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Abstract: As yet, no systematic review on commercial deep learning-based auto-segmentation
(DLAS) software for breast cancer radiation therapy (RT) planning has been published, although
NRG Oncology has highlighted the necessity for such. The purpose of this systematic review is to
investigate the performances of commercial DLAS software packages for breast cancer RT planning
and methods for their performance evaluation. A literature search was conducted with the use of
electronic databases. Fifteen papers met the selection criteria and were included. The included studies
evaluated eight software packages (Limbus Contour, Manteia AccuLearning, Mirada DLCExpert,
MVision.ai Contour+, Radformation AutoContour, RaySearch RayStation, Siemens syngo.via RT
Image Suite/AI-Rad Companion Organs RT, and Therapanacea Annotate). Their findings show
that the DLAS software could contour ten organs at risk (body, contralateral breast, esophagus-
overlapping area, heart, ipsilateral humeral head, left and right lungs, liver, and sternum and
trachea) and three clinical target volumes (CTVp_breast, CTVp_chestwall, and CTVn_L1) up to
the clinically acceptable standard. This can contribute to 45.4%–93.7% contouring time reduction
per patient. Although NRO Oncology has suggested that every clinical center should conduct its
own DLAS software evaluation before clinical implementation, such testing appears particularly
crucial for Manteia AccuLearning, Mirada DLCExpert, and MVision.ai Contour+ as a result of the
methodological weaknesses of the corresponding studies such as the use of small datasets collected
retrospectively from single centers for the evaluation.

Keywords: artificial intelligence; artificial neural network; automatic; clinical target volumes;
computed tomography; contouring; delineation; machine learning; organs at risk; radiotherapy

1. Introduction

Breast cancer is the commonest cancer type, and also a leading cause of death in
females in the world [1–3]. Sixty years ago, radiation therapy (RT) was solely used as an
adjuvant therapy for high-risk breast cancer patients after mastectomy [4]. RT treatment
was delivered based on two-dimensional (2D) imaging. Accurate organs at risk (OARs) and
clinical target volumes (CTVs) control was not feasible [5]. Nowadays, breast RT is usually
recommended for both postlumpectomy and postmastectomy patients to reduce recurrence
of breast cancer [1,6–8]. Unlike other cancer types such as lung and head and neck cancers,
field-based and 2D techniques are still used for RT in breast cancer [7,8]. However, use of
intensity-modulated RT (IMRT) in breast cancer has become popular [1,7,8]. This technique
relies on computed tomography (CT) to visualize OARs and CTVs for better OARs sparing
and CTVs coverage [5].

Accurate segmentation of OARs and CTVs is essential for breast cancer IMRT planning
to minimize treatment side effects and improve its effectiveness [1,7–10]. Typically, this
contouring process takes between thirty minutes and one hour with a radiation therapist
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(RTT) or a radiation oncologist (RO) manually handling each case [1,5,11,12]. Apart from
the time-consuming aspect, it is also well known that the manual contouring in breast RT
has notable inter- and intra-operator variability [1,8,13,14].

To address these issues, auto-segmentation solutions have been developed for breast
RT [13,15–17]. These solutions include atlas- [2,4,13] and deep learning (DL)-based auto-
segmentation [18–21]. Since use of DL in medical imaging has significantly increased
recently [22–25], this has attracted commercial companies to focus on developing DL-based
auto-segmentation (DLAS) software packages such as Limbus AI Inc. Contour (Regina,
SK, Canada) [26]; Manteia Medical Technologies AccuLearning AI (Jiansheng, China) [27];
Mirada Medical Ltd. DLCExpert (Oxford, UK) [28]; MVision.ai Contour+ (Helsinki, Fin-
land) [29]; Radformation Inc. AutoContour (New York, NY, USA) [29,30]; RaySearch Labo-
ratories AB RayStation (Stockholm, Sweden) [31–34]; Siemens Healthineers AG syngo.via
RT Image Suite [35,36] and AI-Rad Companion Organs RT (Erlangen, Germany) [37,38];
and Therapanacea Annotate (Paris, France) for breast RT planning [29,39].

Over the past few years, several articles have reviewed previous DLAS studies for
breast cancer RT [40–43]. All except one were narrative reviews which covered DLAS
approaches/architectures (such as convolutional neural network (CNN) variants, U-Net
and V-Net), dataset source (e.g., public, private, etc.), type (such as CT) and size (e.g.,
100 patients, etc.), structures segmented (such as heart (OAR) and breast (primary tumor)
CTV (CTVp_breast)), and DLAS model performance (e.g., geometric accuracy, etc.) [40–43].
Although Matoska et al. [44] critically reviewed the performance of DLAS for breast RT plan-
ning in 2024, that review only included nine studies, and none of these used the commercial
DLAS software. Hence, its findings are less relevant to clinical practice. The necessity of
reviewing the commercial DLAS software packages is well recognized by the influential
body NRG Oncology, which has formed a working group for this task [45,46]. In 2024, the
working group published its outcomes as a narrative review on the commercial DLAS
software packages for RT planning to enable clinical centers to recognize their strengths and
limitations and make educated decisions on implementation of such packages in clinical
practice. However, that narrative review did not cover breast cancer RT planning [46]. As
such, no systematic review focused on the commercial DLAS software for breast cancer
RT planning is available as yet. Without a systematic review to provide the gold standard
evidence of the current performance of the commercial DLAS software for breast cancer RT
planning with appraisal of associated methodology for evidence generation, it would be
challenging for clinical centers to make any appropriate decision regarding its adoption.
Furthermore, its potential benefits cannot be realized in a wider context. The purpose of
this article is to systematically review original studies to answer this question: “What are
the performances of commercial DLAS software packages for breast cancer RT planning
and methods for their performance evaluation?”

2. Materials and Methods

This systematic review of the performance of the commercial DLAS software packages
for breast cancer RT planning was conducted as per the preferred reporting items for system-
atic reviews and meta-analyses (PRISMA) guidelines and patient/population (breast cancer
patients), intervention (use of commercial DLAS software for breast cancer RT planning),
comparison (DLAS versus manual contouring (standard practice)), and outcome (structure
segmentation performance) model (PICO) [47–50]. It involved four major processes, namely
literature search, article selection, and data extraction and synthesis [47–49].

2.1. Literature Search

Seven electronic scholarly publication databases, namely Institute of Electrical and
Electronics Engineers (IEEE) Xplore, PubMed, ScienceDirect, Scopus, SpringerLink, Web of
Science, and Wiley Online Library, were employed for the literature search on 6 August
2024 to identify articles about the performance of the commercial DLAS software for breast
cancer RT planning, with no publication year restriction. The following search statement
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was used: “Commercial” AND (“Deep Learning” OR “Artificial Neural Network”) AND
(“Segmentation” OR “Delineation” OR “Contouring”) AND “Breast Cancer” AND (“Ra-
diotherapy” OR “Radiation Therapy”). The search keywords were derived from the review
focus [40,41,44,51].

