehensive UU network topology connection information after 

completion. By integrating these four modules, the UUTC model demonstrates the 

capability of completing missing topological relations in the UU network, thereby 

contributing to improving the network management and decision-making processes. 

6.2.2 Input module 

To enable the prediction of topological relationships among UUs, this model initially 

converts historical data, presented in tabular form, into a graph structure data format 

comprising nodes, edges, and attributes. As illustrated in Figure 6-2, each pipe in the 

original incomplete tabular data corresponds to a node, with the characteristics of the 

pipe serving as attributes of the node. The graph represents any connection between 

two pipes as an undirected edge. This graph-based representation facilitates the 

analysis and modelling of the UU network, enabling the prediction of interconnected 

relationships among utilities for more effective management and decision-making 

processes. 
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Figure 6-2 An illustration of converting tabular data into graph data 

6.2.3 SEM module 

The essence of predicting the missing topology lies in predicting the connection 

relationships among pipeline nodes in the target area. In practical UU engineering, 

nodes with similar attributes exhibit a significantly higher likelihood of being 

interconnected than those with substantial differences do. For example, pipelines that 

share similar attribute characteristics are more likely to form topological connections 

in a given target area. By contrast, pipelines within different attribute clusters are less 

likely to exhibit such relationships. Drawing from this domain knowledge, the UUTC 

model introduces a SEM to assess the similarity between pipeline nodes, thereby 

enhancing the accuracy of the model in predicting topological relationships. This 

module leverages attribute clustering to identify nodes with shared characteristics, 

thereby facilitating precise and informed predictions of the UU network's 

interconnectedness. As a result, in incorporating the SEM enhances the UUTC model's 

performance in effectively completing missing topology data, contributing to the 

improvement of UUs management and decision-making processes. The SEM 
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module primarily includes the following three components: Polynomial 

transformation, Similarity calculation, and feature fusion: 

1) Polynomial transformation. Polynomial transformation is a data transformation 

technique that is commonly used in machine learning. By introducing power 

combinations of the original features, polynomial transformations can capture the non-

linear relationships in the data. The various node attributes in the graph input formed 

by the UU data are combined in a higher-dimensional space to form new valuable 

features, as shown in Eq. 6-1. Each item in 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑛)  represents a new 

attribute feature and n represents the total number of input graph features. 𝑥𝑖, 𝑥𝑗 and 

𝑥𝑘 denote the different node characteristics. To avoid the over-fitting phenomenon due 

to excessively high dimensionality and high data calculation, the complexity degree 

was selected as 3 in this study. Each term in the Eq. 6-1 was then entered into the 

model as a new attribute of the node. This operation enables the model to improve the 

available data characteristics without increasing the external data input, thereby 

improving the prediction performance of the node topology-completion task. 

𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = ∑ 𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑥𝑖𝑥𝑗

𝑛
𝑖,𝑗=1 + ∑ 𝑥𝑖𝑥𝑗𝑥𝑘

𝑛
𝑖,𝑗,𝑘=1   Eq. 6-1 

2) Similarity calculation. A polynomial transformation improves the expressive ability 

of node features through a combination of different attribute features. On this basis, 

the similarity calculation uses all the characteristic attributes of each node (including 

initial characteristic attributes and polynomial characteristic attributes) as the overall 

representation vector of node attributes and uses Euclidean distance to calculate the 

overall similarity 𝑆. Among them, 𝐴𝑖 and 𝐵𝑖 represent the values of the two node 

vectors participating in the calculation in the i-th dimension. Subsequently, the 

similarity index 𝑆𝑐  between each node in different attribute combination dimensions 

is calculated, as shown in Eqs. 6-2 and 6-3. Among them, 𝐴𝑗  and 𝐵𝑗 respectively, 

represent the values of the two node vectors participating in the calculation in the j-th 

dimension, and 𝑀 represents different combinations of attributes. 

𝑆 =  √∑(𝐴𝑖 − 𝐵𝑖)(𝐴𝑖 − 𝐵𝑖)   Eq. 6-2 
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𝑆𝑐 =  √∑(𝐴𝑗 − 𝐵𝑗)(𝐴𝑗 − 𝐵𝑗)) ( 𝑗 ⊂ {𝑀})  Eq. 6-3 

Based on polynomial transformation, the similarity calculation creates a new attribute 

feature expression to improve the possibility of successful topological link prediction. 

As shown in Figure 6-3, the similarity relationship between the nodes after the 

similarity calculation operation of the original graph input is embedded in the 

proximity relationship in Euclidean space. In other words, the more similar the nodes, 

the closer the similarity index. This echoes prior knowledge that, in UU engineering 

practice, the possibility of a connection relationship between pipeline nodes with 

similar attributes is significantly greater than that of pipelines with large differences. 

 

Figure 6-3 An illustration of similarity calculation in two dimensions 

3) Feature fusion. After the above two steps, each UU node creates a set of new 

meaningful attribute features without any external data input, based on the original 

attribute feature. Feature fusion allows each node to have the same calculation 

dimension, which is important for subsequent calculation tasks and processing, 

thereby ensuring the consistency and comparability of features between nodes. 

Completing this step means that the original attribute features and newly generated 

meaningful attribute features are integrated, providing a consistent and complete node 

feature representation for the next analysis and application. 

6.2.4 Convolution module 

The convolution module primarily includes two key parts: graph convolution and 
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multi-head attention. As shown in Figure 6-4, graph convolution is an operation for 

the feature propagation and aggregation of graph-structured data. It updates the feature 

representation of the node based on its neighbour’s information. The convolution 

module uses two graph volume base layers with a multi-head self-attention mechanism, 

dropout layer, and ELU activation function to use the connection relationship in the 

graph structure to propagate information to achieve a convolution effect similar to 

Euclidean structure data. For the node-update equations, Eqs. 6-4, 6-5, and 6-6; A 

represents the adjacency matrix input by the graph; I represents the identity matrix; �̃� 

represents the degree matrix of �̃�; 𝜎 represents the activation function, namely ELU; 

𝑊(𝑙) represents the weight parameter; and 𝐻(𝑙) and 𝐻(𝑙+1) represent the features of 

the input layer and the updated features in the next layer, respectively. Thus, the model 

only needs to learn to update the weight 𝑊(𝑙) through back-propagation to achieve 

convolutional feature extraction, thereby providing the basis for implementing the 

subsequent link prediction module. 

�̃� = 𝐴 + 𝐼  Eq. 6-4 

�̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗   Eq. 6-5 

𝐻(𝑙+1) = 𝜎(�̃�−
1

2�̃��̃�−
1

2𝐻(𝑙)𝑊(𝑙))  Eq. 6-6 

 

Figure 6-4 An illustration of CNN (Euclid structure) and GCN (graph structure) 

convolution operation 

Multi-head self-attention is an extension of the attention mechanism that can capture 
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complex node relationships and dependencies. The GATConv layer in the convolution 

module incorporates a multi-head attention mechanism to model the relationship 

between the nodes. By introducing multiple attention heads, each of them can focus 

on different feature subspaces and learn different attention weights. This can improve 

the expressiveness and generalisation ability of the model, allowing nodes to carry out 

information transfer and interaction on different feature subspaces. As shown in Figure 

6-5, h1 and h'1 represent the characteristics of the nodes before and after updating, 

respectively, and w1, w2, ..., and w6 represent the update weights between nodes. When 

updating nodes, if only the traditional GCN convolution is used for learning, the 

difference in the influence of different nodes on the target node cannot be realised. 

Therefore, by adding a multi-head self-attention mechanism, adding a judgement 

operation to the influence of information transfer between nodes can effectively help 

the model mine the utilisation potential of node information. In Figure 6-5, different 

arrow styles and colours denote independent attention computations. The aggregated 

features from each head were concatenated or averaged to obtain h'1. 

 

Figure 6-5 Multi-head attention (in GATConv) 

6.2.5 Link prediction module 

The essence of UU topology completion is the link prediction task in the graph data. 

After the operation of these modules, many features with abstract information were 

extracted. The link prediction module uses these features to calculate the possibility 

score 𝑦𝑢,𝑣 for any pair of nodes between them (e.g. ℎ𝑢and ℎ𝑣) (see Eq. 6-7). Among 
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them, ∅ represents the dot production predictor. The topological information of the 

UU nodes is obtained by sorting all connection possibility scores to select node pairs 

that are trusted to have a connection relationship. 

𝑦𝑢,𝑣 = ∅ (ℎ𝑢, ℎ𝑣)   Eq. 6-7 

6.3 Experiment results 

6.3.1 Experiment results under different missing rate conditions 

To validate the effect of the proposed UUTC model in the UU topology-completion 

task, comparative experiments were conducted under different missing data ratios 

(from 5% to 80%) in the real dataset. In the experiment, the UUTC model and five 

mainstream GCN models (GCN (Kipf & Welling, 2017), ChebGCN (Defferrard et al., 

2017), SAGEGCN (Hamilton et al., 2017), GATGCN (Veličković et al., 2017), and 

TAGCN (Du et al., 2017)) were used as control groups to verify the effectiveness of 

the model by completing the UU topological relationship. Table 6-1 and Figure 6-6 

shows the UU topology-completion metrics for all experimental conditions. The 

following conclusions can support the experimental results: 1) Except for the Group 3 

experiment with the least number of nodes, the index of the comparison model is better 

than that of the proposed model, and the remaining indices show that the UUTC model 

can obtain better UU topology-completion accuracy under the same conditions. The 

average completion accuracy (AP) of the UUTC model in the three experiments 

reached 85.33%, surpassing the performance of the existing mainstream methods 

(GCN 76.78%, ChebGCN 76.37%, SAGEGCN 79.37%, GTAGCN 80.85%, and 

TAGCN 79.44%). 2) As the proportion of missing data increased, the accuracy of 

completion also decreased. This feature was present in all the experiments, including 

the control and proposed models. However, it is worth noting that the proposed model 

maintains high completion accuracy without a large amount of data. 3) When the UU 

network was small in scale and the missing data ratio was low, it was not significantly 

better than the control model. However, the UUTC model gradually showed its 

accuracy advantages when the proportion of missing data was further increased. 
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Table 6-1 Experiment results under different missing rate conditions 

