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Abstract

Underground utilities (UUs), such as water and sewage pipes, gas, and oil pipelines,
and communications and data cables, are important infrastructures for ensuring the
operation of various essential functions of a city. Up-to-date and accurate three-
dimensional (3D) reconstruction, which includes the reconstruction of the horizontal
position, depth, and topological information of the UU target, is the cornerstone for
informed decision making in each stage of the UU life-cycle asset management, such
as UU planning and (re)development, ownership management, construction, safety
management, and operation and maintenance (O&M). However, obtaining an accurate

3D reconstruction has always been considered as a challenging task.

In non-destructive scenarios, where the pipeline is under the soil cover, obtaining
accurate results for the UU 3D reconstruction task is often difficult. In engineering
practice, the most popular UU 3D information detection method is ground-penetrating
radar (GPR), which can efficiently and stably reconstruct most metal and non-metal
utilities by identifying the hyperbolic apex in GPR B-scan images. However, existing
image-processing methods are highly sensitive to noise information in the input, and
the precision of the output results is inadequate. In recent years, although deep-learning
based object detection method can improve the stability of recognition, it still faces
the problem of error accumulation due to the decomposition of the apex localisation
into two sub-problems of bounding box detection and hyperbola fitting, which affects

the precision of UU positioning.

In exposed scenarios, asset managers and technicians can inspect the pipeline in the
maintenance, repair, or installation phase, but it is still very difficult to accurately
reconstruct the UU target under low-light conditions, such as dusk and night. In
existing studies, image-based 3D reconstruction and laser scanning have proven to be
effective and promising for reconstruction. However, the effectiveness of the laser-
scanning method depends heavily on the device itself and is expensive to use. Image-
based 3D reconstruction methods benefit from lower equipment costs as they utilize

standard photographic equipment, which is generally less expensive and more readily
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available than specialized laser scanners. Additionally, these methods require less
specialized training for personnel, further reducing overall project costs compared to
the 3D laser scanning method. However, the reconstruction effectiveness is greatly
reduced under low-light conditions. The important issue of improving the UU image-

based 3D reconstruction performance under low-light conditions remains unresolved.

The collection of UU topological information is an essential task in 3D reconstruction.
The topological connection between the pipeline (or cable) nodes is related to the
transportation and connectivity functions of the UU network. However, obtaining
accurate topological information, owing to the age of installations or imprecise records,
is often difficult. In existing studies, the traditional manual inspection method is
primarily used to obtain missing data; however, this method is expensive and
inefficient. Additionally, there are studies using imputation or machine-learning
methods to predict the missing attribute information in the UU network; however,
these methods cannot perform tasks related to the completion of topological relations.
Alternative low-cost and accurate methods are required for the completion of topology

information.

To address the above problems, this study develops a novel approach for improving
the 3D reconstruction accuracy of UUs at different stages and supplying missing
topology information. First, an end-to-end UU localisation (EUUL) deep-learning
model using GPR B-scan data is proposed and validated. It adopts a key point-
regression mode instead of the box-fitting mode that realises end-to-end learning and
trains the model. An anchor-free structure with a lightweight backbone is applied to
the EUUL model to improve the processing time. To manage the noise interference of
the UU positioning data, a channel attention mechanism is added to the EUUL model,
so that the model can focus on key task features to ensure precision. The experimental
results with real-site GPR data demonstrate that the proposed EUUL model achieves
a significant localisation precision of 97.01% and an inference speed of 125 fps. These
results outperform existing mainstream models, namely YOLOvV3 (91.67%, 82 fps)

and Faster region convolutional neural networks (R-CNNs) (65.52%, 20 fps). This
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indicates that the proposed method effectively enhances the precision of GPR
interpretation, while concurrently reducing the processing time. Second, a zero-
reference deep-learning model for low-light image enhancement of UU 3D
reconstruction (ZDE3D) is proposed and validated. ZDE3D improves the 3D
reconstruction performance of low-light images using an unsupervised loss-function
design without paired or unpaired training datasets. Field experiments confirm that
ZDE3D can effectively increase the quantity of sparse reconstruction point clouds by
an average of 13.19% compared to the reconstruction output based on original low-
light images. Additionally, the reconstruction accuracy achieves a significant value of
98.58%. This demonstrates that the proposed method can effectively enhance 3D
reconstruction in low-light working environments without compromising
reconstruction accuracy. Third, this thesis introduces the UUs topology-completion
(UUTC) model based on the application of graph convolutional network (GCN)
techniques. A comprehensive evaluation of the proposed model is conducted by
performing a series of experiments using a real wastewater network database in France.
This evaluation employs five prominent GCN models, focusing on the missing rates
of topological data. The experimental results demonstrate that the average topological
relationship completeness ratio of the proposed UUTC model reached 85.33%, which
surpasses the performance of the existing mainstream methods (GCN 76.78%,
ChebGCN 76.37%, SAGEGCN 79.37%, GTAGCN 80.85%, and TAGCN 79.44%).
The proposed method is effective in enhancing the accuracy of UU topological

information completion, thereby assisting stakeholders in making informed decisions.

The theoretical contributions of this study are twofold. First, the proposed EUUL
model overcomes the error accumulation problem in the UU localisation task based on
GPR B-scan images in existing research. Second, the ZDE3D model integrates domain
knowledge into unsupervised deep learning, which improves the effectiveness of
image-based UU 3D reconstruction under low-light conditions. This study has several
practical implications. First, a more accurate as-built UU 3D reconstruction can
effectively improve project safety management. Personal injuries and property losses

caused by accidental damage to pipelines can be avoided by accurately predicting the
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location of the utilities. Second, unnecessary costs can be reduced using a more
accurate as-built UU 3D reconstruction model. The number of design and construction
changes will be significantly reduced, thereby avoiding cost losses due to congestion
and rework. Third, convenient topological relationship prediction can effectively
reduce the time required to obtaining all project topological data and improve
management efficiency. The proposed approach can provide a more systematic and
precise assessment of UU network topology relationships. This is beneficial for
shortening the preliminary survey time for new construction UU and maintenance

projects.
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Chapter 1 : Introduction

1.1 Background

Underground utilities (UUs) play a pivotal role in supporting modern urban life, as

they are an essential component of urban infrastructure (Yan et al., 2021; Yan et al.,

2019; Meijer et al., 2022). The UU infrastructure is continuously transporting water,

electricity, gas, and other essential resources that support urban life globally, while also

collecting and disposing pollutants generated by residents' daily activities. Based on

their specific functions, the common types of UUs can be classified, as shown in Table

I-1.

Table 1-1 Common underground utilities (UUs) and functions

No. Categories

Functions

1 Water supply pipes

2 Sewer pipes

3 Stormwater drainage pipe

4 Gas pipelines

5 FElectrical cables

Transporting potable water from treatment
plants or wells to residential, commercial,
and industrial properties for drinking,
cooking, cleaning, and other uses.
Transporting wastewater and sewage from
residential, commercial, and industrial
properties to wastewater treatment plants
for processing and treatment.

Collecting and transporting rainwater and
other surface runoff to prevent flooding and
erosion in streets and public areas.
Transporting natural or propane gas to
residential, commercial, and industrial
properties for heating and cooking
purposes.

Transporting  electrical power from




No. Categories Functions

substations to homes and businesses for
lighting, heating, cooling, and operating
electrical equipment.

6 Telecommunications cables Providing voice and data communication
services, such as telephone, internet, and
video conferencing, to homes and
businesses.

7 Fibre optic cables Providing high-speed internet, telephone,
and cable-TV services to homes and
businesses.

8 Heating and cooling pipelines ~ Transporting hot or cold water or steam for
heating, cooling, or process applications.

9 Fuel pipelines Transporting liquid or gaseous fuels, such as
gasoline, diesel, or propane, to fuel stations

or industrial facilities.

UUs are typically invisible when used. Creating an accurate, up-to-date, and
comprehensive three-dimensional (3D) reconstruction (digital 3D representation of as-
built UUs) has become one of the most important priorities for infrastructure life-cycle
management, such as ownership management, land acquisition, planning and
(re)development, construction recording, operation and maintenance (O&M), and
safety management. All these activities require an accurate 3D representation of the
UU. 1) Ownership management. As the urban population continues to increase
worldwide, the density and complexity of UU distribution are also increasing. In an
invisible underground space, pipe networks of different ownership types are often
intertwined. The as-built 3D reconstruction can intuitively and visually help managers
clarify their scope of ownership and avoid disputes. 2) Land acquisition. Before
implementing an above-ground construction project, it is necessary to obtain a

thorough inventory of the UUs within the area it occupies to ensure that there is no



design function interference. During this process, management efficiency is greatly
improved if all stakeholders have an accurate 3D representation model in the target
area. 3) Planning and (re)development. Whether in a completely new UU or
reconstruction and expansion project, an accurate 3D reconstruction model is the basic
information required for the design plan. Accurate and complete as-built information
can effectively avoid design errors and claims, thereby reducing project costs. 4)
Safety management. Accidents where pipelines are accidentally damaged during UU
construction occur occasionally. According to the US Pipeline and Hazardous
Materials Safety Administration (2021), 12,505 pipeline accidents have occurred
between 2001 and 2020, resulting in 270 fatalities, 1,176 injuries, and $9.95 billion in
property losses. According to an investigation report released by the Underground
Pipeline Professional Committee of the China Urban Planning Association (2022), 737
underground-pipeline damage accidents occurred in China from October 2019 to
September 2020, resulting in 166 fatalities, an increase of 130.14% from the previous
year. 5) O&M. During O&M, a reliable UU 3D-reconstruction model can help
managers rapidly locate fault locations and reduce management costs. A reliable UU
3D-reconstruction model enables managers to quickly pinpoint the exact location of
faults without the need for disruptive and time-consuming ground excavation, thereby
minimizing the need for extensive physical inspections and reducing the time and labor

typically required to diagnose and resolve faults.

The 3D reconstruction of UUs can be divided into three parts according to their
demands: non-destructive reconstruction, exposed reconstruction, and topology

reconstruction.

Non-destructive reconstruction. In most UU 3D-reconstruction scenarios, pipelines
are covered by soil layers, and special equipment is required for positioning under non-
excavatable conditions to map out a 3D model of the target area. Non-destructive
reconstructions commonly used in engineering practice include ground-penetrating
radar (GPR), radio-frequency identification (RFID), electromagnetic induction (EMI),

acoustic emission (AE), thermography, and IMU-based system methods. What is



common among these methods is that without excavation, the signal difference
generated by physical signals, such as electromagnetic waves, sound waves, and
thermal radiation passing through the target UU area, is used for positioning analysis.
Considering the most popular GPR method as an example, it uses the propagation law
of high-frequency electromagnetic waves in different media to realise the non-
destructive reconstruction of underground pipe networks. Figure 1-1 shows the
generation principle of a GPR B-scan hyperbola in a UU 3D-reconstruction scene.
First, the transmitting antenna sends an electromagnetic-wave signal to the UU.
Subsequently, the signal formed by the UU is received by the receiving antenna. When
the GPR passes through a position directly above the UU object (such as at the time of
T1), the antenna can receive the signal reflected by the UU in the shortest duration;
therefore, the distance between the UU and GPR device recorded in the B-scan image
is the shortest (S1) for the same signal propagation speed. When the GPR is at other
target positions (e.g. at the time of To and T2), the receiving antenna can similarly
obtain the signal formed by the reflection of the UU target. However, the distance
between the GPR and the target (denoted by So and S, respectively) is larger than that
of Si; consequently, the distance between the UU and GPR devices recorded in the B-
scan image will be larger. Therefore, the radar signal shows a shape resembling a
hyperbola (lower half) in the B-scan image. Based on the above characteristics, the
position of the UU can be obtained by detecting the hyperbola area and searching for

its apex (the red point in the right section of Figure 1-1).
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Figure 1-1 Schematic of the working principle of ground-penetrating radar

Exposed reconstruction. In some stages, underground facilities can be temporarily
exposed, such as when pipeline installation is completed (before covering the soil) and
during pipeline excavation repair and maintenance. In these scenarios, technologies
other than non-destructive reconstruction are required to perform exposed
reconstruction on UU. Currently, the most common exposed reconstruction (or
destructive reconstruction) technologies include laser scanning and photogrammetry
(image-based 3D reconstruction): 1) Laser-scanning technology uses laser radar
equipment to scan the exposed UU surface from multiple angles to form point-cloud
model information for 3D reconstruction. As shown in Figure 1-2, the laser-scanning
method can rapidly establish accurate surface information features. The reconstruction
process includes emitting laser beams, scanning the target surface to obtain point-cloud
data, and pre-processing the acquired point-cloud data, including denoising, sampling,
and registration operations. The purpose is to remove unnecessary noise points in the
point cloud to facilitate further registration or measurement operations on the point
cloud. The final step is to convert the point-cloud data into a 3D model. 3D-
reconstruction algorithms include voxel-based, surface-based, and image-based
methods. 2) The photogrammetry (image-based 3D reconstruction) method uses
pictures or video stream data to collect image information from different angles of the
same scene to generate a 3D model. The reconstruction process primarily uses image
matching, triangulation, and beam method techniques to extract 3D coordinate
information of the object, before converting it into a 3D model. Compared with the
laser-scanning method, the photogrammetry method based on image data has a lower
cost of obtaining data and is more convenient. Only a consumer-grade smartphone is
needed to complete the reconstruction task quickly. More importantly, the
photogrammetry method can record important attributes, such as the material and
colour of the target, while collecting 3D spatial coordinate information. In contrast,
the laser-scanning method can only collect spatial information. Figure 1-2 shows the
steps and effects of UU 3D reconstruction using laser scanning and photogrammetry,

respectively.
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Figure 1-2 Steps and effects of UU 3D reconstruction using laser scanning and

photogrammetry

Topology reconstruction. Topological information (interconnection relationship
between pipelines) is necessary to fully demonstrate the UU network. Relying solely
on the facilities' surface, the 3D model cannot accurately describe the real structure of
the UU. However, neither non-destructive nor exposed reconstruction can detect the
connection relationship between pipelines. The current main UU topological
relationship reconstruction methods in engineering practice include: 1) Traditional
manual method. Traversing the manhole and other facilities in the target area according
to existing drawing records or combining GPR with manual inspection is still the
mainstream method. This method has the advantage of accurate inspection; however,
the costs of labour, equipment, and time are extremely high. 2) Database completion.
Because a pipeline network is a complete system with practical significance, the
topological relationship between various pipeline parts can be inferred from the
observed partial information. Specifically, the inference of unknown topological
relationships can be realised through imputation, machine learning, and graphs.
Although the database completion method requires a certain amount of known

information, it is highly effective in engineering practice. This is because, in most



cases, the pipeline network in the target area is not completely independent but exists
as a part of the overall pipeline network. Therefore, the data-driven topology-
completion method has a significant cost advantage, particularly for large-scale data

scenarios.

An overview of this thesis is presented in Figure 1-3. The research was based on the
3D reconstruction key stages mentioned above (non-destructive, exposed, and
topological), addressing specific engineering scenario requirements, and ultimately
creating a more effective UU 3D reconstruction model. It is important to note that this
thesis focuses exclusively on a detailed examination of the region outlined by the red
dashed box in Figure 1-3. The roles of other areas lie in forming a comprehensive 3D

reconstruction technical roadmap but are not the primary focus of this research.
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Figure 1-3 Study Overview

1.2 Problem statement

As cities continue to expand, the difficulty of managing the full life-cycle of UUs is
also increasing. In response to the complex combination of infrastructure, water pipes,

power supply, and storage space that crisscross underground spaces, countries have



proposed their own digital underground space representations to improve the
management efficiency of UUs. In 2012, the UK University of Birmingham and other
research institutions jointly proposed a project called MTU (Mapping the Underworld
(University of Birmingham et al., 2012)) — which seeks to develop the means to locate,
map in 3-D, and record using a single shared multi-sensor platform — the position of
all buried utility assets without excavation. In 2017, the Singapore Land Authority, in
collaboration with the Singapore-ETH Centre, developed a system called Imagining a
digitally enabled future (Yan et al., 2021) for the digital twins of UUs to complement
the 3D maps of the country and facilitate integrated planning and development. In
Phase 1, it planned and identified what would be required in the roadmap to develop a
coherent national subsurface utility mapping strategy. Starting in 2019, it embarked on
a second phase, bringing the roadmap to life and supporting the ecosystem to generate
and deliver accurate and complete digital data to stakeholders. Beginning in January
2022, Digital Underground has entered its third phase, and Singapore has the potential

to become the world's leading laboratory for underground mapping.

However, the current 3D reconstruction of as-built UUs remains challenging in terms
of providing accurate 3D representations for practice scenarios. The detailed problems

are summarised below.
1.2.1 Inadequate research attention for UU 3D reconstruction

Various 3D reconstruction techniques have been widely applied to UUs. However,
existing studies have the following limitations. 1) Some researchers reviewed the
development process of 3D reconstruction technology and analysed some technical
details of 3D reconstruction but only focused on the 3D reconstruction technology
itself and ignored the application of technology in engineering context. For example,
the works of Mark (2010), Hao et al. (2012), and Yu et al. (2021) provide
comprehensive summaries of the principles of various technologies. However, they do
not fully explore the characteristics and limitations of technology applications in
engineering, such as the scalability of these technologies in large-scale infrastructure

projects, their adaptability to varying environmental conditions, and the accuracy and



reliability of the data in complex urban settings. 2) Other review studies were
published several years ago, therefore, have not captured recent technological
advancements. For example, a summary of UU positioning technology and
requirements was conducted by the US Federal Laboratory in 2000 (Federal
Laboratory Consortium, 2000). Metje et al. (2007) summarised the MTU technology,
and Liu and Kleiner (2013) reviewed underground exploration technology for water
pipes. Therefore, these studies are not sufficiently specific and comprehensive for the
field of UU 3D reconstruction and cannot guide the selection of UU 3D reconstruction
technology in engineering practice. 3) There is also a need for research that
systematically analyse various 3D reconstruction technologies using factors such as
cost, accuracy, compatibility with existing systems, and operational feasibility to

determine the most effective solution for specific needs.
1.2.2 Inefficient UU localisation precision in GPR interpretation

GPR, the most popular non-destructive method, has been widely applied in UU 3D
reconstruction tasks. However, UU localisation based on B-scan images is challenging
for the following reasons: 1) Owing to the electromagnetic-wave principal
characteristics of GPR, the generation process of B-scan images is affected by various
interference factors from the environment, such as electrical installations and tree roots,
as well as from the device (Lei et al., 2019; Singh et al., 2013; Adouane et al., 2021).
These noise sources further complicate the UU target recognition. 2) Unlike other GPR
detection tasks, such as reinforcement localisation in concrete structures (Wang et al.,
2020; Liu et al., 2020; Ahmed et al., 2020), UUs are buried deeper, composed of
various material types, and surrounded by a more complex environment. The

limitations of the task object are likely to deteriorate B-scan image quality.

The B-scan image generated by GPR must be analysed by domain experts to obtain
accurate position information pertaining to the UU. UU localisation in GPR B-scan
images is highly subjective and significantly depends on expert knowledge and
engineering experience. Although many studies have been conducted to improve the

automation of GPR B-scan data interpretation, the following limitations remain. First,



conventional methods involve complex processing steps that render them highly
susceptible to environmental noise and yield unstable precision performance (Maas et
al., 2013; Harkat et al., 2016; Sagnard et al., 2016). Second, existing deep-learning
methods separate a problem into two sub-problems: box detection and hyperbola
fitting (Lei et al., 2019; Harkart et al., 2019; Hou et al., 2021a; Zong et al., 2019). This
allows the problem's solution to be obtained only from the local optimal solutions of
the sub-problems and not the global optimal solution. In UU localization using GPR,
deep learning methods typically divide the problem into sub-problems (the box
detection and hyperbola fitting), each solved for what seems best within their limited
scope, termed as "local solutions." However, this step-by-step approach can miss the
overall best solution—or "global solution"—for the entire dataset, leading to errors
and suboptimal performance when these local solutions are combined. Furthermore,
this step-by-step solution results in greater error accumulation, which affects the UU

localisation precision.

1.2.3 Inefficient image-based reconstruction performance under low-light

scenarios

To date, there are two main technical routes for UU 3D reconstruction: image-based
3D reconstruction and laser scanning (Patraucean et al., 2015). Image-based 3D
reconstruction utilises multi-view 2D image data to restore the UU target spatial
information (Doner et al., 2011; Yan et al., 2018). Laser scanning collects 3D spatial
information of the UU surface through the Time of Fly (ToF), which is the time interval
between the transmission and reception of pulses (Bosché et al., 2015; Wang et al.,
2021a). However, laser-scanning devices are often limited by high holding costs,
training costs, and poor convenience. As an alternative method, image-based 3D
reconstruction requires only an inexpensive camera or even a mobile phone camera to
obtain accurate 3D information. In addition, there are no pre-training preparation

requirements or investments before the operation.

However, image-based 3D reconstruction performance still has challenges in harsh

conditions, such as a low-light environment during the evening or mid-night. During
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the construction of UUs, the lighting conditions must be improved owing to the depth
factor. In the O&M update scenarios of UU, repairs and updates are often required in
the shortest possible time, making it unavoidable to perform 3D reconstruction in
scenes with poor lighting or even at night. Under low-light conditions, the degree of
recognition of the object surface texture decreases, reducing the quantity and quality
of the generated point clouds (Roncella et al., 2021; Pozo et al., 2019; Burdziakowski
et al., 2021). To overcome these difficulties, existing studies have primarily focused
on conventional image-processing algorithms to enhance reconstruction performance.
The limitations of such methods are that many parameters must be manually input by
practitioners, and these methods are highly subjective (Guidi et al., 2014; Lu et al.,
2012). With the development of deep learning, several models have been applied to
enhance low-light images using paired training datasets (low-light input images and
ideal reference output images) (Wei et al., 2018; Lore et al., 2017). Nevertheless, it
cannot be directly used to enhance low-light images for a better 3D reconstruction
outcome, as it is difficult to obtain paired training data and reference data (referring to
the low-light images and paired ideal reference images that could be used for 3D
reconstruction) to supervise the training progress. Even with access to the required
dataset, the reconstruction outcome is still unreliable, as it is heavily dependent on the
chosen reference images and practitioners’ experience. In addition, few studies have
incorporated the characteristics of as-built UU scenarios into the conditions for image
optimisation.

1.2.4 Inefficient UUs topology-completion accuracy

Efficient and low-cost solutions for the completion of missing data in UU topology
information are still lacking. The traditional method, which is also the most widely
used method in engineering practice, is to detect the connection relationship between
pipelines using GPR (Birkenfeld, 2010; Skartados et al., 2019), PipeProbe (Lai et al.,
2010), or other manual methods, such as manhole inspection (Alejo et al., 2019).
Although this approach can achieve high accuracy, it requires substantial human labour

and expensive resources. Some studies have transformed the missing data-completion
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problem of general UU attributes (diameter, material, water level, etc.) into an
imputation problem. They used traditional imputation algorithms: single, linear
regression-based, and three multiple imputations (Davey et al., 2009; Little et al., 2019;
Von et al., 2004; Graham et al., 2012; Templ et al., 2011); machine-learning methods:
principal component analysis (PCA) (Gangopadhyay et al., 2005); K-nearest
neighbour (KNN) (Woldesellasse et al., 2021); decision trees (Barros et al., 2012); and
neural networks (NNs) (Bishop, 1995) to accurately predict missing values. However,

imputation cannot be used to predict the topological relationships.

1.3 Scope and aim/objectives

To address these issues, this study aims to improve the data-collection process and
accuracy of the data used in the 3D reconstruction of as-built UUs. By obtaining better
data and more accurate 3D reconstructions, the management decision making of UU
operation maintenance rehabilitation and renewal can be improved. To achieve the aim
of having more accurate and reliable 3D reconstructions, four objectives were

established.

Objective 1: To identify research topics, trends, and limitations of automatic 3D
reconstruction for as-built UUs. This thesis first identified existing mainstream 3D
reconstruction technologies and analysed their advantages, disadvantages, and best
performance. Second, the application research of various technologies was
summarised from the perspective of engineering practice. Third, a decision-making
framework for selecting 3D reconstruction technologies was proposed to improve the

management efficiency of the UU life-cycle.

Objective 2: To develop a novel GPR-based as-built UU localisation deep-learning
model for non-destructive scenarios. An end-to-end UU localisation (EUUL) deep-
learning model using GPR B-scan data was proposed. First, unlike other deep-learning
UU localisation methods, the EUUL model adopts the key point-regression mode
instead of the box-fitting mode to realise end-to-end learning and train the model.
Second, an anchor-free structure that does not rely on predefined anchor boxes to

detect objects, with a lightweight backbone (CSPDarknet53), was applied to the EUUL
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model to improve speed. Unlike traditional models that use anchors as reference points
for bounding box predictions, anchor-free models predict the center points of objects
directly. It increases the accuracy by allowing the model to dynamically adjust to the
shape and size of the objects being detected without being constrained by preset
anchors. And the computational overhead was also reduced by eliminating the need
for calculating and adjusting multiple anchor boxes. Finally, to manage the noise
interference of the UU positioning data, a channel attention mechanism was added to
the EUUL model, such that the model focused on key features in the task to ensure

precision.

Objective 3: To develop a novel unsupervised image-based 3D reconstruction model
for the low-light 3D reconstruction of as-built UUs for exposed scenarios. A zero-
reference (unsupervised) deep-learning model for low-light image enhancement for
UU 3D reconstruction (ZDE3D) was proposed. This model was trained without a
given reference sample image; that is, no paired or unpaired data were required in the
training process. The enhancement of the UU 3D reconstruction performance was
achieved by loss functions, where the design was based on 3D reconstruction
principles and pixel-wise restricted relationships between the input and output images.
Therefore, the influence of subjective parameter settings in the optimisation process
can be avoided to the maximum extent, and the performance of UU 3D reconstruction

in a low-light environment can be simply and effectively improved.

Objective 4: To develop a graph convolutional network (GCN)-based topology-
completion model for as-built UUs. A GCN-based UU topology-completion (UUTC)
model was proposed in this thesis. The model can extract UU attributes and topology
features simultaneously and combine the correlation between the pipeline network
topology relationship and attribute features to effectively complement the missing
topology information. To verify the superiority of the proposed model over the existing
mainstream GCN model in the UU data-completion task, five mainstream control
groups were modelled focusing on missing data rates. The actual wastewater pipeline

database from Angers Metropolis, France, was used as the case study.
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1.4 Significance

The up-to-date 3D reconstruction of UUs is essential for ensuring safety, cost-
effectiveness, efficient planning, and timely facility maintenance management.
However, obtaining an accurate UU 3D reconstruction model is affected by many
factors, and it is still very difficult to reconstruct the topological relationship after
obtaining the spatial model. This research addresses these issues by developing a novel
GPR-based as-built UU localisation deep-learning model for non-destructive scenarios,
improving the UU localisation precision. A novel unsupervised image-based 3D
reconstruction model was developed to improve the low-light 3D reconstruction of the
as-built UUs for exposed scenarios. Regarding topology reconstruction challenges, a
GCN-based topology-completion model for as-built UUs can infer missing topological

information. Accordingly, this study makes three main contributions.
(1) Improving the precision of current GPR-based UU localisation

This study contributes to the knowledge body by proposing an EUUL deep-learning
model using GPR B-scan data. The prevailing deep-learning approaches decompose
the problem into two distinct sub-problems, namely box detection and hyperbolic
fitting (Lei et al., 2019; Harkart et al., 2019; Hou et al., 2021; Zong et al., 2019), which
leads to the computation of the solution primarily from the local optimal of the sub-
problems rather than the global optimal. Moreover, this incremental approach to
problem solving results in greater error accumulation, impeding the precision of UU
localisation. The proposed EUUL model transforms the UU positioning problem into
an end-to-end problem, from B-scan images to pipeline hyperbolic fixed-point
coordinates. Simultaneously, it reduces the interference of environmental noise on the
data by adding an efficient channel attention (ECA) module to achieve a higher
positioning precision. The proposed methods are validated in experiments with real
GPR datasets, and the results show that the performance is superior to existing

mainstream models in terms of precision, operating speed, and robustness.

(2) Improving the reconstruction performance of image-based UUs in a low-light

environment
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The proposed image-based UU reconstruction model is of considerable importance in
both theory and practice. Previous image-based studies have focused on surface
reconstruction of UU under normal illumination conditions. However, UU installation
and maintenance projects have a short construction period and greatly impact residents'
lives; therefore, low-light scenes such as evening or night are very common. This study
proposed a zero-reference (unsupervised) deep-learning model for the low-light image
enhancement of UU 3D reconstruction (ZDE3D). From a theoretical perspective, the
proposed ZDE3D model compensates for low-light image enhancement based on
unsupervised learning in existing research on low-light image 3D reconstruction
blanks. From a practical perspective, the ZDE3D model obtains more matching point
clouds under the same input conditions, which effectively improves the surface 3D
reconstruction effect of UU scenes in low-light environments. Field experiment
implementation confirmed that the capability of ZDE3D can significantly increase the
quantity of sparse reconstruction point clouds while ensuring high model
reconstruction accuracy. This study is crucial for enhancing and broadening the scope

of image-based 3D reconstruction technology in UU scenarios.
(3) Improving the completion accuracy of graph-based UU topology information

This study makes a practical contribution by providing a graph convolutional network-
based model (UUTC) for the UU topology completion task. Previous UU database
completion studies have focused on common attributes such as material depth and
diameter. However, the topological relationship is very important for UU 3D
reconstruction, and a model reconstructed with the topological relationship can fully
represent the pipeline function. The proposed deep-learning model uses a
convolutional graph neural network to transform the topological relationship
prediction task into an edge relationship classification task between pipeline nodes.
Combined with the UUs' greater possibility of topological connections between similar
pipelines, a graph-based supervised deep-learning model for UU topology database
completion was developed. The UUTC model can quickly predict the UU topological
relationship under different missing data conditions, which avoids expensive manual
inspection costs and achieves fairly reliable prediction accuracy. In this study, a model
verification experiment based on real wastewater data was conducted. Compared with
five mainstream GCN models, the proposed UUTC showed the best topological

relationship completion ability under different missing data rates. The development of
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UUTC can effectively help stakeholders quickly understand the topological

relationship of unknown areas and make more scientific management decisions.

1.5 Thesis structure

This thesis has seven chapters which are summarised below and in Figure 1-4.
Chapter 1 describes the background, research problems, aims, and objectives of this
thesis, as well as the thesis structure.

Chapter 2 summarises the literature on the current 3D reconstruction technologies for
UUs, GPR-based 3D reconstruction for UUs, image-based 3D reconstruction for UUs,
and topology completion for as-built UUs.

Chapter 3 introduces the study’s research methodology. It outlines the research
philosophy that underpins research methods. The chapter then introduces the method
for developing the GPR-based as-built UU localisation deep-learning model (EUUL),
a method for developing a novel unsupervised image-based 3D reconstruction model
(ZDE3D), and a method for developing the GCN-based topology information
completion model.

Chapter 4 develops an EUUL deep-learning model using GPR B-scan data. The
EUUL model includes a lightweight backbone (CSPDarknet53) for feature extraction
of the input data, and the computational cost is reduced to improve the data processing
efficiency of the model. An ECA module was used to reduce the interference of
environmental noise by learning to adjust the weight distribution between different
captured channels. A prediction module that directly predicts the pipe coordinate
position to achieve end-to-end learning and reduce the localisation error caused by
step-by-step learning. Detailed experimental results are summarised to compare the
EUUL model with other popular models for GPR-based UU localisation.

Chapter 5 develops an unsupervised deep-learning model for low-light image
enhancement for UU 3D reconstruction (ZDE3D). The proposed ZDE3D model
enhances the image-based UU 3D reconstruction through the pixel-level unsupervised
loss functions. The design of these loss functions also considers common low-light
enhancement, the principle of photogrammetry, and the features of UU projects. Field
experiments in different scenarios were conducted and analysed to validate the
performance of the ZDE3D model. In addition, ablation experiments are conducted to

verify the contribution of the proposed loss functions.
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Chapter 6 develops a graph convolutional network-based UU topology-completion
(UUTC) model. The UUTC model comprises of four main modules: input, similarity
extraction module (SEM), convolution, and link prediction. The model takes the
observed topological relationships and node attribute information of the UU network
as input and aims to generate completed network topology relationship data as output.
The experimental results show that the proposed model can effectively complete the
UU topological relations (average precision of 85.33%) for different proportions of
missing topological relations.