2.2. Article Selection

One reviewer was involved in the article selection. Table 1 illustrates inclusion and
exclusion criteria for the articles [47–49].

Table 1. Inclusion and exclusion criteria for articles.

Inclusion Criteria Exclusion Criteria

1. Written in English
2. Peer-reviewed, original research paper

published in any year
3. Focused on use of commercial deep

learning-based auto-segmentation
software for breast cancer patients’
radiation therapy planning

1. Commentary
2. Conference proceeding
3. Editorial
4. Grey literature
5. Non-peer-reviewed article (e.g., article on

arXiv platform)
6. Opinion
7. Perspective
8. Review

The exclusion criteria of Table 1 were used as this systematic review focused on the
performance of the commercial DLAS software for breast cancer RT planning and the
appraisal of methodology for the performance evaluations that were reported in the peer-
reviewed original research papers [47–49,52]. The conference proceedings were excluded
because their academic rigor was generally lower. They were deemed unsuitable for the
systematic review appraising the study methodology. This arrangement was in line with
other systematic reviews on DL [52,53]. Figure 1 shows the details of the article selection
process [47–49]. This involved duplicate article removal from the database search results.
Titles of papers, their abstracts, and full texts were subsequently assessed based on the
selection criteria. Every non-duplicate article within the search results was not removed
unless an exclusion decision could be made. Additional papers were identified through
checking reference lists of the included articles [47,48,54,55].
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Figure 1. Preferred reporting items for systematic reviews and meta-analyses flow diagram for system-
atic review of performance of commercial deep learning-based auto-segmentation (DLAS) software
for breast cancer radiation therapy planning. IEEE, Institute of Electrical and Electronics Engineers.

2.3. Data Extraction and Synthesis

A data extraction form was developed based on two narrative reviews (about DLAS
for a range of RT plannings [46] including lung cancer RT [56]), one critical review (on DLAS
for CTVs of different disease sites [44]), and two systematic reviews (about cervical [57]
and prostate cancers [58]). The data extracted from each included article were author name
and country; year of publication; software name and version (e.g., Limbus AI Inc. Contour
v1.5.0, etc.); DLAS architecture (such as U-Net); design of study (either retrospective or
prospective); any multi-center involvement; patient/population (e.g., left breast cancer
patients after mastectomy, etc.); dataset source (such as public: US The Cancer Imaging
Archive; and private: 1 Italian center) and size (e.g., 139 patients, etc.) for software
development (model training) and evaluation (testing); any calculation of sample size for
evaluation and external testing (i.e., software testing with use of dataset not involved in
its development); modality of images for DLAS (such as CT); OARs (e.g., heart, etc.) and
CTVs (such as interpectoral lymph node) segmented; reference contour (ground truth)
source (e.g., 3 ROs and 3 RTTs with greater than 10 years of experience, etc.); contouring
guidelines (such as European Society of Therapeutic Radiology and Oncology (ESTRO))
used; segmentation performances in terms of geometric accuracy (based on metrics such
as Dice similarity coefficient (DSC)) for the DLAS and manual contouring (with regard to
inter-observer variation) as well as any difference between these two; subjective accuracy
evaluation (e.g., percentage of OARs and CTVs requiring no and minor corrections, etc.);
efficiency evaluation (such as mean contouring time reduction percentage); and dosimetric
impact (e.g., no clinically relevant difference of doses to OARs between plans by the DLAS
and manual contouring) [44,56–58].
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When a paper investigated both atlas- and DL-based auto-segmentation software
packages or multiple disease sites, only data related to the DLAS for breast cancer RT
planning were extracted. In addition, for facilitating the software comparison, only mean
performance figures of the best model achieved in the external testing were included
when multiple sets of evaluation findings were reported [47–49]. Furthermore, three data
synthesis strategies were employed in this systematic review (if feasible): 1. taking the
averages for figures regarding the OARs, left and right breasts as the contralateral breast
figures [29,47–49]; 2. calculating the percentage of OARs and CTVs requiring no and minor
corrections, as well as those considered unusable based on individual figures reported
when an overall figure was not available [31,47–49]; and 3. calculating the percentage of
mean contouring time reduction per patient with the use of reported absolute time required
for correcting DLAS-generated contours (due to software processing time being hardware-
dependent and insignificant) and manual contouring [37,47–49]. Meta-analysis was not
conducted because the included studies employed a range of performance evaluation
strategies leading to a high study heterogeneity and hence limiting its value [52,59,60]. The
revised checklist for artificial intelligence in medical imaging (CLAIM) published in 2024
was used to assess quality of all included articles [61–64].

3. Results

Fifteen papers met the article selection criteria and were included in the review
(Figure 1). Tables 2 and 3 illustrate the performances of the commercial DLAS software
packages investigated by the included studies for breast cancer RT planning [26–39,65].
Eight software packages (Limbus AI Inc. Contour [26], Manteia Medical Technologies Ac-
cuLearning AI [27], Mirada Medical Ltd. DLCExpert [28,29], MVision.ai Contour+ [29], Rad-
formation Inc. AutoContour [29,30], RaySearch Laboratories AB RayStation [29,31–34,65],
Siemens Healthineers AG syngo.via RT Image Suite [35,36] and AI-Rad Companion Organs
RT [35,37,38], and Therapanacea Annotate [29,39]) were covered in these studies.

DSC was employed in all studies to objectively evaluate the geometric accuracy of the
structures contoured by the DLAS programs [26–39,65], and 95-percentile Hausdorff distance
(HD95) was the second most common metric used (Table 2) [27,31–35,38,65].
All but two papers (86.7%) applied DLAS to contour the OARs. Fourteen structures were cov-
ered, collectively [26,28,29,31–38,65]. The reported mean/median DSC and/or HD95 for these
structures were as follows: body (external contour): 0.99 [36]; contralateral
breast: 0.72–0.94 [26,28,29,31,36–38,65] and 6.3–22.7 mm [31,39,65]; esophagus: 0.32–0.99 [28,29,
31–33,36–38] and 4.0–161.0 mm [31–33,39]; esophagus-overlapping area: 0.85 and 2.3 mm [32];
heart: 0.88–0.96 [26,28,29,31–34,37–39,65] and 4.4–10.0 mm [31–35,39,65]; ipsilateral humeral
head: 0.81–0.93 [29,31–33] and 4.4–8.3 mm [31–33]; left lung: 0.95–1.00 [26,28,29,31–39,65]
and 1.4–8.8 mm [31–35,38,65]; right lung: 0.95–1.00 [26,28,29,31–39,65] and 1.4–8.8 mm [31–
35,38,65]; left anterior descending artery (LAD): 0.39–0.54 and 7.3–18.2 mm [31,65]; liver:
0.96–0.97 [29]; sternum: 0.95 and 1.2 mm [31]; spinal canal: 0.69–0.98 [29,31,36–38] and
4.7 mm [31,38]; thyroid: 0.63–0.78 [28,31–33] and 4.5–8.2 mm [31–33]; and trachea: 0.93
and 4.9 mm [31]. Hence, the mean/median DSC and HD95 ranges of the DLAS for the
OARs were 0.32 (esophagus) [32]−1.00 (lungs) [28] and 1.2 (sternum) [31]−161.0 mm
(esophagus) [32], respectively.