Area 1 (26,627 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

missing data 5% 

ACC 0.75 0.78 0.75 0.77 0.76 0.80 

AUC 0.86 0.83 0.85 0.88 0.87 0.91 

F1 0.80 0.81 0.79 0.81 0.80 0.83 

AP 0.84 0.80 0.83 0.87 0.86 0.90 

missing data 10% 

ACC 0.75 0.76 0.75 0.77 0.75 0.80 

AUC 0.85 0.83 0.84 0.88 0.87 0.91 

F1 0.79 0.80 0.79 0.80 0.80 0.83 

AP 0.83 0.79 0.83 0.86 0.85 0.90 

missing data 20% 

ACC 0.75 0.76 0.75 0.76 0.75 0.79 

AUC 0.85 0.82 0.83 0.86 0.86 0.91 

F1 0.79 0.80 0.79 0.80 0.79 0.82 

AP 0.83 0.78 0.81 0.85 0.84 0.89 

missing data 30% 

ACC 0.74 0.75 0.73 0.75 0.74 0.79 

AUC 0.84 0.81 0.81 0.86 0.85 0.90 

F1 0.79 0.79 0.73 0.79 0.78 0.82 

AP 0.82 0.77 0.79 0.83 0.84 0.88 

missing data 40% 

ACC 0.73 0.74 0.74 0.75 0.74 0.78 

AUC 0.82 0.81 0.81 0.84 0.83 0.88 

F1 0.78 0.78 0.78 0.79 0.77 0.81 

AP 0.80 0.77 0.78 0.82 0.82 0.87 
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Area 1 (26,627 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

missing data 50% 

ACC 0.73 0.73 0.73 0.74 0.73 0.76 

AUC 0.81 0.80 0.80 0.83 0.82 0.87 

F1 0.77 0.77 0.78 0.78 0.76 0.80 

AP 0.79 0.76 0.77 0.81 0.81 0.86 

missing data 60% 

ACC 0.72 0.73 0.73 0.73 0.72 0.76 

AUC 0.80 0.79 0.79 0.82 0.80 0.87 

F1 0.77 0.77 0.77 0.77 0.75 0.80 

AP 0.78 0.75 0.77 0.80 0.79 0.85 

missing data 70% 

ACC 0.72 0.72 0.72 0.72 0.71 0.76 

AUC 0.79 0.78 0.78 0.80 0.79 0.86 

F1 0.76 0.76 0.77 0.77 0.74 0.79 

AP 0.76 0.74 0.75 0.78 0.77 0.85 

missing data 80% 

ACC 0.71 0.72 0.71 0.71 0.71 0.75 

AUC 0.78 0.77 0.76 0.79 0.78 0.84 

F1 0.76 0.76 0.76 0.76 0.75 0.78 

AP 0.75 0.73 0.72 0.77 0.75 0.83 

 

Area 2 (10,227 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

missing data 5% 

ACC 0.76 0.77 0.75 0.77 0.76 0.79 

AUC 0.87 0.85 0.87 0.89 0.89 0.92 
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Area 2 (10,227 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

F1 0.80 0.81 0.80 0.81 0.81 0.82 

AP 0.85 0.82 0.85 0.87 0.88 0.91 

missing data 10% 

ACC 0.76 0.77 0.76 0.76 0.76 0.79 

AUC 0.86 0.84 0.86 0.88 0.88 0.92 

F1 0.80 0.81 0.80 0.80 0.80 0.82 

AP 0.84 0.81 0.84 0.86 0.87 0.91 

missing data 20% 

ACC 0.75 0.76 0.75 0.75 0.75 0.78 

AUC 0.85 0.83 0.84 0.87 0.87 0.91 

F1 0.80 0.80 0.79 0.79 0.79 0.82 

AP 0.84 0.79 0.83 0.85 0.85 0.90 

missing data 30% 

ACC 0.75 0.75 0.74 0.75 0.75 0.78 

AUC 0.84 0.83 0.83 0.85 0.86 0.90 

F1 0.79 0.79 0.79 0.79 0.79 0.82 

AP 0.82 0.79 0.82 0.83 0.84 0.89 

missing data 40% 

ACC 0.75 0.75 0.74 0.75 0.74 0.78 

AUC 0.84 0.82 0.82 0.85 0.84 0.89 

F1 0.79 0.79 0.78 0.79 0.78 0.81 

AP 0.82 0.78 0.80 0.83 0.83 0.88 

missing data 50% 

ACC 0.74 0.74 0.73 0.73 0.73 0.78 

AUC 0.83 0.81 0.81 0.84 0.83 0.88 

F1 0.78 0.78 0.78 0.78 0.77 0.81 
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Area 2 (10,227 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

AP 0.81 0.78 0.88 0.82 0.82 0.88 

missing data 60% 

ACC 0.74 0.74 0.73 0.73 0.73 0.77 

AUC 0.82 0.81 0.80 0.82 0.81 0.87 

F1 0.78 0.78 0.78 0.77 0.77 0.80 

AP 0.80 0.78 0.78 0.81 0.80 0.86 

missing data 70% 

ACC 0.72 0.73 0.73 0.73 0.72 0.76 

AUC 0.80 0.80 0.80 0.81 0.81 0.86 

F1 0.77 0.77 0.77 0.77 0.76 0.80 

AP 0.78 0.77 0.76 0.79 0.79 0.85 

missing data 80% 

ACC 0.71 0.72 0.71 0.72 0.72 0.76 

AUC 0.79 0.79 0.77 0.79 0.79 0.84 

F1 0.76 0.76 0.76 0.76 0.76 0.79 

AP 0.76 0.75 0.74 0.77 0.76 0.83 

 

Area 3 (1,059 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

missing data 5% 

ACC 0.70 0.70 0.72 0.72 0.71 0.71 

AUC 0.79 0.76 0.81 0.86 0.83 0.86 

F1 0.76 0.76 0.78 0.77 0.77 0.76 

AP 0.80 0.75 0.82 0.86 0.83 0.86 

missing data 10% 

ACC 0.72 0.72 0.72 0.71 0.70 0.72 
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Area 3 (1,059 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

AUC 0.81 0.77 0.81 0.84 0.82 0.84 

F1 0.78 0.77 0.77 0.76 0.76 0.77 

AP 0.81 0.76 0.81 0.85 0.81 0.85 

missing data 20% 

ACC 0.71 0.72 0.71 0.71 0.70 0.72 

AUC 0.83 0.77 0.80 0.85 0.81 0.85 

F1 0.77 0.78 0.76 0.76 0.76 0.77 

AP 0.82 0.75 0.80 0.85 0.81 0.83 

missing data 30% 

ACC 0.70 0.71 0.72 0.71 0.70 0.72 

AUC 0.81 0.78 0.79 0.82 0.80 0.82 

F1 0.76 0.76 0.76 0.77 0.75 0.77 

AP 0.80 0.76 0.79 0.82 0.79 0.82 

missing data 40% 

ACC 0.69 0.69 0.71 0.69 0.69 0.71 

AUC 0.80 0.77 0.78 0.80 0.79 0.81 

F1 0.76 0.75 0.75 0.75 0.73 0.76 

AP 0.79 0.74 0.77 0.79 0.78 0.81 

missing data 50% 

ACC 0.68 0.69 0.71 0.69 0.69 0.71 

AUC 0.80 0.77 0.78 0.80 0.78 0.80 

F1 0.75 0.75 0.75 0.75 0.73 0.76 

AP 0.79 0.75 0.78 0.80 0.77 0.80 

missing data 60% 

ACC 0.68 0.68 0.68 0.68 0.69 0.69 

AUC 0.78 0.76 0.76 0.79 0.79 0.80 
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Area 3 (1,059 nodes) 
 

GCN ChebGCN SAGEGCN GATGCN TAGCN ours 

F1 0.75 0.74 0.73 0.75 0.74 0.75 

AP 0.78 0.75 0.75 0.78 0.77 0.80 

missing data 70% 

ACC 0.67 0.67 0.67 0.68 0.68 0.69 

AUC 0.76 0.75 0.75 0.76 0.75 0.77 

F1 0.74 0.73 0.73 0.74 0.73 0.75 

AP 0.76 0.73 0.74 0.76 0.74 0.78 

missing data 80% 

ACC 0.67 0.66 0.66 0.66 0.65 0.68 

AUC 0.76 0.73 0.73 0.74 0.71 0.77 

F1 0.74 0.73 0.72 0.73 0.71 0.74 

AP 0.76 0.70 0.72 0.74 0.71 0.77 
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Figure 6-6 Completion experiment results under different missing conditions 
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6.4 Discussion on GCN-based UU topology information completion model 

(Objective 4) 

6.4.1 Comparison of GATGCN and proposed model 

The proposed UUTC model was inspired by the GATGCN model, and both the models 

used the GCN fusion GAT framework. To make the GATGCN and UUTC models 

comparable, both models used the same feature extraction structure, self-attention 

mechanism, and activation function. The main difference between the two is that the 

UUTC model adds SEM based on prior knowledge of the UU field to improve the 

data-expression ability of the input graph under the condition of limited attribute 

characteristics. From the perspective of the experimental data, the UUTC model, after 

adding the SEM module, obtains better UU topology-completion capabilities, and the 

completion accuracy is improved to varying degrees, as shown in Figure 6-7. It is 

worth noting that in the Group 3 experiment, at some missing rates (20%, 30%, and 

40%), GATGCN had better completion accuracy, which may be affected by the amount 

of input data. During the training process, the SEM mapping of attribute features 

caused a decrease in model accuracy. This leads to an unstable performance of the 

UUTC model when the observed sample size is small, but the UUTC model can 

achieve the highest accuracy in the rest of the cases. Overall, the proposed model 

significantly outperformed other models in most cases. 
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Figure 6-7 Comparison of GATGCN and proposed model 

6.4.2 Incorrect predictions 

The findings presented in Section 6.3, comprising three sets of experimental data, 

demonstrate that the proposed UUTC model achieves a commendable average 

accuracy of up to 85.33% in completing the network topology. Although these 

outcomes are promising, they also underscore the untapped potential of enhancing the 

precision of topological relationship predictions among UU nodes. To gain deeper 

insights into the underlying causes of inaccuracies in the UUTC model predictions, 

this section strategically identifies two instances of judgement errors from the 

experiments. An in-depth analysis of these cases was conducted. 
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Figure 6-8 Incorrect predictions Position 1 

As shown in Figure 6-8, the UUTC model determines the existence of a topological 

link between the two pipelines, whereas the empirical data contradict this prediction 

by revealing their non-connectedness. Several underlying factors may account for this 

discrepancy: 1) network complexity. The core principle underlying the utilisation of 

GCN for topological relationship completion is to summarise and evaluate the 

distribution of topological configurations within a pipe network. Throughout this 

process, as the complexity of the UU network escalates, certain patterns may emerge 

at a higher frequency than others. This discrepancy in pattern occurrence could induce 

a bias within the model's learning, potentially leading to an overemphasis on specific 

types of topological connection patterns, culminating in misjudgements. 2) Temporal 

information deficiency: As highlighted above, Conventional GCN models 

predominantly operate on a static graph structure and consequently neglect the 

dynamic evolution of temporal information. Given the intricate nature of underground 

pipe networks, the establishment and disruption of connections can be influenced by 

temporal factors and other dynamic variables. Disregarding this temporal context can 

result in inaccurate connection forecasts. 3) Edge-weight considerations. While the 

connection relationships of the UU network are abstracted into undirected edges, the 

intrinsic significance of these edges and their potential impact on the topological 

relationship inference should be considered. Neglecting this facet may contribute to 
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misaligned judgements regarding the topological connections. These considerations 

underscore the multifaceted nature of the observed instances of misjudgement and 

emphasise the need for comprehensive enhancements in the UUTC model. Addressing 

these limitations, particularly by incorporating temporal dynamics, accounting for 

edge weights, and refining model training on complex networks, may contribute to 

refining the accuracy of topological relationship predictions within the UU domain. 