Chapter 7 concludes important findings in the thesis, highlights contributions and

implications, discusses limitations of this research, and suggests future studies.
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Automatic 3D Reconstruction for As-built Underground Utilities

Chapter 1: Introduction

Research aim: to develop an automatic 3D reconstruction approach to help improve the

lifecycle management efficiency of as-built underground utilities (UU)
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Chapter 2 : Literature review
2.1 Current status of the UU 3D reconstruction
2.1.1 Review of the key technologies for 3D UU reconstruction

After years of development in the field of 3D reconstruction in underground
engineering, many techniques and methods have been developed to achieve the goal
of 3D reconstruction. This section summarises the essence and characteristics of the
existing 3D reconstruction technology from a technical perspective. In Section 2.1,
non-destructive technologies (NDT) for UU 3D reconstruction are introduced,
whereas Section 2.2 reviews destructive technologies (DT), which are performed
under the condition of excavation. Finally, Section 2.3 summarises the advantages and

limitations of this technology.
2.1.1.1 Non-destructive technologies
2.1.1.1.1 GPR

GPR 1is one of the most common and efficient non-destructive 3D reconstruction
techniques for UUs. This is essentially a method that uses antennas to transmit and
receive high-frequency electromagnetic waves to detect the characteristics and
distribution rules of matter inside the target area (Lai & Derobert, 2017; Zhao et al.,
2017). In the UU scenario, GPR equipment is always used to scan the specified ground
area (such as the section method, wide angle method, and transmitted wave method)
to obtain the reflection characteristic data (mainly referring to B-scan images) of the
underground hierarchy of the target area, and further analyse the location and
characteristics of the pipeline according to the dielectric coefficient and waveform
characteristics. Thus, a 3D model of the UU pipeline in the target areas was obtained
with relevant engineering experience (Guo et al., 2009; Li et al., 2012; Maas et al.,
2013; Jaw & Hashim, 2013; Zhang et al., 2016). In a recent study, Li et al. (2020a)
reconstructed an underground-pipeline model fused with GPR and Camera in 2020,
and the average localisation error was 4.47 centimetres. However, this approach is

typically less accurate in engineering applications. There are two main reasons for this:
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1) there are many disturbing factors (such as high-voltage line magnetic field, iron pipe
corrosion products, and other factors (Hao et al., 2012; Pennock et al., 2010; Bai et al.,
2020; Tosti et al., 2016)) in a complex real engineering environment; and (2) the final
model reconstruction accuracy of this method relies heavily on manual experience,
which requires a large amount of engineering experience in both GPR and UU

engineering (Zhang et al., 2016).
2.1.1.1.2 RFID

RFID is a non-contact, fast information exchange, and storage technology realised by
radio waves. However, in the reconstruction scenario of UUs, this technology
generally requires binding RFID tags containing specific information during the
construction of UUs. The signal strength reflection difference obtained at different
distances is used to locate the depth and direction of pipelines, and is combined with
engineering data, or GPR, and other methods to achieve 3D pipeline reconstruction
(Sen et al., 2009; Hao et al., 2008; Zhang et al., 2017; Kumar et al., 2012). Compared
with GPR, RFID technology has two major advantages: 1) This method can be used
to overcome the problem of weak radar signals in plastic pipes (Zhang et al., 2017,
North et al., 2010) when the surrounding soil has attenuation or the pipes and soil have
similar electromagnetic characteristics, which is a good supplement to GPR
technology. 2) The relatively low operating frequency (tens of kHz to tens of MHz)
means that it has a greater coverage range than most pulsed GPR systems used for
practical detection (hundreds to thousands of MHz). For example, Kumar (2012)
developed an RFID-based 3D positioning model for underground assets and
experimentally verified that the 3D reconstruction accuracy of the system was within
+ 100 mm. However, the shortcomings of RFID technology are evident. First, its cost
is high, and it is not easy to maintain, and replace after embedding. Second, the label
is subjected to soil corrosion in an underground environment, which affects the

reception of the signal (Zhang et al., 2017; Kumar et al., 2012).

2.1.1.1.3 Electromagnetic induction (EMI)

Electromagnetic induction (EMI) is a method used to locate and map UUs. The basic
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assumption of this method is that, when the magnetic field peak is measured, the
equipment position is directly above the UU (i.e., the horizontal position), and the
buried depth of the pipeline can be estimated according to the signal strength.
Electromagnetic technologies can be classified into active and passive modes (Lai et
al.,2017; Jeong et al., 2004; Siu et al., 2019). In the active mode, a voltage was applied
at the end of an underground metal pipe, and the position and depth of the pipe were
determined by measuring the peak position and strength of the generated magnetic
field. Passive means that the UU itself generates a certain magnetic field strength (such
as a cable) through an ultrasensitive magnetic detection device to determine the depth
of position and then generate a three-dimensional model of the UU. Magnetic
technologies commonly used equipment that avoids cable avoidance tools (CATs),
pipe and cable locators (PCLs), flux-gate magnetometers (FMs), proton precession
magnetometers (PPMs), alkali vapour magnetometers (AVMs), and superconducting
quantum interference devices (SQUIDs). (Jeong et al., 2004; Metje et al., 2020; Karaa
et al., 2014). Magnetic technologies complement GPR detection and reconstruction
methods because magnetic signals are less attenuated in wet soils with a higher clay
content than in conventional GPR. The accuracy of this method was 3% in the range
of 3 m, and 5% in the range of 3—5 m (Yan et al., 2019). Together with Geographic
Information Systems (GIS), a promising storage technology for utility location and
attribute data, these methods can achieve good 3D reconstruction (Karaa et al., 2014;
Liu et al.,, 2012). However, this method is only effective for metal pipelines.
Simultaneously, it is extremely difficult to apply when the underlying infrastructure
conditions are complex (e.g. with multiple staggered metal pipelines) (Jeong et al.,
2004; Siu et al., 2019). Therefore, the electromagnetic-technology-based UU

reconstruction method still has a narrow application range.
2.1.1.1.4 Acoustic emission

AE methods involve using sensors, such as hydrophones, to detect and measure the
acoustic signals generated by UUs. These methods can be used to locate and map

various utilities, including pipes, cables, and other infrastructure (Khan et al., 2010;
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Talmaki et al., 2013; Metcalf et al., 2020; University of Birmingham et al., 2012). AE
methods detect sounds or vibrations generated by utilities as they operate. For example,
the water flow in a pipe can generate a characteristic acoustic signal that can be
detected and used to locate utilities. Similarly, the movement of electrical cables can
generate an acoustic signal that can be detected and used to locate the cables. AE
methods can be used to locate both metallic and non-metallic utilities, and they are
often used in conjunction with other methods, such as EMI or GPR, to provide a more
complete picture of the underground environment. Acoustic methods have the
advantages of low acoustic attenuation and effective propagation in both solids and
liquids (Smith et al., 2019; Volker et al., 2013). However, ultrasonic technologies also
have some clear limitations, such as the dry and wet degree of the soil, hard surfaces
(such as pipes under the surface of concrete), and rock roots near the target pipes and
other pipes. These factors affect measurement results (Rachev et al., 2018; Muggleton
et al., 2002; Leinov et al., 2015). This method can track pipelines buried less than 0.5

m (Metje et al., 2007) without noise interference.
2.1.1.1.5 Thermography

Thermography is a method by which the invisible infrared energy emitted by UUs is
transformed into visible thermal images to obtain the location information of pipelines
for 3D reconstruction modelling. The instrument commonly used in this method is
infrared thermography (IRT), which comprises an infrared detector and optical
imaging objective lens (Lagiiela et al., 2018; Solla et al., 2016). The IRT data of the
UU were acquired through the detection and measurement of the infrared radiation
energy emitted by the target under examination and subsequently capturing the
distribution pattern of the energy via the photosensitive component of the infrared
detector. This thermal image corresponds to the thermal distribution field on the
object’s surface. This is similar to the acoustic and electromagnetic-wave methods,
which can achieve trenchless reconstruction (Fan et al., 2005; Capozzoli et al., 2017).
The most recent study in Singapore by Capozzoli et al. (2017) explored this approach.

The thermography method provides an accurate distance between tubes. However, the
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depth and characteristics of the surrounding media were not well defined (the pipeline
depth in the experiment was only approximately 0.2 m). Therefore, thermography is a
reliable method for NDT reconstructions. However, in other studies, the accuracy of

this method must be clarified.
2.1.1.1.6 IMU-based system

An inertial measurement unit (IMU) is a sensor that records the speed, acceleration,
and direction of rotation of its inertia. As one of the trenchless pipeline detection
modelling methods in the UU scene, this method mainly records the velocity, rotation
angle, and other parameters using an IMU sensor mounted on the robot equipment to
obtain the depth and strike data of the pipeline, and finally draws a three-dimensional
model of UUs (Hyun etal., 2010; Lee etal., 2011; Wang et al., 2012). The IMU method
can obtain the most accurate 3D pipeline reconstruction data under non-destructive
conditions. The general horizontal accuracy was 0.25% of the total pipeline length and
the depth accuracy was 0.1% (Yan et al., 2019). In the latest study, Zhang et al. (2019b)
reported that the maximum horizontal error was 0.10 m, and the maximum height error
was only 0.04 m (5x6 m pipes with four joint sockets). It should be noted that low-cost
IMU equipment was used in the research by Zhang et al. (2019b); therefore, the IMU
method can achieve higher accuracy if cost factors are not considered. In addition, the
IMU-based method also has the advantage of not being affected by the soil
environment (e.g. soil composition and water content) and deep application depth.
However, compared with other trenchless methods, the IMU method has the following
limitations: 1) it is vulnerable to electromagnetic interference; 2) it cannot be used in
working pipes (such as water pipes); and 3) solid pipes, such as cables, cannot be used.
(Lee et al., 2011; Chowdhury et al., 2016; Reyes-Acosta et al., 2019). These defects

lead to a status quo applicable to only a few scenarios.
2.1.1.2 Destructive technologies
2.1.1.2.1 laser scanning

Laser scanning has been widely used in the three-dimensional model reconstruction of
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pipelines during the excavation stage (Duran et al., 2003; Stani¢ et al., 2017). This
method is based on the principle of laser ranging, which collects the spatial position
of the surface points of the target utility to form a three-dimensional model. Similar to
total station technology, laser scanning also needs to be used in the scenario of pipeline
exposure, which is characterised by its ability to obtain high-precision object surfaces
in large-scale environments. Compared with other methods, the advantages of laser
scanning are as follows: 1) it has the best automatic performance (Lee et al., 2013;
Wang et al., 2022(a); Maalek et al., 2018); 2) it can realise model reconstruction with
millimetre-level accuracy (Patel et al., 2010b; Wang et al., 2021a; Guo et al., 2020b);
and 3) owing to the use of laser information acquisition, it has a strong anti-
environmental interference ability and is suitable for large-scale three-dimensional
reconstruction of UUs in an open environment (Patel et al., 2010b; Son et al., 2016).
However, its fatal disadvantage is that it cannot be used in the pre-excavation phase,
which significantly reduces the engineering practicability of the method. In addition,
laser scanning alone can only reconstruct the spatial information of reconstructed

objects, and it is not easy to obtain information other than the shape of the surface.
2.1.1.2.2 Photogrammetry

Photogrammetry is another method that can be performed only in open scenes.
Photogrammetry refers to the technique of using optical sensors to record images of
target objects and analyse object shapes and spatial positions using image features
(Richard & Canberra, 2003). This technique was applied to the 3D reconstruction of
pipeline utilities by Veldhuis and Vosselman (1998). Photogrammetry has the
following advantages: 1) data collection is convenient, and only photos are required;
2) low cost of data acquisition equipment, a common digital camera (or even a mobile
phone camera) can meet the requirements; and 3) on the basis of obtaining the spatial
features of the target, RGB pixel information can also be obtained, which can be used
for further analysis of the target object (Yilmaztiirk et al., 2010; Maalek et al., 2021;
Javadnejad et al., 2017; Lueke et al., 2011). However, similar to total station and laser

scanning, photogrammetry can only be used for 3D reconstruction of UUs during
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specific stages of pipeline exposure. However, compared to laser scanning,

photogrammetry has three important characteristics: high accuracy, automation, and

low cost. Therefore, it has evident engineering application potential (Javadnejad et al.,

2017; Yang et al., 2021; Elkhrachy, 2021). In addition, existing research teams have

combined photogrammetry, laser scanning, and GPR technology to perform 3D

reconstruction tasks for UUs (Yan et al., 2019; Li et al., 2020a) and have shown great

potential.

2.1.1.3 Summary

The above review shows that every 3D reconstruction technique, whether NDT or DT,

is not a perfect choice for every scene. Figure 2-1 summarises the advantages and

limitations of all types of mainstream 3D reconstruction technologies mentioned above,

as well as the limitations and best performance reported in the current literature.

Scene Type Advantages
GPR High reconstruction accuracy
Adapt to various material targets
Convenient operation
RFID Wide range of application depth
NDT Stable signal strength
Electromagnetic Stable signal strength
Acoustic Signals propagate in various media
Technologies Small signal attenuation
Ther hy C
IMU-based system Low cost
High reconstruction accuracy
Laser scanning High reconstruction accuracy
Simple operation
DT

Photogrammetry

High reconstruction accuracy
Low equipment cost

Rich semantic information
Simple operation

Limitations

Difficult data analysis

Low reconstruction accuracy
Labels are susceptible to corrosion

Low reconstruction accuracy
Mutual interference between multiple
targets

Low reconstruction accuracy
Vulnerable to noise interference
Small applicable depth range

Low reconstruction accuracy
Small applicable depth range
Large temperature scenes only
Small scope of application
The operation is complicated

The operation is complicated
High equipment cost

ble to light

Best Performance

Centimeter level accuracy can be
realized

3D reconstruction accuracy between
+ 100 mm

3% in the range of 3 meters
5% in the range of 3 to 5 meters

Support the working range of
0~ 0.5m below the ground

Support the working range of
0~ 0.2m below the ground

Horizontal accuracy: 0.25% of the
total length of the pipeline

Depth direction accuracy: 0.1% of
the total depth

Millimeter level accuracy can be realized

Centi level accuracy can be realized

Rich semantic information

Figure 2-1 Limitations and best performance of 3D reconstruction technologies

In addition, multi-sensor fusion is an important implementation path in underground

3D reconstruction. It includes the following three types: 1) NDT + NDT. For example,

when one PCL and GPR are used, the depth measurement accuracy error can reach 40%

of the buried depth; when both are used, the depth measurement accuracy error can

reach 15% of the buried depth (Yan et al., 2019). In addition, some studies have
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integrated GPR technology and acoustic technology for the three-dimensional
reconstruction of UU (Yan et al., 2019) or improved position accuracy through GPS
(Khan et al., 2010; Sarlah et al., 2020; Li et al., 2016). 2) DT+DT: The first combines
DT technology with GPS to improve the accuracy of the reconstructed position (Patel
et al., 2010). In the other category, photogrammetry was combined with laser scanning
to overcome the degenerate phenomenon in the absence of the geometric features of
the laser method and the difficulty of improving accuracy when only the
photogrammetry method was used (Lin et al., 2021; Ye et al., 2019). 3) NDT was
integrated with DT variants. For example, GPR has been combined with visual
simultaneous localisation and mapping (VSLAM) based on photogrammetry to
establish a 3D reconstruction system for multi-pipeline groups (Li et al., 2020a). In
addition, Virtual Reality (VR), Augmented Reality (AR), and other technologies have
been used in 3D reconstruction to improve the display effect (Fenais et al., 2020;

Childs et al., 2020) in recent years.
2.1.2 Review of the current applications of 3D reconstruction methods

Although categorised under the term ‘UU 3D reconstruction methods’, the techniques
discussed above exhibit significant variations in their respective applicability to
specific scenarios. Such differences in the implementation details can significantly
influence the selection of appropriate engineering technology routes. As a result, this
section reviews the present applications of 3D reconstructed models, as shown in Table
2-1, which may aid decision makers in identifying appropriate 3D reconstruction

technologies or combinations based on their suitability for particular scenarios.

Table 2-1 Applications of the 3D reconstructed models

Stage Classification Category Application Details

Before UU Inspection GPR Hebsur et al. (2013) wutilised GPR

Construction RFID technology for reconstructing the UUs of
EMI ancient cities to establish an information
AE base for urban models.
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Stage

Classification

Category

Application Details

Thermography
IMU-based

system

Risti¢ et al. (2014) used GPR technology
for identifying the subterranean structure of
a flooding bank in Novi Sad, Serbia, as well
as for delineating the geometry of man-
made public utilities (pipelines).

Deng et al. (2020) applied GPR technology
to detect and reconstruct water supply
pipelines in older communities of China.
Additionally, in the same year, Cai et al.
(2020) established a robust and accurate
method for inventorying UUs by utilising
GPR in conjunction with existing utility
records as two independent sources of

information.

Network

Planning

GPR

RFID

EMI

AE
Thermography
IMU-based

system

Mooney et al. (2010) used multi-channel
ground-penetrating radar (GPR) to conduct
three-dimensional reconstruction of
underground cables in Yonkers, NY to
verify the influence of this method on the
design and planning of UU project and
found many unknown public utilities that
had major conflicts with the planned
construction.

Harbin et al. (2016) collected the required
UU data to reduce existing pipeline and
newly designed UUs and to plan by

identifying potential expansion areas of the
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Stage

Classification

Category

Application Details

existing network at the University of
Alabama.

Zhang et al. (2020a) proposed the UU
Occupation Index (UUOI) based on
existing UUs, occupied underground space
and space models for future use, which is
used to provide abstract utility and space
use information for the government's urban

planning and development.

During

Construction

Machine Guide

GPR
EMI
Laser scanning

Photogrammetry

Talmaki et al. (2012) developed a
comprehensive computing framework for
real-time monitoring of construction
activities in a concurrent 3D virtual world
to reduce the possibility of accidental
pipeline collision by excavators.

Al-Bayati et al. (2019) Collected and
analysed 11,160 damages in the state of
North Carolina to reduce the risk for the
damages to UUs while machine work.
Tanoli et al. (2019) proposed a new
approach to modelling UUs for machine
navigation systems to provide visual
guidance to operators and prevent

accidental damage to underground pipes.

3D record

generating

Laser scanning

Photogrammetry

Son et al. (2015) developed a fully
automatic system for as-built pipeline 3D

reconstruction based on laser technology.

28



Stage Classification

Category

Application Details

However, it may inaccurately segment a
single pipeline into multiple parts due to
occlusion.

In 2017, Ahmad et al. (2017) proposed a
modified global ICP (Iterative Closest
Point) method for automatic 3D models
recording of the UU. While promising, the
adaptation for complex UU networks and
its cost-effectiveness remains unexplored.
Stylianidis et al. (2020) validated a new
system (LARA) that integrates handheld
and mobile devices for monitoring,
recording, and managing utility-based
geospatial data products and services.
However, it depends on the accuracy of GIS
data in network operators’ databases, which
can result in discrepancies between the

virtual and actual positions of underground

pipes.

After Asset

Construction management

GPR

RFID

EMI

AE
Thermography
IMU-based

system

Ortega et al. (2019) demonstrated an
effective  way to manage urban
infrastructure by visualising underground
infrastructure in an interactive 3D
immersive environment. The dependence
on the accuracy and precision of GIS data
in network databases which can also lead to

discrepancies between the virtual and actual
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Stage

Classification

Category

Application Details

positions of underground pipes.

Yan et al. (2019) connected the UU 3D
model to the government database of
cadastral plots for land management in
Singapore. And the study highlighted the
lack of reliable, comprehensive, and
accurate 3D data on underground utilities,
which hampers effective urban planning
and  management of  underground
infrastructure.

Yan et al. (2021) proposed UUDM (UU
data model) to help ownership
management, land acquisition, planning
and (re)development of the UU based on his

previous work.

Defect

Detection

GPR
AE
IMU-based

system

Zhang et al. (2019a) developed a low-cost
IMU and odometer integrated system that
can effectively detect pipeline settlement
with a depth accuracy of 0.11 m. However,
underground utility companies are often
reluctant to share accurate information
about their existing utilities, which hinders
effective urban planning and utility
management due to missing historical as-
built records and the unavailability of
accurate utility data for governmental

planning.
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Stage

Classification

Category

Application Details

Zhang et al. (2019b) verified the rapid and
high-precision detection of pipelines based
on internal images of pipelines and
achieved good experimental results. While
the primary limitation is the challenge of
obtaining accurate and comprehensive
internal damage and erosion data within
urban drainage pipe networks due to the
complex and irregular distribution of
defects.

Shokri et al. (2020) accurately mapped the
old, corroded pipes in Malaysia. However,
variations in soil electrical resistivity and
moisture content can have the effect of
reduced accuracy.

Gunatilake et al. (2020) combined stereo
vision with laser profiling realised the
imperfections monitor of the pipe linings
under unfavourable environmental

condition.

2.1.2.1.1 UU inspection

2.1.2.1 Application before construction

Before UU construction, 3D reconstruction techniques, mainly NDT, were generally

used in UU inspection and planning for unknown target areas.

However, urban UUs generally have explicit electronic or paper-based drawings.

However, problems such as loss of records, failure to construct according to drawings,
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and location changes owing to pipeline settlement pose a huge challenge to city
management, especially in old urban areas. The non-destructive 3D reconstruction
technique can reconstruct UU under completely unpredicted conditions at minimum
cost. Obtaining the exact locations and depths of unknown utilities is crucial for urban
management. Only with a clear grasp of the detailed underground location information
of various types of pipelines can the government form a complete and effective asset-

management system.
2.1.2.1.2 Network planning

The planning of UU networks is an important part of overall urban design and planning.
Unreasonable UU network planning leads to wasting workforce and material resources,
particularly when urban areas are to be developed. However, pipeline network
planning is a systematic project that requires coordination. This project is fundamental
to the reconstruction of the localisation and dimensions of various utilities. A clear 3D
reconstruction of the UU can effectively avoid repeated network construction, reduce
the construction cycle of utilities, and select the best layout path. The employment of
UU in new urban development is driven by various factors, including the need for
intensive utilisation of land resources, accessibility considerations, the desire to avoid
the challenges faced by old cities, cultural and modernity concerns, and the aim of

constructing intelligent, environmentally friendly, and sustainable urban spaces.
2.1.2.2 Application during construction
2.1.2.2.1 Machine guide

Mechanical excavation is essential in the construction of UU projects. Simultaneously,
accidental damage to pipelines around other construction sites is the most important
risk factor in implementing UU projects. In the case of accidental pipeline breakage,
the project progress may be stalled, and traffic congestion around the site may occur.
Serious casualties can occur (such as injuries caused by accidental gas-pipeline
explosions). In this scenario, UU real-time 3D reconstruction can effectively solve the

problem of the pipeline being destroyed and pipeline for construction machinery
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(primarily excavators) to visualise construction guidance (Tanoli et al., 2019; Li et al.,

2018b).
2.1.2.2.2 3D record generating

In the construction stage of a UU project, the UU's specific buried location, including
its size or material, may change owing to various environmental factors. In such
situations, UU 3D reconstruction technology (mainly DT) can effectively aid the
construction and owner units form three-dimensional and reliable UU construction-
information records. Laser scanning and photogrammetry satisfy this requirement in
terms of accuracy and reconstruction speed. Compared with complex two-dimensional
information recording, three-dimensional reconstruction helps managers quickly
generate a clear and intuitive engineering record model, which can lay a good
foundation for subsequent communication. Accurate electronic models and rich
information (such as pipeline material, construction time, construction unit, and
construction method attached to the 3D pipeline model) can effectively avoid the loss
or defect in drawing information, which is conducive to the maintenance and

management of UU throughout its life-cycle.
2.1.2.3 Application after construction
2.1.2.3.1 asset management (information exchange)

For UU managers, the most onerous task after the construction of UU is to manage a
large number of underground invisible assets. As mentioned previously, the application
of 3D reconstruction technology, such as coordinating resources, information sharing,
and efficient communication between economic construction personnel and utility

owners, provides great convenience. Related faculty objects can be easily identified.
2.1.2.3.2 Detection of pipe defects and settlement

The UU 3D reconstruction process also identifies the utility exceptions. Over time,
congestion of all types, settlement, or congestion of utilities undertaking all types of

tasks appear. Owing to the invisibility of utilities, these problems are often difficult for
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managers to detect. However, these problems can be extremely damaging. The leakage
of sewage pipelines seriously damages the ecological environment of the surrounding
area and significantly impacts the surrounding residents. Leaks in water supply pipes
can cause water shortages for many urban residents. Settling pipes are one of the main
causes of road collapses. Moreover, pipeline congestion causes a task to strike
completely. Each item consumes a large amount of government or private funding.
Through various non-destructive 3D reconstruction techniques, defects in these buried

utilities can be recognised.
2.1.3 Current challenges

From the perspective of engineering practice, this section summarises the core
challenges that are often encountered in the process of UU 3D reconstruction through
literature review and induction. We hope that a summary of these core issues will

promote research in this field.
2.1.3.1 Accuracy

The first and most important challenge is the accuracy of 3D reconstruction. This
problem refers to the accuracy challenge of 3D reconstruction models under the
requirements of non-destructive scenes. The accuracy of UU 3D reconstruction can be

summarised in terms of depth and size.

The depth of pipeline utilities i1s the most important information in the UU 3D
reconstruction task. Unlike common 3D reconstruction tasks, the UU 3D
reconstruction task cannot be easily explored because its location is below the surface,
and the owner has clear and strict requirements on its spatial location. The spatial
position of a pipeline is represented by its direction and depth. Information on pipeline
direction is often easy to obtain. It only needs to determine the position of two points
of the utilities (or more for curved utilities, such as cables) (Zhou et al., 2022; Jiang et
al., 2019). However, accurate depth information is often obscured by the complex
underground ambient noise (Zong et al., 2019; Hartshorn et al., 2022; Bach et al.,

2017). Therefore, pipeline depth is the most important part of the 3D reconstruction of
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UUs. Whether using GPR or other technical methods, the determination of pipeline
depth under trenchless conditions is unsatisfactory (Karsznia et al., 2021; Oliver et al.,
2020; Wu et al., 2019). According to various technologies and engineering reports, the
judgement accuracy of pipeline depth is approximately 1/10 of the actual buried depth

of the pipeline.

Another challenge in UU 3D reconstruction accuracy is the pipeline size. The diameter
information often plays a key role in engineering practice, especially in 3D
reconstruction projects of old utilities (Hashemi et al., 2011; Rashed et al., 2015). For
example, Naghshbandi et al. (2021) reported in his study in 2021 that pipeline size
often indicates important information such as their purpose and working state (whether
there is aperture deformation). However, in current studies of non-destructive methods,
accurate information on utility size is often unavailable (Yan et al., 2019; Mat Junoh

et al., 2022).
2.1.3.2 Automation

The second challenge, the most popular in this field, is the automation of three-
dimensional reconstruction of UUs. As can be seen from the summary of various
techniques in Section 3, all non-destructive techniques need to be further processed to
transform into the final three-dimensional models (Manataki et al., 2021;
Chrysostomou et al., 2020; Cloete et al., 2020). However, only some automatic
methods, such as laser scanning and photogrammetry, are suitable when pipelines are
exposed during the construction or maintenance stages. Although the degree of
automation in intermediate data processing for these non-destructive techniques varies,
they all require many manual operations, even by experts with specialised knowledge.
This greatly reduces the efficiency of the UU 3D reconstruction. Taking the most
widely used and mature GPR method as an example, the translation of raw data output
by GPR equipment mainly needs to go through: 1) Data conversion (i.e. raw data
decoding, image conversion); 2) Data processing (i.e. noise filtering, frequency gain,
etc.)3) Manual interpretation (i.e. judging a specific target situation using B-scan

images) and other steps (Sarlah etal., 2020; Al-Nuaimy et al., 2000; Wang et al., 2020b;
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Hou et al., 2021b), especially in the B-scan image interpretation stage, the staff require
significant professional knowledge and years of engineering experience. In recent
years, significant progress has been made in the field of automation (Feng et al., 2022;
Jaufer et al., 2021; Son et al., 2021; Liu et al., 2023); however, achieving reliable

automatic UU reconstruction without manual participation remains an open problem.
2.1.3.3 Semantic enrichment

The third main challenge is the semantic enrichment of the 3D model of the UU Project.
In the process of 3D reconstruction of the underground, shareholders often want to
know not only the geometric information of UUs, but also the semantic information of
the entire system; that is, material, slopes, manufacturer, and ownership form the core
information related to major economic benefits or safety indices that concern owners
(Yan et al., 2021; Wang, 2021b; Lau et al., 2021). For example, Tanoli et al. (2019)
reported that rich semantic information could significantly protect the personal safety
of construction personnel (i.e., natural gas-pipeline systems) (Tanoli et al., 2019). Lau
(2021) and De Coster et al. (2019) reported that pipeline leakage detection is feasible
by three-dimensional pipeline reconstruction combined with other prior information.
In addition, semantic information is an important part of the data in the maintenance
management stage of UU during the entire life-cycle. Research on semantic
information can significantly promote the intelligent process of UU engineering

maintenance.
2.1.4 Potential research directions
2.1.4.1 Integration of artificial intelligence technologies and methods

From the perspective of 3D reconstruction technology, replacing human labour in the
complicated 3D reconstruction of UU with artificial intelligence is inevitable. In recent
years, with the continuous maturation and development of artificial intelligence (AI)
technology, the integration of an increasing number of Al and 3D reconstruction
technologies has provided excellent solutions for the 3D reconstruction and

management of UUs (Cheng et al., 2020; Lee et al., 2020; Bilal et al., 2018). Currently,
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research in this field is in its infancy. Among NDT technologies, GPR is the most
promising. It has the features of fast and convenient use, a wide range of applications
(i.e., metal and non-metal pipelines can be used (Yan et al., 2019; Prego et al., 2017)),
and the data are uniform and sufficiently rich for data-driven methods. Therefore, it is
suitable for use in combination with Al algorithms. Among DT technologies, the most
promising is the automated and low-cost 3D reconstruction mode realised based on
laser scanning and photogrammetry combined with Al technology (Maalek et al., 2021;
Lin et al., 2021; Ye et al., 2019). Owing to the large-scale and long cycle of UU
engineering scenes, such projects are generally highly sensitive to cost (Yan et al.,
2021; Biersteker et al., 2021; Glass et al., 2019). Therefore, the 3D reconstruction of
laser scanning and photogrammetry fusion at low cost may result in a huge

development space.
2.1.4.2 Underground world digital twin

The underground placement of utility pipes and cables can be attributed to various
factors, such as shielding against harm from surface activities, exposure to harsh
weather, and structural reinforcement against differential movements. Despite these
benefits, when it comes to conducting maintenance or establishing new service
connections, the subterranean terrain poses a formidable challenge by impeding our

ability to determine the location and nature of subsurface infrastructure.

Therefore, from a management perspective, virtual revisualisations of UU projects
should be built. Span lifecycles may become the best way to solve most UU project
problems. Once informed with sufficient data, such as geometric and semantic
information, the underground world digital twin (UWDT) can be used to run
simulations, study performance issues, and generate possible improvements to
generate valuable insights, which can then be applied back to the original physical
projects. This idea has been reflected in research worldwide (Saeed et al., 2019; Huang
et al., 2021; Rogage et al., 2022). However, more research is needed to integrate
existing scattered data acquisition, data processing, project practice, and other research.

Thereafter, a complete underground system and standard decision-making pattern are
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formed. In summary, the formation of digital records during the initial stages of the
UU project forms the basis for implementing all the UWDT visions. An accurate

reconstruction of as-built UUs is the first step in the UWDT.
2.2 GPR-based 3D reconstruction for UUs

Ground Penetrating Radar (GPR) is a prevalent non-destructive technique utilized
extensively in urban utility (UU) 3D reconstruction tasks. Despite its widespread
application, achieving high precision in UU localisation using GPR B-scan images
presents several challenges: 1) Interference factors: GPR operates based on the
propagation characteristics of electromagnetic waves, which are susceptible to various
environmental interferences. These include electromagnetic disruptions from nearby
electrical installations, physical obstructions like tree roots, and inherent noise from
the GPR device itself (Lei et al., 2019; Singh et al., 2013; Adouane et al., 2021). Such
disturbances can obscure or distort the B-scan images, complicating the recognition
and accurate localisation of UU targets. 2) Complexity of underground environments:
unlike tasks such as reinforcement localisation within concrete structures, UUs are
typically buried deeper and consist of diverse materials, adding layers of complexity
to the GPR detection process (Wang et al., 2020; Liu et al., 2020; Ahmed et al., 2020).
These factors can degrade the quality of B-scan images, making it difficult to discern

and accurately map the utilities.

The interpretation of B-scan images for precise UU localisation largely depends on the
expertise and experience of domain experts. This requirement for specialist input
highlights the subjectivity and variability in interpreting GPR data. Although
numerous studies have aimed to enhance the automation of B-scan data analysis, two
primary limitations persist: 1) Conventional methods' susceptibility to noise:
traditional processing techniques for GPR data involve complex steps that are highly
sensitive to environmental noise. This sensitivity often results in unstable precision, as
the methods can yield varied outcomes depending on the ambient interference
encountered during scans (Maas et al., 2013; Harkat et al., 2016; Sagnard et al., 2016).

2) Segmented approach of deep-learning methods: modern deep-learning strategies
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typically divide the task into two stages: detecting bounding boxes around potential
UU locations and fitting hyperbolic curves to these detections. While this segmented
approach allows for tackling each sub-problem effectively, it also leads to potential
error accumulation. Each stage generates errors that propagate to the next,
compounding inaccuracies and aftecting the overall precision of UU localisation (Lei

et al., 2019; Harkart et al., 2019; Hou et al., 2021a; Zong et al., 2019).

These challenges underscore the need for developing more robust GPR analysis
techniques that can mitigate the effects of environmental noise and provide a more
holistic solution rather than relying on local optima obtained from subdivided

problem-solving approaches.
2.2.1 Conventional image-processing methods for GPR UU localisation

In the early stages of GPR automated interpretation research, researchers primarily
focused on using image-processing technologies to analyse image features to locate
hyperbolas. The most used methods in these studies are the Hough transform (HT),

template matching (TM), and edge detection, as listed in Table 2-2.

Table 2-2 Conventional image-processing methods for GPR UU localisation

Type Title Advantages Limitations
Advanced image- Automatic processing
Parameters must be
processing technique involves minimal
manually set in
for real-time operator intervention;
advance;
interpretation of real-time recognition
computing
Hough ground-penetrating provides position and
resources are
transform radar images size information

required.

(Capineri, 1998)

simultaneously.