Multimodal Technol. Interact. 2024, 8, 114 6 of 23

Table 2. Geometric accuracy of commercial deep learning-based auto-segmentation (DLAS) software packages for breast cancer radiation therapy planning.

Software Name and Version Author, Year and Country
Geometric Accuracy

DLAS IOV DLAS VS IOV

Limbus AI Inc.

Contour v1.5.0 Radici et al. (2022), Italy [26]
Mean DSC, DCOM (mm) and PVD: contralateral

breast (0.72, 7.7 and −5.0%); heart (0.92, 4.2 and 12.0%);
L (0.99, 0.1 and 1.0%) and R lungs (0.99, 0.2 and 1.0%)

NA NA

Manteia Medical Technologies

AccuLearning AI Hou et al. (2023), China [27] Mean DSC and HD95 (mm) for U-Net: CTVp_breast
(0.86 and 15.0) NA NA

Mirada Medical Ltd.

DLCExpert Vaassen et al. (2022), The
Netherlands and UK [28]

Median DSC, sDSC, APL (mm) and MSHD (mm):
contralateral breast (0.90, 0.62, 2321.8 and 10.0);

esophagus (0.60, 0.33, 756.0 and 3.3); heart (0.91, 0.61,
1497.5 and 7.5); L (1.00, 0.99, 513.0 and 1.3) and R lungs
(1.00, 0.99, 601.5 and 1.4); thyroid (0.66, 0.34, 479.5 and

3.4); CTVp_breast (0.88, 0.57, 2665.8 and 12.4)

NA NA

Radformation Inc.

AutoContour Tsui et al. (2024), US [30]

Mean DSC, HD (mm) and MSD (mm): CTVn_L1-3
(0.70, 36.3 and 5.2); CTVn_L4 (0.54, 41.0 and 9.7);

CTVn_IMN (0.33, 41.8 and 9.0); CTVp_breast (0.85,
38.1 and 4.3); CTVp_chestwall (0.71, 38.5 and 6.9)

NA NA
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Table 2. Cont.

Software Name and Version Author, Year and Country
Geometric Accuracy

DLAS IOV DLAS VS IOV

RaySearch Laboratories AB

RayStation v9B Almberg et al. (2022),
Norway [31]

Mean DSC and HD95 (mm): CTVn_L1 (0.80 and 9.0);
CTVn_L2 (0.76 and 10.0); CTVn_L3 (0.80 and 5.5);
CTVn_L4 (0.80 and 4.3); CTVn_interpect (0.68 and
12.2); CTVn_IMN (0.71 and 8.0); CTVp_breast (0.95

and 5.3); contralateral breast (0.94 and 8.9); esophagus
(0.85 and 4.0); heart (0.96 and 5.4); ipsilateral humeral
head (0.93 and 4.4); L (0.98 and 1.6) and R lungs (0.98
and 1.5); LAD (0.54 and 7.3); spinal canal (0.91 and 4.7);
sternum (0.95 and 1.2); thyroid (0.78 and 4.5); trachea

(0.93 and 4.9)

Mean DSC and HD95 (mm):
CTVn_L1 (0.74 and 14.6);
CTVn_L2 (0.62 and 16.2);
CTVn_L3 (0.67 and 9.4);
CTVn_L4 (0.72 and 6.1);

CTVn_interpect (0.61 and 14.5);
CTVn_IMN (0.64 and 8.9);

CTVp_breast (0.94 and 5.7);
contralateral breast (0.91 and

11.2); esophagus (0.83 and 3.0);
heart (0.95 and 6.7); LAD (0.44

and 20.7); spinal canal (0.85 and
8.8); thyroid (0.81 and 3.9);

trachea (0.90 and 4.2)

DLAS outperforming ROs/RTTs
for all CTVs and OARs with

statistically significant
differences (p < 0.001–0.022)
except for DSC and HD95 of

CTVp_breast and thyroid and
HD95 of CTVn_interpect,

contralateral breast, esophagus,
heart and trachea

RayStation v9B/10B-SP1 Bakx et al. (2023), The
Netherlands [32]

Mean DSC, HD95 (mm) and sDSC: CTVn_L1 (0.76,
13.3 and 0.65); CTVn_L2 (0.69, 10.1 and 0.80); CTVn_L3

(0.67, 8.7 and 0.75); CTVn_L4 (0.33, 16.4 and 0.43);
CTVp_breast (0.92, 8.8 and 0.86); esophagus (0.32,

161.0 and 0.42); esophagus-overlapping area (0.85, 2.3
and 0.99); heart (0.93, 9.5 and 0.82); ipsilateral humeral

head (0.85, 8.3 and 0.82); L (0.96, 4.6 and 0.93) and R
lungs (0.96, 5.4 and 0.92); thyroid (0.71, 7.1 and 0.87)

NA NA

RayStation v9B/10B-SP1 Bakx et al. (2023), The
Netherlands [33]

Mean DSC, HD95 (mm) and sDSC: CTVn_L1 (0.78,
13.6 and 0.69); CTVn_L2 (0.71, 10.4 and 0.82); CTVn_L3

(0.73, 6.8 and 0.82); CTVn_L4 (0.57, 7.2 and 0.75);
CTVp_breast (0.93, 14.4 and 0.83); esophagus (0.70,
10.4 and 0.88); heart (0.94, 7.1 and 0.81); ipsilateral

humeral head (0.88, 7.6 and 0.86); L (0.98, 2.2 and 0.98)
and R lungs (0.99, 2.2 and 0.98); thyroid (0.63, 8.2

and 0.81)

NA NA
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Table 2. Cont.

Software Name and Version Author, Year and Country
Geometric Accuracy

DLAS IOV DLAS VS IOV

RayStation v11B-SP2 Mikalsen et al. (2023),
Norway [34]

Mean DSC and HD95 (mm): CTVn_L1 (0.72 and 12.0);
CTVn_L2 (0.66 and 12.0); CTVn_L3 (0.76 and 7.0);
CTVn_L4 (0.70 and 7.7); CTVn_interpect (0.66 and

12.0); CTVn_IMN (0.67 and 12.0); CTVp_breast (0.91
and 9.8); heart (0.94 and 5.6); lungs (0.98 and 1.4)

NA NA

RayStation v9B Zeverino et al. (2024),
Switzerland [65]

Median DSC, HD95 (mm), sDSC, HD (mm), HD99
(mm) and ∆V: contralateral breast (0.90, 6.3, 0.90, 15.5,

11.7 and −4.7%); heart (0.94, 6.8, 0.86, 11.0, 8.0 and
−4.2%); L (0.98, 2.1, 0.98, 23.5, 7.2 and 0.2%) and R

lungs (0.98, 2.0, 0.98, 24.3, 7.9 and −0.3%); LAD (0.39,
18.2, 0.73, 25.2, 23.1 and 1.9 cm3)