 

Figure 6-9 Incorrect predictions Position 2 

As shown in Figure 6-9, the UUTC model prediction indicates that no topological 

linkage exists between two specific pipes; however, empirical evidence confirms the 

presence of such a connection. The following factors potentially underlie this 

misjudgement: 1) Spatial information deficiency. The approach in this study involves 

integrating the original linear pipeline structure into graph nodes endowed with 

attribute information. However, this abstraction results in the loss of intricate spatial 

relationships at both ends of the pipeline. This spatial information gap is a key 

contributor to observed misclassifications. 2) Feature gaps. Underground-pipeline 

network data may encompass critical attributes that must be accurately extracted or 

adequately represented. Consequently, the model can be used to effectively discern the 

interconnections between the pipelines. To widen the model's applicability, this thesis 

focused solely on the four most prevalent attributes for decision making, potentially 

rendering the model insufficiently equipped to discern connections between pipelines 
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that are genuinely linked within certain contextual scenarios. 

Furthermore, potential data inaccuracies, such as erroneous connection markers, 

flawed measurement values, or data entry discrepancies, could also contribute to the 

aforementioned judgement errors. The data entry process for the original database 

entails meticulous and repetitive work, susceptible to the influence of uncontrollable 

factors that may introduce inaccuracies into the UU network data. These inaccuracies 

might become part of the learning process for the GCN models during training, leading 

to erroneous connection predictions. 

6.5 Chapter summary 

A UU pipeline network is one of the most important infrastructures for guaranteeing 

the basic functions of a city. However, for long-term reasons, the lack of a UU topology 

relationship often requires expensive manual inspection methods. To solve this 

problem, this study proposes a deep-learning model based on a GCN by abstracting 

UU pipe network information into graph nodes and attributes to use the observed data 

to complete missing topological relationships. The experimental results show that the 

proposed model can effectively complete the UU topological relations (AP of 85.33%) 

for different proportions of missing topological relations. This study explored a new 

UU data-completion method. The model proposed in this study effectively improves 

the accuracy of the data-driven UU topological relationship completion method. The 

proposed UUTC model potentially provides a low-cost decision-making tool for 

stakeholders in UU facility management. 
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Chapter 7 : Discussions 

7.1 Knowledge area in UUs 3D reconstruction 

Accurate mapping and modelling of UUs are critical for urban planning, construction, 

and maintenance, helping to avoid costly and dangerous mistakes (Underground-

Pipeline Committee of the China Planning Association, 2020; Pipeline and Hazardous 

Materials Safety Administration, 2021; Tanoli et al., 2019). Historically, the field has 

evolved from rudimentary manual detection methods and 2D records to sophisticated 

3D reconstruction technologies, driven by the need for precision, safety, and efficiency. 

Initially, UU 3D reconstruction relied on physical records and manual probing, which 

were often inaccurate and incomplete (University of Birmingham et al., 2012; Wang 

& Yin, 2022b). The advent of geophysical surveying methods in the mid-20th century 

marked a significant advancement, offering non-invasive methods to detect subsurface 

objects. The last two decades have seen rapid advancements in 3D reconstruction 

techniques, driven by improvements in sensor technology, data processing algorithms, 

and computational power. Techniques such as laser scanning (Bosché et al., 2015), 

photogrammetry (Javadnejad et al., 2017), and the integration of deep learning (Zong 

et al., 2019; Jaufer et al., 2021) have become crucial for creating detailed 3D models 

of underground infrastructure. The development history of the 3D reconstruction of 

UUs reflects a field that has continually evolved to meet the demands of urban 

development and infrastructure management. From basic manual methods to advanced 

digital technologies, progress in this field has significantly reduced the risks and 

improved the efficiency of construction and maintenance activities. 

However, although new technologies have improved the efficiency of UU 3D 

reconstruction, they have also created new problems. Through a literature review of 

existing research, this thesis found the following three key problems that affect the 3D 

reconstruction effect of UU at different life-cycle stages. 

1) Environmental noise problem in GPR-based non-destructive UU 3D 

reconstruction. The environmental noise problem in the GPR-based non-destructive 
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3D reconstruction of UUs (scenarios where existing utilities are covered by soil layers) 

is a critical issue that affects the precision and reliability of the reconstruction process 

(Zhang et al., 2016; Šarlah et al., 2020). GPR serves as a cornerstone technology in 

the field of UU 3D reconstruction, owing to its ability to penetrate subsurface layers 

and detect buried objects. Despite its widespread use, GPR encounters challenges 

stemming from various sources of environmental noise. These include high-voltage 

electricity, rock mass, and complex soil conditions (Lei et al., 2019; Singh et al., 2013; 

Adouane et al., 2021), which can obscure important features and degrade the quality 

of reconstructed 3D models. Addressing these noise-related issues is paramount for 

improving the effectiveness and precision of GPR-based reconstruction, thus enabling 

better urban planning, construction, and maintenance practices. 

2) Low-light illumination problem in image-based exposed UU 3D reconstruction. 

Owing to tight construction schedules or requirements to avoid social impacts (e.g. 

traffic congestion (Broere et al., 2016)), it is a commonly performed UU 3D 

reconstruction under low-light conditions (Nguyen et al., 2014a; Nguyen et al., 2014b). 

The low-light illumination problem presents a significant obstacle in image-based 

exposed UU 3D reconstruction (such as new installation, maintenance, and repair 

scenarios), particularly in scenarios where lighting conditions are suboptimal or 

insufficient. Numerous studies have shown that lighting conditions significantly affect 

the quality of image-based 3D reconstructions, such as Bruno et al. (2021), Kanellakis 

et al. (2019), and Tang et al. (2019). Low-light conditions, such as those encountered 

during night-time operations or in poorly lit environments, pose challenges in 

obtaining high-quality images with sufficient contrast and detail. Overcoming the low-

light illumination problem requires innovative techniques and technologies that 

enhance image clarity, reduce noise, and improve the overall quality of the 

reconstructed 3D models. Effective solutions in this area are essential for advancing 

UU management practices and for ensuring the safety and efficiency of infrastructure 

development projects. 
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3) Missing information in the UU topology structure reconstruction. For a long 

time, UU information has been recorded on paper files (Pickering et al., 1993; Wang 

et al., 2019), and it is not uncommon for records to be lost because of incomplete 

records or recording errors due to the passage of time (Li et al., 2015; Al-Bayati et al., 

2019; Beck et al., 2009). The absence of utility data, particularly topological 

information, poses a significant obstacle to the comprehensive reconstruction and 

effective management of UUs. The lack of this information hampers the decision-

making processes related to infrastructure planning, maintenance, and emergency 

response. 

To address the above issues, this thesis aims to improve the data-collection process 

and accuracy of the data used in the 3D reconstruction of the as-built UU. By obtaining 

better data and more accurate 3D reconstructions, the management decision making of 

UU operation maintenance rehabilitation and renewal can be potentially improved. To 

achieve the aim of having more accurate and reliable 3D reconstructions, this thesis 

proposed a unified framework to solve the 3D reconstruction problem of UU in all 

stages of its life-cycle, which include the following three aspects. 

1) Develop a novel GPR-based as-built UU-localised deep-learning model for non-

destructive scenarios. This thesis developed a novel GPR-based as-built UU 

localisation deep-learning model, resulting in the creation of the EUUL model, 

validated through three experiments in real-world settings. The findings indicate that 

the EUUL model's precision reached 97.01%, operating speed was 125 fps, and 

precision was 96.72%, even in noisy environments, surpassing existing models in 

terms of precision, operating speed, and robustness. The architecture of the EUUL 

model integrates a 'key point-regression' mode and an innovative anchor-free structure, 

supported by a lightweight CSPDarknet53 backbone, and enhanced by the ECA 

module. This configuration significantly improves precision and performance, while 

also increasing adaptability across diverse soil conditions. The anchor-free structure 

simplifies the model, reduces computational demands, and enhances the detection 
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accuracy of underground utilities in noisy environments. By eliminating the 

constraints of predefined anchor boxes, the anchor-free structure allows for direct 

localization of keypoints, enabling the model to dynamically adjust to varying object 

scales and densities in real-time, thus improving detection reliability. These 

improvements make the EUUL model highly effective for accurate, non-destructive 

location detection in various engineering applications, promising faster and more 

reliable results. The EUUL model incorporates an anchor-free structure and a 

lightweight CSPDarknet53 backbone which simplifies the computational demands. 

This structure eliminates the need for computationally expensive anchor boxes, 

thereby reducing the model's overall computational complexity. The key point-

regression mode enables efficient feature extraction and localization directly from the 

raw data, further streamlining processing. Due to its lightweight architecture and the 

dynamic nature of the anchor-free approach, the EUUL model scales well across 

different scenarios and soil types. Its ability to operate effectively in noisy 

environments and maintain high precision and speed (125 fps) showcases its capability 

to handle large-scale deployments and real-time applications in various engineering 

settings. 

2) Develop a novel unsupervised image-based 3D reconstruction model for the 

low-light 3D reconstruction of as-built UUs for exposed scenarios. In this study, an 

unsupervised deep-learning model, ZDE3D, was developed to enhance the low-light 

images in UU 3D reconstruction. The ZDE3D model yielded promising results in 

terms of improving the sparse reconstruction point-cloud quantity by an average of 

13.19% and achieving an average reconstruction accuracy of 98.58%. The 

unsupervised nature of the deep-learning method eliminates the need for pairs of 

training data, and the proposed five loss functions effectively enhance low-light UU 

images, outperforming traditional adjustment methods and existing deep-learning 

models in terms of UU 3D reconstruction enhancement performance. The 

unsupervised nature of the ZDE3D model reduces the computational burden typically 
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associated with supervised learning, as it does not require paired training data. The use 

of five specialized loss functions to enhance low-light images ensures that the model 

remains computationally efficient while focusing on feature enhancement and noise 

reduction, crucial for sparse reconstruction in low-light conditions. The ZDE3D model 

demonstrates an ability to improve the quantity of reconstruction point clouds by an 

average of 13.19% and achieve a high reconstruction accuracy of 98.58%. This 

indicates that the model can be effectively scaled to handle larger datasets and more 

complex 3D reconstruction tasks, particularly beneficial in real-world engineering 

applications where lighting conditions can vary significantly. 