Using pattern
recognition to

automatically localise

The Viola—Jones
algorithm is applied to

reduce the

Parameters must be
manually set in

advance;
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Type Title Advantages Limitations
reflection hyperbolas  computational resource sensitiveness to
in data from GPR requirement; it can be  background noise.
(Maas et al., 2013) used in unprocessed
radargrams.
Improved robustness
GPR hyperbola compared with the Parameters must be
detection using scale- previous Hough manually set in
invariant feature transform (HT) advance;
transforms (Harkat et algorithm; execution vulnerability to
al., 2016) time is only 1/4 of the colour images.
original HT algorithm.
Real-time detection
realised; favourable
GPR objects
accuracy and Parameters must be
hyperbola region
robustness performance manually set in
feature extraction
compared with advance.
(Rajiv et al., 2017)
previous template-
matching algorithms.
High operating speed;  Parameters must be
Two fast buried pipe
detection of small manually set in
detection schemes in
targets is allowed; advance; sensitive
GPR images (Gamba
offline system training to background
Template et al., 2003)
is allowed. noise.
matching
An approach for

predicting the shape
and size of a buried

basic object on

Different shapes of Parameters must be

actual buried object are manually set in

tested. advance.
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Type Title Advantages Limitations
surface GPR system
(Syambeas et al., 2012)

Template-matching Parameters must be
based detection of High operating speed; manually set in
hyperbolas in ground- algorithm robustness is  advance; sensitive

penetrating strengthened via the to background
radargrams for buried benefit of diverse noise; no actual
utilities (Sagnard et polarisations. data are used for
al., 2016) verification.
Estimating
The algorithm
geometrical Complex pre-
robustness is
parameters of processing prior to
strengthened via pre-
cylindrical targets system operation;
processing and post-
detected by GPR parameters must be
processing steps;
using template- manually set in
automatic fitting of
matching algorithm advance.
hyperbola is realised.
(Ahmadi et al., 2017)
Automatic real-time
Automatic detection; effect of
localisation of gas image background is ~ Parameters must be
pipes from GPR reduced by detecting manually set in
imagery (Terrasse et the correlation between advance.
al., 2016) a hyperbola dictionary
and B-scan.
Automatic and fast High operating speed; Noise filtering
Edge
detection of buried low detection error; required; sensitive
detection

utilities positions and

pipe position and soil

to non-removed
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Type Title

Advantages Limitations

estimation of soil

permittivity are background clutters

permittivity using obtained and high-frequency
GPR (Ardekani et al., simultaneously. noise in horizontal
2006) dimension.
False detection results
A novel edge

detection for buried

target extraction after

are reduced via cross-  Parameters must be

correlation calculation manually set in

of background and advance; pre-
SVD-2D wavelet
target signals; better processing
processing (Zheng et
robustness against required.
al., 2014)
noise.
Improving GPR
The complexity of

imaging of the buried
water utility
infrastructure by
integrating the multi-
dimensional non-
linear data
decomposition
technique into the
edge detection (Chen

etal., 2021)

The signal-to-noise the calculation

ratio before edge process with

detecting is increased  considerable labour

using the multi- prevents wider

dimensional ensemble application;
empirical mode processed image

decomposition may not fully

algorithm. express the original

information.

On the introduction of  The detection speed is

the Canny operator in
an advanced imaging
algorithm for real-

time detection of

Apexes of target

increased by hyperbolas cloud

eliminating may be removed

unnecessary edge accidentally, which

pixels from Canny- may result in
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Type Title Advantages Limitations

hyperbolas in GPR processed data; localisation error;
data (Bugarinovi¢ et  localisation robustness  parameters must be
al., 2020) is improved by manually set in
removing horizontal advance.
reflections from road

and soil layers.

2.2.1.1 HT

HT, which was first introduced by Duda and Hart (1972), is used for feature extraction
in image analysis, computer vision, and digital image processing. In 1998, Capineri et
al. (1988) first proposed a real-time method based on HT, which was used to detect
straight lines and hyperbolas in B-scan images with errors of less than 7% and 2% in
the pipe position and location, respectively. However, HT operations are time
consuming and yield random results. The original HT algorithm for UU localisation
has been improved over the years to address the time-consumption issue. In 2013,
Maas et al. (2013) combined the Viola—Jones algorithm (Viola et al., 2004) with HT to
significantly reduce the computation required for HT and enable its deployment on
ordinary computers. In 2016, Harkat et al. (2016) proposed the application of a scale-

invariant feature transform-based HT to detect hyperbolas in GPR B-scan data.

HT-based methods significantly reduce the calculation costs. However, these methods
involve several manual steps and are difficult to apply to areas with significant noise

interference, thus necessitating GPR pre-processing operations.
2.2.1.2T™M

TM is an image-processing technique that locates objects by matching image sections
with templates. It requires only the discrimination of hyperbolas from the background
instead of including all patterns (Ali et al., 2021). In 2003, Gamba et al. (2003) first
implemented a TM approach for GPR data analysis, which allowed for rapid detection

of GPR hyperbolas. A TM approach was used to locate and detect pipe signatures in
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two perpendicular antenna polarisations (Sagnard & Tarel, 2016). The use of TM
methods has expanded further (Syambas et al., 2012; Ahmadi et al., 2017; Terrasse et
al., 2016).

However, in TM methods, several parameters must be manually adjusted for different
target features (Sagnard et al., 2016). Therefore, achieving fully automated localisation
via the TM requires considerable effort. Additionally, TM-based methods cannot
accommodate the B-scan pollution caused by complex underground environments

(Sagnard et al., 2016; Rajiv et al., 2017).
2.2.1.3 Edge detection

In general, the edges of an image provide the most information. In this regard, edge
extraction can remove a significant amount of interference information and improve
data processing efficiency. In 2006, Ardekani (2006) proposed a new edge-detection
method for separating useful data from GPR images where the apex coordinates were
precisely located. However, the auto-detection results contained a few errors, owing to
the non-removed background clutter and high-frequency noise in the horizontal
dimension. In 2014, Zheng et al. (2014) introduced a cross-correlation calculation to
improve noise filtering. In 2020 and 2021, Chen et al. (2021) and Bugarinovi¢ et al.
(2020) introduced enhanced edge-detection methods for GPR interpretation by
embedding a Canny edge detector and using a multi-dimensional non-linear data

decomposition technique.

However, the limitations of edge-detection methods are evident, including
unsatisfactory processing of complex image data containing noise. Similar to other
conventional methods, these methods require several parameters to be set in advance

(Khan et al., 2021; Kaur et al., 2016).
2.2.2 Deep-learning-based GPR methods for UU localisation

In contrast to conventional methods, deep-learning-based methods directly learn high-
dimensional features via convolutional operations from B-scan images, instead of

selecting specific features and parameters (Ali et al., 2021; Amaral et al., 2022). NNs
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were first applied to GPR data interpretation in 1995 (Molyneaux et al., 1995). A deep-
learning method was developed for rebar size and depth detection by stacking three
fully connected ANN layers using a back-propagation mechanism. In UUs localisation
tasks, these deep-learning methods are primarily used to solve two problems: one is to
detect the region (containing hyperbolic features) where the UUs are located in the
GPR B-scan input image (Ozkaya et al., 2021; De Coster et al., 2019; Kim et al., 2019b;
Onyszko et al., 2021), and the other involves processing the hyperbola and obtaining

its apex to specify the coordinates of the target (Lei et al., 2019; Harkat et al., 2018).

Deep-learning-based methods for UU localisation can be classified into two categories,
that is, one-stage and two-stage methods, owing to developments in deep-learning

object detection (Table 2-3).
2.2.2.1 Two-stage methods

In the two-stage method, the regions of interest (region proposal) are first identified
and then used for classification. The earliest two-stage detector was the R-CNN
(Girshick et al., 2014). Subsequently, similar two-stage NNs have been introduced
based on the R-CNN, including the R-CNN series (fast R-CNN and Faster R-CNN)
and SPPNet (Girshick, 2015; Ren et al., 2017; He et al., 2015). Hou et al. (2021a) and
Li et al. (2021) developed and tested their R-CNN-based model using actual GPR B-
scan images for automatic object signature detection and segmentation, respectively.
Meanwhile, Lei et al. (2019), Pham et al. (2018), and Ko et al. (2019) applied the
advanced fast R-CNN models. The accuracy of two-stage methods reported in existing
studies is generally higher than 90%, and these methods can effectively locate pipeline
targets in different scenarios. In addition to accuracy, previous studies have focused on
reducing the computational resource requirements (Xiao et al., 2021; Jaufer et al., 2021)

required for GPR interpretation to accommodate more complex construction scenarios.

However, such methods are relatively time consuming for two reasons: 1) The
generation of region proposals, for example, via selective search in an R-CNN and a
fast R-CNN or a region proposal network in a Faster R-CNN. 2) Object classification
operations for each region proposal. Therefore, time consumption has become the most
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significant obstacle in the implementation of two-stage methods. To achieve accurate

localisation, hyperbola fitting is required after the UUs region detection.
2.2.2.2 One-stage methods

In the one-stage method, the class probability and position coordinate values of an
object are determined without an area proposal. This affords a higher detection speed
because the final result can be obtained immediately after a single detection (Amaral
et al.,, 2022). Typical algorithms include the YOLO series (Redmon et al., 2016;
Redmon et al., 2018), SSD (Liu et al., 2016), and RetinaNet (Lin et al., 2017). In 2019,
Zong (2019) applied YOLOvV3 to real-time localisation in a B-scan dataset. The
experimental results showed that the average one-stage UU detection accuracy and
recall rates exceeded 85%. In other studies, one-stage methods have been improved by
applying K-means to select anchor boxes (Li et al., 2020b) or adding a penalty term to

minimise the normalised distance (Zhang et al., 2021).

However, the accuracy of the one-stage method is lower than that of the two-stage
method, even though the former is more advantageous in terms of the operating speed
(Ali et al., 2021; Amaral et al., 2022). In addition, the accuracy of these methods may

be further reduced in the presence of complex noise.

Table 2-3 Deep-learning-based GPR methods for UU localisation

Type Title Mode Advantages Limitations

The anchor scheme The GPR dataset is

Deep-learning- design of R-CNN extremely difficult to
based subsurface model is improved to  obtain, and the amount

Two- target detection  box obtain a better of data is insufficient.
stage from GPR scans fitting ‘candidate box’. The features extracted
(Hou et al., Transfer learning is by DL models are not

2021a) performed to solve intuitive; the validity

the problem of depends on the quality
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Type Title Mode Advantages Limitations
insufficient GPR of the root dataset, and
dataset. the interpretability of
the model is
unsatisfactory.
Research on
hyperbola
The calculation cost
detection and The error from mean-
box is reduced
fitting in GPR B- position hyperbola
fitting significantly via
scan image fitting is not considered.
randomised HT.
(Xiao et al.,
2021)
GPR B-scan two-
GPR-R-CNN: an
dimensional Only hyperbola regions
algorithm of
information and C- are detected; further
subsurface
scan three- hyperbola apex
defect detection ~ box
dimensional features  positioning to clarify
for airport only
are fused based on pipeline location
runway based on
the R-CNN model to information is not
GPR (Li et al.,
improve the mentioned.
2021)
robustness.
Deep-learning- The proposed model Pre-processing
based automatic significantly reduces required; only
hyperbola the probability of hyperbola regions are
Box
detection on false-positive detected; further
only

GPR data for

buried utility

pipes mapping

detection by
improving the Faster

R-CNN model.

hyperbola apex
positioning to clarify

pipeline location is not
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Type Title Mode Advantages Limitations
(Jaufer et al., mentioned.
2021)
A new double cluster
search estimation
Automatic
algorithm is Pre-processing
hyperbola
proposed to separate required; error from
detection and Box

the target point

fitting in GPR B- fitting
clusters and realise

scan image (Lei

mean-position

hyperbola fitting is not

hyperbolic feature considered.
etal., 2019)
recognition for apex
localisation.
Performance Owing to insufficient

Few deep-learning
analysis of

actual data, the data

models are
detecting buried generated by the
Box compared with the
pipelines in GPR gprMax simulation
fitting Faster R-CNN
images using software is used for
model for pipeline
Faster R-CNN model training and
localisation.
(Ko et al., 2019) validation.
The proposed Faster ~ Owing to insufficient
R-CNN-based deep- actual data, the data
Buried object
learning model generated by the
detection from
requires only a small gprMax simulation
B-scan GPR data Box
amount of actual software are used for
using faster-R- only

data for training and

CNN (Pham et
can achieve better

al., 2018)
localisation accuracy

than classical

model training and
validation. Only
Hyperbola regions are

detected; further
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Type Title Mode Advantages Limitations
machine-learning hyperbola apex
methods. positioning to clarify
the pipeline location is
not mentioned.
Radar
assessment of This study is the first Only hyperbola regions
structural to propose the are detected; further
One-  concrete using Box application of hyperbola apex
stage neural networks  only artificial NN for positioning to clarify
(NNs) GPR image the pipeline location is
(Molyneaux et interpretation. not mentioned.
al., 1995)
The constructed
dataset is composed
of different types of
A deep-learning
targets, including
approach for
cables and
urban Only hyperbola regions
metal/non-metal
underground are detected; further
pipes; the small
objects detection ~ Box hyperbola apex
target recognition
from vehicle- only positioning to clarify

borne GPR data
in real-time
(Zong et al.,
2019)

problem is solved
using the YOLOV3
framework; the
localisation speed is
much higher than
that of two-stage

methods (16 fps).

the pipeline location is

not mentioned.
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Type Title Mode Advantages Limitations
The K-means
algorithm is applied
to select anchor
boxes to improve the ~ Complex anchor point
Real-time accuracy of selection mechanism
pattern positioning and low localisation
recognition of hyperbolic vertices; accuracy; only
GPR images Box  results from multiple  hyperbola regions are
with YOLO V3 only experiments show detected; further
implemented by that the proposed hyperbola apex
TensorFlow (Li YOLOv3-based positioning to clarify
et al., 2020b) model offers the pipeline location is
significant not mentioned.
positioning speed
advantage (12 fps on
a CPU).
A deep-learning
A GAN-based
framework based on
deep-learning
generative
framework for Only hyperbola regions
adversarial networks
automatic are detected; further
is proposed to solve
subsurface Box hyperbola apex
the problem of
object only positioning to clarify
insufficient GPR

recognition from
GPR data
(Zhang et al.,
2021)

data; the average
localisation accuracy
is higher than that of

other one-stage

the pipeline location is

not mentioned.
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Type Title Mode Advantages Limitations

methods.

Others

Bidirectional long
short-term memory
is proposed to
achieve better metric

performances than

Residual CNN+ Only hyperbola regions
those afforded by
Bi-LSTM model are detected; further
transfer learning
to analyse GPR  Box hyperbola apex
models. Results of
B-scan images  only positioning to clarify
) multiple experiments
(Ozkaya et al., the pipeline location is
show that the
2021) not mentioned.

proposed model
yields superior
recognition accuracy

(FI score of

97.42%).
Towards an The proposed Most of the
improvement of convolutional experimental data are
GPR-based support vector generated using the
detection of machine (CSVM) gprMax simulator
pipes and leaks ~ Box network yields software; only
in water only improved hyperbola regions are
distribution classification detected; further
networks (De performance; the hyperbola apex
Coster et al., number of positioning to clarify
2019) parameters in the the pipeline location is
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Type Title Mode Advantages Limitations
proposed CSVM not mentioned.
models is
considerably lower
than that in
pretrained CNN
model.
Pre-processing
Classifier design
A multi-objective required; GPR
by a multi-
genetic approach is hyperbolas cannot be
objective genetic
used to design a identified from an
algorithm
radial basis function  entire radiogram; only
approach for Box
classifier that can hyperbola regions are
GPR only
achieve similar detected; further
automatic target
results but with hyperbola apex
detection
much lower positioning to clarify
(Harkat et al.,
complexity. the pipeline location is
2018)
not mentioned.
A novel 3D GPR
Several pre-processing
image
steps must be
arrangement for The proposed model
conducted manually;
deep-learning- yields extremely low
only hyperbola regions
based Box  false-positive errors
are detected; further
underground only by combining B- and
hyperbola apex
object C-scan GPR images
positioning to clarify
classification for model training;
the pipeline location is
(Kim et al.,
not mentioned.
2019b)
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Type Title Mode Advantages Limitations

Pre-processing

A new The proposed model  required; several pre-
methodology for demonstrates processing steps must
the detection and excellent robustness  be conducted manually;

extraction of Box n noisy only hyperbola regions
hyperbolas in only environments; the are detected; further
GPR Images localisation recall hyperbola apex
(Onyszko et al., rate i1s 100% in the positioning to clarify
2021) experiments. the pipeline location is

not mentioned.

In the table above, ‘box only’ indicates that the proposed model can only detect the
bounding box area of the UUs hyperbolas. Meanwhile, ‘box fitting’ indicates that the
proposed model can locate the accurate coordinates of the UUs hyperbola apex after

the bounding box is detected.
2.2.2.3 Summary

The advantages of deep-learning methods, such as high automation and versatility, are

evident. However, current deep-learning methods have the following limitations.

1) Box-fitting mode. The box-fitting mode was used in all the one- and two-stage
methods to locate the hyperbola apexes, as shown in Figure 2-2. The location problem
can be classified into two aspects: hyperbola region detection and hyperbola fitting
(point location) (Ali et al., 2021; Zheng et al., 2014; Amaral et al., 2022). In some
studies, the pre-processing of B-scan images had to be increased to remove noise.
Consequently, the model could not adjust the parameters globally to obtain optimal
weight results; thus, the localisation precision deteriorated. In these methods, the
bounding box can only provide an approximation of the hyperbolic range in a B-scan
image. In contrast, a hyperbola that represents the location of the UUs and the

corresponding apex may exist in multiple potential hyperbolas within the bounding
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box range. Different fitting processing methods yielded different hyperbolic results.

The localisation error caused by the fitting has not been considered in previous studies.

GPR B-scan image [ Feature map / Toosiage mésthods (% _4\ Pipe locations
Target
bounding box

//// Proposal box Bounding box  Anchor loss .
o  generation prediction calculation Classification ||

One-stage methods Fryneciolh

— extraction

; ==
= :

Bounding box Anchor loss Apex
\ / Prediction calculation  Classification \_ localization ./

Input Feature extraction Hyperbola region detection Hyperbolas fitting Output
(‘Box’ generation)

Figure 2-2 Overview of box-fitting mode

2) Dilemmas in anchor-based methods. The anchor-based method is currently used in
all relevant studies, regardless of whether a one- or two-stage method is used. However,
only a few target hyperbolas are present in the B-scan images. Setting many anchor
boxes generates numerous simple samples, which substantially imbalance the
populations of positive and negative samples. The two-stage method improved the
positive and negative sample screening mechanisms but resulted in a significantly

reduced operating speed.

3) Pre-processing. The B-scan image data obtained by GPR include all types of
background noise, particularly in a complex fieldwork environment. Reducing noise
interference through pre-processing increases the workload and renders it more

difficult to realise a high degree of automation for UU localisation.
2.3 Image-based 3D reconstruction for UUs

Image-based 3D reconstruction is a pivotal technique in computer vision, widely
utilized to capture the spatial attributes of objects from multiple images. This method
supersedes traditional labor-intensive approaches, offering a cost-effective solution
with broad applications in fields like construction monitoring, mining surveying, and

medical diagnostics. Despite its extensive use, image-based 3D reconstruction faces
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specific challenges when applied to underground utilities (UUs), particularly under

varied lighting conditions.

The process of image-based 3D reconstruction involves two critical stages: sparse and
dense reconstructions. Initially, sparse reconstruction focuses on extracting and
matching features across different images to establish a relationship between camera
perspectives and the object. This foundation is crucial as it involves detailed
algorithms for feature point analysis, and methods such as Structure from Motion
(SFM) for camera parameter estimation. The accuracy of this stage is paramount in
determining the overall success of the 3D reconstruction. Following the sparse
reconstruction, the dense reconstruction phase uses the sparse point cloud data to
compute dense 3D point clouds. Techniques such as Multi-view Stereo (MVS) and
voxel-based reconstruction play significant roles here. However, the effectiveness of
these methods heavily depends on the initial sparse data quality, which can be

compromised under suboptimal conditions (Guidi et al., 2014; Lu et al., 2012).

A major challenge for image-based UUs reconstruction is its sensitivity to lighting.
Inadequate lighting conditions, such as those found in underground or nighttime
environments, significantly hinder the ability to capture high-quality images. Poor
lighting affects the detection and matching of features, leading to less reliable camera
parameter estimation and, subsequently, inaccurate 3D models (Roncella et al., 2021;
Pozo et al., 2019; Burdziakowski et al., 2021). The dependence on lighting is a
substantial limitation, especially considering the critical nature of accurate UU

mapping for maintenance and planning.

To address the lighting issue, significant research has been directed towards enhancing
image quality in low-light conditions using both conventional methods (like histogram
adjustments and white balance techniques) and advanced deep learning approaches.
Despite these efforts, achieving consistent quality in image enhancement remains a
challenge due to the subjective nature of manual adjustments and the dependence on

empirical parameters, which can vary significantly between users and environments.
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2.3.1 Image-based 3D reconstruction

Image-based 3D reconstruction is a popular topic in the field of computer vision (CV).
It automatically captures the intuitive spatial information of objects from images, thus
replacing the traditional modelling methods that are intrinsically labour intensive and
low cost. For decades, image-based 3D reconstruction has been widely used in various
fields, such as construction progress monitoring (Xue et al., 2021; Kropp et al., 2018),
mining surveying and mapping (Ren et al., 2019), and medical diagnosis (Widya et al.,
2021). This section reviews research on 3D reconstruction based on RGB images.
RGB-D-type and single-image inputs were excluded because they cannot be applied
to large-scale scenarios (Zollhofer et al., 2018; Azinovic et al., 2021). Image-based 3D
reconstruction restores the surface model of an object from multi-view images
captured from various angles. This process includes two main steps: sparse and dense

reconstruction, as shown in Figure 2-3.
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Triangulation to find 3D points
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Figure 2-3 General pipeline of the image-based 3D reconstruction

2.3.1.1 Sparse reconstruction

Sparse reconstruction is the upstream core foundation of the image-based 3D

56



reconstruction task, which aims to determine the relationship between the shooting
perspective of multiple-input RGB images and the target object. The three basic steps
of sparse reconstruction are feature extraction, matching, and camera parameter

estimation.

Extracting and matching (matching of the same point on an object from different
angles) feature points (spots, corners, etc.) is the core basis for determining the
performance of a 3D reconstruction. In 1999, Lowe (1999) proposed the renowned
scale-invariant feature transform (SIFT) algorithm, which uses Euclidean distance to
calculate the matching degree between feature points and subsequently improved it in
2004 (Lowe, 2004). In 2006, Bay (2006) and Rosten (2006) proposed speeded up
robust features (SURF) and features from accelerated segment test (FAST) algorithms,
which have less computation and robustness than SIFT. Subsequently, Rublee (2011)
proposed a new ORB algorithm with rotation invariance based on BRIEF in 2010
(Calonder et al., 2010).

The camera parameter estimation process determines the position and orientation of
the camera relative to the object using the correspondence between the pixel features
of the 2D image and the target object. Structure from motion (SFM) (Hartley et al.,
2003) is the most widely used methodology for estimating camera parameters using
camera motion trajectories. The SFM was further developed into two main
reconstruction modelling techniques: incremental reconstruction and global
reconstruction (Jiang et al., 2020; Zhu et al., 2018). Incremental reconstruction
involves triangulation and point-n-points (PnP), while applying partial bundle
adjustment (BA) (Azzam et al., 2020; Jiang et al., 2020). In contrast, global
reconstruction can obtain all camera poses and scene structures simultaneously and

only requires BA once, but it is less robust (Schonberger et al., 2016).
2.3.1.2 Dense reconstruction

Dense reconstruction, as a downstream task in the process of 3D reconstruction, refers
to the gradual calculation of dense 3D point clouds on the surface of scene objects
based on the sparse point-cloud information obtained from sparse reconstruction (Ma
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et al., 2018). Multi-view stereo (MVS) (Furukawa et al., 2015) is the core method for
cross-image pixel matching in dense reconstruction and includes voxel-based dense
reconstruction (Eigen et al., 2014; Choy et al., 2016), feature point growing (Lhuillier
& Lin, 2005; Wu et al., 2010; Furukawa et al., 2010), and depth map fusion (Weder et
al., 2020; Riegler et al., 2017).

2.3.2 3D reconstruction from low-light images

As mentioned above, sensitivity to lighting conditions is the main issue that image-
based approaches for as-built UU records must address (Burdziakowski et al., 2021).
Exposure is one of the most important factors for determining the quality of a photo.
For example, in overexposed or underexposed areas, image details can be lost and
colour-diluted. The core task of this study is to develop a low-light UU record model.
Therefore, this section reviews the existing research on image enhancement for 3D

reconstruction tasks in low-light environments.
2.3.2.1 Conventional methods

Conventional methods are still dominant in the relevant research to optimise the 3D
reconstruction performance in a low-light environment, such as colour balance
(Pascale, 2006; Ancuti et al., 2018), histogram distribution (Coltuc et al., 2006;
Ibrahim et al., 2007), RGB to grey (Lu et al., 2012; Grundland et al., 2007), white
balance (Grundland et al., 2007; Liu et al., 1995; Weng et al., 2005), and image content
enhancement algorithms (MacDonald et al., 2014; Vedaldi et al., 2010). In 2013,
Sohaib et al. (2013) developed an image-based system to extract useful 3D
reconstruction information from images captured in various environments. In 2014,
Guidi et al. (2014) and Ballabeni et al. (2015) utilised digital pre-processing and colour
enhancement of high-dynamic range (HDR) imaging to improve automatic 3D
reconstruction based on SFM and image matching. Santise et al. (2018) proposed a
stereo photogrammetry system based on the time of exposure and degree of aperture
of the shutter for low-light and night-time image analysis. The reconstruction of the
rock mass surface in a low-light environment was realised. Alasal et al. (2018) and
Aldeeb et al. (2018) used image enhancement technology, respectively, to increase
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image contrast to improve the quality of 3D model construction. Kanellakis et al. (2019)
developed an algorithm based on contrast-limited adaptive histogram equalisation
(CLAHE), which achieves 3D image reconstruction in low-light environment by
suppressing noise while enhancing image contrast. Yeh et al. (2021) proposed a robust
system based on HDR technology to achieve object reconstruction in a low-light

environment; however, this method requires RGB-D equipment.

All these studies would aid in obtaining better image-based 3D reconstruction
performance. However, a common problem is that empirical input parameters are
required for the modelling process, leading to the reconstruction performance being
subject to the users’ experience. For example, explicit and accurate thresholds must be
assigned to parameters such as the brightness, contrast, histogram distribution, and

white balance for processing.
2.3.2.2 Deep-learning methods

Image enhancement methods based on deep learning are constantly emerging
algorithms (for example, Retinex-Net and LLNet) (Lu et al., 2012; Lore et al., 2017).
However, studies of image enhancement for 3D reconstruction in low-light
environments are limited. Tang et al. (2019) proposed a stereo matching reconstruction
network based on the Pyramid Stereo Matching Network (PSMNet) and a
reconstruction module for determining the characteristics of low-light level images.
To mitigate serious and complex noise in low-light images, an image reconstruction
module was added to the traditional stereo matching network for automatic denoising.
Other methods have only been studied from the perspective of low-light image quality
improvement without considering the content of 3D object reconstruction (Sobbahi et
al., 2022). In 2018, LightenNet (Li et al., 2018a) was proposed for learning an image
for illumination map translation using a conventional CNN. Subsequently, models
(LowLightGAN (Kim et al., 2019a) and EnlightenGAN (Jiang et al., 2021)) based on
generative adversarial networks (GANs) were introduced using synthetic DIV2K
datasets (Agustsson et al., 2017). More recently, advanced zero-reference models

(zero-DCE (Guo et al., 2020a), SCI (Ma et al., 2022), and (Zhang et al., 2020b)) have
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been proposed to overcome the problem of matching the data for training.

The image enhancement method based on a deep-learning cloud avoids the manual
parameter setting and selection process of the most appropriate conventional method,
subject to various site conditions. However, it converts the low-light enhancement
problem into the problem of finding the optimal mapping between the input images
and target reference images, regardless of the site conditions. To solve this problem,
paired or unpaired template ground-truth images (reference images) are required for
model training supervision. In other words, the optimised target images (reference
images) should be clarified in advance. Although this technique is much more
convenient than conventional methods, it still fails to avoid the subjective impact of
the ‘template ground-truth images’ leading to the limitations in the model learning.

This is challenging to achieve because the collection of reference images is difficult.
2.3.2.3 Summary

Conventional methods introduce numerous human factors, making the 3D
reconstruction process time consuming and highly subjective. Deep-learning methods
can effectively avoid subjectivity in the 3D reconstruction process and realise real-
time operation. However, applicable reference images are still inevitable for the model
training of the supervision mechanism. The subjective parameters or rarely appropriate
reference image settings of the above methods restrict the optimisation potential of
low-light images, thereby disabling the deep-learning model for autonomous learning
and adjustment. As a result, establishing an unrestricted deep-learning model with
loose assumptions on reference images is essential to that no paired or unpaired data

reference images as the ‘ground truth’ are needed in the training process.
2.3.3 Image-based UU 3D reconstruction

UUs are usually not exposed, but when depth, material, size, and other information are
speculated through non-destructive techniques, such as GPR (Ozkaya et al., 2021; De
Coster et al., 2019), the best opportunity for UU documentation has been missed

(Bureau of Transportation Statistics, 2016; Van et al., 2019; Wang et al., 2022b; Yan et
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al., 2019). In the exposed stage (construction or maintenance), the image-based 3D
reconstruction method showed remarkable advantages, such as fast speed, low cost,

high precision, and no training required.

Image-based UU 3D reconstruction has demonstrated an infinite potential under
normal lighting conditions. In an earlier study, Hu (2005) developed a 3D
reconstruction system for UUs using photogrammetric methods and validated its
effectiveness and cost advantage. Tulloch et al. (2006) proposed a mobile
photogrammetric mapping system to map exposed utilities on construction sites in
2006. The system comprised a global positioning system (GPS), tablet computer, and
high-quality camera (Nikon Coolpix 8800). Although the system had a slightly lower
accuracy (absolute horizontal accuracy of 0.33 m), it still showed promising
reconstruction cost advantages and ease of use. In 2021, smartphone-based
photogrammetry was used for as-built 3D documentation during the open excavation
replacement of water pipes in Denmark (Hansen et al., 2021a; Hansen et al., 2021b).
In the most recent 2022 study, Yuen et al. (2022) proposed a low-cost 3D
reconstruction system based on a digital camera and applied it to an actual engineering

site. The efficiency and accuracy of the reconstruction have been widely recognised.

Although existing studies have recognised the limitations of illumination conditions in
image-based UU 3D reconstruction, an effective solution has yet to be proposed. Hu
(2005) and Tulloch et al. (2006) point out that the light condition of acquired image
datasets is crucial to the reconstruction tasks. The blur image/video collected from real
sites can lead to a sharp decline in the effect of the point-cloud reconstruction, which
has been experimentally validated (Hansen et al., 2021a; Hansen et al., 2021b).
Different camera image capture protocols using consumer-grade smartphones were
examined by Yuen et al. (2022), but they needed to provide a reasonable plan to

improve the quality of these inputs.
2.4 Topology completion for as-built UUs

In the management of underground utilities (UUs), the accurate completion of missing
topology information remains a challenging task. Despite the critical need for efficient
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solutions, current methods often fall short. Traditional techniques such as Ground
Penetrating Radar (GPR) (Birkenfeld, 2010; Skartados et al., 2019), PipeProbe
PipeProbe (Lai et al., 2010), and manual manhole inspections (Alejo et al., 2019),
though widely used, are labor-intensive and costly. These methods, while precise, do

not offer a scalable or cost-effective solution for widespread data collection.

To combat these issues, recent studies have shifted focus toward transforming the
completion of general UU attributes—such as diameter, material, and water levels—
into an imputation problem (Davey et al., 2009; Little et al., 2019; Von et al., 2004;
Graham et al., 2012; Templ et al., 2011). Techniques including traditional single and
linear regression-based imputation, as well as more sophisticated multiple imputation
methods (e.g., AMELIA and IMPSEQ), along with machine learning strategies like
Principal Component Analysis (PCA) (Gangopadhyay et al., 2005), K-Nearest
Neighbour (KNN) (Woldesellasse et al., 2021), decision trees (Barros et al., 2012), and
neural networks (Bishop, 1995) have been explored for their potential to accurately
predict missing values. However, these imputation and machine learning methods are
currently inadequate for predicting the complex topological relationships essential for

comprehensive UU management.

This section aims to explore the existing gaps in these methodologies and discuss
potential advancements that could enhance the accuracy and reduce the costs
associated with topology completion in UU systems. By addressing these
inefficiencies, we can better equip engineers and managers with the tools needed for

effective UU lifecycle management.
2.4.1 Topology completion for UUs

Topology completion for UUs is important for full life-cycle management. However,
missing data are common in UU scenarios. To solve this problem, the existing data-
completion methods can be divided into traditional, imputation, machine-learning, and

graph-based methods.