NA NA

Siemens Healthineers AG

syngo.via RT Image Suite
VB50/AI-Rad Companion

Organs RT VA20

Marschner et al. (2022),
Germany and US [35]

Mean DSC, HD95 (mm), MSD (mm), ∆V, RMSD (mm),
sensitivity, specificity, JCI, DI, GMI, CVD (mm) and L,
R, anterior, posterior, superior and inferior boundaries

(mm): heart (0.92, 4.4, 1.6, 2.1%, 2.2, 0.91, 0.99, 0.85,
0.06, 0.08, 4.7, −0.3, 0.0, −0.4, 0.0, −4.9 and −8.5); L

(0.97, 2.7, 0.8, −0.9%, 1.8, 0.98, 0.99, 0.95, 0.03, 0.02, 2.0,
−0.26, −4.9, 0.6, −0.1, −0.7 and −1.8) and R lungs

(0.97, 2.9, 1.0, −0.9%, 1.8, 0.98, 0.99, 0.95, 0.03, 0.03, 2.1,
2.5, 0.8, 0.7, −0.2, −0.5 and −1.5)

NA NA
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Table 2. Cont.

Software Name and Version Author, Year and Country
Geometric Accuracy

DLAS IOV DLAS VS IOV

AI-Rad Companion Organs
RT VA31 Hu et al. (2023), Australia [37]

Mean DSC, HD (mm), sensitivity and precision:
contralateral breast (0.89, 23.3, 0.91 and 0.88);

esophagus (0.75, 15.9, 0.76 and 0.75); heart (0.93, 11.1,
0.89 and 0.98); L (0.96, 21.7, 0.99 and 0.93) and R lungs
(0.97, 28.3, 0.99 and 0.95); spinal canal (0.69, 4.9, 0.98

and 0.54)

NA NA

syngo.via RT Image
Suite VB40

Pera et al. (2023), Germany
and Spain [36]

Median DSC: body (0.99); contralateral breast (0.89);
esophagus (0.99); L (0.98) and R lungs (0.98); spinal

canal (0.98)
NA NA

AI-Rad Companion Organs
RT VA30

Yamauchi et al. (2024),
Japan [38]

Median DSC, HD95 (mm) and MDA (mm):
contralateral breast (0.89, 22.7 and 2.2); esophagus

(0.80, 4.4 and 0.7); heart (0.95, 10.0 and 1.5); L and R
lungs (0.97, 8.8 and 0.9); spinal canal (0.78, 4.7 and 1.0)

NA NA

Limbus AI Inc, RaySearch Laboratories AB, and Therapanacea

Contour v1.5.0, RayStation
v11B and Annotate v1.10.0

Heilemann et al. (2023),
Austria [39]

Median DSC and HD (mm) for
Contour/RayStation/Annotate: heart (0.88 and

1.6/0.91 and 1.3/0.88 and 1.9); L and R lungs (0.97 and
2.0/0.95 and 1.4/0.97 and 1.4)

NA NA
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Table 2. Cont.

Software Name and Version Author, Year and Country
Geometric Accuracy

DLAS IOV DLAS VS IOV

Mirada Medical Ltd., MVision.ai, Radformation Inc., RaySearch Laboratories AB and Therapanacea

DLCExpert v2.6.4.47181,
Contour+ v1.2.1, AutoContour

v1.0.25.0, RayStation
v12.0.0.932 and Annotate

v1.10.0

Doolan et al. (2023), Cyprus
and Germany [29]

Median DSC, HD (mm), sDSC and APL (mm) for
DLCEx-

pert/Contour+/AutoContour/RayStation/Annotate:
contralateral breast (0.86, 29.2, 0.25 and 28,963.0/0.90,

21.4, 0.34 and 25,807.5/0.82, 37.5, 0.16 and
34,386.0/0.84, 24.8, 0.15 and 34,985.5/0.89, 24.9, 0.31

and 28,250.0); esophagus (0.73, 21.2, 0.50 and
3522.0/0.79, 19.1, 0.59 and 2504.0/0.76, 19.4, 0.51 and
3200.0/0.81, 13.6, 0.64 and 2260.0/0.84, 9.9, 0.63 and
2441.0); heart (0.94, 16.7, 0.42 and 19236.0/0.95, 10.8,
0.49 and 17,922.0/0.95, 10.7, 0.46 and 20,252.0/0.95,
12.0, 0.46 and 19,262.0/0.94, 10.5, 0.48 and 18,115.0);
ipsilateral humeral head (NA/0.91, 19.9, 0.66 and

2670.0/0.91, 20.6, 0.68 and 2216.0/0.81, 44.4, 0.53 and
4520.0/0.86, 36.9, 0.63 and 3567.0); L (0.97, 24.1, 0.56
and 35,206.0/0.97, 25.3, 0.61 and 32,763.0/0.96, 24.6,
0.54 and 37,397.0/0.96, 28.4, 0.55 and 37,980.0/0.97,

26.8, 0.61 and 32,844.0) and R lungs (0.96, 19.7, 0.57 and
29,982.0/0.96, 20.4, 0.60 and 27,896.0/0.95, 21.7, 0.48
and 35,266.0/0.96, 23.4, 0.57 and 31,733.0/0.96, 19.5,

0.60 and 28,851.0); liver (0.96, 17.4, 0.55 and
29,255.0/0.97, 18.4, 0.60 and 25,995.0/0.96, 24.9, 0.54
and 31,248.0/0.96, 22.7, 0.58 and 26,532.0/0.97, 22.1,
0.59 and 28,043.0); spinal canal (0.82, 9.2, 0.52 and

5239.0/0.83, 6.5, 0.48 and 5293.5/0.84, 6.3, 0.53 and
5092.0/0.84, 7.7, 0.53 and 4959.0/0.85, 6.7, 0.55

and 5175.0)

NA NA

APL, added path length; CTV, clinical target volume; CTVn_IMN, internal mammary lymph node clinical target volume; CTVn_interpect, interpectoral lymph node clinical target
volume; CTVn_L1, axillary level 1 lymph node clinical target volume; CTVn_L2, axillary level 2 lymph node clinical target volume; CTVn_L3, axillary level 3 lymph node clinical target
volume; CTVn_L4, supraclavicular lymph node clinical target volume; CTVp_breast, breast (primary tumor) clinical target volume; CTVp_chestwall, post-mastectomy chestwall (primary
tumor) clinical target volume; CVD, center of volume distance; DCOM, displacement of center of mass; DI, discordance index; DSC, Dice similarity coefficient; GMI, geographical miss
index; HD, Hausdorff distance; HD95, 95-percentile Hausdorff distance; HD99, 99-percentile Hausdorff distance; IOV, inter-observer variation; JCI, Jaccard conformity index; L, left;
LAD, left anterior descending artery; MDA, mean distance to agreement; MSD, mean surface distance; MSHD, mean slice-wise Hausdorff distance; NA, not available; OAR, organ at risk;
PVD, percentage volume difference; R, right; RMSD, residual mean surface distance; RO, radiation oncologist; RTT, radiation therapist; sDSC, surface Dice similarity coefficient; UK,
United Kingdom; US, United States; VS, versus; ∆V, difference of volumes segmented by deep learning and manual approaches.
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Table 3. Subjective accuracy, efficiency and dosimetric evaluation results of commercial deep learning-based auto-segmentation (DLAS) software packages for breast
cancer radiation therapy planning.