3) Development of a novel GCN-based topology-completion model for as-built 

UUs. This thesis aimed to develop a GCN-based topology-completion model for as-

built UUs. The UUTC model outperformed the baseline models with an average 

completion accuracy of 85.33% across various missing topology rates. The proposed 

SEM proved effective in enhancing prediction accuracy by identifying nodes with 

shared attributes, which facilitated precise predictions of the UU network's 

interconnectedness. The UUTC model utilizes a Graph Convolutional Network (GCN) 

which is particularly suited for handling relational data like network topologies. The 

model’s complexity is moderated by the efficient processing of GCNs, which leverage 

the inherent sparsity of graph data, reducing the computational load compared to fully 

connected network approaches. The SEM (Shared-attributes Enhancement Module) 

within the UUTC model enhances its scalability by identifying nodes with shared 

attributes, which helps in accurate prediction across different sizes and complexities 

of UU networks. This ability ensures that the model can be scaled up to handle larger 

and more complex network topologies with varying degrees of missing data, proving 

its effectiveness in expansive urban planning and infrastructure management. 

7.2 Theoretical contribution to the knowledge areas 

The novelty of the proposed unified framework lies in its comprehensive and 

integrated approach to the 3D reconstruction of UUs, which addresses the limitations 
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and challenges of existing methods while leveraging emerging technologies and best 

practices. It represents a paradigm shift towards a more collaborative, data-driven, and 

sustainable approach to managing UUs in urban environments. 

For a long time, researchers have been pursuing more accurate 3D reconstruction of 

UU. For example, in 1988, Caldecott proposed a combined system using an impulse 

radar to map buried underground pipelines (Caldecott et al., 1988). In 2012, the UK 

conducted a project called MTU, which involved relatively comprehensive 3D 

reconstruction research on existing UUs of various materials and functions (University 

of Birmingham et al., 2012). In 2017, the Singapore Land Authority, in collaboration 

with the Singapore-ETH Centre, launched a system called Imagining a digitally 

enabled future (Yan et al., 2021) for digital twins of UUs to complement the 3D maps 

of the country and facilitate integrated planning and development. 

However, these existing studies have not established a unified reconstruction 

framework to cover the 3D reconstruction demands for the entire UU life-cycle. 

Conventional frameworks for UU 3D reconstruction have distinct limitations. First, 

these frameworks were unidimensional. Previous UU 3D reconstruction frameworks 

emphasised the geometric restoration of existing utilities, overlooking the 

incorporation of significant semantic data attainable during the new installation and 

maintenance phase, as well as the vital reconstruction of topological relationships 

crucial for expressing the functional dynamics of the utility network. For example, 

Bilal, Van, and Feng only considered data collection from the existing UU and ignored 

the topology information reconstruction crucial for the functional expression of the 

UU network (Bilal et al., 2018; Van et al., 2018; Feng et al., 2021a). Second, the 

conventional UU 3D reconstruction frameworks are inaccurate. The bulk of the data 

employed in traditional UU 3D reconstruction predominantly stems from existing 

utilities, thereby neglecting the new installation phase, which provides much useful 

information. Multiple studies (Bureau of Transportation Statistics, 2016; Van et al., 

2019; Wang et al., 2022b; Yan et al., 2019) have shown that exposed scenarios (e.g. 

new installation stage) are the best opportunity to conduct UU 3D reconstruction, 
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particularly semantic information. Consequently, this shortfall engenders a pervasive 

issue of suboptimal accuracy in the reconstruction models, as the opportune and 

optimal phase for achieving precision is inadequately noticed. Third, conventional 

frameworks for UU 3D reconstruction tend to incur substantial resource demand. 

Whether involving geometric or topological reconstruction, traditional frameworks 

heavily rely on field-based detections, such as GPR detection (De Coster et al., 2019; 

Özkaya et al., 2021). For example, Cazzaniga et al. (2013) and Dou et al. (2020) 

showed that performing a survey on the UU reconstruction of a large area is an 

expensive solution. This reliance necessitates significant investment in human 

resources and equipment costs, particularly when confronted with intricate and 

extensive urban infrastructure configurations. When faced with more complex and 

larger city-level situations, the cost disadvantage of traditional 3D reconstruction 

frameworks becomes more prominent. 

The proposed framework considers the entire life-cycle of UU projects, including the 

new installation, existing, maintenance, and repair stages, as well as the topology 

reconstruction stage. The unified framework for UU 3D reconstruction presented in 

this thesis offers distinct advantages over conventional frameworks. 1) User-friendly: 

The unified framework incorporates a highly automated 3D information collection 

method tailored to existing utilities and those associated with new construction 

projects. For example, the EUUL model eliminates the dependence on experts by 

solidifying domain knowledge into deep-learning models. This process can be realised 

using a readily available consumer-level smartphone, particularly in new construction 

settings. For example, in an image-based 3D reconstruction process performed in 

stages, such as a new installation, all process operations are based on an ordinary 

smartphone terminal. In addition, the topology reconstruction process employs a data-

driven approach, which significantly enhances the automation level and overall 

efficiency of the UU 3D reconstruction pipeline. 2) Enhanced precision: Many studies 

have reported a reconstruction accuracy of over 90% (Hou et al., 2021a; Xiao et al., 

2021; Lei et al., 2019). However, the framework proposed in this thesis, based on 

dealing with data noise, also incorporates the full life-cycle of the UU 3D 
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reconstruction process to obtain better reconstruction results. The average localisation 

precision for the invisible existing UU reached 97.01%, and the reconstruction 

precision for the directly visible exposed UU reached 98.58%. 3) Transferability: The 

proposed unified framework exhibits notable versatility and can be extended beyond 

UU 3D reconstruction scenarios. It can be readily applied to diverse contexts, such as 

the 3D reconstruction of rebar networks within extensive structural health monitoring, 

large building foundations, bridges, and tunnels. It can also be applied to fields outside 

the construction industry, such as the abyssal ocean and archaeological exploration. 

Based on these contributions, specific innovations are evidenced by the following three 

aspects. 

7.2.1 Novel model for automatic UU localisation based on GPR data 

To automatically reconstruct invisible UUs under non-destructive scenarios, this study 

proposed a deep-learning model (EUUL) to interpret UU coordinates from B-scan 

images.  

In previous research, the GPR-based UU localisation problem was decomposed into 

two sub-problems: box detection and hyperbola fitting for GPR B-scan images (Figure 

2-2). For instance, in Hou et al. (2021a), Xiao et al. (2021), and Lei et al. (2019), the 

area containing UU features was first determined in the box detection stage. 

Subsequently, various fitting algorithms were used to determine the hyperbola 

representing the UU position and finally use it. As a result, the fixed points are output. 

However, the ‘box-fitting’ mode solves the problem solely from the local optimal 

solutions of the sub-problems, rather than from the global optimal solution. This step-

by-step solution results in greater error accumulation, which affects the UU 

localisation precision (Alhnaity et al., 2021; Wu et al., 2020). 

Unlike existing deep-learning methods that handle each step individually (Xie et al., 

2021; Singh et al., 2013), the EUUL model was designed to comprehend the entire 

process, from raw GPR B-scan images to the final interpretation of UU coordinates. 

Numerous studies have reported the importance of the ‘end-to-end’ mode for deep 

learning (Wu et al., 2018; Geng et al., 2023; Chen et al., 2017). This thesis contributes 
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by solving the problem ‘end-to-end’ to maximise the advantage of machine-learning 

models in UU localisation (Wang et al., 2022b; Oguntoye et al., 2023). The term ‘end-

to-end’ in this context signifies that the proposed EUUL model tackles the entire 

problem of UU localisation in a unified manner without breaking it down into separate 

sub-problems (box detection and hyperbola fitting (Lei et al., 2019; Harkart et al., 2019; 

Hou et al., 2021b) in previous research. This holistic approach eliminates error 

accumulation during the steps, providing a direct comprehensive mapping from the 

GPR images to the UU localisation coordinates. 

To achieve end-to-end learning, the EUUL model proposed a novel ‘key point-

regression’ mode, indicating a method that identifies crucial points in the GPR data 

and directly regresses them to obtain UU coordinates. In this ‘key point-regression’ 

mode, the global optimisation results were obtained rather than the superposition of 

two local optimisations (results of box and fitting, separately). Under the new ‘key 

point-regression’ end-to-end framework, the EUUL model yielded a larger parameter 

optimisation space and a more convenient operation process. Simultaneously, 

improving the feature extraction architecture (CSPDarknet53) and channel attention 

mechanism (ECA module) increases the localisation speed and robustness to 

environmental noise.  

The experimental findings demonstrate that the proposed methodology exhibits 

superior performance compared with the prevailing models in terms of localisation 

precision (97.01%) and inference speed (125 frames per second) on the platform 

(NVIDIA RTX 3090 GPU). The precision result obtained in this thesis is significantly 

improved compared to previous studies; for example, Jaufer et al. (2021) (89.8%), 

Xiao et al. (2021) (89%), and Lei et al. (2019) (95.66%). 

7.2.2 Novel unsupervised model for low-light automatic UU image-based 

reconstruction enhancement 

To improve the performance of image-based 3D reconstruction of UU in low-light 

environments, this study proposes a novel unsupervised deep-learning model 

(ZDE3D).  
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Previous studies have predominantly employed supervised-learning techniques to 

improve low-light images, often neglecting the correlation between image 

enhancement and 3D reconstruction principles. For example, previous studies (Li et 

al., 2022; Lv et al., 2021) have applied a supervised-learning mode to improve the 

images captured from low-light scenarios. The specific method involves manually 

selecting pairs of input and reference data and then inputting them into the deep-

learning model for supervised learning. However, methods based on supervised-

learning models typically have the following limitations. First, the acquisition of 

paired training data is a cumbersome task that often requires extensive resources and 

time (Li et al., 2022; Triantafyllidou et al., 2020; Lv et al., 2021). Second, supervised-

learning methods are prone to subjective limitations. Specifically, the process of 

selecting appropriate reference training data for model training makes the performance 

of the model heavily dependent on the quality of the data selection (Wei et al., 2018; 

Lore et al., 2017). Simultaneously, the quality of data selection depended on the 

subjective experience of the experts who built the model. 