2.4.1.1 Traditional methods
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The first reaction of most managers is to obtain relevant information and collect
relevant data. Finding data backups or mutually corroborating data records from other
relevant materials can partially solve the missing data problem to a certain extent. The
use of GPR (Birkenfeld et al., 2010; Skartados etal., 2019; Zeng et al., 1997) or manual
surveys (Lai et al., 2010; Alejo et al., 2019) is a common method for data completion.
However, these methods can only be used in a very small target area, and their
implementation costs increase rapidly as the volume of UU data that must be
completed increases. In addition, large-scale pipeline network investigations are

limited by factors, such as time and equipment.
2.4.1.2 Imputation

Unlike traditional methods, imputation completes the task of missing data through
reasonable differences from a data-analysis perspective. Kabir et al. (2020) conducted
a study on the efficacy of various imputation methods for completing the water
network database. This study evaluated three single imputation methods, namely,
mean imputation (Davey et al., 2009), median imputation (Little et al., 2019), and
linear regression-based imputation (Von et al., 2004; Graham et al., 2012), as well as
three multiple imputation methods: iterative robust model-based imputation (IRMI)
(Templ et al., 2011), multiple imputations of incomplete multivariate data (AMELIA)
(Honaker et al., 2011), and sequential imputation for missing values (IMPSEQ)
(Verboven et al., 2007). The findings suggest that the IMPSEQ method demonstrated
superior performance in terms of completing the missing values in the water network
with biases of only —0.900, 2.100, 0.800, and —0.400 for the pipe age, diameter,
number of valves, and number of service connections, respectively. In recent years, the
imputation method has been used in pipeline damage prediction (Xu et al., 2021),
water quality detection (Srebotnjak et al., 2012), and demand forecasting (Zanfei et al.,

2022).
2.4.1.3 Machine-learning methods

Machine-learning methods predict missing values by learning the intrinsic structure
and patterns of data. In 2017, a Gaussian process regression method (Samuelsson et
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al., 2017) was applied to a wastewater treatment plant (WWTP) monitoring application
scenario, and missing data in the flow-rate signal were accurately estimated. PCA was
used to predict the dynamic variation in the potentiometric head in Bangkok
(Gangopadhyay et al., 2005). Woldesellasse (Woldesellasse & Tesfamariam, 2021)
carried out neural network construction based on algorithms such as K-Nearest
Neighbour (KNN), AMELIA, and IMPSEQ (Batista & Monard, 2002; Honaker et al.,
2011; Verboven et al., 2007) in his research to deal with incomplete and missing data
in the corrosion pit measurement database. Osman et al. (2018) conducted a
comparative study on traditional interpolation methods and various machine-learning
methods and sorted out the advantages and disadvantages of various methods in the

missing data-completion scenario of Water distribution systems (WDSs).
2.4.1.4 Graph-based methods

Graph-based methods have achieved widespread success in different areas of missing
data handling, such as transportation, smart power grids, and gene expression (Chan
etal., 2023; Kuppannagari et al., 2021; Xiang et al., 2021). Because UU networks have
significant topological connections, graph-based methods have received increasing
attention in recent years. Belghaddar et al. (2021) conducted a study on a range of
prevalent machine-learning techniques, including Support Vector Machine (SVM)
(Belghaddar et al., 2021), decision trees (Cortes et al., 1995), feedforward artificial
NNs (ANNs) (Safavian & Landgrebe, 1991), and Multilayer Perceptron (MLP)
(Rumelhart et al., 1986), as well as graph-based models, such as GCN (Kipf & Welling,
2017), ChebNet (Defferrard et al., 2016), GraphSAGE (Hamilton et al., 2017), and
TAGCN (Du et al.,, 2017). The results showed that graph-based models have
significant data-completion advantages, particularly with less available data.
Additionally, Joakim et al. (2022) proposed a novel decoder-focused multitask
classification architecture termed the cross-task graph neural network (CT-GNN),
which can be used for sewer defects and attribute (water level, pipe material, and pipe

shape) classification.
However, these methods were only applied to complete the common attributes of
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missing data, such as the material, diameter, and age of the pipe. However, the
completion of the topological UU relationship must be explored. Topological
relationships, as important information for UU management, are more difficult to
obtain than general attribute characteristic data, such as diameter, depth, and material,
because of their complexity. If topological data are missing, finding them is often
costly. To the best of our knowledge, there is a need for research on the completion of
missing topology data for an underground pipe network. However, this is a challenging

task.
2.4.2 Graph convolution networks

GCN s are generalisations of classical CNNs (LeCun et al., 1998) used to handle graph
data. As proposed by Kipf and Welling (2017), this is an effective graph model for
semi-supervised learning. Unlike traditional convolutional neural networks (CNNs),
GCNs operate directly on graph-structured data, enabling them to capture the
relationships between nodes and neighbours. GCNs stack layers of learned first-order
spectral filters followed by a non-linear activation function to learn graph
representations (Wu et al., 2020). In recent years, GCN and its variants have been

applied in various applications and multiple tasks.

With the foundation of GCN, many researchers have begun to study its improvements
and variants. Hamilton et al. (2017) proposed GraphSAGE (SAGEGCN), a general
inductive framework that leverages node feature information to generate node
embeddings for previously unseen data efficiently. To a certain extent, SAGEGCN can
be seen as a special case of GCN, because the aggregation method in SAGEGCN can
be seen as a form of GCN. The key idea is to aggregate the feature information from a
node’s local neighbourhood. However, it only considers the information of first-order
neighbour nodes and ignores the keyness of higher-order neighbour nodes. A graph
attention network (GATGCN) is a graph neural network model based on the attention
mechanism first proposed by Velickovi¢ et al. (2018). The GATGCN is a variant of the
GCN that i1s more flexible and interpretable for node feature aggregation and

interaction than the GCN, especially when dealing with complex graph structures. The
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core idea of the GATGCN model is to apply the attention mechanism to calculate the
weights between each node and its neighbours to better use the neighbours’
information. In the convolution layers, the GATGCN model employs a multi-head
attention mechanism to calculate the weights between the nodes. By learning the
weights between each node and its neighbours, it can better integrate the neighbours’
information. Simultaneously, the GATGCN model uses residual links to prevent
information loss. However, it faces issues of high computational complexity and poor

interpretability.

In the same year, Du et al. (2017) proposed TAGGCN, which is a GCN defined in the
vertex domain. TAGGCN not only inherits the properties of convolutions in CNN for
grid-structured data, but is also consistent with convolution, as defined in graph signal
processing. It exhibits better performance than existing spectral CNNs on many
datasets and is computationally simpler than other recent methods. The TAGGCN
increases the flexibility and robustness of the model through adaptive convolutional
kernels and adaptive layer selection mechanisms, thereby addressing the challenges of
complex graph structures and practical problems. Chen et al. (2018) proposed
FastGCN, which accelerates the convolution operation using sampling technology and
introduces block technology to improve the training speed. ChebNet (ChebGCN)
(Defferrard et al., 2017) is a GCN based on spectral graph theory, which was proposed
in 2019. ChebGCN is based on GCN and uses Shebyshev polynomials instead of an
adjacency matrix for the convolution operation, thus improving the calculation
efficiency and network depth and enhancing the generalisation of the model. The basic
idea of ChebGCN is to represent a graph as an eigen decomposition of its Laplacian
matrix and utilise Chebyshev polynomials to approximate the Laplacian matrix.
However, one drawback of ChebGCN is its weak ability to process high-frequency
information in graphic signals, which may be limited by the sampling rate of the

waveform signals.
2.4.3 Summary
The review of existing data completion methods for UUs highlights a critical need for
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specialized approaches that can address the unique challenges of predicting topology
reconstruction issues within these complex systems. Traditional, imputation, machine-
learning, and graph-based methods provide a solid foundation of techniques that have
enhanced our understanding and capability in managing data incompleteness.
However, these methods primarily focus on attribute data completion, such as material,
diameter, and age of pipes, without a specific emphasis on the connectivity and

topological relationships essential for comprehensive UU network management.

From the literature, it is evident that machine-learning and graph-based methods,
particularly those involving Graph Convolutional Networks (GCNs) and their variants
offer promising frameworks for addressing non-trivial problems in structured data
environments. These methods effectively utilize the relational information between

data points, which is crucial for understanding the connectivity in UU networks.

Despite these advances, there remains a substantial gap in applying these methods
specifically for predicting and managing the UU topology reconstruction issues.
Connectivity in UU networks entail more than just identifying physical links—it also
involves comprehending the operational dependencies and resilience of the network
against failures or disruptions. The current research lacks focused studies on how these
advanced data completion techniques can be precisely tailored to predict and address
connectivity failures in UU networks. Traditional methods, such as using GPR and
manual inspections, while accurate, are labor-intensive and costly. On the other hand,
conventional imputation methods are ill-suited for predicting the complex topological
relationships critical for effective UU management. This gap highlights the need for
developing accurate, low-cost, and efficient strategies tailored to address these

topological challenges in UU networks.
2.5 Chapter Summary

This chapter reviews the current advancements and ongoing challenges in the 3D
reconstruction of underground utilities, a field increasingly vital as urban
infrastructures become more complex and densely packed. The exploration of the
various methodologies, from non-destructive techniques like Ground Penetrating
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Radar (GPR) to image-based reconstructions and topological data completion, reveals
a landscape of innovation aimed at enhancing the accuracy and efficiency of

subsurface utility mapping.

Despite these efforts, the chapter identifies critical limitations in current research that
hinder the practical application of 3D reconstruction technologies: 1) Inadequacies in
gpr-based localization: GPR, though popular, faces significant challenges in accurately
localizing UUs due to its susceptibility to environmental interferences and the inherent
complexity of subsurface environments. The subjective nature of interpreting GPR B-
scan images, which heavily relies on expert knowledge, adds another layer of
complexity. While deep-learning methods have been explored to automate data
interpretation, they often break down the problem into sub-tasks (e.g., box detection
and hyperbola fitting) that only achieve local optimality without ensuring the best
overall solution. 2) Image-based reconstruction under low-light conditions: Image-
based 3D reconstruction techniques, while cost-effective compared to laser scanning,
struggle in low-light conditions common in underground settings. Current image
enhancement algorithms require manual tuning and are heavily influenced by operator
experience, which can lead to inconsistent results. Despite advancements in deep
learning for image enhancement, the lack of suitable training data (paired low-light
and ideal reference images) and the reliance on subjective reference standards severely
limit the reliability of reconstructed outputs. 3) Topology Completion for UUs:
Efficiently completing missing topology data for UUs remains a significant challenge.
Traditional methods like manual manhole inspections, though accurate, are labor-
intensive and costly. Machine learning and imputation strategies, successful in
predicting some data attributes, fall short in accurately mapping complex topological

relationships essential for comprehensive UU management.

In conclusion, this chapter not only comprehensively explains the decisive methods
for UU 3D reconstruction at various stages of existing research but also identifies
current unresolved issues. The subsequent chapters will each focus on these research

issues, aiming to resolve the precision problems in GPR-based UU reconstruction, the
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challenges of 3D reconstruction under low-light conditions during the exposure phase
of UUs, and the reconstruction of underground pipeline network topology under

conditions of missing records.
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Chapter 3 : Research methodology

This chapter outlines the research methodology, which comprises four distinct sections,
corresponding to the four objectives outlined in Section 1.3. Section 3.1 provides an
overview of the research philosophy, while Section 3.2 illustrates the research design
and alignment between research methods and objectives. The methods employed to
accomplish Objectives 1 to 4 are presented in Sections 3.3 to 3.6, respectively. Finally,

Section 3.7 provides a concise summary of this chapter.
3.1 Research paradigm

This research aims to improve the life-cycle management efficiency of as-built UUs
by enhancing the 3D reconstruction performance. The positivist research paradigm

was applied in this study.

Positivism is a philosophical approach that emphasises the use of scientific methods
and empirical data to understand natural and social worlds. Positivists believe that
knowledge can only be obtained through observation and measurement and that
scientific enquiry is the best way to achieve this. This study uses scientific methods
and empirical data to understand the natural and social worlds. Therefore, in this
research, the positivist research paradigm, which insists on realism, objectivism,
deductive, and quantitative research methods, will be applied as ontology,

epistemology, and methodology, respectively.
(1) Ontology

Ontology is a philosophical discipline concerned with the fundamental nature of
existence, the interrelationships among entities, and their essential attributes.
Ontologies can be classified into two contrasting types, realism, and relativism.
Realists contend that a single reality can be objectively measured and discovered by
various observers and researchers. Conversely, relativists assert that the 'truth' is
subjective and dependent on the observer. Therefore, multiple realities can be
constructed based on individual perspectives and experiences, each of which is valid

for the respective observer or researcher (Killam, 2013). In this research, the objects
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of study are physical entities and their phenomena in the natural sciences. Therefore,

only one realism of the ultimate truth was selected as the ontology for this study.
(2) Epistemology

Epistemology is a philosophical discipline dedicated to investigating the fundamental
nature of knowledge and its acquisition, justification, and connection to truth. It delves
into a range of issues, such as the distinction between knowledge, beliefs, and opinions;
methods of determining truth; the influence of perception, reason, and experience on
knowledge acquisition; and assessment of the reliability and validity of knowledge
claims. The primary objective of epistemology is to understand the sources, limitations,
and essence of human knowledge comprehensively. According to Wilson (2001),
researchers can hold divergent epistemological positions, namely, objectivism and
subjectivism, which are typically informed by their underlying ontological
perspectives. A researcher who adheres to realism typically employs objective
techniques to observe phenomena and uncover the singular, objective truth that exists
independently of the researcher. Realism ontology is the basis of this research, so

objectivist epistemology will be applied as the starting point of the research.
(3) Methodology

Methodology denotes a systematic and structured approach to problem solving that
emphasises how research is conducted. Research methodologies, including deductive
and inductive approaches, and quantitative and qualitative methods, are determined by

a researcher's adherence to either objectivism or subjectivism (Aliyu et al., 2015).

Deductive research starts with a general principle or hypothesis, and then draws
specific conclusions based on that principle. However, inductive reasoning starts with
specific observations or data, and then uses that information to make broader
generalisations or theories. This research began with a theory or hypothesis, and
experiments were conducted to test this theory. Therefore, deductive research is

applied to the problem solving conducted in this research.

Quantitative research is an empirical research methodology aimed at quantifying and
measuring data through statistical analysis. It involves collecting numerical data that

can be analysed using mathematical or statistical techniques to describe and explain
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phenomena through numerical patterns and relationships. In contrast, qualitative
research is an exploratory approach that seeks to understand social phenomena by
gathering data through observation, interviews, and other non-numerical methods. The
main objective of qualitative research is to gain an in-depth understanding of a
phenomenon and to explore its complexity, nuances, and underlying meanings. In this
study, quantitative methods and experiments were applied to the analysis and

explained the observed phenomena.
(4) Axiology

Axiology is a philosophy that studies how people determine the value of different
things. Those who work in this field examine the nature and different types of value,
including ethical, moral, religious, and aesthetic values. Axiologists study how people
compare and value things, and the impact of those values on reality. In this study, the

core value consideration is a practical promotion value for UU project management.

3.2 Overview of the proposed method

An overview of the adopted research methods is shown in Figure 3-1. Each approach
can be used to achieve at least one objective. As shown in Figure 3-1, this study
includes four parts: a literature review (Objective 1) and the development of three
specific models (Objectives 2, 3, and 4). The development of three key models is used
to solve the limitations of UU 3D reconstruction in the non-destructive and exposed
stages and the problem of topological relationship reconstruction after obtaining the
surface reconstruction model. The outputs of Objectives 2 and 3 are part of the inputs
of Objective 4. The flow of the research design was structured around four main
objectives, each contributing to the overarching goal of advancing the field of UU

reconstruction.
Objective 1: Literature Review

The research begins with a thorough examination of existing knowledge and identifies
gaps in the current research related to UUs. The literature review encompasses diverse
sources including academic journals, books, published standards, electronic databases,
and government websites. Critical issues such as limited research attention, inefficient

localisation precision in GPR interpretation, challenges in low-light image-based
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reconstruction, and inaccuracies in UU topology completion were identified.
Objective 2: GPR Localisation

Building on the insights gained from the literature review, the second objective was to
enhance the precision of localising UUs using GPR. The process involves data
collection by gathering raw GPR B-scan data, followed by data processing using the
RADAN 7 software and Gaussian processing. A localisation model was developed to
improve the anti-interference capabilities and accurately predict the UU coordinates.
The performance of the model was rigorously validated in terms of its precision, speed,

and robustness.

Objective 3: Low-Light Enhancement

To address the challenges posed by low-light conditions, the third objective was to
enhance the images of UUs. The method involves image collection under varied
illumination, the development of an enhancement mechanism to improve low-light
image quality, and integration into 3D reconstruction using COLMAP. The outcome is
an improved 3D reconstruction model for UUs under low-light conditions, validated
through experiments that focus on the reconstruction amount, accuracy, and efficiency

of the proposed loss-function ablations.
Objective 4: Topology Completion

The fourth objective is to complete the topology of an incomplete UU database. This
involves the utilisation of a graph-based convolutional network model to enrich the
feature dimensions and classify the node topology. The model was employed to
achieve a complete topology of the UU database, and controlled experiments were

conducted to validate the accuracy of topology completion.

Throughout the research, advanced methods were employed, including GPR-based
localisation, image enhancement techniques for low-light conditions, and GCNs for
topology completion. Collectively, these methods contribute to the development of a

comprehensive 3D reconstruction model for UUs.

The culmination of this study was the development of a comprehensive UU 3D
reconstruction model. This model is expected to provide high spatial accuracy and

complete topology information for UUs, addressing the challenges identified in the
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literature review. The final output aims to improve the accuracy, efficiency, and
reliability of 3D reconstructions, thereby potentially enhancing the life-cycle

management of UUs.

This research design is poised to significantly advance the field of UU management
by systematically addressing key challenges in localisation, image enhancement, and
topology completion. The project's comprehensive approach aims to provide practical
solutions that contribute to the overall improvement in accuracy and reliability in the

3D reconstruction of UUs, thereby enhancing their life-cycle management.
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Figure 3-1 Overview of the proposed method
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3.3 Literature review method (Objective 1)

This section introduces the research methods and procedures for Objective 1 (literature
review). As shown in Figure 3-2, the literature review identified the research topics,
trends, and limitations of the automatic 3D reconstruction for as-built UUs and the
main research gaps of this thesis by collecting existing research outcomes from
academic journals and other sources. The specific steps included scope determination,

data collection, and content analysis.

Objective 1- Literature review

Input:
Academic journals, books, published standards, electronic database and
official government website content
——

Processes:
Literature review (RM 1)
* Scope determination
* Data collection

* Content analysis
—E

Output:
P1: Inadequate research attention;
P2: Inefficient localization accuracy in GPR interoperation;
P3: Inefficient image-based reconstruction low-light performance;
P4: Inefficient underground utilities' topology completion accuracy.

Figure 3-2 Overview of the methodology for Objective 1 (Literature review)

3.3.1 Scope determination

Given the research aim and objectives, the scope of this review includes the following
aspects: 1) the advantages, limitations, and application performance of each current
3D reconstruction technique; 2) common challenges and future research directions in
the field of 3D reconstruction of UUs; 3) conventional image-processing methods and
deep-learning-based UU GPR localisation methods; and 4) image-based 3D
reconstruction technology, 3D reconstruction from low-light images, and image-based

3D reconstruction of UUs. 5) Topology completion for UUs and GCN research status.
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3.3.2 Data collection

The Web of Science, ASCE databases, and official government websites were selected
for data collection in this study because of their wide coverage and high quality. The
following keywords were chosen to cover as much of the research area as possible:
UU 3D reconstruction/mapping, subsurface utility reconstruction/detection,
pipeline/cable detection, GPR interpretation, UU localisation, image-based 3D
reconstruction/photogrammetry, low-light image reconstruction, low-light image
enhancement, as-built UU records, GCN, and topology completion. To ensure the
quality of the articles, they were selected according to the following two criteria: 1)
They must be peer-reviewed articles. 2) Check the abstract of the article, which meets

the scope of this thesis.
3.3.3 Content analysis

To systematically process and analyse the content of the selected studies. To perform
the content analysis, the textual data were systematically deconstructed and
categorised through coding. The categories and codes used for the content analysis are

listed in Table 3-1.

Table 3-1 Analysing codes of the selected contents

Categories Codes

UU 3D reconstruction (1) UU reconstruction technologies, (2) UU reconstruction
applications, (3) best UU reconstruction performance, (4)
implementation challenges

GPR UU localisation (1) GPR technology, (2) GPR B-scan interpretation, (3)
Deep-learning objects detection models, (4) Image
processing for GPR B-scan

Exposed low-light UU (1) Image-based 3D reconstruction (photogrammetry), (2)

reconstruction Low-light 3D reconstruction enhancement, (3) Image

enhancement, (4) Unsupervised deep learning, (5) Multi-
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Categories Codes

view stereo

GCN-based UU (1) Graph Convolutional Network, (2) Database
topology completion  completion, (3) Topology prediction, (4) GCN-based

database completion

The review addresses the questions that guide the research: 1) What are the prevailing
3D reconstruction technologies extensively employed in the domain of UUs? 2) What
are the underlying principles and classification attributes of these technologies? 3)
What are the notable advantages, disadvantages, and practical effects of these
technologies? 4) What are the primary challenges and limitations encountered in UU
3D reconstruction? 5) What is the current research status of UU 3D reconstruction
based on GPR, and what are the key issues to be addressed? 6) What factors contribute
to the difficulty in improving the precision of the existing GPR-based UU 3D
reconstruction research? 7) What are the underlying principles and research progress
in image-based 3D reconstruction technology? 8) What are the conventional methods
for enhancing low-light images, and how effective are they? 9) Which deep-learning
models have been utilised for low-light image enhancement, and what principles can
be derived from their application? 10) What are the specific characteristics of image-
based 3D reconstructions in UU scenarios? 11) What is the current development status
of the GCN model? 12) In the absence of a comprehensive UU database, what methods

can be employed to effectively and scientifically complete the missing data?
3.4 GPR-based UUs localisation model development (Objective 2)

An end-to-end deep-learning model (EUUL) using GPR B-scan data was proposed in
this study to improve the precision of UU localisation. As shown in Figure 3-3, the
EUUL model first extracts the information features in the GPR B-scan image and then
directly establishes the mapping relationship between the features and the UU
coordinate point position to reduce the precision loss caused by the step-by-step

localisation mode.
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GPR B-scan raw data

Step 2-1 :r
(Data preparation) . - i
! GPR B-scan images |
i i
I I
i i
: |
1 1
: |
I 1
: |
E Normal training & testing dataset Gaussian training & testing dataset | |
' labelled labelled) !
Step 2-2 | ;
(RM2: :;pPR'based E h.l h dimension features i
" ocalisation modeD. :
localization model) ! weight reassigned features :
1 I
] s
Output: UU coordinates results on the GPR B-scan images
Step 2-3
i UU localization accurac
RM5: Experiments Y
(5 Experimens)

UU localization speed
validation results
UU localization robustness
validation results

e |
|

Figure 3-3 Overview of the methodology for Objective 2 (GPR localisation)

3.4.1 Inputs and outputs

EUUL's input data were GPR B-scan data collected by GPR equipment in real
municipal road areas and processed using specific software (RADAN (Geophysical
Survey Systems, Inc., 2011)). In this study, GPR B-scan data were saved as a JPEG
file, which is commonly used in the object-recognition field. EUUL's output data
consist of two items: a GPR B-scan image (in jpeg) with the UU position marked and

the pixel coordinates of the target apex position in that image.
3.4.2 Data preparation

To emulate the actual data acquisition scene to the greatest extent possible, all data in

this study were obtained using GPR equipment instead of virtually generated using
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signal simulation software (e.g. GPRmax (De Coster et al., 2019; Pham et al., 2018;
Koetal., 2019)). A GSSI SIR4000 GPR device and a 400 MHz antenna were used for

data acquisition in this study.

Over 8 km of municipal roads were scanned to generate the GPR B-scan data. The
pipes in the area where data were collected were concrete, and metal pipes with a
diameter of 500 mm to 1200 mm, and the depth of these pipes was 1.0 to 3.0 m from

the surface, as shown in Figure 9.

Subsequently, the raw data were transferred to B-scan images using RADAN software
(Geophysical Survey Systems, Inc., 2011) after removing all data that did not satisfy
the requirements, such as data that did not include the pipeline target or data that were
severely affected by environmental noise (primarily from the steel mesh placed under
the road surface). Finally, 400 GPR B-scan images were filtered for this experimental
study, as shown in Figure 3-4. In addition, to measure the robustness of the model, B-
scan images in the test set were processed using a Gaussian blur operation (Youn et al.,
2002; Feng et al., 2021b; Pasolli et al., 2010). A new blur dataset for robustness testing
was generated using the Python Imaging Library, and the radius was set to 2 to simulate
the typical noise scenario when the features faded, as shown in Figure 3-5. The GPR
B-scan dataset was segregated into training, verification, and test sets for all studies at

a ratio of 6:3:1. The details are presented in Table 3-2.
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Figure 3-4 Depth distribution of the UUs
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Figure 3-5 Dataset generation process

Table 3-2 Details of training and experimental data

Data type Number of images
Normal dataset Original data 400
Training data 240
Validation data 120
Test data 40
Gaussian dataset Test data 40
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3.4.3 Overall design of EUUL model

In the existing research, B-scan target positioning of GPR is performed using the ‘box-
fitting’ mode, which divides the target positioning problem of UUs into two sub-
problems: regional detection and hyperbolic fitting. The ‘box-fitting’ splitting mode
seems to simplify the problem; however, it results in possible error accumulation and
fails to give full play to the autonomous learning potential of the deep-learning model.
The EUUL model proposed in this thesis uses a 'key point-regression' mode to link the
entire task in an end-to-end form, which avoids error accumulation and maximally
releases the optimisation potential of the deep-learning model. A detailed model design

1s introduced in Section 4.2.
3.4.4 Model experiments

To validate the model and improvements proposed herein, the EUUL model was
separated into three branches with different improvement features for comparison:
EUULori, using ResNet50 as the backbone; EUULcsp, using CSPDarknet53 as the
backbone; and EUULcspeca, which embeds the ECA module based on EUULcsp (the
EUUL model). Two models published in 2019, the one-stage UU localisation model
based on YOLOV3 (Zong et al., 2019) and the two-stage UU localisation model based
on the Faster R-CNN for the same task (Lei et al., 2019; Amaral et al., 2022), were

selected as comparison models to verify the effectiveness of the EUUL model.

Therefore, EUULori, EUULcsp, EUULcspeca, YOLOV3, and Faster R-CNN were trained
and tested in terms of precision, operating speed, and robustness. To ensure
comparability among the models, all the training and testing datasets were rendered
identical. In addition, the same environment (NVIDIA RTX 3090, GPU-based
computer) was used during the model training and verification to ensure the

effectiveness of the experiments.
3.4.4.1 Model evaluation metrics

The EUUL model detects the position of the UU target based on a GPR B-scan image.

Therefore, precision, recall, and F1 were applied to measure the ability of the model
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to locate the region where UU was located. The point precision metric was applied to
measure the ability of the EUUL model to accurately determine the points representing

UU.
3.4.4.1.1 Precision, recall, and F1

Precision: In the context of UU localisation, precision is important because it measures
the accuracy of positive predictions. High precision means fewer false positives, which
is critical for avoiding unnecessary excavations or disturbances in areas where utilities
might not exist. Recall: In the context of utility localisation, recall is important because
it measures the ability of the model to correctly identify all relevant instances of UUs.
A high recall means fewer false negatives, reducing the chances of missing actual
utilities, which is crucial for safety in applications, such as GPR. F1-Score: F1
combines precision and recall, providing a balance between false positives and false
negatives. Achieving balance in utility localisation is essential. The Fl-score is
particularly useful when there is an imbalance between the positive and negative

classes, ensuring that the model performs well in both aspects of utility detection.

In this thesis, precision, recall, and the F1-score collectively provide a well-rounded
evaluation, emphasising the importance of both precision and recall in the detection of
UUs, as shown in Eq. 3-1, Eq. 3-2, and Eq. 3-3. Other metrics commonly used in object
detection problems, such as accuracy, ROC, and IoU, were not selected because of
specific considerations of the problem domain. The accuracy may be skewed by
imbalanced training data. The ROC curve may not provide a clear assessment in
scenarios where the focus is on correctly identifying the positive class (utilities).
Additionally, metrics such as intersection over union (IoU) are more suitable for image
segmentation, which involves precise region delineation. The chosen metrics of
precision, recall, and F1 were deemed more appropriate for emphasising the correct
identification of utilities while balancing the training data in the context of the research
object. The three indicators were calculated as follows: 7P, FP, and false negative (FN)
represent the number of correctly identified, overlooked, and mistakenly discovered

targets, respectively.
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TP

Precision = Eq. 3-1
TP+FP
Recall = —~ Eq. 3-2
TP+FN
Fl = 2xRecall+Precision Eq. 3.3

Recall+Precision

3.4.4.1.2 Point precision

As shown in Figure 3-6, obtaining the bounding box can only provide an
approximation of the hyperbolic range in the B-scan image. In contrast, a hyperbola
that represents the location of the UUs pipeline and the corresponding apex may exist
in multiple potential hyperbolas within the bounding box range. Different fitting
processing methods yielded different hyperbolic results. If the localisation ability of a
model is evaluated based only on the precision indicator (see Section 3.4.1), the

localisation error caused by the fitting process is not considered.

Therefore, point precision was utilised to evaluate the model in this thesis as an index
for evaluating precision. Point precision refers to the ratio between the difference in
the apex-predicted coordinate output by the model and that between the actual field-

measured coordinates (Eq. 3-4 and Eq. 3-5).

_ Xpredict—Xtruth

Point precision,, = ——— Eq.3-4
Xtruth
. . . _ Ypredict—Ytrutn
Point precision, = ——  Eq. 3-5
Yiruth

Here, the point precisionx and point precisiony represent the abscissa and ordinate
accuracies of the model on the B-scan image, respectively; Xpredicr and Ypredict represent
the apex abscissa and ordinate predicted by the model, respectively; and Xuum and Youm

represent the actual apex coordinates of the UU in the GPR B-scan image.
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Figure 3-6 Comparison between point precision and box precision

3.4.4.1.3 Speed

In this study, Fps was used to measure the operating speed of the model. It is expressed
in Eq. 3-6, where F represents the number of all B-scan images (frames) input into the
model, and T represents the length of time from the beginning of the operation

instruction to the moment all operation results are output.
F
Fps = p Eq. 3-6

3.5 Image-based low-light utilities localisation reconstruction model development

(Objective 3)

An unsupervised deep-learning model (ZDE3D) was proposed in this study to enhance
the 3D reconstruction performance of UUs in low-light environments. The proposed
ZDE3D model first extracts the pixel features in low-light images and uses different
loss functions to highlight the hidden spatial feature information from five aspects to
improve the matching success rate of the same position between multiple images and
realise UU 3D improvements to the reconstruction effects. Figure 3-7 illustrates the

research flow for this objective.

85



Input: Input:

Low light UU exposed image datasets (under Normal light UU exposed image
different illumination condition) data sets (at same scenarios)
Step 3-1 ]
(Data preparation)
:
'
L
£
ZDE3D 1 Enhanced UU |
(RM3: Image-based E HEL .anc ) il
low light underground | light images
utilities 3D !
reconstruction !
enhancement model)
Output: Enhanced UU 3D reconstruction model (point cloud)

Step 3-3

(RM5: Experiments) Reconstruction amount validation results
Reconstruction accuracy validation results

Proposed loss function ablation results

Figure 3-7 Overview of the methodology for Objective 3 (low-light enhancement)

3.5.1 Inputs and outputs

The input of the ZDE3D model was low-light images of exposed UUs captured from
real construction sites. Input image data were obtained using consumer smartphones.
The output data of the model were low-light image data after the effect was improved.
After the output data were processed using MVS, point-cloud 3D-reconstruction

models in ply format can be generated.

3.5.2 Data collection

To train the ZDE3D model, the image enhancement dataset from zero-DCE (Guo et
al., 2020a) containing 2002 images was used. The training dataset comprises multiple
groups of images of the same scene under different lighting conditions. See Figure 3-

& for details.

Figure 3-8 Training data samples
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To verify the capability of the proposed ZDE3D model to improve the 3D
reconstruction performance of the as-built UUs in the low-light actual construction site
environment, ten sets of data were collected from a housing construction site in Perth,
Western Australia. The 3D reconstruction target in the validation experiment was the
domestic sewage drainage pipes installed, which still needed to be completely buried.
It is noteworthy that the low-light data environment in the experiment only retained
the lighting conditions of the construction site in a completely dark outdoor
environment (after 7:00 pm). For a better representation, the pipeline video data under
three different buried depths (300, 500, and 700 mm) for two types of pipe-laying
methods (one pipe in the trench and two pipes in the trench) subject to different lighting
conditions (normal and low light) were collected. The data samples are shown in
Figure 3-9. The device used for data collection was an iPhone 12 (1080p, 60 FPS, with

all intelligent optimisations turned off).