Software Name and Version Author, Year and Country
Evaluation Results

Subjective Efficiency Dosimetric

Limbus AI Inc.

Contour v1.5.0 Radici et al. (2022), Italy [26] NA Mean time reduction/patient: 46.0%
(7.0 min)

No clinically relevant difference of
doses to OARs between DLAS and

manual contouring

Manteia Medical Technologies

AccuLearning AI Hou et al. (2023), China [27]
No/minor corrections required for

13.0%/75.0% of CTVs; No unusable
CTVs contours

NA NA

Radformation Inc.

AutoContour Tsui et al. (2024), United States [30] NA NA

∆V90/95% < 5% with DSC > 0.70:
94.1%, 67.7%, 14.7% and 0.0% for

CTVp_breast, CTVn_L1-3, CTVn_L4
and CTVn_IMN of BCS patients;
62.5%, 56.3%, 9.4% and 3.1% for

CTVp_chestwall, CTVn_L1-3,
CTVn_L4 and CTVn_IMN of

mastectomy patients, respectively.
∆V95% used for all structures

except CTVn_IMN

RaySearch Laboratories AB

RayStation v9B Almberg et al. (2022), Norway [31]

No/minor corrections required for
72.0%/26.0% of OARs and

14.0%/71.0% of CTVs; No unusable
OARs and CTVs contours

Estimation of time
reduction/patient: 75.0% (manual:

60.0 min VS DLAS: 15.0 min)

CTV coverage (D98 > 95%): 100.0%
for breast and 89.0% for lymph

nodes; no clinically relevant
difference of doses to OARs

between DLAS and
manual contouring
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Table 3. Cont.

Software Name and Version Author, Year and Country
Evaluation Results

Subjective Efficiency Dosimetric

RayStation v9B/10B-SP1 Bakx et al. (2023),
The Netherlands [33]

No/some corrections required for
39.0%/56.0% of OARs and

7.0%/75.0% of CTVs; Unusable
contours: CTVp_breast (35.0%),

CTVn_L1 (30.0%), CTVn_L4 (25.0%),
heart (5.0%) and thyroid (5.0%)

Mean time reduction/patient: 58.2%
(manual: 58.6 min VS DLAS:

24.5 min)
NA

RayStation v11B-SP2 Mikalsen et al. (2023),
Norway [34]

No/minor corrections required for
85.0%/10.0% of OARs and

8.0%/77.0% of CTVs; Unusable
contours: CTVs (6.0%) and

OARs (2.0%)

Mean time reduction/patient: 68.0%
(manual: 47.2 min VS DLAS:

15.1 min)

CTV coverage (D98 > 95%): 70.0%
for breast and 85.0% for lymph

nodes; no clinically relevant
difference of doses to OARs

between DLAS and
manual contouring

Siemens Healthineers AG

AI-Rad Companion Organs
RT VA31 Hu et al. (2023), Australia [37]

No/minor OARs corrections
required: 87.3%/12.7%; No
unusable OARs contours

Mean time reduction/patient: 82.2%
(manual: 16.0 min VS DLAS:

2.9 min)
NA

syngo.via RT Image Suite VB40 Pera et al. (2023), Germany and
Spain [36]

No/minor OARs corrections
required: 75.7%/17.7%; Unusable

OARs contours: 0.7%

Mean time reduction/patient: 88.6%
(manual: 32.7 min VS DLAS:

3.7 min)
NA

AI-Rad Companion Organs
RT VA30

Yamauchi et al. (2024),
Japan [38]

Mean score: 3.6 out of 4.0
(indicating no/minor OARs

corrections required); No unusable
OARs contours

Mean time reduction/patient: 45.4%
(manual: 18.6 min VS DLAS:

10.1 min)
NA

Limbus AI Inc, RaySearch Laboratories AB and Therapanacea

Contour v1.5.0, RayStation v11B
and Annotate v1.10.0

Heilemann et al. (2023),
Austria [39]

Median score for Limbus
Contour/RayStation/Annotate:
3.5/3.0/3.5 out of 4.0 (indicating

no/minor OARs corrections
required); No unusable

OARs contours

NA
No clinically relevant difference of
doses to OARs between DLAS and

manual contouring
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Table 3. Cont.

Software Name and Version Author, Year and Country
Evaluation Results

Subjective Efficiency Dosimetric

Mirada Medical Ltd., MVision.ai, Radformation Inc., RaySearch Laboratories AB and Therapanacea

DLCExpert v2.6.4.47181, Contour+
v1.2.1, AutoContour v1.0.25.0,

RayStation v12.0.0.932 and
Annotate v1.10.0

Doolan et al. (2023), Cyprus and
Germany [29] NA

Mean time reduction/patient for
DLCEx-

pert/Contour+/AutoContour/
RayStation/Annotate:

66.0%/92.8%/64.4%/86.0%/93.7%
(manual: 22.0 min VS DLAS:

7.5/1.6/7.8/3.1/1.4 min)

NA

Vaassen et al. [28], Bakx et al. [32], Zeverino et al. [65], and Marschner et al. [35] did not conduct any subjective accuracy, efficiency, or dosimetric evaluations. BCS, breast-conserving
surgery; CTV, clinical target volume; CTVn_IMN, internal mammary lymph node clinical target volume; CTVn_L1, axillary level 1 lymph node clinical target volume; CTVn_L2, axillary
level 2 lymph node clinical target volume; CTVn_L3, axillary level 3 lymph node clinical target volume; CTVn_L4, supraclavicular lymph node clinical target volume; CTVp_breast,
breast (primary tumor) clinical target volume; CTVp_chestwall, post-mastectomy chestwall (primary tumor) clinical target volume; D98, dose received by 98% of structure; DSC, Dice
similarity coefficient; min, minutes; NA, not available; OAR, organ at risk; VS, versus; ∆V90/95%, % difference of structures segmented by deep learning and manual approaches that
received 90/95% of prescribed dose.
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Ten (body [36], contralateral breast [26,28,29,31,36–38,65], esophagus-overlapping
area [32], heart [26,28,29,31–35,37–39,65], ipsilateral humeral head [29,31–33], left and right
lungs [26,28,29,31–39,65], liver [29], sternum and trachea [31]) out of fourteen (71.4%)
OARs had the mean/median DSC values of at least 0.70, indicating acceptable for clini-
cal practice (Table 2) [26,29,30,36–39,66]. Using the same DSC cutoff (≥0.70), more than
three quarters of the OARs delineated by the following seven software packages were
deemed clinically acceptable: Limbus AI Inc. Contour (all (four) OARs (contralateral
breast, heart, and left and right lungs)) [26], Mirada Medical Ltd. DLCExpert (seven
(contralateral breast, heart, ipsilateral humeral head, left and right lungs, liver and spinal
canal) out of nine (77.8%) OARs) [28,29], RaySearch Laboratories AB RayStation (eleven
(contralateral breast, esophagus-overlapping area, heart, ipsilateral humeral head, left
and right lungs, liver, spinal canal, sternum, thyroid and trachea) out of thirteen (84.6%)
OARs) [29,31–34,39,65], Siemens Healthineers AG syngo.via RT Image Suite/AI-Rad Com-
panion Organs RT (five (contralateral breast, esophagus, heart, and left and right lungs) out
of six (83.3%) OARs) [35–38], MVision.ai Contour+, Radformation Inc. AutoContour and
Therapanacea Annotate (all (eight) OARs (contralateral breast, esophagus, heart, ipsilateral
humeral head, left and right lungs, liver and spinal canal)) [29].

