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Abstract
Machine learning (ML) applications are increasing their footprint in underground mine planning, enabled by the gradual

enrichment of research methods. Indeed, improvements in prediction results have been accelerated in areas such as min-

ing dilution, stope stability, ore grade, and equipment availability, among others. In addition, the increasing deployment of

equipment with digital technologies and rapid information retrieval sensor networks is resulting in the production of

immense quantities of operational data. However, despite these favourable developments, optimisation studies on key

input activities are still siloed, with minimal or no synergies towards the primary objective of optimising the production

schedule. As such, the full potential of ML benefits is not realised. To explore the potential benefits, this study outlines

primary input areas in production scheduling for reference and limits the scope to six key areas, covering dilution pre-

diction, ore grade variability, geotechnical stability, ventilation, mineral commodity prices and data management. The study

then delves into the literature of each before examining the limitations of existing common applications, including ML.

Finally, conclusions with recommendations/solutions to enhance resilience, global optimality, and reliability of the produc-

tion schedule through synergistic nexus with function-specific optimised input models are presented.
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Introduction and motivation
The increasing world population and demand for techno-
logical devices exert tremendous pressure on the academic
and professional communities to deploy ever more efficient
techniques in extracting exhaustible mineral resources
essential to support modern lifestyles (Hotelling, 1991).
Naturally, sub-surface mineral resources amenable to
surface mining methods tend to be exhausted first, while
an increasingly deep-seated proportion of the resource is
gradually deferred for extraction by complex, underground
mining methods (Chung et al., 2022; Khaboushan and
Osanloo, 2020). One of many challenges in underground
mining is the limited flexibility imposed by excavation
sizes, which are generally optimised for the type and size
of mining equipment utilised in such activities. As such,
the planning and scheduling of production for underground
mining require a proactive and highly collaborative deploy-
ment of resources to realise optimum benefits. The digital era,
already upon us, has set this in motion with the introduction of

machine learning (ML) in various aspects of production plan-
ning in underground mining. To date, remarkable successes
regarding the predictive potency of ML models in under-
ground mining have opened a new window with a broader
demagogic perspective and global view of process optimisa-
tion. This study leverages literature review to establish pertin-
ent challenges in production scheduling activities and propose
novel or emerging machine learning-based concepts and trans-
ferrable applications within the last decade to improve global
optimisation of production schedules. To achieve this, the
current study deliberately narrows the discussion scope by
choosing six main scheduling activities commonly referred
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to in extant literature and proposes research questions that are
then discussed with rigorous academic reference. Finally, con-
clusions with recommendations are provided to engineer flexi-
bility and resilience into the processes, albeit with a strong
inclination to support the overall production schedule opti-
misation. To that end, we propose the following questions
which are specific to production planning and scheduling in
underground mining operations to focus the current study
and subsequent efforts to propose suitable solutions.

1. Ore dilution: What can be done differently to know
more about the causes and magnitude of dilution, and
how can this be embedded in the schedule?

2. Grade variability: How can we improve the prediction
of grade variability, and how can this be built into the
production schedule?

3. Mine ventilation: What can we do to ensure the mine
ventilation plan is always aligned to the stope extraction
sequence, and how can this be built into the schedule?

4. Geotechnical conditions: How can we improve our
knowledge about catastrophic geotechnical hazards
and susceptibility, such as rockbursts or seismicity,
and how can this risk be accounted for in the mine plan?

5. Mineral commodity prices: How can we improve the
robustness of commodity price assumptions, and how
can this be reflected in the mine plans and schedules?

6. Mine planning and scheduling data: Is the data current
and relevant for all scheduled activities as and when
required for application, and how can the data be
managed to support robust schedule optimisation?

7. Mining rates: How can we improve equipment utilisa-
tion to achieve desired production rates, and how can
this be embedded into the production planning?

8. Equipment availability: How can we improve equip-
ment availability to support utilisation rates, and how
can this be built into the production schedule?

Items (1) to (6) require a comprehensive academic tete-a-
tete with extant literature on current and emerging optimisa-
tion methods, their weaknesses or strengths, as well as the
relevance and accuracy of input data for increased visibility
on the level and extent of the magnitude and impact of the
challenges, before an adaptive solution can be proposed.
Items (7) and (8) are deeply rooted in the equipment selec-
tion, maintenance, availability, and utilisation space. A full
discussion of these two areas without a detailed and robust
case study will likely yield premature or inconclusive
recommendations. As a matter of caution, this study has
deferred these for concreteness and simplicity, but if they
should prove to be of higher importance in related studies,
the foregoing readily extends to cover them. Accordingly,
items 1 to 6 bracket the scope of this paper.