Normal light

s

300 mm & Two pipes 500 mm & One pipe 500 mm & Two pipes 700 mm & One pipe 700 mm & Two pipes

\

300 mm & One pipe

Low-light

300 mm & One pipe 300 mm & Two pipes 500 mm & One pipe 500 mm & Two pipes 700 mm & One pipe 700 mm & Two pipes

Figure 3-9 Data-collection samples

3.5.3 Data processing

To improve the efficiency of field data collection and work convenience, the original
data acquired in the experiment were video-format data (mp4). The video data were

then extracted using a Python script every 50 frames into a multi-view image dataset.
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Thereafter, the multi-view images were imported into the COLMAP software
(https://colmap.github.io/) for sparse and dense reconstruction to obtain the final point-
cloud files. The pipe size was measured manually using Compare software

(https://www.danielgm.net/cc/). All the data processing flows are shown in Figure 3-

Raw data Input data Point cloud data Point cloud data
Video Stream Capture script Image Frames COLMAP | Sparse Reconstruction | COLMAP | Dense Reconstruction
(.mp4) ZDE3D model (.jpeg) (.db) (.ply)

RN o 2 Lot
BEERER LT T
BEEEER '
EEEE

Figure 3-10 Data processing steps

3.5.4 Overall design of the ZDE3D model

In traditional or deep learning, the essence of a low-light image enhancement task is
to adjust the image features (such as local brightness and contrast) at the pixel level.
The deep-learning model can establish mapping from a low-light image to an
optimised image, and the effect of this process depends on the reference image used in
the model training. However, in low-light three-dimensional reconstruction scenes,
there needs to be a reference image that can be determined by research, and it is more
difficult to identify the most appropriate reference image for supervision and training
under different UU construction scenes. Therefore, this thesis proposes an
unsupervised deep-learning model without reference images. Through the design of
the loss function, the prior knowledge of low-light three-dimensional reconstruction
and the UU engineering scene is solidified into the deep-learning model. Thus, low-
light image enhancement at the pixel level was implemented to generate a better UU

three-dimensional point-cloud model.
3.5.5 Model experiments

3.5.5.1 Model evaluation metrics
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The purpose of the ZDE3D model is to optimise low-light images at the pixel level to
achieve a better 3D reconstruction performance. To measure the performance of the
point-cloud model generated from images processed by the model, three metrics were
adopted in this study for evaluation: point-cloud quantity, enhanced ratio, and record

accuracy.
3.5.5.1.1 Point-cloud quantity

The point-cloud quantity refers to the number of point clouds generated during the
sparse 3D reconstruction phase. In a 3D reconstruction task, the number of point
clouds generated by sparse reconstruction is the basis for the subsequent dense
reconstruction of the point clouds, which determines the performance quality of the
point clouds. If the number of point clouds is too small, the spatial information of the
target scene cannot be fully expressed, particularly the enlarged local details. Therefore,
this study adopted the point-cloud quantity as one of the measurement indicators of
model performance. The larger its value, the better the 3D reconstruction performance

of the target UU scene.
3.5.5.1.2 Enhanced ratio

The enhanced ratio refers to the ratio of the reconstruction performance between the
low-light image enhanced by the ZDE3D model and original input data. This metric
was used to quantify the 3D reconstruction effect of the optimised discriminant model,
as shown in Eq. 3-7, where Q;represents the number of sparse point clouds generated
by the 3D reconstruction of the original low-light image, and Q. represents the number
of sparse point clouds generated by the 3D reconstruction of the image enhanced by

ZDE3D.
Enhanced ratio = % x100%  Eq.3-7

3.5.5.1.3 Record accuracy

Record accuracy refers to the difference between the spatial information expressed by

the point cloud from the 3D reconstruction and size information from the actual
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construction site. The core scenario of this study was the as-built UU; therefore, the
pipe diameter was used as a representative value in the experimental record, as shown
in Eq. 3-8. Where D, represents the pipe diameter of the point-cloud model generated
by 3D reconstruction, and D represents the pipe diameter size obtained from actual
measurements at the construction site.

|D_Dr|

Record accuracy =1 — — X 100% Eq. 3-8

3.5.5.2 Experiment design

To verify the practicability of the ZDE3D model, two parts were designed: an
experimental and construction environment. Three embedment depths and two
pipeline arrangement modes were designed for the experimental environment. Under
the condition of lack of a light source, the acquisition was carried out, and then the
effects of 3D reconstruction after the acquisition of the original low-light image and
the model-enhanced image were compared. In addition, the influence of different loss
functions on the reconstruction results proposed by ablation experiments was
investigated. In the construction environment section, three low-light images from
different UU scenarios at different construction sites are collected, and the point clouds
generated by the original low-light images are compared with those generated by the
enhanced images to illustrate the effectiveness of the model. Simultaneously,
traditional, and mainstream unsupervised deep-learning method models were applied
to the same dataset for comparative experiments to verify the superiority of the

proposed ZDE3D model.
3.6 Graph-based UU topology-completion model development (Objective 4)

In this study, a GCN-based deep-learning model (UUTC) was proposed for an UU
topology information completion task. The UUTC model first converts the table
database into graph-structured data, then extracts the correlation information between
each observed node through the GCN architecture, and finally predicts the missing
topological relationship by combining multi-dimensional information, such as node

attribute characteristics and similarity. Figure 3-11 illustrates the research flow for
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achieving this objective.

Input: UU tabular database (with topology and attributes information)

prepar | UUgraphdata | :

(Data preparation) UU graph data Baseline dataset !

1

1

Incomplete UU graph data_| 1

]

|

i

Step 4-2

RM: Cragh 5

convolutional E

networks based enriched high dimensional features i

underground utilities i

topology database UUTC model :

completion model ) i
Output: Complete UU database with complete topology information

Step 4-3

(RM’5: Experiments) Topology completion accuracy results

Figure 3-11 Overview of the methodology for Objective 4 (Topology completion)

3.6.1 Inputs and outputs

The input data of the UUTC model were graph data with different proportions of
missing topological relationships. The model's output data were the graph data after

completing all topological relationships.
3.6.2 Data collection

Data source. All the UU data used in this thesis are collected from the real wastewater
network official data of Angers Metropolis City, France, and are available through the
French Government's open access (https://www.data.gouv.fr/ (accessed on 1 May
2023)). Three groups of real UU data from different scales of buildings in different
locations and periods were selected to ensure the repeatability of the experimental
results and normalisation ability of the model. The three sets of experimental data

included 26,627, 10,227, and 1,059 UU nodes, and 32,379, 12,369, and 1,031 pairs of
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UU topological relationships, respectively. Each set of data was divided into training,
verification, and test sets. The division ratio is determined according to the missing
rate setting, where the proportion of the test set equals the missing rate, the proportion

of the verification set is constant (10%), and the rest of the data is the training set.

Data processing. Figure 3-12 shows the processing flow of the raw data. First, the raw
data file, in .shp format, was processed into a commonly used graph data format (CSV)
using professional software (ArcGIS) to ensure that the model correctly read the data.
Second, the obtained data attributes were filtered. The main consideration was to retain
a few attribute features (material, depth, length, and diameter) that were closely related
to the UU topology. The remaining features were not closely related to the topology of
the UU network; therefore, they were excluded from the study. In addition, keeping
materials and other attributes that reflect UU characteristics as small as possible can
maximise the possibility of model promotion in other types of UU fields, because
information such as laying date and gravity type is not recorded in all UU scenarios.
Third, the material was a typical discrete attribute among the four selected attribute
characteristics. To facilitate the deep-learning calculation and avoid the data
interference problem caused by the assignment of the scalar form, this thesis adopted
the one-hot (Shen et al., 2022) encoding form for processing. Each material was
recorded as a unique representation vector. Fourth, in machine learning, different
evaluation indicators (i.e. different features in the feature vector are different
evaluation indicators) often have different dimensions and dimensional units, which
will affect the results of data analysis. Therefore, to eliminate the dimensional
influence between indicators, this study normalised the data to solve the comparability

problem between data indicators.
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Figure 3-12 Data processing steps and illustrations

3.6.3 Overall design of UUTC model

In this study, topological relationship completion among UUs was transformed into an
edge prediction of the graph structure. Each pipe target corresponds to a node in the
graph data, the attribute characteristics of the pipe itself correspond to node attributes,
and the connection relationship (topology) between pipes corresponds to the edge. If
there is a topological connection between the pipelines, an undirected edge exists
between the corresponding nodes; otherwise, the nodes are independent. The UUTC
model comprises of four main modules: input, SEM, convolution, and link prediction.
The model takes the observed topological relationships and node attribute information
of the UU network as input and aims to generate completed network topology
relationship data as output. To improve the accuracy of topological relationship
completion, this thesis constructs a SEM combined with professional knowledge in the
field of UU to help a deep-learning network identify the connection possibilities

between pipeline nodes. A detailed model design is introduced in Section 6.2.
3.6.4 Model experiments

3.6.4.1 Model evaluation metrics
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To evaluate the effectiveness of the proposed UUTC model in the UU topological
relationship completion scenario, the following four mainstream model evaluation
metrics in the field of machine learning were applied. The definitions of TP (True

Positive), TN (True Negative), FP (False Positive) and FN are listed in Table 3-3.

Table 3-3 Definition of TP, TN, FP, and FN

Model predicted as true Model predicted as false

Actual true TP (True positive) FN (False negative)
Actual false FP (False positive) TN (True negative)
3.6.4.1.1 Accuracy

Accuracy (ACC) indicates the proportion of the number of samples predicted by the
model to the total number of samples. The ACC calculation equation is given by Eq.

3-9.

ACC = —_TPHTN

T TP+FP+TN+FN

Eq. 3-9
3.6.4.1.2 Area Under Curve

The area under curve (AUC) is the area under the receiver operating characteristic
(ROC) curve, which is typically used for binary-classification problems. The ROC
curve is a curve with the False-Positive Rate (FPR) as the abscissa and the True
Positive Rate (TPR) as the ordinate, as shown in Figure 3-13 Eq. 3-10, and Eq. 3-11.
The closer the AUC is to 1, the better the performance of the model. The calculation
equation for AUC is shown in Figure 3-13.

TP

TPR = Eq. 3-10
TP+FN

FPR = —2— Eq.3-11
FP+TN
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Figure 3-13 Area under curve (4AUC) and receiver operating characteristic (ROC)

curve

3.6.4.1.3 F1

F1 is the harmonic mean of Precision and Recall. The precision rate indicates the
proportion of predicted positive samples that are positive samples, and the recall rate
indicates the proportion of actual positive samples that are correctly predicted as
positive samples. The F1 value can comprehensively consider the impact of precision
and recall. This is a commonly used indicator in binary-classification problems. See

the equation Eq. 3-12 for the calculations.

F1 = 2TP

S L — Eq. 3-12
2TP+FP+FN

3.6.4.1.4 average precision

The average precision (4P) is the area under the curve of the precision and recall rate
(P-R curve), as shown in Figure 3-14. Compared with other indicators, the AP can
better reflect the performance of the algorithm in practical applications, and it
considers the ranking order of the prediction results and the importance of related
targets, not just the accuracy of the classification results. See Eq. 3-13 and Eq. 3-14

for the calculation details.

Precision = Eq. 3-13

TP+FP
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Figure 3-14 P-R Curve (AUC) and AP

3.6.4.2 Model experiments design

The model was verified using the data officially recorded from a real wastewater
network. The verification is divided into two steps: 1) The experimental data are
randomly removed according to different missing proportions, and then the defective
data are imported into the UUTC model for completion. Finally, the topological
relationships before and after completion were recorded and compared to verify the
effectiveness of the proposed UUTC model. 2) Import the same incomplete dataset
from 1) into the mainstream data-completion baseline models in existing studies for
comparison, and then record the experimental results and perform a comparative
analysis with the experimental data in 1) to illustrate the superiority of the UUTC

model over the existing models.
3.7 Chapter summary

This chapter summarises the research methodology. First, research philosophy is
introduced as the foundation of this thesis. This study is based on a positivist paradigm.
The research methodology was deductive and quantitative, based on objectivist

epistemology and realist ontology. Sections 3.4-3.6 introduce specific research
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methods. In summary, the EUUL model was utilised to localise the positions of UUs
under non-destructive conditions. The ZDE3D model was developed to enhance the
3D reconstruction performance of the exposed UUs. Finally, the UUTC model was
proposed to complete the missing topological relationship of the UU nodes. By
applying these three components, a 3D model of the UUs can be effectively,

automatically, and accurately reconstructed.
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Chapter 4 : Developing GPR-based automatic UU localisation model
4.1 Chapter introduction

This chapter presents the detailed design of the GPR-based automatic UU localisation
model (EUUL) in Section 4.2. Cross-comparison results are demonstrated to prove the
usefulness of the model, and the contributions of the EUUL model are discussed in
Section 4.3. All models were developed using a NVIDIA RTX 3090, GPU-based

computer, and a Pytorch environment.
4.2 Detailed design of the EUUL model

4.2.1 Framework of EUUL model

Pipe locations

GPR B-scan image / Feature map \ K Channel attention \

Global average poolin; ’ :

| 1D Convolution IAI
i, J &

Input Feature extraction Efficient channel Prediction Output
attention (ECA)

Weighted

Center points

Bottom points

Figure 4-1 Overview of EUUL model

Inspired by CenterNet (Zhou et al., 2019), the EUUL framework was designed to
feature three main components: feature extraction, ECA, and prediction, as described

in detail in Sections 3.2, 3.3, and 3.4, respectively (see Figure 4-1).

Feature extraction. The CSPDarknet53 backbone (Bochkovskiy et al., 2020) was
applied to the EUUL model to extract features from the B-scan image data. To achieve
higher deep learning, too large backbone structure will seriously affect the model's
speed, whereas too small will reduce the extraction effect of target features. In this
thesis, a CSPDarknet53 network with a cross-stage partial (CSP) structure was applied.

The addition of the CSP structure can solve the problem of information duplication in
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the backbone network, particularly in the neural network gradient optimisation process,
which can significantly reduce the number of parameters and floating-point operations
of the model, thus improving the reasoning speed of the final model. This operation
significantly reduces the overall number of parameters in the model and is conducive
to solving the issue of a large data volume in UU localisation. Further details are

presented in Section 3.2.

ECA. After switching the lightweight backbone model during the test for improvement,
the localisation precision of the model decreased significantly. Therefore, an ECA
module was embedded into the EUUL model to ensure precision from lightweight
modifications and to manage noise interference in the UU localisation. Compared with
other attention mechanisms, the ECA mechanism has higher computational efficiency
and less influence on network processing speed, which is suitable for this research
scenario. Studies on many other image recognition tasks have confirmed that the ECA
mechanism can significantly improve the performance by adding only a few
parameters. The ECA module weights the feature channels and ensures that the model
focuses on key features. Details regarding the ECA module are provided in Section

3.3.

Prediction. Based on the high-dimensional image features obtained from the above
steps, the prediction component was classified into three branches to obtain the heat
map, object width and height, and offsets of the UUs target. Subsequently, a regression
structure was used to generate the offsets, object size (hyperbola width and height),
and point coordinates that represent the UU location as the model's output. The details

are presented in Section 3.4.
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4.2.2 Feature extraction
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Figure 4-2 Architecture of EUUL backbone

CSPDarknet53 (Bochkovskiy et al., 2020), a deep-learning backbone for object
detection, was used for feature extraction. A CSPNet strategy was applied to segment

the feature map into two regions and merge them into a cross-stage hierarchy. Figure

4-2 shows details of the CSPDarknet53 structure.

The main features of CSPDarkNet53 include the addition of a CSP (Bochkovskiy et
al., 2020) structure to each residual block and the removal of the bottleneck structure.
From the standpoint of network structure design, CSP is primarily utilised to solve
problems that require extensive calculations. The problem of high inference
calculation is caused by the repetition of gradient information in network optimisation.
The CSP structure reduces the computational effort while ensuring precision by
integrating gradient changes into the feature map from beginning to end. Consequently,
the number of model parameters and floating-point operations per second were
reduced, which ensured both the speed and precision of inference and reduced the

model size. The training was simplified by removing the bottleneck structure, and the

number of parameters was reduced.
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4.2.3 ECA module

GPR B-scan data often contain noise owing to the complexity of the underground
environment. These noise and interference factors include the electrical installations,
tree roots, and devices. The complete removal of all these interference factors in
engineering practice is unrealistic. Therefore, an ECA (Wang et al., 2020a) module
was added to the EUUL model to enhance the operational robustness. The principle of

the ECA module is as follows:

When the model processes the input B-scan images, different features are captured by
different channels; however, the importance of each channel feature differs. As shown
in Figure 4-3, the ECA module allows the model to focus on the key feature channels
by assigning different weight evaluations to each channel’s information. The first step
is to perform a global average pooling operation on the input feature map, which
involves calculating and transforming the pixel value of each feature layer into a mean
output to create a one-dimensional (1D) vector. Second, 1D convolution with
convolution kernel size & is performed on the 1D vector to realise local cross-channel
interactions and extract the dependencies between channels, where £ is determined by
the input characteristic channel C. To obtain the weight w of each channel, the vector
obtained after the 1D convolution is passed through the sigmoid activation function
(Eq. 4-1 to Eq. 4-5). After performing the above steps, more computing power is
directed toward the effective channel information, and noise interference in the input

is effectively mitigated. The experiments are detailed in Section 4.3.
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GAP = Global Average Pooling
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Figure 4-3 Framework of ECA
The weight of each channel w is calculated as follows:
w = a(CIDk(y)), Eq. 4-1
C=2(k), Eq. 4-2
®(k) =y * k — b, Eq. 4-3
C=d(k)=2 7 Eq. 4-4

l ) b
k=¥ (C)= |%+;|odd. Eq. 4-5

Here, CID represents a 1D convolution known as the ECA module, and £ is the size

of the convolution kernel, which is a parameter related only to C.

Therefore, a solution is to extend the linear function (Eq. 4-3) to a non-linear function
(Eq. 4-4). Subsequently, for channel dimension C, kernel size k can be adaptively

determined using Eq. 4-5.

The approximate range of the channel interaction information must be established
because the ECA module seeks to accurately capture the local cross-channel
information interaction (convolution kernel size k of 1D convolution). The kernel size

k of the 1D convolution is directly proportional to the channel dimension C with
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respect to the coverage of cross-channel information exchange. In other words,
mapping exists between k and C, as expressed in Eq. 4-2. The most straightforward
mapping is a linear function, as shown in Eq. 4-3. However, linear-function-based
relationships are overly constrained. A power of two is specified for channel dimension
C (i.e. the number of filters) (Wang et al., 2020). Hence, a potential solution was
obtained by converting a linear function (Eq. 4-3) to a non-linear function (Eq. 4-4).

The kernel size k can be expressed based on C, as shown in Eq. 4-5.

4.2.4 Prediction module
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Figure 4-4 Prediction architecture

The prediction comprises up-sampling, head, and regression. It was used to predict the
apex coordinates that represented the position of the top of the pipelines on a B-scan

image. The prediction architecture is shown in Figure 4-4.

First, three up-samplings (ConvTranspose2d layers) were employed to avoid
resolution degradation after restoring the image to its original size. After a complex
series of convolution operations, the higher-dimensional features of the input image
were extracted. This feature of CNN is particularly beneficial for classification and
detection. However, because the resolution of the input image decreases significantly,
the precision of the model in performing UU localisation also decreases. Therefore, to
achieve greater localisation precision, the spatial dimension of the object in the original
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image should be effectively restored using up-sampling operations.

Second, three branch heads were applied to predict the heat map, i.e., ‘offset’, ‘width’,
and ‘height’. As shown in Figure 4-4, Head 1 generates the approximate centre position
of the target object in the image. Head 2 was used to predict the correction offset of
the target centre position to correct the precision loss caused by the model in the down-
sampling process. The pixel width and height of the target were predicted using Head
3.

Finally, the coordinates of the UU objects were obtained via regression processing
using the output information of the prediction heads, as illustrated in Figure 4-5. The
left- and right-bottom-point pixel coordinates can first be calculated based on the
coordinates of the heat map, offset, and object size (width and height). Subsequently,
the predicted coordinates of the apex can be obtained by the regression of the

coordinates of the abovementioned three points.

Through the operations above, the EUUL model circumvented the box-fitting mode in
previous studies, in which hyperbola targets were searched first, and apex coordinates
were searched via fitting steps. Moreover, the EUUL model directly searches for the
apex coordinates on the input image. In this key point-regression mode, global
optimisation results were obtained rather than the superposition of two local
optimisations (box and fitting results). Under the new key point-regression-end-to-end
framework, the UU localisation task model yielded a larger parameter optimisation

space and more convenient operation process.
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Figure 4-5 Regression processing

4.3 Experiment results and discussions
4.3.1 Experiment to verify precision

An experiment was performed to verify the localisation precision of the proposed
EUUL model and the effects of the lightweight improvement and the ECA module on
the model function. Therefore, all EUUL searer and composition models were tested
based on the same normal dataset in the experiment, and the parameters, precision,

point precision, recall, and F'1 values were recorded to evaluate the model performance.

As shown in Table 4-1 and Figure 4-6, the accuracies of the EUULoi (96.49%),
EUULesp (93.10%), and EUULcspeca (97.01%) models based on the key point-
regression mode were significantly higher than those of the one-stage model YOLOV3
(91.67%) and two-stage model Faster R-CNN (65.52%). A comparison of the F/
values showed the superiority of the proposed EUUL model. Although the parameters
of the modified EUULcsp model reduced significantly after replacing the backbone
(from 136.0 M to 37.0 M), the precision decreased (93.10%), the recall decreased
significantly (36.00%), and the F/ value was only 0.52. This indicates that the
lightweight transformation deteriorates the recognition ability of the model. However,

after embedding the effective channel attention module, the EUULcspeca model
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demonstrated high precision (97.01%) and achieved the highest '/ value (0.92) among
all the models. This shows that the ECA mechanism effectively improves the model's
recognition precision and ensures its localisation performance after lightweight
transformation. In addition, the point precision verification results of the model

support the conclusions above.

Table 4-1 Results of precision based on experiments

Test Point Point Point
Model Parameter Precision Recall F1
number precisionx precisiony recall
EUULori 136.0 M 40 96.49%  76.39% 0.85 97% 98% 100%
EUULcsp 37.0 M 40 93.10% 36.00% 0.52 99% 99% 70%
EUUL-cspeca 37.0 M 40 97.01% 86.67% 0.92 98% 98% 100%
YOLOvV3 237.0 M 40 91.67% 27.50% 0.42 / / /
Faster R-
113.4 M 40 65.52%  95.00% 0.78 / / /
CNN
100% 97"/.987 100% 98%98"/100% 237™M

96.49%

80%

60%

40%

20% |

0 Models
EUUL; EUUL,cca YOLOvV3 Faster RCNN
(proposed model)
Point Point .
I Parameter I Precision IRecall I:I F1 D precision, Dprecisiony IPOlnt recall

Figure 4-6 Comparison of precision results based on experiments
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4.3.2 Experiment to verify robustness

An experiment was performed to determine whether the proposed EUUL model
(EUULecspeca) performs better than other existing models in terms of robustness, and to
verify the effects of the lightweight model and ECA improvements on the robustness
of the model. Therefore, the B-scan image data in the test set were subjected to
Gaussian blur processing, as shown in Figure 4-7, to improve the difficulty of model
localisation. Subsequently, the processed test images were imported into EUULori,

EUULcsp, EUULcspeca, YOLOV3, and Faster R-CNN for testing.
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Figure 4-7 Sample of normal and Gaussian test set data

For comparison, Table 4-2 shows the test performance of each model for the normal
and Gaussian datasets. The results presented in Figure 4-8 provide a better

visualisation of the comparison.

First, the precision of the EUULcspeca model decreased, whereas the performances of
EUULori and YOLOV3 on the Gaussian test set improved. Meanwhile, the precision of
EUULcsp and Fast R-CNN did not change. This shows that the noise produced by the
Gaussian blur processing affected the performance of the models; however, it was not

reflected by the precision index alone. Second, regarding recall, except for the
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EUULcsp and Faster R-CNN models, the recall of all other models decreased
significantly. The recall values of the EUULori, EUULcspeca, and YOLOvV3 models
decreased by 11.11%, 8%, and 7.5%, respectively. This shows that when noise
interference occurred, the retrieval ability of the EUULori, EUULcspeca, and YOLOV3
models for UUs targets in the B-scan images deteriorated. Additionally, this indicates
that the increase in the precision of EUULori and YOLOV3 on the Gaussian test set was
due to a significant decrease in the number of UUs targets retrieved by the models.
Third, considering the changes in precision and recall in the two datasets, the '/ values
of models other than the EUUL.sp and Faster R-CNN models decreased significantly,
and the EUULcspeca model (0.87) indicated the highest /7 value. This shows that, when
subjected to the same noise interference, the EUULcspeca model was the best-
performing model among all the experimental models. A comparison between
EUULcspeca and EUULcsp indicates that the ECA module improves the robustness of

the EUUL model. Finally, the point precision of the models supported this statement.

Table 4-2 Results of robustness based on experiments

Test Point Point Point
Model Parameter Precision Recall F1
number precisionx  precisiony recall
Normal test data set
EUULoi 136.0 M 40 96.49% 76.39% 0.85 97% 98% 100%
EUULecsp 37.0M 40 93.10% 36.00% 0.52 99% 99% 70%
EUULcspeca 37.0M 40 97.01% 86.67% 0.92 98% 98% 100%
YOLOvV3 237.0 M 40 91.67% 27.50% 0.42 / / /
Faster R-
1134 M 40 65.52% 95.00% 0.78 / / /
CNN
Gaussian test data set
EUULori 136.0 M 40 97.92% 1 6528% | 0.78 | 99%1 98%- 90%]
EUULcsp 37.0M 40 93.10% - 36.00% - 0.52 - 95%)| 96%)| 42.5%]
EUULcspeca 37.0M 40 96.72% | 78.67% | 0.87 | 98% - 98% - 100% -
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Test Point Point Point

Model Parameter Precision Recall F1
number precisionx  precisiony recall
YOLOvV3 237.0 M 40 100.00%1 20.00% | 0.33 ] / / /
Faster R-
1134 M 40 65.52% - 95.00% - 0.78 - / / /
CNN

Note: In this table, 1 implies a value increase, | implies a value decrease, and - implies

unchanged compared to the value in the normal test dataset.

% o o 98% 98% 100% 237M o
100%j o - - 8o, T R o84 98 100% Lo : )
- 93.10% Jlos% 96.72% W 95.00%95.00%
0%  93.10% 5% — 092 o1 8-
.67% .87
80% .67%) 780.78
70%
65.52%65.5]
60%
1209 113.4)
2.5% 0.42
40%| . 2
N ot
7.50%
20%| .00%
3™ 37™|
0
EUUL,, EUUL,, EUULpeca YOLOv3 Faster RCNN Models
(proposed model)
Point ] Point .
Parameter Precision Recall F1 precision, precision, Point recall

Figure 4-8 Comparison of robustness based on experiments. (Percentages indicated
in black and red represent results based on normal and Gaussian test datasets,

respectively)

4.3.3 Experiment to verify speed

An experiment was performed to validate whether the proposed anchor-free models
(EUUL series) offered a significant advantage over the comparative models in terms
of operating speed. Another purpose of this experiment was to verify that the

lightweight improvement proposed herein can enhance the operating speed (EUULcsp
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and EUULcspeca). Therefore, in this experiment, the same test dataset was used to record

the processing speed (fps) and parameter quantity for each model.

As shown in Table 4-3, the fps of the EUULori, EUULcsp, EUULcspeca, YOLOV3, and
Faster R-CNN models under the normal test dataset were 105, 125, 125, 82, and 20,
respectively. Among them, the lightweight-improved EUULcsp and EUULcspeca models
indicated the highest operating speeds, which satisfied engineering requirements for
real-time applications. However, the operating speed of EUULori without lightweight
improvement was slightly lower than those of the two aforementioned models,
although its fps reached 105. Therefore, compared with the comparison models
YOLOV3 and Faster R-CNN, the EUUL series models offered a significant advantage
in terms of operating speed, which was five to six times that of the Faster R-CNN. In
addition, the number of parameters in the lightweight-improved EUULcsp and
EUULcspeca models (37.0 M) was significantly less than those in the comparison
models YOLOvV3 (237.0 M) and Fast R-CNN (113.4 M). This shows that the GPR B-
scan localisation models based on the key point-regression mode proposed herein can
eliminate the dependence on expensive hardware under the same conditions more

effectively to better adapt to the harsh engineering practice environment.

Table 4-3 Results of speed based on experiments

Model Test number Parameter fps
EUULori 40 136.0 M 105
EUULecsp 40 37.0 M 125

EUULcspeca 40 37.0 M 125
YOLOV3 40 237.0 M 82
Faster R-CNN 40 113.4M 20

Note: Experiments were conducted using a NVDIA RTX 3090, GPU-based computer.

4.4 Experiments based on different soil types

To verify the localisation performance of the proposed models under different soil
conditions, pipeline data from two different areas (Areas 1 and 2) were obtained by
using the same GPR equipment with the same operating frequency (400 MHz). In total,
450 frames were obtained. For each area, 185 and 40 of 225 frames were used for
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training and testing, respectively.

The geological conditions in Area 1 were relatively complex, featuring a backfilled
soil layer containing large pieces of gravel and holes in the working sections. In Area
2, the backfill soil layer was more uniform; however, the pipelines were densely
distributed, and the signals between the pipelines interfered. Sample data from Areas

1 and 2 are shown in Figure 4-9.
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Figure 4-9 Sample data from Areas 1 and 2

Five models (EUULcsp, EUULcspeca, EUULori, YOLOV3, and Faster R-CNN) were
trained and tested on the same dataset. The experimental results are presented in Table
4-4 and Figure 4-10. The proposed EUULcspeca model exhibited promising

performance in terms of precision, recall, and F1.

Regarding precision, EUULcsp performed the best on both test datasets for Areas 1 and
2 (94.64% and 92.75%, respectively). However, the recalls of the proposed EUULcspeca
model in these two datasets were 2.35% and 3.61% higher than that of the EUULcsp
model. This indicates that the EUULcspeca model cloud obtained more detection targets.
Regarding FI, the proposed EUULcspeca model (0.87 and 0.85) exhibited the best

performance compared with the other models.

Table 4-4 Experimental results based on different soil types
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Test

.72 0.72

L .Models

Model Parameter Precision Recall F1
number
Area 1
EUULori 136.0 M 40 92.00% 72.63% 0.81
EUULcsp 37.0M 40 94.64% 76.70% 0.85
EUUL-cspeca 37.0M 40 90.59% 83.05% 0.87
YOLOvV3 237.0 M 40 90.14% 67.37% 0.77
Faster R-
113.4 M 40 58.26% 95.49% 0.72
CNN
Area 2
EUULori 136.0 M 40 90.91% 72.29% 0.81
EUULcsp 37.0M 40 92.75% 77.11% 0.84
EUUL-cspeca 37.0 M 40 89.33% 80.72% 0.85
YOLOvV3 237.0 M 40 89.23% 69.88% 0.78
Faster R-
1134 M 40 59.23% 92.77% 0.72
CNN
100%
2.75% 0-850_34
80% 97 1%
60%
40%
20%
3™
0
EUUL, EUUL,, EUUL,., YOLOV3 Faster RCNN
(proposed model)
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Figure 4-10 Comparison of experimental results based on different soil types.
(Percentages in black and red represent results based on test datasets of Areas 1 and
2, respectively.)

4.5 Chapter summary

In this section, an EUUL model is developed using the GPR B-scan images. Three
experiments were conducted to validate the proposed model and its improvements on
an actual site. The experimental results showed that the precision of the proposed
EUUL model was 97.01%, operating speed was 125 fps, and precision was 96.72% in
a noisy environment. The EUUL model was superior to the existing mainstream
models in terms of precision, operating speed, and robustness. The model satisfied the
requirements of UU localisation in engineering practice and promotes the development

of automatic GPR-based UU localisation.
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Chapter 5 : Developing image-based UU 3D reconstruction model
5.1 Chapter introduction

This chapter presents a detailed design of the ZDE3D model for low-light
enhancement of the UU 3D reconstruction task. An unsupervised architecture and five
loss functions were proposed based on the UU domain knowledge and image-based
3D reconstruction principles. Cross-comparison experiment results using real-site
datasets are introduced to demonstrate the effect of 3D reconstruction by measuring
the sparse reconstruction quality and the resulting point-cloud model precision. The
ablation experiment results were also introduced to demonstrate the usefulness of each
loss function in practice. The ZDE3D model was developed using Python and Pytorch
deep-learning frameworks for model training, validation, and testing on the Google
Colab cloud-computing platform.

5.2 Detailed design of the ZDE3D model

5.2.1 Framework and architecture

Lgp,: Spatial loss

Ly : Color loss

|
|
Ly, : Exposure loss I -
|
|

Lg,, : Boundary loss
Lo : Group loss
Covl+ReluCov2+Relu Cov3+Relu  Cov4+Relu Cov5+Relu  Cov6+Relu  Cov7+Relu Tanh
| $
Cat I
Cat
a ;
Cov - Convolutional Neural Network Layer ol B B B B |
Relu — The Rectified Linear Unit (ReLU) E " EER
Tanh — The Hyperbolic Tangent Function X
Cat - Concatenates the given sequence of tensors R % NN
Loss — Loss function
[
Low-light inputs (Images/Video frames) Enhanced image outputs

Figure 5-1 Framework of the ZDE3D model

Inspired by zero-DCE (Guo et al., 2020a), ZDE3D adopts a deep-learning method to
establish a pixel-wise mapping relationship between the input low-light image and

output-enhanced image to improve the 3D reconstruction performance. As shown in
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Figure 5-1, the ZDE3D model employed a CNN with seven convolutional layers with
symmetrical concatenation. Each layer consisted of 32 convolutional kernels of size
3%3 and stride 1, followed by the ReLU activation function. Because the up-sampling
and pooling layers could interfere with the interpixel relationship of the input image
and lead to the loss of important information, these layers were completely discarded
in the model. The last convolutional layer was followed by the Tanh activation function,
which produced 24 parameter maps for eight iterations (n = 8), where each iteration

required three curve parameter maps for the three channels.