About half of the included studies investigated the DLAS for contouring the CTVs
with the use of four programs, namely, Manteia Medical Technologies AccuLearning
AI [27], Mirada Medical Ltd. DLCExpert [28,29], Radformation Inc. AutoContour [30],
and RaySearch Laboratories AB RayStation [31–34] (Table 2). Eight CTVs were covered,
collectively [27,28,30–34]. The reported mean/median DSC and/or HD95 for these struc-
tures were as follows: CTVp_breast: 0.85–0.95 [27,28,30–34] and 5.3–15.0 mm [27,31–34];
post-mastectomy chestwall (primary tumor) clinical target volume (CTVp_chestwall):
0.71 [30]; axillary level 1 lymph node clinical target volume (CTVn_L1): 0.70–0.80 [30–34]
and 9.0–13.6 mm [31–34]; axillary level 2 lymph node clinical target volume (CTVn_L2):
0.66–0.76 [30–34] and 10.0–12.0 mm [31–34]; axillary level 3 lymph node clinical target
volume (CTVn_L3): 0.67–0.80 [30–34] and 5.5–8.7 mm [31–34]; supraclavicular lymph
node clinical target volume (CTVn_L4): 0.33–0.80 [30–34] and 4.3–16.4 mm [31–34]; in-
ternal mammary lymph node clinical target volume (CTVn_IMN): 0.33–0.71 [30,31,34]
and 8.0–12.0 mm; and interpectoral lymph node clinical target volume (CTVn_interpect):
0.66–0.68 and 12.0–12.2 mm [31,34]. Although only a little more than one third of the CTVs
covered in these studies could be considered clinically acceptable (DSC ≥ 0.70), all four
software packages were able to provide the satisfactory results for the primary tumors,
CTVp_breast, and CTVp_chestwall [27,28,30–34].

Table 3 shows that about three quarters of the studies conducted more clinically
meaningful (subjective, efficiency, and/or dosimetric) evaluations for the DLAS pro-
grams [26,27,29–31,33,34,36–39]. Except for Bakx et al.’s [33] study on RaySearch Laborato-
ries AB RayStation v9B/10B-SP1, the other seven (87.5%) revealed that a large proportion
of the OARs and CTVs delineated by Limbus AI Inc. Contour [39], Manteia Medical Tech-
nologies AccuLearning AI [27], RaySearch Laboratories AB RayStation [31,34,39], Siemens
Healthineers AG syngo.via RT Image Suite [36] and AI-Rad Companion Organs RT [37,38],
and Therapanacea Annotate [39] required no or minor corrections, with unusable contours
up to a maximum of 6.0% [27,31,34,36–39]. Hence, this contributed to the notable mean
contouring time reduction per patient in the range of 45.4% (Siemens Healthineers AG
AI-Rad Companion Organs RT VA30 [38]) to 93.7% (Therapanacea Annotate [29]) for the
DLAS. Five studies [26,30,31,34,39] evaluated the dosimetric impact of the DLAS. No study
revealed any clinically relevant dose difference (>5%) to the OARs between the DLAS and
manual contouring [26,31,34,39,67]. However, three papers demonstrated that the DLAS
had notable dosimetric impacts on the CTVs, especially for the lymph nodes [30,31,34].

Table 4 illustrates the characteristics of the included studies. Although all arti-
cles were published within the last two years, they had a number of methodological
weaknesses [26–39,65]. For example, only two studies (13.3%) collected the data prospec-
tively [26,34], and one fifth (three out of fifteen) were multi-center [31,32,35]. No in-
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cluded paper calculated the required sample size for the testing dataset [26–39,65]. This
resulted in only tens of patients being involved in 13 out of 15 (86.7%) studies for DLAS
program testing [26,27,29–34,36–39,65]. Two (13.3%) papers even had a dataset size be-
low six [26,37]. Nonetheless, external testing was conducted in 12 out of 15 (80.0%)
articles [26,28–30,32,34–39,65]. In addition, the datasets used in the included papers were
collected from twelve different countries [26–32,34–39,65] on four continents:
Europe [26,28,31,32,34–36,39,65], Asia [27,29,38], North America [30], and Australia [37].
The mix of the strengths and the weaknesses of the articles led to their quality scores
ranging between 44.0% and 65.0% with the mean and median values of 53.9% and 53.0%,
respectively [26–39,65].
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Table 4. Characteristics of studies on commercial deep learning-based auto-segmentation (DLAS) software packages for breast cancer radiation therapy planning.

Author, Year
and Country

DLAS
Architecture

Study Design Multi-
Center

Patient/
Population

Training Dataset Testing Dataset
Sample

Size Calcu-
lation

External
Testing

Reference
Contour Source

Contouring
Guidelines

Article
Quality (%)Source

Size
(Number of

Patient)
Source

Size
(Number of

Patient)

Limbus AI Inc. Contour

Radici et al.
(2022), Italy

[26]
U-Net Prospective No

L breast cancer
patients after

BCS

Public: US TCIA
and Iranian

dataset by Rezaei
et al. [68]

At least
hundreds

Private: 1
Italian center 3 No Yes 4 expert ROs DBCG 53

Manteia Medical Technologies AccuLearning AI

Hou et al.
(2023), China

[27]

4 CNN variants
(encoder-decoder-

based CNN,
residual U-Net,

U-Net, and V-Net)

Retrospective No

L and R breast
cancer patients
after BCS and
mastectomy

Private: 1 Chinese
center 139

Private: 1
Chinese
center

83 (27 L and
26 R BCS, and
16 L and 14 R
mastectomy)

No No
Senior ROs with

>8-year
experience

NA 65

Mirada Medical Ltd. DLCExpert

Vaassen et al.
(2022), The

Netherlands
and UK [28]

CNN Retrospective No Breast cancer
patients NA 486 Private: 1

Dutch center 362 No Yes All (40) RTTs NA 63

Radformation Inc. AutoContour

Tsui et al.
(2024), US

[30]
NA Retrospective No

Breast cancer
patients after

BCS/mastectomy
NA NA Private: 1 US

center
66 (34 BCS

and 32
mastectomy)