Machine learning (ML) applications in underground
mining are quite diverse, spanning across activities, such
as drill and blast performance (Latif et al., 2023; Leonida,
2023), prediction of resistance in ventilation circuits
(Wang et al., 2022), simulation of underground fires
using mine ventilation circuits for fire training and risk miti-
gation controls (Xue et al., 2023), geotechnical prediction

of rockbursts, seismicity and deteriorating ground condi-
tions (He et al., 2021; Shirani and Taheri, 2019; Shirani
et al., 2020; Shirani Faradonbeh et al., 2024), mining dilu-
tion prediction (Jang et al., 2015; Jorquera et al., 2023;
Zhao and Jia’an, 2020) and ore grade estimation (Kaplan
and Topal, 2020). However, despite the growing footprint
of ML and its emerging favourable prediction strength
over linear statistical methods in the underground mining
space, the applications are still largely confined to discrete
optimisation endeavours, with a tenuous link to the full
scope optimisation of underground production plans and
schedules (Chimunhu et al., 2022; Shreyas and Dey,
2019). As such, the full potential of ML capabilities is
undersold, with minimal or no synergies drawn from
these siloed applications towards optimising production
schedules. Thus, the original contribution of this paper
arises from recommendations to harness the full potential
of current and emerging ML applications to address the
identified problems and influence the trajectory of future,
related studies.

For a clear roadmap to reader referencing, the paper is
structured as follows: Sections ‘Dilution in underground
mining’ to ‘Robustness of data for production planning
and scheduling’ discuss the selected six research questions.
Each section commences with a research question, followed
by a brief literature review and challenges, which precede
the current and emerging applications of ML in the area,
concluding with machine learning-based recommendations
to engineer resilience and flexibility into the schedule.

Dilution in underground mining
Control of dilution in underground mining is essential to
optimise the business’s resources on the fundamental
tasks of extracting planned material economically, as dic-
tated by the schedule, while maintaining the geotechnical
design constraints, such as pillars and stope spans, intact
to preserve regional stability for the safety of personnel
and equipment working in the active areas (Erten et al.,
2021; Papaioanou and Suorineni, 2016; Potvin, 1989).
Furthermore, uncontrolled dilution may result in unplanned
additional material that compromises the scheduled produc-
tion forecasts, ore quality and tremendous cost pressures on
material handling systems (Cordova et al., 2022; Henning
and Mitri, 2008; Jang and Topal, 2013). Similarly, under-
break results in ore losses, leading to low metal output
and underutilisation of resources (Jang et al., 2016). In
fact, missed schedule forecasts and related cashflows are
one of the biggest challenges in underground mining opera-
tions (Delentas et al., 2021; Hefni et al., 2020; MacLean,
2017).

The Mathews stability graph, first proposed by Mathews
et al. (1980) and later refined by Potvin (1989) and subse-
quent scholars (Suorineni, 2010; Sutton, 1998), is founda-
tional to early prediction of hanging wall instability and
dilution in open stope underground mining. The method
utilises geotechnical data, such as stress around an excava-
tion, rockmass structure and strength, as well as the phys-
ical properties of the stopes (shape, size, orientation etc.)
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to determine an excavation’s stable and unstable zones,
through a graphical plot of the excavation’s hydraulic radius
and the stability number. While the method still has consider-
able application today, it is handicapped by its blurred defin-
ition of stability number factors and its different
interpretations of stability zones, leading to data concerns
in comparing its application for new or evolving mining
environments (Chongchong et al., 2018; Suorineni, 2010).
Further, the model is handicapped by limited scalability,
as empirical modelling is best suited to the database of
cases, which may lead to spurious results and conclusions
in circumstances with scanty data (Erten et al., 2021;
Suorineni, 2010). Furthermore, the method disregards
blast-induced stress factors and is not appropriate for
rockburst conditions (Jang et al., 2015). Fortunately,
recent studies on dilution prediction in open stope
mining using ML have occasioned a progressively posi-
tive trend in both accuracy and reliability of results, par-
tially addressing the rigidity of the Stability Graph method
through enhanced capabilities. This includes the ability to con-
sider the relative importance of influencing variables and the
ability to effectively handle outliers with minimal impairment
to results, as noted in the application of the Random Forest
(RF) model for hanging wall stability prediction by
Chongchong et al. (2018). The two MLmethods principally
fronting these developments are the variants of the Neural
Network (NN) and the Decision Tree (DT) models. While
NN models have remarkable prediction capability, they gen-
erally require large volumes of data to produce an accurate
model, otherwise a model produced with a small data set
would tend to overfit. Further, NN models utilise hidden
layers in their architecture, making it difficult to logically
trace or understand the underlying decision rubric leading
to the result (i.e. they have a black-box nature). On the con-
trary, the DT model and its variants exhibit a logically coher-
ent decision framework, which lends greater clarity to users.
Furthermore, the models can handle outliers and multimodal
data, with minimum impact to prediction potency (Shirani
et al., 2020). Importantly, the models require minimal
data transformations to establish non-linear relationships
in input data (Nilashi et al., 2021). Notably, its application
in the recent study by Jorquera et al. (2023) has some strik-
ing results, reporting a precision score and prediction accur-
acy of 83.5% and 82.4%, respectively, for the Random
Forest (Decision Tree) model, compared to the k-nearest
neighbour (k-NN)’s 78% and 74.7%, respectively, based
on a sample of 752 cases of pre-processed in-situ observations
in stable zones from various open stope mines in Brazil, Chile
and Argentina.