This thesis addresses these limitations by proposing a ZDE3D model that seamlessly 

integrates the principles of image-based 3D reconstruction and domain knowledge 

specific to UUs, by leveraging an unsupervised learning paradigm. This integration 

allows the model to optimise the input data at the pixel level, providing an effective 

solution for enhancing low-light images. By enhancing the low-light image inputs, the 

originally degraded matching features are revealed, thereby obtaining more key points 

for the 3D reconstructed point-cloud model. Simultaneously, the enhancement learning 

mode changed from learning the mapping based on pre-set paired training data to 

autonomous learning based on the UU scenario features and 3D reconstruction theory. 

Field data implementation of the ZDE3D model validated its capabilities, and ablation 

experiments were performed to verify the contribution of the proposed loss functions. 

The results demonstrate a remarkable improvement, with an average increase of 13.19% 

in the quantity of sparse reconstruction point clouds and an 98.58% reconstruction 

accuracy. Compared with the existing research, the UU 3D reconstruction effect under 
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low-light conditions has been effectively improved (Kanellakis et al., 2019; Hu et al., 

2005). Additionally, ablation experiments were conducted to rigorously assess the 

contribution of the proposed loss functions, further substantiating the effectiveness and 

robustness of the ZDE3D model in addressing the challenges associated with low-light 

image-based 3D reconstruction for UUs. 

7.2.3 Novel GCN-based model for the completion of UU topology information 

Traditional methods, such as GPR surveys (Tabarro et al., 2017; Sharafat et al., 2021) 

and manual inspection (Wang et al., 2022b), have long been mainstream for UU 

topology-completion tasks. However, these methods are costly and require significant 

labour and equipment resources. Data-driven statistical UU data-completion methods 

have also been proposed in existing research. Missing data imputation for electric 

utilities (Sim et al., 2022; Verboven et al., 2007). However, because the UU network 

topology information is a non-Euclidean space attribute, existing statistical methods 

are not suitable for topological completion tasks. They can only complete 

conventional missing attributes such as diameter and material (Bilal et al., 2018; 

Belghaddar et al., 2021).  

Recognising these challenges, the proposed UUTC model introduced a paradigm shift 

by embracing a deep-learning approach grounded in GCN. This departure from 

traditional and statistical methods is significant because it transforms the intricate 

problem of topological relationship completion into a more manageable task of 

predicting edges within the graph structure. The UUTC model addresses the 

shortcomings of existing methodologies and pioneers a data-driven approach to UU 

topological relation completion, thereby filling a critical research gap in this field. 

Compared with traditional manual inspection methods, the proposed method 

significantly improves the efficiency of the UU topology reconstruction through a 

data-driven approach. Thus, the number of complicated on-site investigations can be 

reduced (Wang et al., 2022b; Costello et al., 2007). Compared with existing statistical 

methods, such as imputation, the proposed method emphasises the particularity of UU 

topology attributes and provides promising solutions to such special scenarios. 
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Topological structures, such as general attributes, can be reconstructed in a data-driven 

manner (Belghaddar et al., 2021; Hajibabaei et al., 2023). 

To further improve the accuracy of the data-driven UUTC model in the topology-

completion task, this thesis also proposes an SEM module that utilises domain 

knowledge. This helps the UUTC model to obtain more high-dimensional information 

without introducing further input information. This thesis capitalises on domain 

knowledge, specifically acknowledging the strong correlation between attribute 

similarities among UU nodes and their connection relationships. By incorporating this 

additional layer of information, the SEM module acts as a powerful enhancer of the 

UUTC model, refining predictions and further elevating the model's overall 

performance. Experiments based on real wastewater databases showed that the 

proposed UUTC model could effectively identify unknown UU topological 

relationships, with an average completion accuracy of 85.33%. Compared with 

existing research, the accuracy of topological completion has exceeded the average 

accuracy of 61.11% (Belghaddar et al., 2021). 

7.3 Potential benefits, implications, and practical applications 

7.3.1 Time saving 

The use of GPR equipment to collect underground data in the target area to interpret 

the 3D information of existing utilities is a foundational step for ensuring the smooth 

progress of the follow-up work of the entire UU project. Traditional manual 

interpretation methods are time consuming and error prone. The proposed UU 3D 

reconstruction approach can achieve automatic GPR data interpretation and is more 

stable than the manual methods. The time required for manual interpretation of a 

ground-penetrating radar (GPR) B-scan frame can vary widely depending on several 

factors, such as the complexity of the frame, experience of the interpreter, and study 

objectives (Zhou et al., 2018; Lei et al., 2019). The industrial normal speed of manual 

GPR data interpretation is 1 fps (processing one B-scan image frame per second for a 

length of 0.5 m). The approach proposed in this study can achieve a speed of 125 fps 

faster than that of the existing mainstream deep-learning-based models YOLOv3 (82 
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fps) and Faster R-CNN (20 fps). 

To illustrate the advantages of this study in terms of time cost more intuitively, the 

following estimations and comparisons were made based on the real-site experiment 

results in Section 4.3.3. A real UU network inspection project located in Jiangsu 

Province, China, as shown in Fig 7-1, is considered as an example to illustrate the 

time-saving advantages of the proposed approach. The project aims to implement the 

3D reconstruction of underground pipelines in the embankment road area on the south 

side of a river to determine the depth and location information. GPR has been 

employed to understand the underground comprehensive pipeline situation by 

coordinating it with other known designs. The project underwent two rounds of testing, 

and the detailed workloads are listed in Table 7-1. 

 

Figure 7-1 UU network inspection project located in China Jiangsu Province 
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Table 7-1 Workload details of the UU network inspection project in Jiangsu 

Province. In this table, ‘m’ means metre 

Testing 

area 

GPR 

frequency 

Survey lines 

amount 

Survey 

lines length 

Total Survey 

line length 

Testing 

personnel 

First round test 

West 400 MHz 20 200 m  

 

700 m 

 

 

4 

900 MHz 6 200 m 

1600 MHz 14 200 m 

East 900 MHz 20 200 m 

1600 MHz 10 50 m 

Second round test 

West 100 MHz 20 200 m  

 

900 m 

 

 

5 

400 MHz 20 200 m 

900 MHz 6 200 m 

1600 MHz 14 200 m 

East 100 MHz 10 50 m 

1600 MHz 10 50 m 

 

The GPR survey line for the project totals 1,600 m. Table 7-2 illustrates the time cost 

comparison for project GPR interpretation using different approaches. Under 

equivalent conditions, manual GPR interpretation, applied in a real project, requires 

8,000 s, whereas existing mainstream automated methods, specifically YOLOv3 and 

Faster R-CNN, require 97.56 s and 400 s, respectively. The approach proposed in this 

thesis takes only 64 s, which is only 0.8% of the time required by traditional manual 

methods and is faster than the currently available automated methods. Therefore, the 

method proposed in this study offers significant time-saving advantages for 

interpreting the as-built UU 3D information scenarios. 
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Table 7-2 Time-saving comparison of the existing and proposed approaches. In this 

table, ‘m’ means metres, ‘min’ means minutes 

Categories Manual Existing automatic Proposed 

method YOLOv3 Faster R-

CNN 

Total length of survey lines 

(m) 

1,600 1,600 1,600 1,600 

Length per frame (GPR B-

scan data) (m) 

0.2 0.2 0.2 0.2 

GPR data frame number 8,000 8,000 8,000 8,000 

Processing speed (fps) 1 82 20 125 

Processing time (seconds) 8,000 97.56 400 64 

 

The proposed 3D reconstruction approach demonstrated significant time savings in the 

UU project, as previously shown. However, its potential impact is more pronounced 

in large-scale projects. In typical infrastructure endeavours covering expansive areas, 

our method excels at efficiently collecting and interpreting extensive GPR data. In 

contrast to manual interpretation, which becomes exponentially challenging with 

increased project size, our automated approach ensures the rapid and reliable 

acquisition of underground information across the entire project region. The speed and 

precision enhancements of the proposed approach become particularly crucial as the 

coverage of underground-pipeline networks extends beyond the scale witnessed in the 

Jiangsu Province case study. In larger projects, the proposed approach further shortens 

the data interpretation time by improving the processing speed and reducing the error 

rates. 

7.3.2 Cost saving 

Obtaining topological structural information for the UU network in the target area is 

crucial in various scenarios including project design, daily O&M, and leakage 

investigation. However, incomplete topological information is common, owing to 
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factors such as record loss. In typical infrastructure endeavours covering expansive 

areas, the proposed method efficiently collects and interprets extensive GPR data. The 

approach proposed in this study can complete the missing topological information of 

the UU network by leveraging its internal connections and topological information of 

known part data. Compared with traditional manual inspection methods, the data-

driven approach suggested in this study offers a significant cost advantage. 

To more intuitively illustrate the cost-saving contribution of this study, estimations 

were conducted based on real-site experiment results in Section 6.3.1, still using the 

project from Jiangsu Province as a reference (as mentioned in Section 7.2.2.1). Table 

7-4 presents a detailed cost comparison between the traditional method and data-driven 

approach proposed in this study during the process of reconstructing topological 

relationships in the target area. The manual cost calculation was based on the 

Regulations on the Administration of Fees for Engineering Survey and Design issued 

by the State Planning Commission of China and the Ministry of Construction (2002); 

the details can be found in Table 7-3. The costs required for the proposed algorithm-

based approach primarily include two parts: the existing information collection and 

algorithm inference (computational resources) which are estimated according to the 

experimental process discussed in section 4.3. 

Table 7-3 Engineering survey and design charging standards (China). The prices in 

this table are converted from Chinese currency (RMB) into Australian currency (AUD) 

(State Planning Commission of China and the Ministry of Construction, 2002). 

Categories Unit Basic price (AUD) 

U
U

 d
etectio

n
 

UUs  Simple Middle Difficult 

Cable (electricity and 

communication, etc.) 