No Yes
2 ROs with 20-

and 30-year
experience

NA 58

RaySearch Laboratories AB RayStation

Almberg et al.
(2022),

Norway [31]
3D CNN U-Net Retrospective Yes

L breast cancer
patients after

BCS
Private: 2

Norwegian centers 170
Private: 2

Norwegian
centers

30 No No
3 ROs and 3
RTTs with
>10-year

experience

ESTRO
except

heart based
on Feng

et al.’s atlas
[69]

58

Bakx et al.
(2023), The

Netherlands
[32]

3D CNN U-Net Retrospective Yes L and R breast
cancer patients

Private: 2
Norwegian and 1
Dutch centers for

RayStation
original and

in-house models,
respectively

Original
model: 170

and in-house
model: 160
(80/side)

Private: 1
Dutch center 30 No

Only for
original
model

ROs and RTTs
with final

review by 1
experienced RO

ESTRO for
CTVs, and
Feng et al.’s

[69] and
Kong

et al.’s [70]
atlases for

OARs

53

Bakx et al.
(2023), The

Netherlands
[33]

3D CNN U-Net Retrospective NA
L and R breast
cancer patients

after BCS
NA 160 NA 20 No No

ROs and RTTs
with final

review by 1
experienced RO

ESTRO 56
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Table 4. Cont.

Author, Year
and Country

DLAS
Architecture

Study Design Multi-
Center

Patient/
Population

Training Dataset Testing Dataset
Sample

Size Calcu-
lation

External
Testing

Reference
Contour Source

Contouring
Guidelines

Article
Quality (%)Source

Size
(Number of

Patient)
Source

Size
(Number of

Patient)

Mikalsen et al.
(2023),

Norway [34]
3D CNN U-Net Prospective No L and R breast

cancer patients
Private: 2

Norwegian centers 170
Private: 1

Norwegian
center

30 No Yes 2 experienced
ROs and 1 RTT

ESTRO
except

heart based
on Feng

et al.’s [69]
atlas

51

Zeverino et al.
(2024),

Switzerland
[65]

3D CNN U-Net Retrospective No L breast cancer
patients

Private: 2
Norwegian centers 170 Private: 1

Swiss center 20 No Yes 1 senior RO ESTRO and
DBCG 51

Siemens Healthineers AG syngo.via RT Image Suite/AI-Rad Companion Organs RT

Marschner
et al. (2022),

Germany and
US [35]

U-Net variant NA Yes Breast cancer
patients

Private:
multi-centers 10,386

Private: 1
German
center

237 No Yes 1 experienced
RO RTOG 56

Hu et al.
(2023),

Australia [37]
NA Retrospective No Breast cancer

patients NA NA
Private: 1

Australian
center

5 No Yes
1 RTT with
>10-year

experience
RTOG 49

Pera et al.
(2023),

Germany and
Spain [36]

U-Net variant NA No L and R breast
cancer patients

Private:
multi-centers in

Asia, Europe, and
North and South

America

Thousands
Private: 1
Spanish
center

30 (15/side) No Yes
1 expert RTT

with final
review by 1 RO

NA 47

Yamauchi
et al. (2024),
Japan [38]

U-Net variant Retrospective No Breast cancer
patients

Private:
multi-centers in

Europe and
America

NA
Private: 1
Japanese

center

30 (5 with
implants and

5 with
mastectomy)

No Yes 6 expert ROs RTOG 44

Limbus AI Inc Contour, RaySearch Laboratories AB RayStation and Therapanacea Annotate

Heilemann
et al. (2023)-
Austria [39]

NA Retrospective No Breast cancer
patients NA NA

Private: 1
Austrian

center
15 No Yes RTTs and 1 RO NA 51

Mirada Medical Ltd. DLCExpert, MVision.ai Contour+, Radformation Inc. AutoContour, RaySearch Laboratories AB RayStation and Therapanacea Annotate

Doolan et al.
(2023),

Cyprus and
Germany [29]

NA Retrospective No
Bilateral, L and
R breast cancer

patients
NA NA

Private: 1
Cypriot
center

20 (1
bilaterial, 10
R and 9 L)

No Yes
3 ROs with

>10-year
experience

RTOG 53

All studies used computed tomography images for DLAS. 3D, 3-dimensional; BCS, breast-conserving surgery; CNN, convolutional neural network; CTV, clinical target volume; DBCG,
Danish Breast Cancer Cooperative Group; ESTRO, European Society of Therapeutic Radiology and Oncology; L, left; NA, not available; OAR, organ at risk; R, right; RO, radiation
oncologist; RTOG, Radiation Therapy Oncology Group; RTT, radiation therapist; TCIA, The Cancer Imaging Archive; UK, United Kingdom; US, United States.
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4. Discussion

This article is the first systematic review on the performance of the commercial DLAS
software for breast cancer RT planning, covering eight software packages [26–39,65]. Hence,
it advances the previous four narrative reviews that covered DLAS for breast cancer RT
planning [40–43], the NRO Oncology’s narrative review on the DLAS without the inclusion
of the breast cancer RT [46], and Matoska et al.’s [44] critical review that did not include any
commercial DLAS software for this purpose. Another merit of this systematic review paper
is that all included studies were published in the last two years, and hence can provide
more recent and relevant findings to inform clinical practice (Tables 2–4) [26–39,65].

All included papers reported the mean/median DSC figures to objectively indi-
cate the geometric accuracy of the OARs and/or CTVs delineated by the respective
commercial DLAS programs (Table 2) [26–39,65]. Based on the commonly used DSC
cutoff of 0.70 [26,29,30,36–39,66], the commercial DLAS programs were able to contour
ten OARs (body [36], contralateral breast [26,28,29,31,36–38,65], esophagus-overlapping
area [32], heart [26,28,29,31–35,37–39,65], ipsilateral humeral head [29,31–33], left and right
lungs [26,28,29,31–39,65], liver [29], sternum and trachea [31]) and three CTVs (CTVp_breast
[27,28,30–34], CTVp_chestwall [30] and CTVn_L1 [30–34]) up to the clinically acceptable
standard. The performance of the commercial DLAS software for the CTV contouring
reported in this review is comparable to the geometric accuracy of the in-house DLAS
models reviewed by Matoska et al. [44] that CTVp_breast and CTVp_chestwall contours
were deemed satisfactory for clinical use (DSC ≥ 0.70), but those for lymph nodes were
not acceptable because of their small volumes [30,34]. This also explains the DSC of LAD
being lower than 0.70 in some situations [34,65]. The suboptimal DSC values of the OARs,
esophagus, spinal canal, and thyroid can be attributed to the difference in the contouring
guidelines used by the commercial companies for the software development and individual
clinical centers [28,29,32,33].