Given the foregoing, the study leverages the increasingly
remarkable performance of DT models in this field to
propose the application of DT model variants to address
challenges peculiar to flawed or inaccurate mining dilution,
such as poor schedule forecasts with significant variances to
actual production. Specifically, a ML-based dilution predic-
tion model is proposed to provide direct input feed to a pro-
duction schedule optimisation model. The ML model scans
the scheduled stopes and predicts the mining dilution, based
on the stopes’ projected properties and prior learning

acquired from modelled data. The ML dilution factor is
then utilised to calculate the final mined tonnes for stopes
in the production schedule optimisation process. For
clarity, the proposed synergistic configuration is presented
in Figure 1.

The model utilises data on geological, geotechnical, and
physical attributes, as well as drill and blast performance to
establish patterns in overbreak and underbreak and there-
fore, dilution. The dilution predicted factor is then used to
determine the actual tonnes and grade mined in the MIP
schedule optimiser model. The proposed ML dilution
model provides dynamic dilution factors with sufficient rap-
idity that reflects the changing landscapes as the schedule is
executed.

Ore grade variability
Mineral grade uncertainties, particularly ore grade variabil-
ity within an orebody, remain among the biggest challenges
in production scheduling and forecasting. This is mainly
because geological block models commonly used for
mine planning are modelled using discrete field data, but
the interpretation assumes the grade fields in the model are
continuous (Smith and Dimitrakopoulos, 1999). Further,
drilling the orebody densely to improve grade continuity inter-
pretation is costly and practically infeasible. As such, the
mineral resource is generally defined based on a minimum
drill density pattern and a set confidence level. This conun-
drum has been addressed in part, by complex geostatistical
mathematical computation methods, such as Kriging (Vann
and Guibal, 1998), inverse distance weighting (Zhang et al.,
2017), simulation (Dagasan et al., 2019; Dowd and
Dare-Bryan, 2004; Maleki and Emery, 2015; Tercan and
Akcan, 2004; Vallejo and Dimitrakopoulos, 2019) and sto-
chastic modelling (Benndorf and Dimitrakopoulos, 2013;
Lillah and Boisvert, 2013), to infer the radius of influence of
the drill holes concerning the magnitude and level of con-
tinuity of the ore grade. The set confidence level facilitates
standardisation of resource classification to commonly
referred categories of inferred, indicated, and measured
in increasing confidence level (JORC, 2012). Typically,
an inferred resource has few drill holes but is short of
the minimum required drill density for the resource evalu-
ation to meet the indicated standard classification bench-
mark for production planning purposes. Without loss of
generality, production scheduling mostly utilises the indicated
resource, underpinned by its confidence level to justify ‘rea-
sonable prospects for eventual economic extraction’ (JORC,
2012; Stephenson, 2001). The measured confidence category
is largely theoretical because such a level of confidence can
rarely be achieved, requiring a very high drill density that is
costly and may render the eventual extraction of the resource
uneconomic due to excessive drilling requirements.