To improve the 3D reconstruction performance of the input low-light images, the
overall goal of ZDE3D was primarily achieved through the following five loss
functions: Lspa (spatial loss), Lcor (colour loss), Lex (exposure loss), Lsou (boundary
loss), and Lar (group loss). Lsya was used to improve the image contrast, Lcor was used
to improve the image brightness reasonably, Leyp was used to adjust the image
exposure, Laoy Was used to generate a boundary penalty mechanism, and L was used
to control the direct difference of the same group of images. The working principle
and details of the loss function are described in Section 3.2. By optimising the ZDE3D
model, the image data collected in a low-light environment automatically learn how to
better generate the mapping relationship of 3D point-cloud images without any paired

or unpaired data.
5.2.2 Loss-function design

Because no paired or unpaired reference data were used in the learning process of the
ZDE3D model, the effect of the optimisation task depended completely on the design
of the loss functions. In the design process of the following loss functions, the
requirements of feature point extraction and matching in the 3D reconstruction process
are considered. By designing different loss-function features, the enhanced images
could reflect as many pixel-level features as possible without losing the original
information to improve the 3D reconstruction performance in a low-light environment.

Therefore, we designed the following loss functions:

5.2.2.1 Spatial loss
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Spatial loss (Lspa) stimulates the pixel difference features in low-light images. By
comparing the pixel values of the corresponding positions before and after mapping in
some pixel areas (the 4x4 area was adopted in this study following the experience of
zero-DCE (Guo et al., 2020a)), the original areas that may contain feature points were
enhanced, as shown in Eq. 5-1, where K is the number of local regions and (i) is the
four neighbourhoods centred around region i (upper, lower, left, and right). / represents
the pixel value in the input picture, and E represents the pixel value after mapping
optimisation. C is a small normal number that avoids inoperable problems without
affecting the equation.

Ii-1))*+cC

—_— Eq. 5-1
(E—Ej)’+C a3

1
LSpa ~x i'(=1 Zje!)(i)
5.2.2.2 Colour loss

Colour loss (Lcor) 1s used to reasonably improve the brightness of pixels in low-light
images. Extensive studies have shown that image feature degradation is closely related
to the pixel intensity (i.e. image brightness). From the perspective of the pixel value
distribution, the pixel values of low-light images are densely distributed in the range
of low-brightness areas, which leads to insufficient utilisation of the brightness space.
Much effective information is crowded within a narrow range and cannot be used by
3D reconstruction algorithms. Therefore, based on the colour balance algorithm
(Pascale et al., 2022), the ZDE3D model adopts Lcor to effectively expand the pixel
representation space of low-light images, as shown in Eq. 5-2. K represents the number
of pixels in each channel and R, G, and B represent the red, green, and blue channels
of the colour image, respectively. E; represents the pixel value of the enhanced image
at position 7, and j is the channel where the pixel resides. Emax represents the maximum
pixel value of the enhanced image on a given channel. By adjusting Lcos, the pixel
values of low-light images in the input model are evenly distributed in the brightness

space of 0-255, to obtain better reconstruction performance.

1 Ej
Leor = _Zi'(=1 ZjE(R,G,B)(Ei - _)2 Eq. 5-2
K Emax

5.2.2.3 Exposure loss
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The exposure loss (Lexp) was used to prevent abnormal exposure to low-light images
after adjustment. Pictures that are too bright or too dark cannot effectively show the
characteristics of the target object. This feature is also important for 3D reconstruction.
Therefore, the ZDE3D model retains the loss function used by the zero-DCE model to
control the exposure (see Eq. 5-3). M represents the number of non-overlapping local
regions of size 16x16, and E represents the average intensity value of local regions in
the enhanced image. Based on the experimental results of zero-DCE, B was set as a

constant value (0.6) in the model (Guo et al., 2020a).
1
LExp Y] 1]?:1 |Ex — B Eq. 5-3
5.2.2.4 Boundary loss

Boundary loss (Lsox) implements a linear boundary penalty mechanism in as-built UU
scenarios. Linear features appear frequently in the image data used for the UU 3D
reconstruction. The main reason for this is that the boundary between the underground
pipelines and background is linear when mapped to a two-dimensional plane. Based
on this feature, the ZDE3D model adds Lz.. based on the above loss functions to
increase the prominence of the UU target in the scenarios. Lsou is implemented by
adjusting the gradient relationship between the pixels, as shown in Eq. 5-4. Here, N is
the number of iterations, and j denotes the different channel positions. X and Y
represent the horizontal and vertical gradient operations, respectively. At the boundary
position, X and Y are encouraged to lift the gradient to obtain more prominent
features.

N
Lpou = Xit1 Lje(rc5) GXIC Eq. 5-4

5.2.2.5 Group loss

Group loss (Lar) balances the pixel difference features between adjacent low-light
image inputs. The image 3D reconstruction based on SFM does not input image data
in order but inputs the same batch of images used to reconstruct a certain scene together
(Jiang et al., 2020). Therefore, important matching features may be missed if the

difference between the adjacent low-light images is too large. Based on this, LG in
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the ZDE3D model balances images from different angles in a unified scene in terms
of adjacent similarity to obtain better 3D reconstruction effects, as shown in Eq. 5-5.
Where N represents the number of pictures in the same group, Eave represents the
average pixel value of the pictures, i represents the serial number of images in the

group, and j represents the channel information.

Lgro = Z?/:l Zje(R,G,B)(Eave(i) - Eave(i+1))2 Eq. 5-5
5.2.2.6 Total loss

In summary, the total loss of the model can be expressed as Eq. 5-6. W represents the
weight of Lspa, the function of which ensures that each loss is of the same order of
magnitude to avoid the problem of decreasing the training effect caused by the

imbalance between them.

Lrotat = Wlspa + Leor + Lgxp + Lpou + Lero Eq. 5-6
5.3 Experiments results
5.3.1 Laboratory environment experiment results

First, 3D reconstruction experiments were conducted on UU scenes with different
arrangements and buried depths under different illumination conditions in a laboratory
environment under controlled conditions. Table 5-1 illustrates all parameters and
results of the experiments. Under the different experimental environmental conditions
mentioned above, the 3D reconstruction effect of the pipeline shows different degrees
of quality improvement compared to the original low-light inputs. Simultaneously, the

UU point-cloud 3D model generated after enhancement still has high record accuracy.

Table 5-1 Experiment results

Depth Categories Input  Point cloud Enhanced Utility  Point- Record

frames quantity ratio size cloud size accuracy

One pipe in trench

300 mm  Normal 47 23,217 / 90 mm 88 mm 97.78%
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Depth Categories Input  Pointcloud Enhanced Utility  Point- Record
frames quantity ratio size cloud size accuracy
Low light 47 3,162 / 90 mm 91 mm 98.89%
Enhanced 47 3,804 20.30 % 90 mm 92 mm 97.78%
500 mm  Normal 45 22,122 / 90mm 87 mm 96.67%
Low light 45 4,137 / 90 mm 89 mm 98.89%
Enhanced 45 4,724 14.19 % 90 mm 91 mm 98.89%
700 mm  Normal 43 26,530 / 90 mm 90 mm 100.00%
Low light 43 36,99 / 90 mm 92 mm 97.78%
Enhanced 43 4,024 8.79 % 90 mm 92 mm 97.78%
Two pipes in trench
300 mm  Normal 49 22,736 / 90 mm 90 mm 100.00%
Low light 49 4,069 / 90 mm 89 mm 98.89%
Enhanced 49 4,553 11.40 % 90 mm 88 mm 97.78%
500 mm  Normal 42 20,655 / 90 mm 91 mm 98.89%
Low light 42 2,949 / 90 mm 92 mm 97.78%
Enhanced 42 3,115 5.63 % 90 mm 90 mm 100.00%
700 mm  Normal 43 25,946 / 90mm 89 mm 98.89%
Low light 43 6,934 / 90 mm 91 mm 98.89%
Enhanced 43 8,240 18.83 % 90 mm 91 mm 98.89%
Average 13.19 % 98.58%

5.3.2 On-site validations

To further verify that the proposed ZDE3D model is suitable for various real UU
construction scenarios, three verification experiments with different reconstruction
targets were conducted at three construction sites. Section 4.4.1 describes the
background of the three experiments. Section 4.3.2 shows the experimental results.

Section 4.3.3 analyses the experimental results.
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5.3.2.1 Background

Three group images (248 frames total) were collected from the UU projects in Jiangxi
Province, China, where Groups 1 and 3 were bridge-supporting engineering projects,
and Group 2 was a civil housing project. In these verification experiments, the data
collection and processing procedures were the same as those described in Section 4.2.

Moreover, 46, 34, and 45 low-light image frames were obtained, respectively.

During the data-collection process, the real construction site process was restored to
the greatest extent, and the datasets were captured using a personal smartphone.
Notably, the data collection in these validation experiments involved all frontline
construction personnel without professional training. Details of the experimental

objectives are listed in Table 5-2.

Table 5-2 Validation scenario details

Group  Frames Category Depth Diameter Description
Group 1 92 Weak Electricity 1.5m 200 mm Change of Plan
Group 2 68 Sewer Pipeline 1.8 m 500 mm Pipeline

Connection
Group 3 88 Strong Electricity 2.0m 400 mm Set Arrangement

Figure 5-2 shows sample images of the three groups of field-verification experiments.
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Lowlight Enhanced

Figure 5-2 Samples images of the on-site validation experiments

5.3.2.2 Validation results

Table 5-3 illustrates the 3D reconstruction performance of the above three groups of
scenarios under normal and low-light conditions, and the proposed model enhances

the conditions.

Table 5-3 Experiment results

Categories Input  Point-cloud Enhanced Utility Point- Record
frames quantity ratio size cloud accuracy
size
Group 1
Normal 46 54,040 / 200mm 205 mm 97.52%
Low light 46 38,372 / 200mm 203 mm 98.55%
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Categories Input  Point-cloud Enhanced Utility Point- Record

frames quantity ratio size cloud accuracy
size

Enhanced 46 53,519 3947 % 200mm 205 mm 97.53%
Group 2

Normal 34 19,639 / 500mm 502 mm 99.63%

Low light 34 12,566 / 500mm 510mm 98.01%

Enhanced 34 16,984 35.16% 500mm 508 mm 98.41%
Group 3

Normal 45 44,378 / 400 mm 406 mm 98.53%

Low light 45 28,596 / 400 mm 406 mm 98.57%

Enhanced 45 37,195 30.07 % 400 mm 408 mm 98.08%

5.4 Discussion on image-based UU 3D reconstruction model (Objective 3)

The effectiveness of the proposed ZDE3D model for 3D reconstruction under low-
light conditions was evaluated through three sets of on-site validation experiments. In
the first experiment, the quantity of 3D reconstructed point clouds increased by 39.47%
after applying the unsupervised optimisation model. The Group 1 scene showed the
most significant improvement, and the number of point clouds after optimisation was
very close to the number obtained under normal lighting conditions. The Group 2 and
3 experiments resulted in 35.16% and 30.07% increases in the quantity of
reconstructed point clouds, respectively. Moreover, all three experiments achieved an

accuracy rate of over 30.00% for the reconstruction record.
5.4.1 Loss-function ablations

The aim of the ablation study was to assess the contribution of each proposed loss
function. In our study, one of the five proposed loss functions was removed while
maintaining all the other conditions constant. We then compared the 3D reconstruction
results to evaluate the impact of each loss function on the overall performance, as

intended in our experimental design. The optimisation performance of different
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combinations of the loss functions on the same sample image is shown in Figure 5-3,

and Table 5-4 illustrates the ablation experiment results.

The contrast of the low-light images decreases when the spatial control loss Lspa is
removed. The pipe position can be recognised; however, 3D point clouds cannot be
generated. This indicates that the influence of Lspa is primarily reflected in the contrast

constraint.

The result without brightness distribution loss, Lcol, lost colour features, whereas the
3D model could not be generated. This indicates that Lco significantly affects the

distribution of pixel values in each channel (RGB) of the image.

There was no significant degradation in the image quality, and the original pixel
features were retained even more when the exposure control loss Lexp was discarded.
However, the 3D reconstruction results indicated that the absence of Lexp reduced the
number of sparse point clouds. This indicates that Lexp is still necessary for low-light

enhancement, although it may be counterintuitive.

The ablation results of the boundary penalty loss Leou show that all boundaries of the
pipe targets and the background disappear. In this case, 3D reconstruction was
impossible. This differs from the assumption that only the pipeline boundary is
affected when the Lpou is designed, as expected. However, this also showed that the
restriction of the horizontal and vertical gradient operations by Lpou affected the

improvement in the low-light boundary.

The average enhancement ratio (15.63%) after Laro removal was higher than the total
loss ratio (11.52%). However, the performances of some groups decreased (500 mm
and two pipes). This finding suggests the following. 1) The ZDE3D model still has the
potential to continue improving the 3D reconstruction performance under low-light
conditions. 2) Removing Laro affects the robustness of the model. The current study
primarily considered the stability performance of the model to be more suitable for the
complex environment at the construction site; therefore, Laro was retained. If others

value the enhanced capability of the model for low-light 3D reconstruction, they can
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choose to remove it.

I I
Ours Spatial loss Color loss Exposure loss Boundary loss Group loss
ablation ablation ablation ablation ablation

Figure 5-3 Enhanced output samples under difference loss functions

Table 5-4 Loss-function ablation experiment results (This table only shows the
results of removing the Lex loss or Lar loss; the other three types of loss (Lspa, Lcol,
and Lpou) are not listed because they are critical to the success of the final 3D point-

cloud generation. If remove any one of them, the generation process will fail.)

Point-
Point- Point-cloud
cloud
cloud quantity Enhanced Record
Categories quantity
quantity (partial loss ratio accuracy
(total loss
(low light) enhanced)
enhanced)

Exposure loss (Lexp) ablation

300 mm &
3162 3804 1284 -59.39%  100.00%
One pipe
300 mm &
4069 4553 2033 -50.03%  97.78%
Two pipes
500 mm &
4137 4724 2967 -28.28%  98.89%
One pipe
500 mm &
2949 3115 1792 -39.23%  96.67%
Two pipes
700 mm & 3699 4024 1880 -49.17%  97.78%
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Point-

Point- Point-cloud
cloud
cloud quantity Enhanced Record
Categories quantity
quantity (partial loss ratio accuracy
(total loss
(low light) enhanced)
enhanced)
One pipe
700 mm &
6934 8240 3962 -42.36%  98.89%
Two pipes
Average / / / -44.74%  98.34%
Group loss (Lcro) ablation
300 mm &
3162 3804 4101 29.69% 97.78%
One pipe
300 mm &
4069 4553 4908 20.61%  100.00%
Two pipes
500 mm &
4137 4724 4167 0.72% 98.89%
One pipe
500 mm &
2949 3115 2730 - 7.42% 97.78%
Two pipes
700 mm &
3699 4024 4437 19.95% 98.89%
One pipe
700 mm &
6934 8240 9032 30.25% 97.78%
Two pipes
Average / / / 15.63% 98.52%

5.4.2 Comparison experiments with existing methods

To verify whether the proposed ZDE3D model has significant advantages over existing

methods, three groups of actual construction site datasets mentioned in Section 4.4

(Group 1, Group 2, and Group 3) were used to verify the effects of different models.
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To be representative, the brightness, contrast, supervised deep learning (LLNet), zero-
DCE (unsupervised deep learning), and ZDE3D (this study) were tested. The

experimental results are presented in Table 5-5.

Table 5-5 Comparison experiments results

Point- Point-cloud
Point-cloud
cloud quantity Enhanced Record
Categories quantity
quantity (compare ratio accuracy
(ours)
(low light) method)

Brightness
Group 1 38,372 53,519 44,551 16.10% 96.78%
Group 2 12,566 16,984 15,768 25.48% 97.06%
Group 3 28,596 37,195 35,885 25.60% 97.34%
Average / / / 22.39% 97.06%

Contrast
Group 1 38,372 53,519 46,164 20.30% 99.30%
Group 2 12,566 16,984 16,714 33.00% 96.89%
Group 3 28,596 37,195 36,805 28.71% 97.17%
Average / / / 27.33% 97.79%

RetinexNet (Supervised Deep learning)

Group 1 38,372 53,519 48,210 25.64% 97.73%
Group 2 12,566 16,984 5,773 -54.06%  98.01%
Group 3 28,596 37,195 31,121 8.83% 98.29%
Average / / / -6.53% 98.01%

Zero-DCE (Unsupervised deep learning)

Group 1 38,372 53,519 41,091 7.09% 98.85%
Group 2 12,566 16,984 10,544 -16.09%  99.13%
Group 3 28,596 37,195 37,431 30.90% 99.41%
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Point- Point-cloud
Point-cloud

cloud quantity Enhanced Record
Categories quantity
quantity (compare ratio accuracy
(ours)
(low light) method)
Average / / / 7.30% 99.13%
ZDE3D (Ours)
Group 1 38,372 53,519 / 3947 %  97.53%
Group 2 12,566 16,984 / 35.16% 98.41%
Group 3 28,596 37,195 / 30.07 % 98.08%
Average / / / 34.90% 98.01%

The comparison experiments showed that the proposed ZDE3D model had the best
UU 3D reconstruction enhancement performance among all tested models. Among
them, the parameters of traditional methods (Brightness, Contrast) are prior set
manually respectively (brightness: (G1:0.4, G2:0.4, G3:0.3) and contrast: (G1:0.4,
G2:0.5, G3:0.4)). Other models applied optimal weights, which have been verified in
previous studies. Except for the zero-DCE method in Group 3 (only 0.83% higher than
ours), the enhanced ratios of the comparison methods were lower than that of the

proposed ZDE3D model.
5.5 Chapter summary

To improve the 3D reconstruction performance of the as-built UU in low-light
environments, a zero-reference (unsupervised) deep-learning model for low-light
image enhancement in UU 3D reconstruction is proposed (ZDE3D) in this thesis. The
main innovations are as follows: (1) A new unsupervised learning model is proposed
that can effectively improve the 3D reconstruction effect of UU in a low-light
environment. (2) Filling the gap in the image-based UU documentation
implementation field in low-light environments. (3) This thesis attempts to use a deep-

learning method to learn mapping from the perspective of the relationship between
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pixels to achieve a better 3D reconstruction effect.

Real construction site experiments showed a promising result that the ZDE3D model
could effectively improve the image-based 3D reconstruction performance in a low-
light environment. The number of sparse reconstruction point clouds was improved by
13.19 % on average, and the average reconstruction accuracy was 98.58%. The
improvement in 3D reconstruction in a low-light environment can expand the 3D
recording efficiency and feasibility of image-based as-built UU projects. The O&M of
the UU project cloud also benefits from the as-built 3D information collected on-site

in the future.
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Chapter 6 : Developing GCN-based UU topology information completion model
6.1 Chapter introduction

This section presents the details of the UUTC. Comparative experiments with different
missing data ratios (from 5% to 80%) in real-world datasets are introduced. Five
mainstream GCN models (GCN (Kipf & Welling, 2017), ChebGCN (Defferrard et al.,
2017), SAGEGCN (Hamilton et al., 2017), GATGCN (Velickovi¢ et al., 2018), and
TAGCN (Du et al., 2017)) were used as control groups to verify the effectiveness of
the UUTC model by completing the UU topological information. The Discussion
section compares the effects of the proposed UUTC and GATGCN models and
analyses the misjudgement scenarios. All experimental work in this study was
completed in a Python 3.8 environment with a Deep Graph Library (DGL
(https://www.dgl.ai/)).

6.2 Detailed design of the UUTC model

6.2.1 Overview of the UUTC model

Similarity features
GATConv ELU Dropout GATConv
SEM Convolution Link prediction

Abbreviations: UU: Underground Utilities; SEM: Similarity Extraction Module; GATConv: Graph Attention-based Convolution layer;
ELU: Exponential Linear Unit

Figure 6-1 Framework of UUTC model

The UUTC model comprises four main modules: input, SEM, convolution, and link
prediction, as shown in Figure 6-1. The model takes the observed topological

relationships and node attribute information of the UU network as input and aims to
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generate completed network topology relationship data as output. The input module
plays a crucial role in converting the UU network information into graph structure data
that the GCN model can effectively recognise. Subsequently, the SEM module
leverages the attribute features of each node from the input data to create additional
feature attributes, enrich the node features, and provide essential information for
subsequent topological completion prediction tasks. The convolution module serves
as the central functional component of the UUTC model. Inspired by the working
principles of CNN, it facilitates network operations compatible with graph structures,
enabling the learning and updating of weight parameters. Furthermore, drawing
inspiration from the GATGCN model, the convolution module incorporates a multi-
head self-attention mechanism to enhance information interaction and feature
aggregation between nodes more effectively. Finally, the link prediction module
quantitatively assesses the potential connection likelihood between each node and
delivers comprehensive UU network topology connection information after
completion. By integrating these four modules, the UUTC model demonstrates the
capability of completing missing topological relations in the UU network, thereby

contributing to improving the network management and decision-making processes.
6.2.2 Input module

To enable the prediction of topological relationships among UUs, this model initially
converts historical data, presented in tabular form, into a graph structure data format
comprising nodes, edges, and attributes. As illustrated in Figure 6-2, each pipe in the
original incomplete tabular data corresponds to a node, with the characteristics of the
pipe serving as attributes of the node. The graph represents any connection between
two pipes as an undirected edge. This graph-based representation facilitates the
analysis and modelling of the UU network, enabling the prediction of interconnected
relationships among utilities for more effective management and decision-making

Processces.
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Node 100

Node 816

Figure 6-2 An illustration of converting tabular data into graph data

6.2.3 SEM module

The essence of predicting the missing topology lies in predicting the connection
relationships among pipeline nodes in the target area. In practical UU engineering,
nodes with similar attributes exhibit a significantly higher likelihood of being
interconnected than those with substantial differences do. For example, pipelines that
share similar attribute characteristics are more likely to form topological connections
in a given target area. By contrast, pipelines within different attribute clusters are less
likely to exhibit such relationships. Drawing from this domain knowledge, the UUTC
model introduces a SEM to assess the similarity between pipeline nodes, thereby
enhancing the accuracy of the model in predicting topological relationships. This
module leverages attribute clustering to identify nodes with shared characteristics,
thereby facilitating precise and informed predictions of the UU network's
interconnectedness. As a result, in incorporating the SEM enhances the UUTC model's
performance in effectively completing missing topology data, contributing to the

improvement of UUs management and decision-making processes. The SEM
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module primarily includes the following three components: Polynomial

transformation, Similarity calculation, and feature fusion:

1) Polynomial transformation. Polynomial transformation is a data transformation
technique that is commonly used in machine learning. By introducing power
combinations of the original features, polynomial transformations can capture the non-
linear relationships in the data. The various node attributes in the graph input formed
by the UU data are combined in a higher-dimensional space to form new valuable
features, as shown in Eq. 6-1. Each item in P (xi,X,,...,X,) represents a new
attribute feature and n represents the total number of input graph features. x;, x; and
x; denote the different node characteristics. To avoid the over-fitting phenomenon due
to excessively high dimensionality and high data calculation, the complexity degree
was selected as 3 in this study. Each term in the Eq. 6-1 was then entered into the
model as a new attribute of the node. This operation enables the model to improve the
available data characteristics without increasing the external data input, thereby

improving the prediction performance of the node topology-completion task.
P(xy,%5,..., %) = Dy X; + 23j=1 xiXj + Z?Lk:lxixjxk Eq. 6-1

2) Similarity calculation. A polynomial transformation improves the expressive ability
of node features through a combination of different attribute features. On this basis,
the similarity calculation uses all the characteristic attributes of each node (including
initial characteristic attributes and polynomial characteristic attributes) as the overall
representation vector of node attributes and uses Euclidean distance to calculate the
overall similarity S. Among them, A; and B; represent the values of the two node
vectors participating in the calculation in the i-th dimension. Subsequently, the
similarity index S, between each node in different attribute combination dimensions
is calculated, as shown in Egs. 6-2 and 6-3. Among them, A; and B;respectively,
represent the values of the two node vectors participating in the calculation in the j-th

dimension, and M represents different combinations of attributes.

S = X(4; - B)(A; - B) Eq. 6-2
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S. = JX(; —B)(4;—B)) (j c{M}) Eq. 6-3

Based on polynomial transformation, the similarity calculation creates a new attribute
feature expression to improve the possibility of successful topological link prediction.
As shown in Figure 6-3, the similarity relationship between the nodes after the
similarity calculation operation of the original graph input is embedded in the
proximity relationship in Euclidean space. In other words, the more similar the nodes,
the closer the similarity index. This echoes prior knowledge that, in UU engineering
practice, the possibility of a connection relationship between pipeline nodes with

similar attributes is significantly greater than that of pipelines with large differences.
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Figure 6-3 An illustration of similarity calculation in two dimensions

3) Feature fusion. After the above two steps, each UU node creates a set of new
meaningful attribute features without any external data input, based on the original
attribute feature. Feature fusion allows each node to have the same calculation
dimension, which is important for subsequent calculation tasks and processing,
thereby ensuring the consistency and comparability of features between nodes.
Completing this step means that the original attribute features and newly generated
meaningful attribute features are integrated, providing a consistent and complete node

feature representation for the next analysis and application.
6.2.4 Convolution module

The convolution module primarily includes two key parts: graph convolution and
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multi-head attention. As shown in Figure 6-4, graph convolution is an operation for
the feature propagation and aggregation of graph-structured data. It updates the feature
representation of the node based on its neighbour’s information. The convolution
module uses two graph volume base layers with a multi-head self-attention mechanism,
dropout layer, and ELU activation function to use the connection relationship in the
graph structure to propagate information to achieve a convolution effect similar to
Euclidean structure data. For the node-update equations, Eqs. 6-4, 6-5, and 6-6; A
represents the adjacency matrix input by the graph; 7 represents the identity matrix; D
represents the degree matrix of A; o represents the activation function, namely ELU;
WO represents the weight parameter; and H® and H*Y represent the features of
the input layer and the updated features in the next layer, respectively. Thus, the model
only needs to learn to update the weight W@ through back-propagation to achieve
convolutional feature extraction, thereby providing the basis for implementing the

subsequent link prediction module.

A=A+1 Eq. 6-4

Dii = Z]AU Eq 6-5
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Figure 6-4 An illustration of CNN (Euclid structure) and GCN (graph structure)

convolution operation

Multi-head self-attention is an extension of the attention mechanism that can capture
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complex node relationships and dependencies. The GATConv layer in the convolution
module incorporates a multi-head attention mechanism to model the relationship
between the nodes. By introducing multiple attention heads, each of them can focus
on different feature subspaces and learn different attention weights. This can improve
the expressiveness and generalisation ability of the model, allowing nodes to carry out
information transfer and interaction on different feature subspaces. As shown in Figure
6-5, h1 and h'r represent the characteristics of the nodes before and after updating,
respectively, and wi, wa, ..., and ws represent the update weights between nodes. When
updating nodes, if only the traditional GCN convolution is used for learning, the
difference in the influence of different nodes on the target node cannot be realised.
Therefore, by adding a multi-head self-attention mechanism, adding a judgement
operation to the influence of information transfer between nodes can effectively help
the model mine the utilisation potential of node information. In Figure 6-5, different
arrow styles and colours denote independent attention computations. The aggregated

features from each head were concatenated or averaged to obtain A';.

concat/avg =
> h y
@

Figure 6-5 Multi-head attention (in GATConv)

6.2.5 Link prediction module

The essence of UU topology completion is the link prediction task in the graph data.
After the operation of these modules, many features with abstract information were
extracted. The link prediction module uses these features to calculate the possibility

score Y, for any pair of nodes between them (e.g. hyand h,) (see Eq. 6-7). Among
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them, @ represents the dot production predictor. The topological information of the
UU nodes is obtained by sorting all connection possibility scores to select node pairs

that are trusted to have a connection relationship.
Yuw = 0 (s hy) Eq. 6-7
6.3 Experiment results
6.3.1 Experiment results under different missing rate conditions

To validate the effect of the proposed UUTC model in the UU topology-completion
task, comparative experiments were conducted under different missing data ratios
(from 5% to 80%) in the real dataset. In the experiment, the UUTC model and five
mainstream GCN models (GCN (Kipf & Welling, 2017), ChebGCN (Defferrard et al.,
2017), SAGEGCN (Hamilton et al., 2017), GATGCN (Velickovi¢ et al., 2017), and
TAGCN (Du et al., 2017)) were used as control groups to verify the effectiveness of
the model by completing the UU topological relationship. Table 6-1 and Figure 6-6
shows the UU topology-completion metrics for all experimental conditions. The
following conclusions can support the experimental results: 1) Except for the Group 3
experiment with the least number of nodes, the index of the comparison model is better
than that of the proposed model, and the remaining indices show that the UUTC model
can obtain better UU topology-completion accuracy under the same conditions. The
average completion accuracy (AP) of the UUTC model in the three experiments
reached 85.33%, surpassing the performance of the existing mainstream methods
(GCN 76.78%, ChebGCN 76.37%, SAGEGCN 79.37%, GTAGCN 80.85%, and
TAGCN 79.44%). 2) As the proportion of missing data increased, the accuracy of
completion also decreased. This feature was present in all the experiments, including
the control and proposed models. However, it is worth noting that the proposed model
maintains high completion accuracy without a large amount of data. 3) When the UU
network was small in scale and the missing data ratio was low, it was not significantly
better than the control model. However, the UUTC model gradually showed its

accuracy advantages when the proportion of missing data was further increased.
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Table 6-1 Experiment results under different missing rate conditions

Area 1 (26,627 nodes)

GCN ChebGCN

SAGEGCN GATGCN TAGCN

ours

missing data 5%

4cc 075 0.78 0.75 0.77 0.76 0.80
4uc 086 0.83 0.85 0.88 0.87 0.91
Fl 0.80 0.81 0.79 0.81 0.80 0.83
AP 0.84 0.80 0.83 0.87 0.86 0.90
missing data 10%
4cc 075 0.76 0.75 0.77 0.75 0.80
quc 0.85 0.83 0.84 0.88 0.87 0.91
Fl 0.79 0.80 0.79 0.80 0.80 0.83
AP 0.83 0.79 0.83 0.86 0.85 0.90
missing data 20%
4cc 075 0.76 0.75 0.76 0.75 0.79
4uc 085 0.82 0.83 0.86 0.86 0.91
Fl 0.79 0.80 0.79 0.80 0.79 0.82
AP 0.83 0.78 0.81 0.85 0.84 0.89
missing data 30%
4cc 074 0.75 0.73 0.75 0.74 0.79
quc 0.84 0.81 0.81 0.86 0.85 0.90
Fl 0.79 0.79 0.73 0.79 0.78 0.82
AP 0.82 0.77 0.79 0.83 0.84 0.88
missing data 40%
4cc 073 0.74 0.74 0.75 0.74 0.78
quc  0.82 0.81 0.81 0.84 0.83 0.88
Fl 0.78 0.78 0.78 0.79 0.77 0.81
AP 0.80 0.77 0.78 0.82 0.82 0.87
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Area 1 (26,627 nodes)

GCN ChebGCN SAGEGCN GATGCN TAGCN ours

missing data 50%

icc 073 0.73 0.73 0.74 0.73 0.76
Avc 081 0.80 0.80 0.83 0.82 0.87
Fl 077 0.77 0.78 0.78 0.76 0.80
ap 079 0.76 0.77 0.81 0.81 0.86

missing data 60%

Jcc 072 0.73 0.73 0.73 0.72 0.76
quc 0.80 0.79 0.79 0.82 0.80 0.87
F 077 0.77 0.77 0.77 0.75 0.80
4p 078 0.75 0.77 0.80 0.79 0.85

missing data 70%

Jcc 072 0.72 0.72 0.72 0.71 0.76
Juc 079 0.78 0.78 0.80 0.79 0.86
F 076 0.76 0.77 0.77 0.74 0.79
4p 076 0.74 0.75 0.78 0.77 0.85

missing data 80%

qcc 071 0.72 0.71 0.71 0.71 0.75
Avc 078 0.77 0.76 0.79 0.78 0.84
7 076 0.76 0.76 0.76 0.75 0.78
4p 075 0.73 0.72 0.77 0.75 0.83

Area 2 (10,227 nodes)

GCN ChebGCN SAGEGCN GATGCN TAGCN ours

missing data 5%

4cc 076 0.77 0.75 0.77 0.76 0.79
quc  0.87 0.85 0.87 0.89 0.89 0.92
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Area 2 (10,227 nodes)

GCN ChebGCN SAGEGCN GATGCN TAGCN

ours

Fl 0.80 0.81 0.80 0.81 0.81 0.82
AP 0.85 0.82 0.85 0.87 0.88 0.91
missing data 10%
4cc 076 0.77 0.76 0.76 0.76 0.79
Auc  0.86 0.84 0.86 0.88 0.88 0.92
Fl 0.80 0.81 0.80 0.80 0.80 0.82
AP 0.84 0.81 0.84 0.86 0.87 0.91
missing data 20%
4cc 075 0.76 0.75 0.75 0.75 0.78
Auc  0.85 0.83 0.84 0.87 0.87 0.91
Fl 0.80 0.80 0.79 0.79 0.79 0.82
AP 0.84 0.79 0.83 0.85 0.85 0.90
missing data 30%
4cc 075 0.75 0.74 0.75 0.75 0.78
quc  0.84 0.83 0.83 0.85 0.86 0.90
Fl 0.79 0.79 0.79 0.79 0.79 0.82
AP 0.82 0.79 0.82 0.83 0.84 0.89
missing data 40%
4cc 075 0.75 0.74 0.75 0.74 0.78
quc  0.84 0.82 0.82 0.85 0.84 0.89
Fl 0.79 0.79 0.78 0.79 0.78 0.81
AP 0.82 0.78 0.80 0.83 0.83 0.88
missing data 50%
4cc 0.74 0.74 0.73 0.73 0.73 0.78
4uc  0.83 0.81 0.81 0.84 0.83 0.88
Fl 0.78 0.78 0.78 0.78 0.77 0.81
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Area 2 (10,227 nodes)