The DSC was the most common geometric accuracy metric for DLAS because it is a
popular loss function for model training, with the goal of achieving the highest DSC value
for minimizing loss to attain the greatest DLAS performance [40,46]. The use of DSC also
facilitates the comparison of DLAS model performance [26–39,65]. It is noted that every
geometric accuracy metric has its strengths and weaknesses, but such discussion is out of
the scope of this review, and these details are available from other review articles [40,46,71].
Table 2 shows that all included papers used multiple geometric accuracy metrics to address
the limitations of individual ones [26–39,65]. However, it has been criticized that all these
geometric metrics are less clinically relevant as the ultimate goal of DLAS implementation
is for auto-delineation of the structures that are acceptable by local clinicians and effective
for the subsequent treatments, resulting in a reduction of contouring time due to minimal
manual corrections required for these contours [26,27,29–31,33,34,36–39,46].

NRO Oncology has suggested that commercial DLAS software should be evaluated
by multiple ways including the geometric accuracy, subjective, efficiency and dosimet-
ric evaluations for ensuring that it meets the needs of individual clinical centers [46]. A
good example of the required evaluations was shown in Almberg et al.’s study [31] which
covered the geometric accuracy for both DLAS and manual contouring as well as any
difference between these two, subjective accuracy, efficiency and dosimetric assessments.
Nevertheless, Table 3 illustrates that most of the included studies were compliant with
the NRO Oncology’s suggestion, and their subjective, efficiency and/or dosimetric eval-
uation results were in line with the corresponding geometric accuracy findings overall
(Table 2) [26,27,29–31,33,34,36–39]. These indicate that all eight software packages covered
in this review, namely Limbus AI Inc. Contour [26,39], Manteia Medical Technologies
AccuLearning AI [27], Mirada Medical Ltd. DLCExpert [29], MVision.ai Contour+, Rad-
formation Inc. AutoContour [29], RaySearch Laboratories AB RayStation [29,31,33,34,39],
Siemens Healthineers AG syngo.via RT Image Suite [36] and AI-Rad Companion Organs
RT [37,38], and Therapanacea Annotate [29,39] should be useful for clinical practice.
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Table 4 demonstrates that the included papers only have quality scores of 44.0–65.0%
(mean: 53.9% and median: 53.0%). In 2023, Sivanesan et al. [62] and Bhandari et al. [63]
conducted two literature reviews on studies about AI in medical imaging and magnetic
resonance imaging with the use of CLAIM to assess their included paper quality. They
reported that the median and mean quality scores of their reviewed papers were 57.0% [62]
and 47.6% (range: 23.8%–73.8%) [63], respectively, which are in line with the findings of
this review. In addition, the issues identified in their included articles which contributed to
the low quality scores were similar to the weaknesses of the papers covered in this review,
e.g., a lack of sample size calculation, etc. [26–39,62,63,65].

Although NRO Oncology has suggested that every clinical center should conduct its
own DLAS software evaluation before clinical implementation due to a variation of clinical
protocols (needs) across the centers for RT treatment simulation and planning locally [46],
such testing appears particularly crucial for the following three software packages: Manteia
Medical Technologies AccuLearning AI [27], Mirada Medical Ltd. DLCExpert [28,29], and
MVision.ai Contour+ [29] as per the findings given in Tables 2–4. This is because only Hou
et al. [27] and Doolan et al. [29] evaluated Manteia Medical Technologies AccuLearning
AI and MVision.ai Contour+, with retrospective collections of 83 and 20 breast cancer
cases, respectively. In addition, Manteia Medical Technologies AccuLearning AI was not
externally tested [27]. Furthermore, Vaassen et al. [28] merely assessed the geometric
accuracy of Mirada Medical Ltd. DLCExpert despite Doolan et al. [29] determining its
efficiency based on a retrospective dataset with 20 patients.

For future studies, the commercial DLAS software performance should be assessed
based on Almberg et al.’s [31] approach with the external testing dataset size determined
through the traditional power calculations suggested by the CLAIM 2024 Update Panel
and prospective data collection from multiple centers to ensure that it can provide optimal
outcomes in future clinical practice [48,49,64]. If any suboptimal outcome is revealed by the
evaluation, the clinical centers should approach the commercial software developer for po-
tential model finetuning with use of their local datasets to improve the DLAS performance
due to the aforementioned clinical protocol difference issue [32].

This systematic review has two main limitations. The article selection and the data
extraction and synthesis processes were handled by one author with greater than 20 years
of experience in conducting literature reviews [47–49,55]. According to a recent systematic
review on methodology, this approach is considered appropriate when the single reviewer
is experienced [47–49,72]. Furthermore, the use of PRISMA guidelines [50], the data extrac-
tion form derived from two narrative reviews (about DLAS for a range of RT plannings [46]
including lung cancer RT [56]), one critical review (on DLAS for CTVs of different disease
sites [44]), and two systematic reviews (about cervical [57] and prostate cancers [58]), and
the CLAIM would further address any potential bias [61,64]. In addition, only papers
written in English were covered in this review, potentially affecting its comprehensive-
ness [47–49,55]. Nonetheless, fifteen articles were included, and that number is greater
than the number of the DLAS studies on breast RT covered in Matoska et al.’s [44] critical
review. In addition, this review covers the studies from four continents [26–39,65].

5. Conclusions

This systematic review covers eight software packages, namely Limbus AI Inc. Con-
tour, Manteia Medical Technologies AccuLearning AI, Mirada Medical Ltd. DLCExpert,
MVision.ai Contour+, Radformation Inc. AutoContour, RaySearch Laboratories AB RaySta-
tion, Siemens Healthineers AG syngo.via RT Image Suite and AI-Rad Companion Organs
RT, and Therapanacea Annotate, for the DLAS of breast cancer RT planning. Based on
the geometric accuracy assessment results reported by the included studies, collectively,
these programs can contour ten OARs (body, contralateral breast, esophagus-overlapping
area, heart, ipsilateral humeral head, left and right lungs, liver, sternum and trachea) and
three CTVs (CTVp_breast, CTVp_chestwall and CTVn_L1) up to the clinically acceptable
standard. Their subjective and dosimetric evaluation results match the corresponding
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geometric accuracy findings in general. Hence, they can significantly reduce the mean
contouring time per patient by 45.4%–93.7% for breast cancer RT planning.

Although NRO Oncology has suggested that every clinical center should conduct its
own DLAS software evaluation before clinical implementation due to variations in the
clinical protocols across centers for RT treatment simulation and planning locally, such
testing appears particularly crucial for Manteia Medical Technologies AccuLearning AI,
Mirada Medical Ltd. DLCExpert, and MVision.ai Contour+ as a result of the methodolog-
ical weaknesses of the corresponding studies such as the use of small datasets collected
retrospectively from single centers for the evaluation. For future studies, multiple aspects
of the commercial DLAS software’s performance should be assessed including their geo-
metric accuracy, subjective, efficiency and dosimetric evaluations with the external testing
dataset size determined through the traditional power calculations and the data collected
prospectively from multiple centers. It is expected that the findings of this review will
support clinical centers in screening commercial DLAS software for further evaluation
before implementing it for breast cancer RT planning.
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