 

 

km 

360 720 1,260 

Metal pipelines 450 900 1,440 

Non-metal pipelines 540 1,080 1,800 

Sewer (with manhole) 270 540 1,080 
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Categories Unit Basic price (AUD) 

Blind detection m2 0.2 0.3 0.6 

 

Table 7-4 Cost-saving comparison of the existing and proposed approaches. The costs 

are expressed in Australian dollars (AUD). In this table, ‘m2’ means square metres 

Manual inspection approach Proposed approach 

Target area 1,340 m2 Target area (m2) 1,340 m2 

Overall costing 

equation (including 

equipment, labour, 

and experts fee) 

0.6 (AUD/ m2) * 

Working area 

(m2) * 1.22 

Existing information 

collection 

200 

Algorithm inference 

(computation resource) 

100 

Total cost 980.88 AUD Total cost 300 AUD 

 

The comparison results show that the proposed approach has a significant cost 

advantage over the current mainstream manual inspection approach, with a cost of 

approximately 30% of the latter. Additionally, it is important to note that the cost 

savings demonstrated in this real project indicate the potential efficiency gains that can 

be achieved on a larger scale. Owing to the marginal cost-effectiveness of the 

algorithm, the proposed approach is poised to unlock even greater cost-saving potential 

in more extensive projects, highlighting its scalability and economic advantages on a 

broader scale. 

7.3.3 Safety enhancement 

During construction, the primary safety risks associated with the UU project are 

closely tied to potential accidental damage to existing utilities (Pipeline and Hazardous 

Materials Safety Administration, 2021). Traditional construction practices often 

involve manual inspections, which are prone to human error and may not account for 

various underground environmental factors. This introduces significant challenges in 

accurately detecting the 3D spatial information of existing utilities. One specific 

concern is the accidental damage to high-pressure water pipes, which can lead to burst 
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accidents. Similarly, the potential damage to oil and gas pipelines poses a more severe 

threat, with the risk of explosion and fire accidents (Chinese Association of Surveying 

and Mapping Underground Pipeline Professional Committee, 2023). The complex and 

unpredictable nature of underground environments increases these risks. 

The approach proposed in this study addresses these challenges and contributes to 

practical solutions in three key methods: First, it eliminates the need for manual 

inspection, thereby significantly reducing the likelihood of human error that could lead 

to accidents. By leveraging advanced technologies, the proposed method ensures a 

more accurate and reliable detection of existing utilities. Second, the implementation 

of this approach results in fewer instances of striking gas lines. The frequency of such 

incidents is critical to prevent gas leaks, which can have serious consequences. The 

improved precision of the proposed method directly translates into a reduction in the 

number of accidental strikes on gas lines, thus mitigating the potential for hazardous 

situations. Third, the proposed approach contributes to a reduction in the overall time 

spent on-site during construction activities. This not only enhances operational 

efficiency, but also minimises the exposure of construction workers to potential 

hazards. Less time spent on-site correlates with a decreased risk of serious injuries, 

thereby promoting a safer working environment for all personnel involved in the 

construction process. 

In summary, the practical contribution of this study lies in its ability to enhance safety 

during the construction of a UU project by reducing the need for manual inspection, 

decreasing the frequency of gas line strikes, and minimising the time spent on-site, 

consequently lowering the risk of serious injuries. The 5.43% improvement in the 

precision of locating existing utilities is a significant advancement that directly 

translates into tangible safety benefits for construction workers and helps safeguard 

against personal and property losses. 

7.3.4 Implications and practical applications 

This thesis presents a unified practical application framework designed to address 

critical challenges in the life-cycle management of UUs. This framework not only 
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streamlines the reconstruction of UU, but also ensures their sustainable management 

throughout their typical life-cycle, which includes planning and design, construction 

(new installation), operation (existing UU), maintenance (including repair and 

upgrade), and decommissioning stages (Soni et al., 2017; University of Birmingham 

et al., 2012). The proposed framework has practical value in all stages of the UU life-

cycle, except for decommissioning. This framework is underpinned by three 

innovative components: 1) EUUL model for construction (new installation) and 

operation (existing UU) stage: Utilising GPR B-scan data, the EUUL model 

incorporates a key point-regression approach, an anchor-free structure, and a channel 

attention mechanism to significantly enhance localisation precision and processing 

speed for UU positioning. 2) The zero-reference deep-learning model for low-light 

image enhancement (ZDE3D) was primarily used in the construction (new installation) 

stage. Tailored for low-light conditions, ZDE3D improves the 3D reconstruction 

performance by utilising an unsupervised loss-function design that does not rely on 

paired or unpaired training datasets. 3) UUTC model for the planning, design, and 

maintenance stages, The UUTC model employs GCN techniques to accurately 

complete missing topological data and is essential for the functionality of UU network 

expression. 

7.3.4.1 Contribution towards life-cycle management of UU 

 



 

169 

Figure 7-2 Application scenarios of the unified UU 3D reconstruction framework 

The application processes involved deploying these models at different stages of the 

UU project life-cycle, as shown in Figure 7-2: 

Planning and Design: During this initial stage, the framework supports the decision-

making process by providing a data-driven approach (UUTC) to fill in the incomplete 

topology information of the UU networks. This approach helps avoid extensive manual 

inspections and optimises the process for designing underground infrastructure. The 

planning and design cycle can also be shortened using an automated deep-learning 

approach (EUUL) to reduce GPR data interpretation time. 

Construction (New Installation): In this stage, the application of the framework 

ensures safety by facilitating the accurate 3D reconstruction of existing UUs. ZDE3D 

can help obtain the most accurate UU reconstruction, especially when night 

construction is required owing to tight construction schedules. EUUL can ensure that 

the accurate 3D information of all existing UU in the construction area is established 

before the excavation of new utilities. This helps to avoid any accidental damage that 

might occur during the installation of new utilities. For example, it can serve as an 

invaluable guide for machinery, mitigate the risk of inadvertent damage to pipelines, 

and guarantee the safety of construction equipment. The processing time of new 

installations can also be shortened when the existing UU data-collection time is 

significantly reduced. 

Operation (Existing UU): Once the utilities are in place and operational, the 

framework emphasises the importance of maintaining an accurate and current 3D 

reconstruction of UUs (EUUL and ZDE3D). This continuous update is crucial for 

efficient management and ongoing safety of UU networks.  

Maintenance/Repair/Upgrade: At this stage, the framework assists in localising the 

damaged pipes within the UU network. It utilises topology information and low-cost 

data-analysis methods (UUTC), which are instrumental during routine maintenance, 

necessary repairs, or upgrades to utility systems. Damaged pipeline localisation within 



170 

a UU network can be achieved based on topology information using low-cost existing 

data-analysis methods during the maintenance, repair, or upgrade phases. By reducing 

the GPR data interpretation time, EUUL makes the operation stage more efficient. This 

allows quicker responses to maintenance, repair, or upgrade needs within the utility 

network. 

Throughout these stages, the framework's integration of innovative technology and 

methodology represents a shift towards more advanced, efficient, and safer UU 

management. The practical application framework developed in this thesis streamlines 

the management, construction, and maintenance of UUs by integrating state-of-the-art 

technological models and domain knowledge, thereby significantly enhancing 

efficiency, reducing costs, and improving safety across the entire UU life-cycle. 

7.3.4.2 Practical relevance with life-cycle management tasks of UU 

This section introduces the critical integration of the proposed unified practical 

application framework into the life-cycle management tasks of the UU. This 

integration is pivotal for enhancing the efficiency, safety, and sustainability throughout 

the life-cycle of UUs, which encompasses the planning and design, construction (new 

installation), operation (existing UUs), maintenance (including repair and upgrade), 

and decommissioning stages. Each stage gains distinct benefits from the framework, 

leveraging its innovative components to address the specific challenges inherent in the 

management of UUs. 

Planning and Design: The initial stage benefits immensely from the UUTC and 

EUUL models. Thorough site surveys and risk assessments help identify utility needs 

and scope (Yan et al., 2021; Lai & Sham, 2023; Oguntoye et al., 2023). The 

environmental impact was also assessed (Plati et al., 2015), contributing to sustainable 

design, while budgeting and sourcing financing round out the planning stage (Salim et 

al., 2022; Wang et al., 2022b). The UUTC model aids in accurately filling incomplete 

topological data, thereby facilitating informed decision making and optimising the 

design of underground infrastructure (Wang et al., 2019; Gilbert et al., 2021). 

Simultaneously, the EUUL model reduces the GPR data interpretation time (Feng et 
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al., 2021a), expediting the planning and design process by providing a rapid and 

accurate localisation of existing UUs. 

Construction (new installation): Safety and efficiency are of paramount importance 

during this stage. Site preparation and excavation, including the installation of 

protection for existing UUs and laying new utility lines, are critical steps (Goel et al., 

2012; Tanoli et al., 2019). The zero-reference deep-learning model for low-light image 

enhancement (ZDE3D) enables the accurate 3D reconstruction of UU under low-light 

conditions, which is crucial for night construction scenarios (Nguyen et al., 2014a; 

Patel et al., 2010a). Meanwhile, the EUUL model ensures the precise localisation of 

existing utilities and prevents accidental damage during excavation in new installation 

stages (Tanoli et al., 2019; Al-Bayati et al., 2019). This dual application of ZDE3D and 

EUUL not only improves the safety of construction personnel and equipment but also 

streamlines the construction process by significantly reducing the data collection and 

processing times (Hansen et al., 2021b; Hu et al., 2005; Tulloch et al., 2006). 

Additionally, testing for integrity and safety, followed by backfilling and site 

restoration with proper documentation of the utility installation, completes this stage. 

Operation (existing UU): During the operational stage, maintaining an accurate and 

current 3D reconstruction of the UU is essential for efficient management and ongoing 

safety. Routine monitoring of utility performance (Wallace, 2021), safety inspections 

(Yadav et al., 2022), and regulatory compliance (Yan et al., 2018) are ongoing tasks 

that are critical to this stage. The continuous update capability provided by both the 

EUUL and ZDE3D models can support this need, ensuring that utility managers have 

the most current data for effective decision making (Wang et al., 2019; Sharafat et al., 

2021) and emergency response (Sharafat et al., 2021) planning and management 

operations of the UU network. 

Maintenance/Repair/Upgrade: The framework application during the maintenance 

stage incorporates the UUTC model to support the low-cost analysis of topology-

related tasks, such as damage positioning (Yu et al., 2019; Lacroix et al., 2015; Wang 

et al., 2021b). This data-driven approach avoids expensive manual inspection times 
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and labour costs (Goel et al., 2012; Wang et al., 2021a), particularly in scenarios where 

rapid maintenance feedback is required. Routine inspections, identifying and 

diagnosing issues, repairing faults or leaks (Maree et al., 2021; Wu et al., 2021), and 

record-keeping (Maree et al., 2021) of maintenance and repairs can also benefit from 

the UUTC and ELLU. The reduction in the GPR data interpretation time through the 

EUUL model further enhances the efficiency of maintenance operations (Esekhaigbe 

et al., 2020), enabling quicker responses to repair or upgrade requirements within the 

utility network. 