GCN ChebGCN SAGEGCN GATGCN TAGCN ours

AP 0.81 0.78 0.88 0.82 0.82 0.88

missing data 60%

qcc 074 0.74 0.73 0.73 0.73 0.77
quc 082 0.81 0.80 0.82 0.81 0.87
F 078 0.78 0.78 0.77 0.77 0.80
4p 080 0.78 0.78 0.81 0.80 0.86

missing data 70%

Jcc 072 0.73 0.73 0.73 0.72 0.76
Avc 080 0.80 0.80 0.81 0.81 0.86
F 077 0.77 0.77 0.77 0.76 0.80
4p 078 0.77 0.76 0.79 0.79 0.85

missing data 80%

4cc 071 0.72 0.71 0.72 0.72 0.76
4uc 079 0.79 0.77 0.79 0.79 0.84
Fi 0.76 0.76 0.76 0.76 0.76 0.79
AP 0.76 0.75 0.74 0.77 0.76 0.83

Area 3 (1,059 nodes)

GCN ChebGCN SAGEGCN GATGCN TAGCN ours

missing data 5%

4cc 070 0.70 0.72 0.72 0.71 0.71
quc 079 0.76 0.81 0.86 0.83 0.86
F 076 0.76 0.78 0.77 0.77 0.76
4p 080 0.75 0.82 0.86 0.83 0.86

missing data 10%

Jcc 072 0.72 0.72 0.71 0.70 0.72
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Area 3 (1,059 nodes)

GCN ChebGCN SAGEGCN GATGCN TAGCN

ours

4uc 081 0.77 0.81 0.84 0.82 0.84
Fl 0.78 0.77 0.77 0.76 0.76 0.77
AP 0.81 0.76 0.81 0.85 0.81 0.85

missing data 20%

4cc 071 0.72 0.71 0.71 0.70 0.72

quc 083 0.77 0.80 0.85 0.81 0.85
Fl 0.77 0.78 0.76 0.76 0.76 0.77
AP 0.82 0.75 0.80 0.85 0.81 0.83

missing data 30%

4cc  0.70 0.71 0.72 0.71 0.70 0.72

4quc 0.81 0.78 0.79 0.82 0.80 0.82
Fl 0.76 0.76 0.76 0.77 0.75 0.77
AP 0.80 0.76 0.79 0.82 0.79 0.82

missing data 40%

4cc  0.69 0.69 0.71 0.69 0.69 0.71

4uc  0.80 0.77 0.78 0.80 0.79 0.81
FI 0.76 0.75 0.75 0.75 0.73 0.76
AP 0.79 0.74 0.77 0.79 0.78 0.81

missing data 50%

4cc  0.68 0.69 0.71 0.69 0.69 0.71

4uc  0.80 0.77 0.78 0.80 0.78 0.80
Fl 0.75 0.75 0.75 0.75 0.73 0.76
AP 0.79 0.75 0.78 0.80 0.77 0.80

missing data 60%
4cc  0.68 0.68 0.68 0.68 0.69 0.69
quc 078 0.76 0.76 0.79 0.79 0.80
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Area 3 (1,059 nodes)

GCN ChebGCN SAGEGCN GATGCN TAGCN ours
Fl 0.75 0.74 0.73 0.75 0.74 0.75

AP 0.78 0.75 0.75 0.78 0.77 0.80

missing data 70%

4cc  0.67 0.67 0.67 0.68 0.68 0.69
4uc  0.76 0.75 0.75 0.76 0.75 0.77
Fl 0.74 0.73 0.73 0.74 0.73 0.75
AP 0.76 0.73 0.74 0.76 0.74 0.78
missing data 80%
4cc  0.67 0.66 0.66 0.66 0.65 0.68
4quc  0.76 0.73 0.73 0.74 0.71 0.77
Fl 0.74 0.73 0.72 0.73 0.71 0.74
AP 0.76 0.70 0.72 0.74 0.71 0.77
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Figure 6-6 Completion experiment results under different missing conditions
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6.4 Discussion on GCN-based UU topology information completion model

(Objective 4)
6.4.1 Comparison of GATGCN and proposed model

The proposed UUTC model was inspired by the GATGCN model, and both the models
used the GCN fusion GAT framework. To make the GATGCN and UUTC models
comparable, both models used the same feature extraction structure, self-attention
mechanism, and activation function. The main difference between the two is that the
UUTC model adds SEM based on prior knowledge of the UU field to improve the
data-expression ability of the input graph under the condition of limited attribute
characteristics. From the perspective of the experimental data, the UUTC model, after
adding the SEM module, obtains better UU topology-completion capabilities, and the
completion accuracy is improved to varying degrees, as shown in Figure 6-7. It is
worth noting that in the Group 3 experiment, at some missing rates (20%, 30%, and
40%), GATGCN had better completion accuracy, which may be affected by the amount
of input data. During the training process, the SEM mapping of attribute features
caused a decrease in model accuracy. This leads to an unstable performance of the
UUTC model when the observed sample size is small, but the UUTC model can
achieve the highest accuracy in the rest of the cases. Overall, the proposed model

significantly outperformed other models in most cases.
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Figure 6-7 Comparison of GATGCN and proposed model

6.4.2 Incorrect predictions

The findings presented in Section 6.3, comprising three sets of experimental data,
demonstrate that the proposed UUTC model achieves a commendable average
accuracy of up to 85.33% in completing the network topology. Although these
outcomes are promising, they also underscore the untapped potential of enhancing the
precision of topological relationship predictions among UU nodes. To gain deeper
insights into the underlying causes of inaccuracies in the UUTC model predictions,
this section strategically identifies two instances of judgement errors from the

experiments. An in-depth analysis of these cases was conducted.
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Figure 6-8 Incorrect predictions Position 1

As shown in Figure 6-8, the UUTC model determines the existence of a topological
link between the two pipelines, whereas the empirical data contradict this prediction
by revealing their non-connectedness. Several underlying factors may account for this
discrepancy: 1) network complexity. The core principle underlying the utilisation of
GCN for topological relationship completion is to summarise and evaluate the
distribution of topological configurations within a pipe network. Throughout this
process, as the complexity of the UU network escalates, certain patterns may emerge
at a higher frequency than others. This discrepancy in pattern occurrence could induce
a bias within the model's learning, potentially leading to an overemphasis on specific
types of topological connection patterns, culminating in misjudgements. 2) Temporal
information deficiency: As highlighted above, Conventional GCN models
predominantly operate on a static graph structure and consequently neglect the
dynamic evolution of temporal information. Given the intricate nature of underground
pipe networks, the establishment and disruption of connections can be influenced by
temporal factors and other dynamic variables. Disregarding this temporal context can
result in inaccurate connection forecasts. 3) Edge-weight considerations. While the
connection relationships of the UU network are abstracted into undirected edges, the
intrinsic significance of these edges and their potential impact on the topological

relationship inference should be considered. Neglecting this facet may contribute to
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misaligned judgements regarding the topological connections. These considerations
underscore the multifaceted nature of the observed instances of misjudgement and
emphasise the need for comprehensive enhancements in the UUTC model. Addressing
these limitations, particularly by incorporating temporal dynamics, accounting for
edge weights, and refining model training on complex networks, may contribute to

refining the accuracy of topological relationship predictions within the UU domain.
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Figure 6-9 Incorrect predictions Position 2

As shown in Figure 6-9, the UUTC model prediction indicates that no topological
linkage exists between two specific pipes; however, empirical evidence confirms the
presence of such a connection. The following factors potentially underlie this
misjudgement: 1) Spatial information deficiency. The approach in this study involves
integrating the original linear pipeline structure into graph nodes endowed with
attribute information. However, this abstraction results in the loss of intricate spatial
relationships at both ends of the pipeline. This spatial information gap is a key
contributor to observed misclassifications. 2) Feature gaps. Underground-pipeline
network data may encompass critical attributes that must be accurately extracted or
adequately represented. Consequently, the model can be used to effectively discern the
interconnections between the pipelines. To widen the model's applicability, this thesis
focused solely on the four most prevalent attributes for decision making, potentially

rendering the model insufficiently equipped to discern connections between pipelines
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that are genuinely linked within certain contextual scenarios.

Furthermore, potential data inaccuracies, such as erroneous connection markers,
flawed measurement values, or data entry discrepancies, could also contribute to the
aforementioned judgement errors. The data entry process for the original database
entails meticulous and repetitive work, susceptible to the influence of uncontrollable
factors that may introduce inaccuracies into the UU network data. These inaccuracies
might become part of the learning process for the GCN models during training, leading

to erroneous connection predictions.

6.5 Chapter summary

A UU pipeline network is one of the most important infrastructures for guaranteeing
the basic functions of a city. However, for long-term reasons, the lack of a UU topology
relationship often requires expensive manual inspection methods. To solve this
problem, this study proposes a deep-learning model based on a GCN by abstracting
UU pipe network information into graph nodes and attributes to use the observed data
to complete missing topological relationships. The experimental results show that the
proposed model can effectively complete the UU topological relations (4P of 85.33%)
for different proportions of missing topological relations. This study explored a new
UU data-completion method. The model proposed in this study effectively improves
the accuracy of the data-driven UU topological relationship completion method. The
proposed UUTC model potentially provides a low-cost decision-making tool for

stakeholders in UU facility management.
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Chapter 7 : Discussions
7.1 Knowledge area in UUs 3D reconstruction

Accurate mapping and modelling of UUs are critical for urban planning, construction,
and maintenance, helping to avoid costly and dangerous mistakes (Underground-
Pipeline Committee of the China Planning Association, 2020; Pipeline and Hazardous
Materials Safety Administration, 2021; Tanoli et al., 2019). Historically, the field has
evolved from rudimentary manual detection methods and 2D records to sophisticated
3D reconstruction technologies, driven by the need for precision, safety, and efficiency.
Initially, UU 3D reconstruction relied on physical records and manual probing, which
were often inaccurate and incomplete (University of Birmingham et al., 2012; Wang
& Yin, 2022b). The advent of geophysical surveying methods in the mid-20th century
marked a significant advancement, offering non-invasive methods to detect subsurface
objects. The last two decades have seen rapid advancements in 3D reconstruction
techniques, driven by improvements in sensor technology, data processing algorithms,
and computational power. Techniques such as laser scanning (Bosché et al., 2015),
photogrammetry (Javadnejad et al., 2017), and the integration of deep learning (Zong
et al., 2019; Jaufer et al., 2021) have become crucial for creating detailed 3D models
of underground infrastructure. The development history of the 3D reconstruction of
UUs reflects a field that has continually evolved to meet the demands of urban
development and infrastructure management. From basic manual methods to advanced
digital technologies, progress in this field has significantly reduced the risks and
improved the efficiency of construction and maintenance activities.

However, although new technologies have improved the efficiency of UU 3D
reconstruction, they have also created new problems. Through a literature review of
existing research, this thesis found the following three key problems that affect the 3D
reconstruction effect of UU at different life-cycle stages.

1) Environmental noise problem in GPR-based non-destructive UU 3D

reconstruction. The environmental noise problem in the GPR-based non-destructive
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3D reconstruction of UUs (scenarios where existing utilities are covered by soil layers)
is a critical issue that affects the precision and reliability of the reconstruction process
(Zhang et al., 2016; Sarlah et al., 2020). GPR serves as a cornerstone technology in
the field of UU 3D reconstruction, owing to its ability to penetrate subsurface layers
and detect buried objects. Despite its widespread use, GPR encounters challenges
stemming from various sources of environmental noise. These include high-voltage
electricity, rock mass, and complex soil conditions (Lei et al., 2019; Singh et al., 2013;
Adouane et al., 2021), which can obscure important features and degrade the quality
of reconstructed 3D models. Addressing these noise-related issues is paramount for
improving the effectiveness and precision of GPR-based reconstruction, thus enabling
better urban planning, construction, and maintenance practices.

2) Low-light illumination problem in image-based exposed UU 3D reconstruction.
Owing to tight construction schedules or requirements to avoid social impacts (e.g.
traffic congestion (Broere et al., 2016)), it is a commonly performed UU 3D
reconstruction under low-light conditions (Nguyen et al., 2014a; Nguyen et al., 2014b).
The low-light illumination problem presents a significant obstacle in image-based
exposed UU 3D reconstruction (such as new installation, maintenance, and repair
scenarios), particularly in scenarios where lighting conditions are suboptimal or
insufficient. Numerous studies have shown that lighting conditions significantly affect
the quality of image-based 3D reconstructions, such as Bruno et al. (2021), Kanellakis
et al. (2019), and Tang et al. (2019). Low-light conditions, such as those encountered
during night-time operations or in poorly lit environments, pose challenges in
obtaining high-quality images with sufficient contrast and detail. Overcoming the low-
light illumination problem requires innovative techniques and technologies that
enhance image clarity, reduce noise, and improve the overall quality of the
reconstructed 3D models. Effective solutions in this area are essential for advancing
UU management practices and for ensuring the safety and efficiency of infrastructure

development projects.
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3) Missing information in the UU topology structure reconstruction. For a long
time, UU information has been recorded on paper files (Pickering et al., 1993; Wang
et al., 2019), and it is not uncommon for records to be lost because of incomplete
records or recording errors due to the passage of time (Li et al., 2015; Al-Bayati et al.,
2019; Beck et al., 2009). The absence of utility data, particularly topological
information, poses a significant obstacle to the comprehensive reconstruction and
effective management of UUs. The lack of this information hampers the decision-
making processes related to infrastructure planning, maintenance, and emergency
response.

To address the above issues, this thesis aims to improve the data-collection process
and accuracy of the data used in the 3D reconstruction of the as-built UU. By obtaining
better data and more accurate 3D reconstructions, the management decision making of
UU operation maintenance rehabilitation and renewal can be potentially improved. To
achieve the aim of having more accurate and reliable 3D reconstructions, this thesis
proposed a unified framework to solve the 3D reconstruction problem of UU in all
stages of its life-cycle, which include the following three aspects.

1) Develop a novel GPR-based as-built UU-localised deep-learning model for non-
destructive scenarios. This thesis developed a novel GPR-based as-built UU
localisation deep-learning model, resulting in the creation of the EUUL model,
validated through three experiments in real-world settings. The findings indicate that
the EUUL model's precision reached 97.01%, operating speed was 125 fps, and
precision was 96.72%, even in noisy environments, surpassing existing models in
terms of precision, operating speed, and robustness. The architecture of the EUUL
model integrates a 'key point-regression' mode and an innovative anchor-free structure,
supported by a lightweight CSPDarknet53 backbone, and enhanced by the ECA
module. This configuration significantly improves precision and performance, while
also increasing adaptability across diverse soil conditions. The anchor-free structure

simplifies the model, reduces computational demands, and enhances the detection
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accuracy of underground utilities in noisy environments. By eliminating the
constraints of predefined anchor boxes, the anchor-free structure allows for direct
localization of keypoints, enabling the model to dynamically adjust to varying object
scales and densities in real-time, thus improving detection reliability. These
improvements make the EUUL model highly effective for accurate, non-destructive
location detection in various engineering applications, promising faster and more
reliable results. The EUUL model incorporates an anchor-free structure and a
lightweight CSPDarknet53 backbone which simplifies the computational demands.
This structure eliminates the need for computationally expensive anchor boxes,
thereby reducing the model's overall computational complexity. The key point-
regression mode enables efficient feature extraction and localization directly from the
raw data, further streamlining processing. Due to its lightweight architecture and the
dynamic nature of the anchor-free approach, the EUUL model scales well across
different scenarios and soil types. Its ability to operate effectively in noisy
environments and maintain high precision and speed (125 fps) showcases its capability
to handle large-scale deployments and real-time applications in various engineering
settings.

2) Develop a novel unsupervised image-based 3D reconstruction model for the
low-light 3D reconstruction of as-built UUs for exposed scenarios. In this study, an
unsupervised deep-learning model, ZDE3D, was developed to enhance the low-light
images in UU 3D reconstruction. The ZDE3D model yielded promising results in
terms of improving the sparse reconstruction point-cloud quantity by an average of
13.19% and achieving an average reconstruction accuracy of 98.58%. The
unsupervised nature of the deep-learning method eliminates the need for pairs of
training data, and the proposed five loss functions effectively enhance low-light UU
images, outperforming traditional adjustment methods and existing deep-learning
models in terms of UU 3D reconstruction enhancement performance. The

unsupervised nature of the ZDE3D model reduces the computational burden typically
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associated with supervised learning, as it does not require paired training data. The use
of five specialized loss functions to enhance low-light images ensures that the model
remains computationally efficient while focusing on feature enhancement and noise
reduction, crucial for sparse reconstruction in low-light conditions. The ZDE3D model
demonstrates an ability to improve the quantity of reconstruction point clouds by an
average of 13.19% and achieve a high reconstruction accuracy of 98.58%. This
indicates that the model can be effectively scaled to handle larger datasets and more
complex 3D reconstruction tasks, particularly beneficial in real-world engineering
applications where lighting conditions can vary significantly.

3) Development of a novel GCN-based topology-completion model for as-built
UUs. This thesis aimed to develop a GCN-based topology-completion model for as-
built UUs. The UUTC model outperformed the baseline models with an average
completion accuracy of 85.33% across various missing topology rates. The proposed
SEM proved effective in enhancing prediction accuracy by identifying nodes with
shared attributes, which facilitated precise predictions of the UU network's
interconnectedness. The UUTC model utilizes a Graph Convolutional Network (GCN)
which is particularly suited for handling relational data like network topologies. The
model’s complexity is moderated by the efficient processing of GCNs, which leverage
the inherent sparsity of graph data, reducing the computational load compared to fully
connected network approaches. The SEM (Shared-attributes Enhancement Module)
within the UUTC model enhances its scalability by identifying nodes with shared
attributes, which helps in accurate prediction across different sizes and complexities
of UU networks. This ability ensures that the model can be scaled up to handle larger
and more complex network topologies with varying degrees of missing data, proving
its effectiveness in expansive urban planning and infrastructure management.

7.2 Theoretical contribution to the knowledge areas

The novelty of the proposed unified framework lies in its comprehensive and

integrated approach to the 3D reconstruction of UUs, which addresses the limitations
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and challenges of existing methods while leveraging emerging technologies and best
practices. It represents a paradigm shift towards a more collaborative, data-driven, and
sustainable approach to managing UUs in urban environments.

For a long time, researchers have been pursuing more accurate 3D reconstruction of
UU. For example, in 1988, Caldecott proposed a combined system using an impulse
radar to map buried underground pipelines (Caldecott et al., 1988). In 2012, the UK
conducted a project called MTU, which involved relatively comprehensive 3D
reconstruction research on existing UUs of various materials and functions (University
of Birmingham et al., 2012). In 2017, the Singapore Land Authority, in collaboration
with the Singapore-ETH Centre, launched a system called Imagining a digitally
enabled future (Yan et al., 2021) for digital twins of UUs to complement the 3D maps

of the country and facilitate integrated planning and development.

However, these existing studies have not established a unified reconstruction
framework to cover the 3D reconstruction demands for the entire UU life-cycle.
Conventional frameworks for UU 3D reconstruction have distinct limitations. First,
these frameworks were unidimensional. Previous UU 3D reconstruction frameworks
emphasised the geometric restoration of existing utilities, overlooking the
incorporation of significant semantic data attainable during the new installation and
maintenance phase, as well as the vital reconstruction of topological relationships
crucial for expressing the functional dynamics of the utility network. For example,
Bilal, Van, and Feng only considered data collection from the existing UU and ignored
the topology information reconstruction crucial for the functional expression of the
UU network (Bilal et al., 2018; Van et al., 2018; Feng et al., 2021a). Second, the
conventional UU 3D reconstruction frameworks are inaccurate. The bulk of the data
employed in traditional UU 3D reconstruction predominantly stems from existing
utilities, thereby neglecting the new installation phase, which provides much useful
information. Multiple studies (Bureau of Transportation Statistics, 2016; Van et al.,
2019; Wang et al., 2022b; Yan et al., 2019) have shown that exposed scenarios (e.g.

new installation stage) are the best opportunity to conduct UU 3D reconstruction,
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particularly semantic information. Consequently, this shortfall engenders a pervasive
issue of suboptimal accuracy in the reconstruction models, as the opportune and
optimal phase for achieving precision is inadequately noticed. Third, conventional
frameworks for UU 3D reconstruction tend to incur substantial resource demand.
Whether involving geometric or topological reconstruction, traditional frameworks
heavily rely on field-based detections, such as GPR detection (De Coster et al., 2019;
Ozkaya et al., 2021). For example, Cazzaniga et al. (2013) and Dou et al. (2020)
showed that performing a survey on the UU reconstruction of a large area is an
expensive solution. This reliance necessitates significant investment in human
resources and equipment costs, particularly when confronted with intricate and
extensive urban infrastructure configurations. When faced with more complex and
larger city-level situations, the cost disadvantage of traditional 3D reconstruction

frameworks becomes more prominent.

The proposed framework considers the entire life-cycle of UU projects, including the
new installation, existing, maintenance, and repair stages, as well as the topology
reconstruction stage. The unified framework for UU 3D reconstruction presented in
this thesis offers distinct advantages over conventional frameworks. 1) User-friendly:
The unified framework incorporates a highly automated 3D information collection
method tailored to existing utilities and those associated with new construction
projects. For example, the EUUL model eliminates the dependence on experts by
solidifying domain knowledge into deep-learning models. This process can be realised
using a readily available consumer-level smartphone, particularly in new construction
settings. For example, in an image-based 3D reconstruction process performed in
stages, such as a new installation, all process operations are based on an ordinary
smartphone terminal. In addition, the topology reconstruction process employs a data-
driven approach, which significantly enhances the automation level and overall
efficiency of the UU 3D reconstruction pipeline. 2) Enhanced precision: Many studies
have reported a reconstruction accuracy of over 90% (Hou et al., 2021a; Xiao et al.,
2021; Lei et al., 2019). However, the framework proposed in this thesis, based on

dealing with data noise, also incorporates the full life-cycle of the UU 3D
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reconstruction process to obtain better reconstruction results. The average localisation
precision for the invisible existing UU reached 97.01%, and the reconstruction
precision for the directly visible exposed UU reached 98.58%. 3) Transferability: The
proposed unified framework exhibits notable versatility and can be extended beyond
UU 3D reconstruction scenarios. It can be readily applied to diverse contexts, such as
the 3D reconstruction of rebar networks within extensive structural health monitoring,
large building foundations, bridges, and tunnels. It can also be applied to fields outside
the construction industry, such as the abyssal ocean and archaeological exploration.

Based on these contributions, specific innovations are evidenced by the following three

aspects.
7.2.1 Novel model for automatic UU localisation based on GPR data

To automatically reconstruct invisible UUs under non-destructive scenarios, this study
proposed a deep-learning model (EUUL) to interpret UU coordinates from B-scan

images.

In previous research, the GPR-based UU localisation problem was decomposed into
two sub-problems: box detection and hyperbola fitting for GPR B-scan images (Figure
2-2). For instance, in Hou et al. (2021a), Xiao et al. (2021), and Lei et al. (2019), the
area containing UU features was first determined in the box detection stage.
Subsequently, various fitting algorithms were used to determine the hyperbola
representing the UU position and finally use it. As a result, the fixed points are output.
However, the ‘box-fitting’ mode solves the problem solely from the local optimal
solutions of the sub-problems, rather than from the global optimal solution. This step-
by-step solution results in greater error accumulation, which affects the UU

localisation precision (Alhnaity et al., 2021; Wu et al., 2020).

Unlike existing deep-learning methods that handle each step individually (Xie et al.,
2021; Singh et al., 2013), the EUUL model was designed to comprehend the entire
process, from raw GPR B-scan images to the final interpretation of UU coordinates.
Numerous studies have reported the importance of the ‘end-to-end” mode for deep
learning (Wu et al., 2018; Geng et al., 2023; Chen et al., 2017). This thesis contributes
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by solving the problem ‘end-to-end’ to maximise the advantage of machine-learning
models in UU localisation (Wang et al., 2022b; Oguntoye et al., 2023). The term ‘end-
to-end’ in this context signifies that the proposed EUUL model tackles the entire
problem of UU localisation in a unified manner without breaking it down into separate
sub-problems (box detection and hyperbola fitting (Lei et al., 2019; Harkart et al., 2019;
Hou et al.,, 2021b) in previous research. This holistic approach eliminates error
accumulation during the steps, providing a direct comprehensive mapping from the

GPR images to the UU localisation coordinates.

To achieve end-to-end learning, the EUUL model proposed a novel ‘key point-
regression’ mode, indicating a method that identifies crucial points in the GPR data
and directly regresses them to obtain UU coordinates. In this ‘key point-regression’
mode, the global optimisation results were obtained rather than the superposition of
two local optimisations (results of box and fitting, separately). Under the new ‘key
point-regression’ end-to-end framework, the EUUL model yielded a larger parameter
optimisation space and a more convenient operation process. Simultaneously,
improving the feature extraction architecture (CSPDarknet53) and channel attention
mechanism (ECA module) increases the localisation speed and robustness to

environmental noise.

The experimental findings demonstrate that the proposed methodology exhibits
superior performance compared with the prevailing models in terms of localisation
precision (97.01%) and inference speed (125 frames per second) on the platform
(NVIDIA RTX 3090 GPU). The precision result obtained in this thesis is significantly
improved compared to previous studies; for example, Jaufer et al. (2021) (89.8%),
Xiao et al. (2021) (89%), and Lei et al. (2019) (95.66%).

7.2.2 Novel unsupervised model for low-light automatic UU image-based

reconstruction enhancement

To improve the performance of image-based 3D reconstruction of UU in low-light
environments, this study proposes a novel unsupervised deep-learning model
(ZDE3D).
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Previous studies have predominantly employed supervised-learning techniques to
improve low-light images, often neglecting the correlation between image
enhancement and 3D reconstruction principles. For example, previous studies (Li et
al., 2022; Lv et al., 2021) have applied a supervised-learning mode to improve the
images captured from low-light scenarios. The specific method involves manually
selecting pairs of input and reference data and then inputting them into the deep-
learning model for supervised learning. However, methods based on supervised-
learning models typically have the following limitations. First, the acquisition of
paired training data is a cumbersome task that often requires extensive resources and
time (Li et al., 2022; Triantafyllidou et al., 2020; Lv et al., 2021). Second, supervised-
learning methods are prone to subjective limitations. Specifically, the process of
selecting appropriate reference training data for model training makes the performance
of the model heavily dependent on the quality of the data selection (Wei et al., 2018;
Lore et al., 2017). Simultaneously, the quality of data selection depended on the

subjective experience of the experts who built the model.

This thesis addresses these limitations by proposing a ZDE3D model that seamlessly
integrates the principles of image-based 3D reconstruction and domain knowledge
specific to UUs, by leveraging an unsupervised learning paradigm. This integration
allows the model to optimise the input data at the pixel level, providing an effective
solution for enhancing low-light images. By enhancing the low-light image inputs, the
originally degraded matching features are revealed, thereby obtaining more key points
for the 3D reconstructed point-cloud model. Simultaneously, the enhancement learning
mode changed from learning the mapping based on pre-set paired training data to

autonomous learning based on the UU scenario features and 3D reconstruction theory.

Field data implementation of the ZDE3D model validated its capabilities, and ablation
experiments were performed to verify the contribution of the proposed loss functions.
The results demonstrate a remarkable improvement, with an average increase of 13.19%
in the quantity of sparse reconstruction point clouds and an 98.58% reconstruction

accuracy. Compared with the existing research, the UU 3D reconstruction effect under

159



low-light conditions has been effectively improved (Kanellakis et al., 2019; Hu et al.,
2005). Additionally, ablation experiments were conducted to rigorously assess the
contribution of the proposed loss functions, further substantiating the effectiveness and
robustness of the ZDE3D model in addressing the challenges associated with low-light

image-based 3D reconstruction for UUs.
7.2.3 Novel GCN-based model for the completion of UU topology information

Traditional methods, such as GPR surveys (Tabarro et al., 2017; Sharafat et al., 2021)
and manual inspection (Wang et al., 2022b), have long been mainstream for UU
topology-completion tasks. However, these methods are costly and require significant
labour and equipment resources. Data-driven statistical UU data-completion methods
have also been proposed in existing research. Missing data imputation for electric
utilities (Sim et al., 2022; Verboven et al., 2007). However, because the UU network
topology information is a non-Euclidean space attribute, existing statistical methods
are not suitable for topological completion tasks. They can only complete
conventional missing attributes such as diameter and material (Bilal et al., 2018;

Belghaddar et al., 2021).

Recognising these challenges, the proposed UUTC model introduced a paradigm shift
by embracing a deep-learning approach grounded in GCN. This departure from
traditional and statistical methods is significant because it transforms the intricate
problem of topological relationship completion into a more manageable task of
predicting edges within the graph structure. The UUTC model addresses the
shortcomings of existing methodologies and pioneers a data-driven approach to UU
topological relation completion, thereby filling a critical research gap in this field.
Compared with traditional manual inspection methods, the proposed method
significantly improves the efficiency of the UU topology reconstruction through a
data-driven approach. Thus, the number of complicated on-site investigations can be
reduced (Wang et al., 2022b; Costello et al., 2007). Compared with existing statistical
methods, such as imputation, the proposed method emphasises the particularity of UU

topology attributes and provides promising solutions to such special scenarios.
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Topological structures, such as general attributes, can be reconstructed in a data-driven

manner (Belghaddar et al., 2021; Hajibabaei et al., 2023).

To further improve the accuracy of the data-driven UUTC model in the topology-
completion task, this thesis also proposes an SEM module that utilises domain
knowledge. This helps the UUTC model to obtain more high-dimensional information
without introducing further input information. This thesis capitalises on domain
knowledge, specifically acknowledging the strong correlation between attribute
similarities among UU nodes and their connection relationships. By incorporating this
additional layer of information, the SEM module acts as a powerful enhancer of the
UUTC model, refining predictions and further elevating the model's overall
performance. Experiments based on real wastewater databases showed that the
proposed UUTC model could effectively identify unknown UU topological
relationships, with an average completion accuracy of 85.33%. Compared with
existing research, the accuracy of topological completion has exceeded the average

accuracy of 61.11% (Belghaddar et al., 2021).
7.3 Potential benefits, implications, and practical applications
7.3.1 Time saving

The use of GPR equipment to collect underground data in the target area to interpret
the 3D information of existing utilities is a foundational step for ensuring the smooth
progress of the follow-up work of the entire UU project. Traditional manual
interpretation methods are time consuming and error prone. The proposed UU 3D
reconstruction approach can achieve automatic GPR data interpretation and is more
stable than the manual methods. The time required for manual interpretation of a
ground-penetrating radar (GPR) B-scan frame can vary widely depending on several
factors, such as the complexity of the frame, experience of the interpreter, and study
objectives (Zhou et al., 2018; Lei et al., 2019). The industrial normal speed of manual
GPR data interpretation is 1 fps (processing one B-scan image frame per second for a
length of 0.5 m). The approach proposed in this study can achieve a speed of 125 fps
faster than that of the existing mainstream deep-learning-based models YOLOvV3 (82
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fps) and Faster R-CNN (20 fps).

To illustrate the advantages of this study in terms of time cost more intuitively, the
following estimations and comparisons were made based on the real-site experiment
results in Section 4.3.3. A real UU network inspection project located in Jiangsu
Province, China, as shown in Fig 7-1, is considered as an example to illustrate the
time-saving advantages of the proposed approach. The project aims to implement the
3D reconstruction of underground pipelines in the embankment road area on the south
side of a river to determine the depth and location information. GPR has been
employed to understand the underground comprehensive pipeline situation by
coordinating it with other known designs. The project underwent two rounds of testing,

and the detailed workloads are listed in Table 7-1.
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Figure 7-1 UU network inspection project located in China Jiangsu Province
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Table 7-1 Workload details of the UU network inspection project in Jiangsu

Province. In this table, ‘m’ means metre

Testing GPR Survey lines Survey Total Survey Testing

area frequency amount lines length  line length personnel

First round test

West 400 MHz 20 200 m

900 MHz 6 200 m

1600 MHz 14 200 m 700 m 4
East 900 MHz 20 200 m

1600 MHz 10 50 m

Second round test

West 100 MHz 20 200 m
400 MHz 20 200 m
900 MHz 6 200 m 900 m 5
1600 MHz 14 200 m
East 100 MHz 10 50 m
1600 MHz 10 50 m

The GPR survey line for the project totals 1,600 m. Table 7-2 illustrates the time cost
comparison for project GPR interpretation using different approaches. Under
equivalent conditions, manual GPR interpretation, applied in a real project, requires
8,000 s, whereas existing mainstream automated methods, specifically YOLOv3 and
Faster R-CNN, require 97.56 s and 400 s, respectively. The approach proposed in this
thesis takes only 64 s, which is only 0.8% of the time required by traditional manual
methods and is faster than the currently available automated methods. Therefore, the
method proposed in this study offers significant time-saving advantages for

interpreting the as-built UU 3D information scenarios.