Despite the rigours of mathematical computation involved,
a monotonous chorus of geostatisticians has persistently
pointed out the limitations of Kriging, such as the require-
ment for sufficient sample data to achieve reliable results
and, in particular, the linear inference of data on blocks that
are smaller than the geostatistical selective mining unit,
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vehemently arguing this practice distorts the grade-tonnage
curves (De-Vitry et al., 2010; Tahmasebi and
Hezarkhani, 2012). To circumvent this limitation, variants
of Kriging have been developed, eventually leading to
multiple-point geostatistics and sequential Gaussian simula-
tion methods as alternatives to improve prediction of the
spatial complexity of the orebody, thereby improving
grade prediction (Dimitrakopoulos and Jewbali, 2013;
Paithankar and Chatterjee, 2018; Song et al., 2019;
Vallejo and Dimitrakopoulos, 2019). While these
efforts gradually yielded some positive improvements
in grade prediction, the problems remain, albeit with an
increasing clarity on the magnitude and impact unearthed
from ongoing scholarly and professional efforts. The
increasing computing capabilities industrywide, spurred
by the fourth industrial revolution, are gradually expand-
ing the perspectives and options for ore grade prediction,
with the inclusion of applications such as soft computing
and ML methods (Dumakor-Dupey and Arya, 2021).
Notably, the works of Kaplan and Topal (2020) reveal some
interesting results in their ore grade estimation study for a
gold deposit, using a combination of k-nearest neighbour
(k-NN) and Multi-layer feed-forward neural network ML
models. They formulated a grade prediction model based on
ore lithology, level of ore alteration and sample coordinates
to establish a pattern and reported a model coefficient of deter-
mination (R2) of 0.528. A similar study byKaplan et al. (2021)
on ore grade estimation using gradient boosting-based ML
models reported a prediction accuracy of 72.8% against ordin-
ary Kriging accuracy of 65.1% based on 1882 samples from

29 drill holes for a gold deposit. Interestingly, these findings
were also complimented by Tsae et al. (2023), who reported
a similar R2 value of 0.584, on their Neural Network grade
prediction model based on a sample of 14,294 from Jaguar
Copper Mine in Australia. Further interest is drawn to the
recent research by Prior et al. (2021), who developed a
Gaussian simulation algorithm to improve ore grade predic-
tion by first updating the geological grade control model for
an underground operation in near real-time using sensors
installed near the mining face and on ore transfer conveyors.
The results confirmed the superiority of models that were con-
stantly being updated using ML prediction over the original
unaltered geological models on grade prediction for short-term
production planning purposes. In view of this, it is increas-
ingly evident that the challenges of ore grade variation are
immense, requiring higher-order mathematical computation
and prediction capabilities to improve visibility into the phe-
nomenon. When enhanced visibility is achieved, it essentially
catalyses the efforts towards attaining appropriate solutions
and mitigation strategies. In this regard, ML methods would
provide better solutions especially for complex, non-
stationary, and non-linear datasets as the ML methods
assume the data is independent and has identical distribu-
tion. Given above, it can implicitly be concluded that the
traditional geostatistical methods, such as Kriging, Inverse
Distance Weighting (IDW), multiple-point geostatistics,
Simulation, stochastic modelling and variants thereof, fall
short in addressing these tremendous impediments. The
same appears to be true for ML models, based on existing lit-
erature. However, comparatively better results are emerging

Figure 1. ML dilution prediction framework for mixed integer programming (MIP) schedule optimisation model.
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from ongoing grade prediction studies using ML models or
ensembles, yet ML applications in this field are still in their
early years, suggesting the current and emerging ML method-
ologies may hold the key to unravelling the regularities essen-
tial for reliable ore grade prediction within an orebody. In the
interim, the study leverages the literature to propose an ensem-
ble ML model that utilises known geological data, with provi-
sion for short-term updating, based on learning inferred from
new field data from activities such as development drilling,
sampling activity, production drilling etc., thereby improving
the geological database for short term functional needs.
Because the reach of ML applications is not yet mature in
this field of study, a surrogate (auxiliary/subordinate) mathem-
atical model will still be required to cross-validate the results
and ensure they fall within range.