Decommissioning: The proposed unified application framework has no direct 

application significance during the UU decommissioning stage. These methodologies 

and technologies offer foundational insights that can be adapted to inform the process 

of decommissioning. By understanding detailed 3D reconstructions and topological 

data, stakeholders can approach decommissioning tasks with a higher degree of 

precision and safety (Bumby et al., 2010; Sueri et al., 2022), potentially leveraging 

aspects of the technology to ensure minimal environmental impact and resource 

optimisation. 

In summary, the practical application framework developed in this thesis is 

instrumental to the entire life-cycle of UUs. Integrating advanced technological 

models and leveraging domain knowledge significantly enhances the efficiency, cost-

effectiveness, and safety of UU management. This unified framework not only 

addresses current challenges in the field, but also sets a foundation for future 

innovations in UU life-cycle management. 

7.4 Summary 

In the context of modern urban development, the demand for the 3D reconstruction of 

UUs is increasingly urgent, fundamentally aimed at the safe, efficient, and economical 

utilisation of urban subsurface resources. As urbanisation accelerates, UUs, such as 

water pipes, electrical cables, and gas pipelines, have become critical infrastructures 

essential for maintaining the basic functions of a city. However, if the locations of these 

facilities are unclear, construction activities can easily cause damage, leading to 
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disruptions in water and electricity supply, gas leaks, and even more severe accidents. 

Through precise 3D reconstruction, these risks can be significantly reduced, thereby 

providing strong support for urban planning and management. It helps planners and 

managers to better understand the structure of underground spaces, enabling the 

rational planning of underground facility layouts, thereby enhancing the efficiency of 

city operations. Moreover, 3D models are crucial for maintaining and updating 

underground facilities, reducing excavation costs and time, responding to emergencies, 

and improving the quality of public service.  

This section presents and discusses the key findings of the established objectives. 

Objective 1 delves into the significance of accurate 3D reconstruction for UU life-

cycle management, favouring GPR technology. However, the identified limitations 

prompted the proposition of an integrated approach that introduced a decision-making 

framework to guide the selection of optimal reconstruction technology. Objective 2 

introduced the EUUL model for UU localisation, which demonstrated remarkable 

precision and speed across diverse soil types. Objective 3 introduces the ZDE3D 

model for low-light 3D reconstruction, showing significant enhancements and 

outperforming existing methods. Ablation studies underscored the effectiveness of the 

proposed loss function. In Objective 4, the UUTC model for topology completion 

outperformed the baseline models, particularly when integrating the SEM. The 

discussions within the chapter dissect model intricacies, identify instances of 

misjudgement, and highlight theoretical contributions, emphasising the 'key point-

regression' mode in EUUL, the unsupervised approach in ZDE3D, and the UUTC 

model's graph-based topology completion. The practical implications of these 

advancements are underscored, addressing challenges in different stages of the UU 

life-cycle, and providing practical solutions for UU management and construction site 

challenges. 
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Chapter 8 : Conclusions, contributions, and future work 

8.1 Main findings 

8.1.1 Research findings for Objective 1 

Objective 1: To identify research topics, trends, and limitations of automatic 3D 

reconstruction for as-built UUs. 

Main findings: Peer-reviewed journal articles from the Web of Science and ASCE 

databases on various aspects of relevant technological developments were reviewed, 

including key technologies for 3D UU reconstruction, current applications of 3D 

reconstruction methods, and potential future research directions. The main findings are: 

• Accurate, up-to-date, and comprehensive 3D reconstruction of as-built UUs is 

important for the life-cycle management of UUs. This section analyses the 

advantages, limitations, and best performance of each of the widely used 3D 

reconstruction techniques. Finally, the limitations of the UU's existing 3D 

reconstruction techniques and future work in this field are also investigated. 

• GPR is the best non-destructive UU 3D reconstruction technology, with the widest 

application range and the best comprehensive outcome. However, conventional 

image-processing methods are time consuming and susceptible to noise. Deep-

learning-based methods cannot optimise parameters globally because of their box-

fitting mode, which requires the separation of a task into region detection and 

hyperbolic fitting problems. Thus, the precision and robustness of the localisation 

task were reduced. 

• Image-based 3D reconstruction has become one of the most promising as-built 

UU 3D reconstruction methods during the exposed stages, owing to its cost 

efficiency and outstanding performance. However, the quality performance of 

image-based 3D reconstruction is highly sensitive to illumination conditions. To 

date, image-based 3D reconstruction in a low-light environment has mainly been 

optimised by traditional approaches that are time consuming and require manual 
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parameters. In addition, supervised deep-learning methods require suitable paired 

image data (low-light images and paired reference images), which limits their 

capability to enhance the performance of UU 3D reconstruction. 

• The limited availability of UU data, particularly topological information, is a 

major issue in UU management. Current research primarily concentrates on 

conventional properties such as pipe diameter and material, and not on topological 

data completion. 

• Owing to the above limitations, an automatic 3D reconstruction approach that can 

enhance GPR-based localisation, low-light environment 3D reconstruction, and 

UU network topology completion is required for UU projects. 

8.1.2 Research findings for Objective 2 

Objective 2: To develop a novel GPR-based as-built UU localisation deep-learning 

model for non-destructive scenarios. 

Main findings: An end-to-end UU localisation deep-learning model (EUUL) was 

developed using GPR B-scan images as inputs. Three experiments were conducted to 

validate the proposed model and its improvements on an actual site. Based on the 

experimental results, the following conclusions were drawn. 

• The experimental results showed that the precision of the proposed EUUL model 

was 97.01%, operating speed was 125 fps, and precision was 96.72% in a noisy 

environment. 

• The EUUL model was superior to the existing mainstream models in terms of 

precision (Figure 4-6), operating speed (Table 4-3), and robustness (Figure 4-8).  

• The proposed EUUL model architecture with a 'key point-regression' mode had 

increased precision and enhanced performance when compared to the most 

popular 'Box-fitting' mode (region detection first and then fitting the hyperbolas 

for apex localisation). 

• The application of an anchor-free structure with a lightweight backbone 
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(CSPDarknet53) increased the calculation speed of the UU localisation model and 

reduced model deployment costs. 

• The added ECA module can help the EUUL model focus on key features that 

contain more position information to manage the noise interference of the UU 

positioning data to ensure precision. 

• By conducting experiments based on different soil types, the results showed that 

the EUUL model can be used in engineering practice for the accurate non-

destructive position detection of various UUs. 

8.1.3 Research findings for Objective 3 

Objective 3: To develop a novel unsupervised image-based 3D reconstruction model 

for the low-light 3D reconstruction of as-built UUs for exposed scenarios. 

Main findings: This objective proposes an unsupervised deep-learning model for low-

light image enhancement in UU 3D reconstruction (ZDE3D). Field experiment results 

showed that the proposed model could effectively improve the UU object point-cloud 

effect based on image generation under low-light conditions. The specific findings are 

as follows: 

• The experiments on-site showed a promising result: the quantity of sparse 

reconstruction point clouds was improved by 13.19 % on average, and the average 

reconstruction accuracy reached 98.58% when comparing image datasets 

collected in normal light and the low-light datasets enhanced by the ZDE3D model. 

• The unsupervised deep-learning method can help achieve the low-light 

enhancement task through the loss-function design based on image-based 3D 

reconstruction principles, where pairs of training data (low-light image and 

expected reference image) are not required.  

• By conducting five ablation experiments, the five proposed loss functions, LSpa 

(spatial loss), LCol (colour loss), LExp (exposure loss), LBou (boundary loss), and 

LGro (group loss), were effective in enhancing low-light UU images. 
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• The comparison experiments showed that the proposed ZDE3D model had the 

best UU 3D reconstruction enhancement performance compared with traditional 

brightness, contrast adjustment methods, and existing popular deep-learning low-

light enhancement models. 

8.1.4 Research findings for Objective 4 

Objective 4: To develop a GCN-based topology-completion model for as-built UUs. 

Main findings: A GCN-based deep-learning model was developed for the UU 

topology-completion task. Five mainstream models were applied as control group 

experiments, and the results indicated that the UUTC model outperformed the baseline 

models, particularly in terms of effectively completing topological relationships. The 

specific findings are as follows: 

• The experimental results demonstrated that the proposed UUTC model achieved 

an average completion accuracy of 85.33% under various topology missing rates, 

ranging from 5% to 80%.  

• The SEM was validated to be effective in enhancing the model's accuracy in 

predicting topological relationships by leveraging attribute clustering to identify 

nodes with shared characteristics, consequently facilitating more precise and 

informed predictions of the UU network's interconnectedness.  

• Using each pipeline in the UU network as a graph node and the connection 

relationship between pipelines as graph edges, the UU topology-completion 

problem can be transformed into an edge prediction problem in the graph. The 

GCN technology can effectively solve this problem, although there is still room 

for improvement in completion accuracy. 

8.2 Summary of theoretical contribution 

This thesis is motivated by the increasing challenges faced by project planners, 

managers, and stakeholders in managing different UU construction stages. The 

theoretical contributions outlined in this section address the challenges of 3D 



178 

reconstruction in UU environments by presenting a unified framework that surpasses 

the limitations of the conventional approaches. Existing frameworks are critiqued for 

their unidimensional focus, inaccuracy stemming from a lack of attention to new 

installation stages, and substantial resource demands associated with field-based 

detection. In contrast, the proposed unified framework stands out for its user-

friendliness, enhanced precision, and transferability to diverse contexts beyond UU 

reconstruction. The three main theoretical contributions of this study are as follows: 

(1) Novel model for automatic UU localisation (EUUL) 

A deep-learning model, EUUL, was introduced for the automatic reconstruction of 

UUs based on GPR data. 

• The model adopts an ‘end-to-end’ approach, addressing the limitations of existing 

methods that separate the problem into sub-problems, such as box detection and 

hyperbola fitting. 

• The key point-regression mode in EUUL minimises error accumulation and 

maximises machine-learning strengths in pattern recognition and relationship 

modelling. 

• The experimental results showed superior performance in terms of localisation 

accuracy, inference speed, and robustness. 

Unsupervised model for low-light UU image-based reconstruction enhancement 

(ZDE3D): 

(2) ZDE3D was proposed to enhance the performance of image-based 3D 

reconstructions in low-light environments. 

• Unlike previous supervised approaches, ZDE3D leverages unsupervised learning 

by integrating the principles of image-based 3D reconstruction and the domain 

knowledge specific to UUs. 

• Field data implementation validated the model, demonstrating a significant 

increase in the quantity of sparsely reconstructed point clouds and impressive 
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reconstruction accuracy. 

(3) GCN-Based Model for UU Topology Completion (UUTC): 

• UUTC introduces a deep-learning approach based on GCN to complete the 

missing topological information in UU areas. 