163



Table 7-2 Time-saving comparison of the existing and proposed approaches. In this

table, ‘m’ means metres, ‘min’ means minutes

Categories Manual Existing automatic Proposed
YOLOvV3 Faster R- method
CNN
Total length of survey lines 1,600 1,600 1,600 1,600
(m)
Length per frame (GPR B- 0.2 0.2 0.2 0.2

scan data) (m)

GPR data frame number 8,000 8,000 8,000 8,000
Processing speed (fps) 1 82 20 125
Processing time (seconds) 8,000 97.56 400 64

The proposed 3D reconstruction approach demonstrated significant time savings in the
UU project, as previously shown. However, its potential impact is more pronounced
in large-scale projects. In typical infrastructure endeavours covering expansive areas,
our method excels at efficiently collecting and interpreting extensive GPR data. In
contrast to manual interpretation, which becomes exponentially challenging with
increased project size, our automated approach ensures the rapid and reliable
acquisition of underground information across the entire project region. The speed and
precision enhancements of the proposed approach become particularly crucial as the
coverage of underground-pipeline networks extends beyond the scale witnessed in the
Jiangsu Province case study. In larger projects, the proposed approach further shortens
the data interpretation time by improving the processing speed and reducing the error

rates.
7.3.2 Cost saving

Obtaining topological structural information for the UU network in the target area is
crucial in various scenarios including project design, daily O&M, and leakage
investigation. However, incomplete topological information is common, owing to
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factors such as record loss. In typical infrastructure endeavours covering expansive
areas, the proposed method efficiently collects and interprets extensive GPR data. The
approach proposed in this study can complete the missing topological information of
the UU network by leveraging its internal connections and topological information of
known part data. Compared with traditional manual inspection methods, the data-

driven approach suggested in this study offers a significant cost advantage.

To more intuitively illustrate the cost-saving contribution of this study, estimations
were conducted based on real-site experiment results in Section 6.3.1, still using the
project from Jiangsu Province as a reference (as mentioned in Section 7.2.2.1). Table
7-4 presents a detailed cost comparison between the traditional method and data-driven
approach proposed in this study during the process of reconstructing topological
relationships in the target area. The manual cost calculation was based on the
Regulations on the Administration of Fees for Engineering Survey and Design issued
by the State Planning Commission of China and the Ministry of Construction (2002);
the details can be found in Table 7-3. The costs required for the proposed algorithm-
based approach primarily include two parts: the existing information collection and
algorithm inference (computational resources) which are estimated according to the

experimental process discussed in section 4.3.

Table 7-3 Engineering survey and design charging standards (China). The prices in
this table are converted from Chinese currency (RMB) into Australian currency (AUD)

(State Planning Commission of China and the Ministry of Construction, 2002).

Categories Unit Basic price (AUD)
S UUs Simple Middle Difficult
g Cable (clectricity and 360 720 1,260
S communication, etc.)
Metal pipelines km 450 900 1,440
Non-metal pipelines 540 1,080 1,800
Sewer (with manhole) 270 540 1,080
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Categories Unit Basic price (AUD)

Blind detection m? 0.2 0.3 0.6

Table 7-4 Cost-saving comparison of the existing and proposed approaches. The costs

are expressed in Australian dollars (AUD). In this table, ‘m?’ means square metres

Manual inspection approach Proposed approach

Target area 1,340 m? Target area (m?) 1,340 m?
Overall costing 0.6 (AUD/ m?) * | Existing information 200
equation  (including Working area | collection

equipment, labour, (m?)* 1.22 Algorithm inference 100

and experts fee) (computation resource)

Total cost 980.88 AUD Total cost 300 AUD

The comparison results show that the proposed approach has a significant cost
advantage over the current mainstream manual inspection approach, with a cost of
approximately 30% of the latter. Additionally, it is important to note that the cost
savings demonstrated in this real project indicate the potential efficiency gains that can
be achieved on a larger scale. Owing to the marginal cost-effectiveness of the
algorithm, the proposed approach is poised to unlock even greater cost-saving potential
in more extensive projects, highlighting its scalability and economic advantages on a

broader scale.
7.3.3 Safety enhancement

During construction, the primary safety risks associated with the UU project are
closely tied to potential accidental damage to existing utilities (Pipeline and Hazardous
Materials Safety Administration, 2021). Traditional construction practices often
involve manual inspections, which are prone to human error and may not account for
various underground environmental factors. This introduces significant challenges in
accurately detecting the 3D spatial information of existing utilities. One specific

concern is the accidental damage to high-pressure water pipes, which can lead to burst
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accidents. Similarly, the potential damage to oil and gas pipelines poses a more severe
threat, with the risk of explosion and fire accidents (Chinese Association of Surveying
and Mapping Underground Pipeline Professional Committee, 2023). The complex and

unpredictable nature of underground environments increases these risks.

The approach proposed in this study addresses these challenges and contributes to
practical solutions in three key methods: First, it eliminates the need for manual
inspection, thereby significantly reducing the likelihood of human error that could lead
to accidents. By leveraging advanced technologies, the proposed method ensures a
more accurate and reliable detection of existing utilities. Second, the implementation
of this approach results in fewer instances of striking gas lines. The frequency of such
incidents is critical to prevent gas leaks, which can have serious consequences. The
improved precision of the proposed method directly translates into a reduction in the
number of accidental strikes on gas lines, thus mitigating the potential for hazardous
situations. Third, the proposed approach contributes to a reduction in the overall time
spent on-site during construction activities. This not only enhances operational
efficiency, but also minimises the exposure of construction workers to potential
hazards. Less time spent on-site correlates with a decreased risk of serious injuries,
thereby promoting a safer working environment for all personnel involved in the

construction process.

In summary, the practical contribution of this study lies in its ability to enhance safety
during the construction of a UU project by reducing the need for manual inspection,
decreasing the frequency of gas line strikes, and minimising the time spent on-site,
consequently lowering the risk of serious injuries. The 5.43% improvement in the
precision of locating existing utilities is a significant advancement that directly
translates into tangible safety benefits for construction workers and helps safeguard

against personal and property losses.
7.3.4 Implications and practical applications

This thesis presents a unified practical application framework designed to address
critical challenges in the life-cycle management of UUs. This framework not only
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streamlines the reconstruction of UU, but also ensures their sustainable management
throughout their typical life-cycle, which includes planning and design, construction
(new installation), operation (existing UU), maintenance (including repair and
upgrade), and decommissioning stages (Soni et al., 2017; University of Birmingham
et al., 2012). The proposed framework has practical value in all stages of the UU life-
cycle, except for decommissioning. This framework is underpinned by three
innovative components: 1) EUUL model for construction (new installation) and
operation (existing UU) stage: Utilising GPR B-scan data, the EUUL model
incorporates a key point-regression approach, an anchor-free structure, and a channel
attention mechanism to significantly enhance localisation precision and processing
speed for UU positioning. 2) The zero-reference deep-learning model for low-light
image enhancement (ZDE3D) was primarily used in the construction (new installation)
stage. Tailored for low-light conditions, ZDE3D improves the 3D reconstruction
performance by utilising an unsupervised loss-function design that does not rely on
paired or unpaired training datasets. 3) UUTC model for the planning, design, and
maintenance stages, The UUTC model employs GCN techniques to accurately
complete missing topological data and is essential for the functionality of UU network

expression.

7.3.4.1 Contribution towards life-cycle management of UU

EUUL & ZDE3D: Safety
Enhancement
Accidental damage can be avoided
UUTC: Cost Saving by accurately reconstructing the
3D information of existing
Planning & underground utilities during the
Design Construction phase (New
Installation).

Reduce manual inspection
costs by using a data-driven
approach to complete the
topology information of
underground utility (UU)
networks.

In the Operation phase (Existing
UU), maintaining an accurate and
up-to-date 3D reconstruction of
underground utilities is essential
for safety and management.

Construction
(New Installation)

Decommissioning

Decision-making in Planning
& Design can be scientifically
supported when topology
information is incomplete,
without the need for extensive
manual inspection.

EUUL: Time Saving

Reduce GPR data interpretation
time by automated processing
Damaged pipelines localization N Operation using deep learning algorithms.
within the UU network can be / Repair/ Upgrade (Existing UU)
achieved based on topology

In the Operation (Existing UU)
information using low-cost stages, data collection time can be
existing data analysis methods greatly reduced. And the cycle of
during Maintenance, Repair, Planning & Design, New

or Upgrade phases. Installation and Maintenance
can also been shorten.
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Figure 7-2 Application scenarios of the unified UU 3D reconstruction framework

The application processes involved deploying these models at different stages of the

UU project life-cycle, as shown in Figure 7-2:

Planning and Design: During this initial stage, the framework supports the decision-
making process by providing a data-driven approach (UUTC) to fill in the incomplete
topology information of the UU networks. This approach helps avoid extensive manual
inspections and optimises the process for designing underground infrastructure. The
planning and design cycle can also be shortened using an automated deep-learning

approach (EUUL) to reduce GPR data interpretation time.

Construction (New Installation): In this stage, the application of the framework
ensures safety by facilitating the accurate 3D reconstruction of existing UUs. ZDE3D
can help obtain the most accurate UU reconstruction, especially when night
construction is required owing to tight construction schedules. EUUL can ensure that
the accurate 3D information of all existing UU in the construction area is established
before the excavation of new utilities. This helps to avoid any accidental damage that
might occur during the installation of new utilities. For example, it can serve as an
invaluable guide for machinery, mitigate the risk of inadvertent damage to pipelines,
and guarantee the safety of construction equipment. The processing time of new
installations can also be shortened when the existing UU data-collection time is

significantly reduced.

Operation (Existing UU): Once the utilities are in place and operational, the
framework emphasises the importance of maintaining an accurate and current 3D
reconstruction of UUs (EUUL and ZDE3D). This continuous update is crucial for

efficient management and ongoing safety of UU networks.

Maintenance/Repair/Upgrade: At this stage, the framework assists in localising the
damaged pipes within the UU network. It utilises topology information and low-cost
data-analysis methods (UUTC), which are instrumental during routine maintenance,

necessary repairs, or upgrades to utility systems. Damaged pipeline localisation within
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a UU network can be achieved based on topology information using low-cost existing
data-analysis methods during the maintenance, repair, or upgrade phases. By reducing
the GPR data interpretation time, EUUL makes the operation stage more efficient. This
allows quicker responses to maintenance, repair, or upgrade needs within the utility

network.

Throughout these stages, the framework's integration of innovative technology and
methodology represents a shift towards more advanced, efficient, and safer UU
management. The practical application framework developed in this thesis streamlines
the management, construction, and maintenance of UUs by integrating state-of-the-art
technological models and domain knowledge, thereby significantly enhancing

efficiency, reducing costs, and improving safety across the entire UU life-cycle.
7.3.4.2 Practical relevance with life-cycle management tasks of UU

This section introduces the critical integration of the proposed unified practical
application framework into the life-cycle management tasks of the UU. This
integration is pivotal for enhancing the efficiency, safety, and sustainability throughout
the life-cycle of UUs, which encompasses the planning and design, construction (new
installation), operation (existing UUs), maintenance (including repair and upgrade),
and decommissioning stages. Each stage gains distinct benefits from the framework,
leveraging its innovative components to address the specific challenges inherent in the

management of UUs.

Planning and Design: The initial stage benefits immensely from the UUTC and
EUUL models. Thorough site surveys and risk assessments help identify utility needs
and scope (Yan et al.,, 2021; Lai & Sham, 2023; Oguntoye et al., 2023). The
environmental impact was also assessed (Plati et al., 2015), contributing to sustainable
design, while budgeting and sourcing financing round out the planning stage (Salim et
al., 2022; Wang et al., 2022b). The UUTC model aids in accurately filling incomplete
topological data, thereby facilitating informed decision making and optimising the
design of underground infrastructure (Wang et al., 2019; Gilbert et al., 2021).
Simultaneously, the EUUL model reduces the GPR data interpretation time (Feng et
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al., 2021a), expediting the planning and design process by providing a rapid and

accurate localisation of existing UUs.

Construction (new installation): Safety and efficiency are of paramount importance
during this stage. Site preparation and excavation, including the installation of
protection for existing UUs and laying new utility lines, are critical steps (Goel et al.,
2012; Tanoli et al., 2019). The zero-reference deep-learning model for low-light image
enhancement (ZDE3D) enables the accurate 3D reconstruction of UU under low-light
conditions, which is crucial for night construction scenarios (Nguyen et al., 2014a;
Patel et al., 2010a). Meanwhile, the EUUL model ensures the precise localisation of
existing utilities and prevents accidental damage during excavation in new installation
stages (Tanoli et al., 2019; Al-Bayati et al., 2019). This dual application of ZDE3D and
EUUL not only improves the safety of construction personnel and equipment but also
streamlines the construction process by significantly reducing the data collection and
processing times (Hansen et al., 2021b; Hu et al., 2005; Tulloch et al., 2006).
Additionally, testing for integrity and safety, followed by backfilling and site

restoration with proper documentation of the utility installation, completes this stage.

Operation (existing UU): During the operational stage, maintaining an accurate and
current 3D reconstruction of the UU is essential for efficient management and ongoing
safety. Routine monitoring of utility performance (Wallace, 2021), safety inspections
(Yadav et al., 2022), and regulatory compliance (Yan et al., 2018) are ongoing tasks
that are critical to this stage. The continuous update capability provided by both the
EUUL and ZDE3D models can support this need, ensuring that utility managers have
the most current data for effective decision making (Wang et al., 2019; Sharafat et al.,
2021) and emergency response (Sharafat et al., 2021) planning and management

operations of the UU network.

Maintenance/Repair/Upgrade: The framework application during the maintenance
stage incorporates the UUTC model to support the low-cost analysis of topology-
related tasks, such as damage positioning (Yu et al., 2019; Lacroix et al., 2015; Wang

et al., 2021b). This data-driven approach avoids expensive manual inspection times
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and labour costs (Goel et al., 2012; Wang et al., 2021a), particularly in scenarios where
rapid maintenance feedback is required. Routine inspections, identifying and
diagnosing issues, repairing faults or leaks (Maree et al., 2021; Wu et al., 2021), and
record-keeping (Maree et al., 2021) of maintenance and repairs can also benefit from
the UUTC and ELLU. The reduction in the GPR data interpretation time through the
EUUL model further enhances the efficiency of maintenance operations (Esekhaigbe
et al., 2020), enabling quicker responses to repair or upgrade requirements within the

utility network.

Decommissioning: The proposed unified application framework has no direct
application significance during the UU decommissioning stage. These methodologies
and technologies offer foundational insights that can be adapted to inform the process
of decommissioning. By understanding detailed 3D reconstructions and topological
data, stakeholders can approach decommissioning tasks with a higher degree of
precision and safety (Bumby et al., 2010; Sueri et al., 2022), potentially leveraging
aspects of the technology to ensure minimal environmental impact and resource

optimisation.

In summary, the practical application framework developed in this thesis is
instrumental to the entire life-cycle of UUs. Integrating advanced technological
models and leveraging domain knowledge significantly enhances the efficiency, cost-
effectiveness, and safety of UU management. This unified framework not only
addresses current challenges in the field, but also sets a foundation for future

innovations in UU life-cycle management.
7.4 Summary

In the context of modern urban development, the demand for the 3D reconstruction of
UUs is increasingly urgent, fundamentally aimed at the safe, efficient, and economical
utilisation of urban subsurface resources. As urbanisation accelerates, UUs, such as
water pipes, electrical cables, and gas pipelines, have become critical infrastructures
essential for maintaining the basic functions of a city. However, if the locations of these
facilities are unclear, construction activities can easily cause damage, leading to
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disruptions in water and electricity supply, gas leaks, and even more severe accidents.
Through precise 3D reconstruction, these risks can be significantly reduced, thereby
providing strong support for urban planning and management. It helps planners and
managers to better understand the structure of underground spaces, enabling the
rational planning of underground facility layouts, thereby enhancing the efficiency of
city operations. Moreover, 3D models are crucial for maintaining and updating
underground facilities, reducing excavation costs and time, responding to emergencies,

and improving the quality of public service.

This section presents and discusses the key findings of the established objectives.
Objective 1 delves into the significance of accurate 3D reconstruction for UU life-
cycle management, favouring GPR technology. However, the identified limitations
prompted the proposition of an integrated approach that introduced a decision-making
framework to guide the selection of optimal reconstruction technology. Objective 2
introduced the EUUL model for UU localisation, which demonstrated remarkable
precision and speed across diverse soil types. Objective 3 introduces the ZDE3D
model for low-light 3D reconstruction, showing significant enhancements and
outperforming existing methods. Ablation studies underscored the effectiveness of the
proposed loss function. In Objective 4, the UUTC model for topology completion
outperformed the baseline models, particularly when integrating the SEM. The
discussions within the chapter dissect model intricacies, identify instances of
misjudgement, and highlight theoretical contributions, emphasising the 'key point-
regression' mode in EUUL, the unsupervised approach in ZDE3D, and the UUTC
model's graph-based topology completion. The practical implications of these
advancements are underscored, addressing challenges in different stages of the UU
life-cycle, and providing practical solutions for UU management and construction site

challenges.
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Chapter 8 : Conclusions, contributions, and future work

8.1 Main findings

8.1.1 Research findings for Objective 1

Objective 1: To identify research topics, trends, and limitations of automatic 3D

reconstruction for as-built UUs.

Main findings: Peer-reviewed journal articles from the Web of Science and ASCE

databases on various aspects of relevant technological developments were reviewed,

including key technologies for 3D UU reconstruction, current applications of 3D

reconstruction methods, and potential future research directions. The main findings are:
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Accurate, up-to-date, and comprehensive 3D reconstruction of as-built UUs is
important for the life-cycle management of UUs. This section analyses the
advantages, limitations, and best performance of each of the widely used 3D
reconstruction techniques. Finally, the limitations of the UU's existing 3D

reconstruction techniques and future work in this field are also investigated.

GPR is the best non-destructive UU 3D reconstruction technology, with the widest
application range and the best comprehensive outcome. However, conventional
image-processing methods are time consuming and susceptible to noise. Deep-
learning-based methods cannot optimise parameters globally because of their box-
fitting mode, which requires the separation of a task into region detection and
hyperbolic fitting problems. Thus, the precision and robustness of the localisation

task were reduced.

Image-based 3D reconstruction has become one of the most promising as-built
UU 3D reconstruction methods during the exposed stages, owing to its cost
efficiency and outstanding performance. However, the quality performance of
image-based 3D reconstruction is highly sensitive to illumination conditions. To
date, image-based 3D reconstruction in a low-light environment has mainly been

optimised by traditional approaches that are time consuming and require manual



parameters. In addition, supervised deep-learning methods require suitable paired
image data (low-light images and paired reference images), which limits their

capability to enhance the performance of UU 3D reconstruction.

e The limited availability of UU data, particularly topological information, is a
major issue in UU management. Current research primarily concentrates on
conventional properties such as pipe diameter and material, and not on topological

data completion.

e Owing to the above limitations, an automatic 3D reconstruction approach that can
enhance GPR-based localisation, low-light environment 3D reconstruction, and

UU network topology completion is required for UU projects.
8.1.2 Research findings for Objective 2

Objective 2: To develop a novel GPR-based as-built UU localisation deep-learning

model for non-destructive scenarios.

Main findings: An end-to-end UU localisation deep-learning model (EUUL) was
developed using GPR B-scan images as inputs. Three experiments were conducted to
validate the proposed model and its improvements on an actual site. Based on the

experimental results, the following conclusions were drawn.

e The experimental results showed that the precision of the proposed EUUL model
was 97.01%, operating speed was 125 fps, and precision was 96.72% in a noisy

environment.

e The EUUL model was superior to the existing mainstream models in terms of

precision (Figure 4-6), operating speed (Table 4-3), and robustness (Figure 4-8).

e The proposed EUUL model architecture with a 'key point-regression' mode had
increased precision and enhanced performance when compared to the most
popular 'Box-fitting' mode (region detection first and then fitting the hyperbolas

for apex localisation).

e The application of an anchor-free structure with a lightweight backbone
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(CSPDarknet53) increased the calculation speed of the UU localisation model and

reduced model deployment costs.

The added ECA module can help the EUUL model focus on key features that
contain more position information to manage the noise interference of the UU

positioning data to ensure precision.

By conducting experiments based on different soil types, the results showed that
the EUUL model can be used in engineering practice for the accurate non-

destructive position detection of various UUs.

8.1.3 Research findings for Objective 3

Objective 3: To develop a novel unsupervised image-based 3D reconstruction model

for the low-light 3D reconstruction of as-built UUs for exposed scenarios.

Main findings: This objective proposes an unsupervised deep-learning model for low-

light image enhancement in UU 3D reconstruction (ZDE3D). Field experiment results

showed that the proposed model could effectively improve the UU object point-cloud

effect based on image generation under low-light conditions. The specific findings are

as follows:
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The experiments on-site showed a promising result: the quantity of sparse
reconstruction point clouds was improved by 13.19 % on average, and the average
reconstruction accuracy reached 98.58% when comparing image datasets

collected in normal light and the low-light datasets enhanced by the ZDE3D model.

The unsupervised deep-learning method can help achieve the low-light
enhancement task through the loss-function design based on image-based 3D
reconstruction principles, where pairs of training data (low-light image and

expected reference image) are not required.

By conducting five ablation experiments, the five proposed loss functions, Lspa
(spatial loss), Lcor (colour loss), Lexp (exposure loss), Lsou (boundary loss), and

Laro (group loss), were effective in enhancing low-light UU images.



e The comparison experiments showed that the proposed ZDE3D model had the
best UU 3D reconstruction enhancement performance compared with traditional
brightness, contrast adjustment methods, and existing popular deep-learning low-

light enhancement models.
8.1.4 Research findings for Objective 4
Objective 4: To develop a GCN-based topology-completion model for as-built UUs.

Main findings: A GCN-based deep-learning model was developed for the UU
topology-completion task. Five mainstream models were applied as control group
experiments, and the results indicated that the UUTC model outperformed the baseline
models, particularly in terms of effectively completing topological relationships. The

specific findings are as follows:

e The experimental results demonstrated that the proposed UUTC model achieved
an average completion accuracy of 85.33% under various topology missing rates,

ranging from 5% to 80%.

e The SEM was validated to be effective in enhancing the model's accuracy in
predicting topological relationships by leveraging attribute clustering to identify
nodes with shared characteristics, consequently facilitating more precise and

informed predictions of the UU network's interconnectedness.

e Using each pipeline in the UU network as a graph node and the connection
relationship between pipelines as graph edges, the UU topology-completion
problem can be transformed into an edge prediction problem in the graph. The
GCN technology can effectively solve this problem, although there is still room

for improvement in completion accuracy.
8.2 Summary of theoretical contribution

This thesis is motivated by the increasing challenges faced by project planners,
managers, and stakeholders in managing different UU construction stages. The

theoretical contributions outlined in this section address the challenges of 3D
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reconstruction in UU environments by presenting a unified framework that surpasses
the limitations of the conventional approaches. Existing frameworks are critiqued for
their unidimensional focus, inaccuracy stemming from a lack of attention to new
installation stages, and substantial resource demands associated with field-based
detection. In contrast, the proposed unified framework stands out for its user-
friendliness, enhanced precision, and transferability to diverse contexts beyond UU

reconstruction. The three main theoretical contributions of this study are as follows:
(1) Novel model for automatic UU localisation (EUUL)

A deep-learning model, EUUL, was introduced for the automatic reconstruction of

UUs based on GPR data.

e The model adopts an ‘end-to-end’ approach, addressing the limitations of existing
methods that separate the problem into sub-problems, such as box detection and

hyperbola fitting.

e The key point-regression mode in EUUL minimises error accumulation and
maximises machine-learning strengths in pattern recognition and relationship

modelling.

e The experimental results showed superior performance in terms of localisation

accuracy, inference speed, and robustness.

Unsupervised model for low-light UU image-based reconstruction enhancement

(ZDE3D):

(2) ZDE3D was proposed to enhance the performance of image-based 3D

reconstructions in low-light environments.

e Unlike previous supervised approaches, ZDE3D leverages unsupervised learning
by integrating the principles of image-based 3D reconstruction and the domain

knowledge specific to UUs.

e Field data implementation validated the model, demonstrating a significant

increase in the quantity of sparsely reconstructed point clouds and impressive
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reconstruction accuracy.
(3) GCN-Based Model for UU Topology Completion (UUTC):

e UUTC introduces a deep-learning approach based on GCN to complete the

missing topological information in UU areas.

e Departing from traditional and statistical methods, UUTC transforms a complex
task into edge prediction within a graph structure, pioneering a data-driven

approach.

e The proposed SEM module leverages domain knowledge and further enhances the
accuracy of the UUTC model by considering the strong correlation between the

attribute similarity among UU nodes and their connection relationships.

e Experiments based on real wastewater databases confirmed the effectiveness of
UUTC in identifying unknown UU topological relationships, with an average
completion accuracy of 85.33%. The effectiveness of the SEM module is validated

through comparative experiments.

In summary, the theoretical contributions of this thesis present a unified framework
that addresses the limitations of the existing UU 3D reconstruction frameworks. The
proposed models (EUUL, ZDE3D, and UUTC) show advancements in UU localisation,
low-light image-based reconstruction enhancement, and topological information
completion, collectively offering a comprehensive and innovative approach to the

challenges in the field.
8.3 Summary of practical contribution

The practical contributions of this study revolve around time-saving techniques, cost-

effective strategies, and safety enhancements in UU projects.
(1) Time saving:

Traditional manual interpretation methods for GPR data are time consuming and prone

to errors. The proposed UU 3D reconstruction approach automates GPR data
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interpretation and significantly expedites the process. Real-site experiments
showcased substantial time savings. Whereas manual interpretation typically requires
8,000 s, the proposed method only requires 64 s, achieving a remarkable 0.8% of the
traditional manual method's time consumption. Moreover, the proposed approach
outperforms existing automated methods, such as YOLOv3 and Faster R-CNN, in

terms of processing speed, further emphasising its efficiency.
(2) Cost savings:

This study highlights the cost-effectiveness of the proposed approach in comparison
with traditional manual inspection methods. Based on real-site experimental results,
the proposed method offers significant cost advantages, amounting to approximately
30% of'the cost incurred by manual inspection. These cost savings are crucial for large-
scale projects and underscore the scalability and economic benefits of the proposed

approach.
(3) Safety Enhancement:

Safety concerns in UU projects, including accidental damage to existing utilities, pose
significant risk during construction. The proposed approach addresses these challenges
by eliminating manual inspections and minimising on-site exposure of construction
workers. By leveraging advanced technologies and reducing human error, the
proposed method enhances safety standards and promotes a safer working

environment.

In summary, this study significantly contributes to improving the efficiency and safety
of UU projects. The proposed approach offers tangible benefits to construction
workers and project stakeholders by streamlining processes, reducing costs, and
enhancing safety. These findings underscore the importance of technological
advancements for enhancing the overall effectiveness and safety of infrastructure

projects.
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8.4 Limitations and future work
(1) Limitations of the EUUL model

The limitations of this thesis are as follows: 1) There are few comparative models.
Because an open model code does not exist, determining the specific details of the
model based on the framework and reproducing the model based on other studies is
challenging. Therefore, the YOLOvV3 and Faster R-CNN models were selected to
perform comparative experiments under several conditions, such as different
publication times and dataset sizes. 2) The experimental conditions were limited. Only
a 400 MHz antenna was used for data acquisition. In contrast, the B-scan images

obtained under different antenna frequency conditions were not considered.

The following are planned for future studies: 1) A public GPR dataset for UU,
including radar manufacturers, different antenna frequencies, different geological
environments, and other factors, will be developed such that this research area can be
investigated more effectively in the future. 2) Using the acquired B-scan dataset, more
features of UU can be analysed to achieve more intelligent and scientific management

of UU networks.
(2) Limitations of the ZDE3D model

The ZDE3D model proposed in this paper can not only be applied in the UU project
record field but can also be extended to other scenarios requiring 3D reconstruction of

low-light environments, such as underground mines, tunnel exploration, and cave sites.

However, the ZDE3D model proposed in this paper still has the following limitations:
1) The ZDE3D model improves the 3D reconstruction effect in a low-light
environment; however, it fails to maintain the colour information of the original
reconstruction target well. 2) The robustness verification of the ZDE3D model must
be implemented under more complex environmental conditions to ensure that it can be
applied to various complex scenarios. 3) At present, the image datasets used in the
ZDE3D model experiments are all close-range construction site images, which could

be better suited for long-range construction.
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In the future, the following three directions may achieve better performance in UU
low-light 3D reconstruction tasks: 1) Transformer. A transformer is an attention-based
model that has been extensively used in language and image-processing tasks. The
attention mechanism can help the model better capture long-term dependencies and
relationships between different parts of the input sequence, which is important in low-
light enhancement tasks. 2) Multimodal learning. With multimodal learning, multiple
sources, or modalities, such as text and images from the UU project, can be used
together for the training process, which may increase the robustness and accuracy. 3)
Optical flow. Optical flow is a computer-vision technique that can track the movement
of pixels between consecutive frames. In UU 3D reconstruction scenarios, capturing
the same pixels in different frames is the foundation of image-based 3D reconstruction.
Combining the deep-learning method with optical flow may increase the feature
extraction ability of the model. Based on the research proposed in this study, the low-
light 3D reconstruction model will be further tested and improved under more complex
environmental conditions. In addition, a deep-learning model without reference data
will also help in the design and application of more deep-learning models and provide
more scientific solutions for more complex and realistic reconstruction problems, or

even be combined with AR or VR techniques.
(3) Limitations of the UUTC model

While the proposed UUTC model demonstrates commendable performance in
completing UUs’ topological information data, certain limitations persist within this
thesis: 1) Spatial and temporal dimensions. The integration of temporal and spatial
information is important for understanding UU network topology. However, owing to
the need for comprehensive historical data, the execution of dynamic time-series
analyses of pipeline networks remains unfeasible. Regrettably, this constraint
considers the spatial distribution factors within the UU network and their interactions
with the surrounding environment. Instances such as the positioning of sewage
treatment stations and the dispersion of final sewage discharge points still need to be

accounted for. 2) Edge information usage. This study's treatment of edge information
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is confined to a criterion for adjudicating the existence of topological relationships
among UU nodes. This approach does not effectively harness the inherent potential of
edge data within the framework of graph data structures. Beyond its role in signifying
topological links, edge information possesses distinct attributes, akin to node and
graph attributes. Each edge theoretically assumes a unique character across diverse
graphs. Furthermore, it establishes a foundation for the enriched representation of
intricate network attributes by systematically exploring the structural intricacies of
graphs. The untapped potential in this regard could enhance the topology prediction
accuracy, particularly when confronted with scenarios with few observed features. 3)
Limited verification scope. The current model validation is confined exclusively to a
singular category of the UU context, namely wastewater networks. However, the
expansive spectrum of UU scenarios encompasses diverse domains, such as water and
sewer pipelines, gas and oil conduits, electrical cables, and telecommunication lines.
These domains exhibit distinct topological distribution characteristics. Therefore, the
efficacy of the proposed model may fluctuate across diverse UU scenarios,

necessitating meticulous examination and validation.

In future work, there are several promising research directions that can further promote

the development of the UU 3D reconstruction field.
(1) Scalability and computational complexity

As UU projects often entail large-scale datasets, particularly in complex urban
environments, ensuring that the proposed deep-learning models can scale eftectively
without exorbitant computational costs is essential. In future studies, it will be
important to focus on optimizing the architecture of deep-learning models like EUUL
and ZDE3D to handle larger and more complex datasets efficiently. One approach
could be to incorporate more efficient neural network architectures that require less
computational power. Techniques such as pruning, quantization, and the use of
knowledge distillation could be explored to reduce the model size and speed up
inference times without sacrificing accuracy. Additionally, leveraging more advanced

forms of transfer learning could enable these models to adapt more quickly to new data,
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reducing the need for extensive retraining and thus lowering computational costs. For
the topology completion models like UUTC, methods to reduce graph complexity,
such as graph sparsification or the use of hierarchical graph neural networks, could be
investigated to manage the computational burden while maintaining or even improving

the accuracy of topological predictions.

Moreover, it could be beneficial to explore hybrid approaches that combine traditional
computational methods with machine learning enhancements to strike a balance
between computational demand and reconstruction performance. These methods
might prioritize machine learning interventions for the most complex or error-prone
segments of data while handling more straightforward tasks with less computationally
intensive algorithms. By pursuing these avenues, the scalability and computational
efficiency of the models can be enhanced, making them more practical for widespread

implementation in real-world UU management scenarios.
(2) Data impact factors

For the accuracy of the underground utilities topology completion (UUTC) model,
future research should focus on a comprehensive analysis of both data sources and
environmental influences. This includes evaluating the quality and origin of the data
used, as well as assessing how external factors such as soil type, weather conditions,
and urban development might affect the efficacy of data collection methods like
ground-penetrating radar. Additionally, human factors should not be overlooked;
investigating operator experience and data entry processes could uncover potential

biases that compromise data accuracy.

Implementing advanced statistical analyses and robustness testing under varied
conditions will further enhance the understanding of the impact of these factors on the
UUTC model’s performance. By intentionally testing the model with corrupted or
incomplete data sets, researchers can identify vulnerabilities and areas for
improvement. Moreover, exploring technological advancements in sensor technology
and data processing algorithms can lead to significant enhancements in data reliability.
This holistic approach will provide valuable insights into the multifaceted challenges
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of data accuracy in underground utility management, ultimately contributing to more

effective modelling and decision-making processes for underground utilities.
(3) Life cycle management

Future research should specifically address the relationship between these
improvements and their impact on life-cycle management processes. While the current
research demonstrates enhanced accuracy and reliability in 3D reconstructions, it does
not directly establish how these advancements contribute to better life-cycle

management of UUs.

To bridge this gap, future studies could focus on empirical testing that examines the
correlation between accurate UU location data and key performance indicators in life-
cycle management, such as maintenance scheduling, cost reduction, and risk
mitigation. By conducting case studies or field experiments that link improved
reconstruction outcomes to tangible enhancements in life-cycle management practices,
researchers can provide a clearer understanding of this relationship. Additionally,
integrating stakeholder feedback and decision-making frameworks into the research
will help elucidate how precise 3D reconstructions can inform and optimize
management strategies throughout the UU life cycle. Such investigations will not only
validate the claims made in this research but also contribute valuable insights into the
practical applications of advanced 3D reconstruction technologies in the field of

underground utility management.
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