• Departing from traditional and statistical methods, UUTC transforms a complex 

task into edge prediction within a graph structure, pioneering a data-driven 

approach. 

• The proposed SEM module leverages domain knowledge and further enhances the 

accuracy of the UUTC model by considering the strong correlation between the 

attribute similarity among UU nodes and their connection relationships. 

• Experiments based on real wastewater databases confirmed the effectiveness of 

UUTC in identifying unknown UU topological relationships, with an average 

completion accuracy of 85.33%. The effectiveness of the SEM module is validated 

through comparative experiments. 

In summary, the theoretical contributions of this thesis present a unified framework 

that addresses the limitations of the existing UU 3D reconstruction frameworks. The 

proposed models (EUUL, ZDE3D, and UUTC) show advancements in UU localisation, 

low-light image-based reconstruction enhancement, and topological information 

completion, collectively offering a comprehensive and innovative approach to the 

challenges in the field. 

8.3 Summary of practical contribution 

The practical contributions of this study revolve around time-saving techniques, cost-

effective strategies, and safety enhancements in UU projects. 

(1) Time saving: 

Traditional manual interpretation methods for GPR data are time consuming and prone 

to errors. The proposed UU 3D reconstruction approach automates GPR data 
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interpretation and significantly expedites the process. Real-site experiments 

showcased substantial time savings. Whereas manual interpretation typically requires 

8,000 s, the proposed method only requires 64 s, achieving a remarkable 0.8% of the 

traditional manual method's time consumption. Moreover, the proposed approach 

outperforms existing automated methods, such as YOLOv3 and Faster R-CNN, in 

terms of processing speed, further emphasising its efficiency. 

(2) Cost savings: 

This study highlights the cost-effectiveness of the proposed approach in comparison 

with traditional manual inspection methods. Based on real-site experimental results, 

the proposed method offers significant cost advantages, amounting to approximately 

30% of the cost incurred by manual inspection. These cost savings are crucial for large-

scale projects and underscore the scalability and economic benefits of the proposed 

approach. 

(3) Safety Enhancement: 

Safety concerns in UU projects, including accidental damage to existing utilities, pose 

significant risk during construction. The proposed approach addresses these challenges 

by eliminating manual inspections and minimising on-site exposure of construction 

workers. By leveraging advanced technologies and reducing human error, the 

proposed method enhances safety standards and promotes a safer working 

environment. 

In summary, this study significantly contributes to improving the efficiency and safety 

of UU projects. The proposed approach offers tangible benefits to construction 

workers and project stakeholders by streamlining processes, reducing costs, and 

enhancing safety. These findings underscore the importance of technological 

advancements for enhancing the overall effectiveness and safety of infrastructure 

projects. 
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8.4 Limitations and future work 

(1) Limitations of the EUUL model 

The limitations of this thesis are as follows: 1) There are few comparative models. 

Because an open model code does not exist, determining the specific details of the 

model based on the framework and reproducing the model based on other studies is 

challenging. Therefore, the YOLOv3 and Faster R-CNN models were selected to 

perform comparative experiments under several conditions, such as different 

publication times and dataset sizes. 2) The experimental conditions were limited. Only 

a 400 MHz antenna was used for data acquisition. In contrast, the B-scan images 

obtained under different antenna frequency conditions were not considered. 

The following are planned for future studies: 1) A public GPR dataset for UU, 

including radar manufacturers, different antenna frequencies, different geological 

environments, and other factors, will be developed such that this research area can be 

investigated more effectively in the future. 2) Using the acquired B-scan dataset, more 

features of UU can be analysed to achieve more intelligent and scientific management 

of UU networks. 

(2) Limitations of the ZDE3D model 

The ZDE3D model proposed in this paper can not only be applied in the UU project 

record field but can also be extended to other scenarios requiring 3D reconstruction of 

low-light environments, such as underground mines, tunnel exploration, and cave sites. 

However, the ZDE3D model proposed in this paper still has the following limitations: 

1) The ZDE3D model improves the 3D reconstruction effect in a low-light 

environment; however, it fails to maintain the colour information of the original 

reconstruction target well. 2) The robustness verification of the ZDE3D model must 

be implemented under more complex environmental conditions to ensure that it can be 

applied to various complex scenarios. 3) At present, the image datasets used in the 

ZDE3D model experiments are all close-range construction site images, which could 

be better suited for long-range construction. 
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In the future, the following three directions may achieve better performance in UU 

low-light 3D reconstruction tasks: 1) Transformer. A transformer is an attention-based 

model that has been extensively used in language and image-processing tasks. The 

attention mechanism can help the model better capture long-term dependencies and 

relationships between different parts of the input sequence, which is important in low-

light enhancement tasks. 2) Multimodal learning. With multimodal learning, multiple 

sources, or modalities, such as text and images from the UU project, can be used 

together for the training process, which may increase the robustness and accuracy. 3) 

Optical flow. Optical flow is a computer-vision technique that can track the movement 

of pixels between consecutive frames. In UU 3D reconstruction scenarios, capturing 

the same pixels in different frames is the foundation of image-based 3D reconstruction. 

Combining the deep-learning method with optical flow may increase the feature 

extraction ability of the model. Based on the research proposed in this study, the low-

light 3D reconstruction model will be further tested and improved under more complex 

environmental conditions. In addition, a deep-learning model without reference data 

will also help in the design and application of more deep-learning models and provide 

more scientific solutions for more complex and realistic reconstruction problems, or 

even be combined with AR or VR techniques. 

(3) Limitations of the UUTC model 

While the proposed UUTC model demonstrates commendable performance in 

completing UUs’ topological information data, certain limitations persist within this 

thesis: 1) Spatial and temporal dimensions. The integration of temporal and spatial 

information is important for understanding UU network topology. However, owing to 

the need for comprehensive historical data, the execution of dynamic time-series 

analyses of pipeline networks remains unfeasible. Regrettably, this constraint 

considers the spatial distribution factors within the UU network and their interactions 

with the surrounding environment. Instances such as the positioning of sewage 

treatment stations and the dispersion of final sewage discharge points still need to be 

accounted for. 2) Edge information usage. This study's treatment of edge information 
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is confined to a criterion for adjudicating the existence of topological relationships 

among UU nodes. This approach does not effectively harness the inherent potential of 

edge data within the framework of graph data structures. Beyond its role in signifying 

topological links, edge information possesses distinct attributes, akin to node and 

graph attributes. Each edge theoretically assumes a unique character across diverse 

graphs. Furthermore, it establishes a foundation for the enriched representation of 

intricate network attributes by systematically exploring the structural intricacies of 

graphs. The untapped potential in this regard could enhance the topology prediction 

accuracy, particularly when confronted with scenarios with few observed features. 3) 

Limited verification scope. The current model validation is confined exclusively to a 

singular category of the UU context, namely wastewater networks. However, the 

expansive spectrum of UU scenarios encompasses diverse domains, such as water and 

sewer pipelines, gas and oil conduits, electrical cables, and telecommunication lines. 

These domains exhibit distinct topological distribution characteristics. Therefore, the 

efficacy of the proposed model may fluctuate across diverse UU scenarios, 

necessitating meticulous examination and validation. 

In future work, there are several promising research directions that can further promote 

the development of the UU 3D reconstruction field. 

(1) Scalability and computational complexity 

As UU projects often entail large-scale datasets, particularly in complex urban 

environments, ensuring that the proposed deep-learning models can scale effectively 

without exorbitant computational costs is essential. In future studies, it will be 

important to focus on optimizing the architecture of deep-learning models like EUUL 

and ZDE3D to handle larger and more complex datasets efficiently. One approach 

could be to incorporate more efficient neural network architectures that require less 

computational power. Techniques such as pruning, quantization, and the use of 

knowledge distillation could be explored to reduce the model size and speed up 

inference times without sacrificing accuracy. Additionally, leveraging more advanced 

forms of transfer learning could enable these models to adapt more quickly to new data, 
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reducing the need for extensive retraining and thus lowering computational costs. For 

the topology completion models like UUTC, methods to reduce graph complexity, 

such as graph sparsification or the use of hierarchical graph neural networks, could be 

investigated to manage the computational burden while maintaining or even improving 

the accuracy of topological predictions. 

Moreover, it could be beneficial to explore hybrid approaches that combine traditional 

computational methods with machine learning enhancements to strike a balance 

between computational demand and reconstruction performance. These methods 

might prioritize machine learning interventions for the most complex or error-prone 

segments of data while handling more straightforward tasks with less computationally 

intensive algorithms. By pursuing these avenues, the scalability and computational 

efficiency of the models can be enhanced, making them more practical for widespread 

implementation in real-world UU management scenarios. 

(2) Data impact factors 

For the accuracy of the underground utilities topology completion (UUTC) model, 

future research should focus on a comprehensive analysis of both data sources and 

environmental influences. This includes evaluating the quality and origin of the data 

used, as well as assessing how external factors such as soil type, weather conditions, 

and urban development might affect the efficacy of data collection methods like 

ground-penetrating radar. Additionally, human factors should not be overlooked; 

investigating operator experience and data entry processes could uncover potential 

biases that compromise data accuracy. 

Implementing advanced statistical analyses and robustness testing under varied 

conditions will further enhance the understanding of the impact of these factors on the 

UUTC model’s performance. By intentionally testing the model with corrupted or 

incomplete data sets, researchers can identify vulnerabilities and areas for 

improvement. Moreover, exploring technological advancements in sensor technology 

and data processing algorithms can lead to significant enhancements in data reliability. 

This holistic approach will provide valuable insights into the multifaceted challenges 
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of data accuracy in underground utility management, ultimately contributing to more 

effective modelling and decision-making processes for underground utilities. 

(3) Life cycle management 

Future research should specifically address the relationship between these 

improvements and their impact on life-cycle management processes. While the current 

research demonstrates enhanced accuracy and reliability in 3D reconstructions, it does 

not directly establish how these advancements contribute to better life-cycle 

management of UUs. 

To bridge this gap, future studies could focus on empirical testing that examines the 

correlation between accurate UU location data and key performance indicators in life-

cycle management, such as maintenance scheduling, cost reduction, and risk 

mitigation. By conducting case studies or field experiments that link improved 

reconstruction outcomes to tangible enhancements in life-cycle management practices, 

researchers can provide a clearer understanding of this relationship. Additionally, 

integrating stakeholder feedback and decision-making frameworks into the research 

will help elucidate how precise 3D reconstructions can inform and optimize 

management strategies throughout the UU life cycle. Such investigations will not only 

validate the claims made in this research but also contribute valuable insights into the 

practical applications of advanced 3D reconstruction technologies in the field of 

underground utility management. 
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