Fundamentally, this proposal seeks to mitigate ore grade
variability in a production schedule in two ways. First, the
immediate review and application of the latest ore grade
data provides opportunities for short term potential stope
extensions beyond pre-established limits from the conven-
tional model. For illustrative purposes, a drift under devel-
opment for a sublevel open stope is considered, where a ML
model being updated with the latest data suggests the
orebody extends by a few metres beyond previously estab-
lished limits according to a conventional model (Figure 2).
Assuming an extension of 1 m to the ore drive develop-
ment, with a projected average stope grade of 4 g/t of
gold, a similar stope height of 20 m as for the adjacent
stopes, an average width of 3 m and material-specific
gravity of 2.75, the extension stope will potentially contrib-
ute an additional 165t @ 4.0 g/t or 21 troy ounces.
Financially, this is worth approximately $USD 42,000 of
revenue for the in-situ tonnes (excludes recovery, mining,
and processing costs) per extensional metre, assuming a
gold price of $USD 2000 per troy ounce. Evidently, such
short-term decisions have the capacity to progressively
build resilience to the production schedule through gains
that incrementally build up to mitigate losses when ore
grade unexpectedly falls below plan. A key success factor
for this proposal is the ‘immediate’ application of the ore
grade data to make prompt decisions, without waiting for
periodic model updates, as the wait time will cause schedule
slip that outweighs the incremental benefit from stope
extensions. Further, additional value may also be generated
from such extensional opportunities by rapidly reassessing
the potential (stope) extension’s economics under the pre-
vailing economic environment at the time of extraction.
Thus, the value is in the immediate extraction and monetisa-
tion of the extensions at present value instead of a period in
the future when the model is updated, potentially requiring
the generated cashflows to be discounted. For example, if
the metal price spikes temporarily, there could be short
term opportunities to extend the development and stope
boundaries slightly and recover supplementary metal
ounces for a rainy day, adding robustness to schedule fore-
casts in the long term.

Although this recommendation may serve to improve
ore grade prediction and production planning flexibility
proximately, on-going work and encouraging results

regarding the predictive potency of ML suggests the
course is right, and a tenable ML driven solution is within
reach, as ML applications continue to extend their breadth
and depth for a comprehensive and unified understanding
of ore grade variability.

Mine ventilation
The increasing depth of operations for underground mining
also present corresponding difficulties on continued provi-
sion of sufficient ventilation for the health and wellbeing
of personnel, as well as meeting increasingly stringent
minimum regulatory requirements. Furthermore, as mines
extend laterally and deeper, the strain on installed ventila-
tion capacity increases, requiring upgrades, including, but
not limited to, fans, ventilation control devices, ventilation cir-
cuits, ventilation equipment and software. These upgrades are
not cheap, considering the potential disruption to production
when an active area is taken offline or impacted by adjacent
areas during upgrades. For a long time, the design, control
and monitoring of ventilation for underground mining, par-
ticularly hard rock open stoping operations, have largely
been driven by mathematical modelling, supported by
commonly used ventilation models, such as Ventsim
(Bascompta et al., 2020; Carter, 2018). Key considerations
focused on monitoring and controlling climatic data, such
as humidity, heat, noxious fumes, and air quality, to
ensure the safety of personnel is not compromised by
adverse effects of exposure to such elements. In response
to the increasing demand for ventilation, as mines go
deeper, a number of mines shifted to the Ventilation on
Demand (VoD) supply system, which essentially regulates the
mine’s ventilation infrastructure to provide just enough ventila-
tion as and when required thereby saving power, running
costs and improving on the utilisation of available ventilation
utilities (Costa and da Silva, 2020; Shriwas and Pritchard,
2020). However, key challenges recurrent in extant literature
include, but are not limited to, monitoring of manual ventilation
control devices such as ventilation doors, reliable prediction
of atmospheric conditions (temperature, humidity, noxious
fumes, respirable dust, diesel particulate matter etc.) between
sensors or established ventilation stations, resulting in data
gaps (Shriwas and Pritchard, 2020). Thankfully, recent
studies on mine ventilation modelling, using Artificial
Neural Network models to predict the presence and con-
centration of nitrous fumes in underground mines,
yielded some encouraging results, with remarkable pre-
diction accuracies of more than 90% (Buaba, 2023;
Karagianni and Benardos, 2023; Ray et al., 2023). These
results suggest thatMLmethodologies have the prediction
capability to mitigate some of the recurrent problems.
Importantly, the study by Buaba (2023) demonstrates
the impact of heat associated with auto compression, geo-
thermal gradient andmining equipment in an underground
sublevel open stoping operation to production planning.
The results of production schedule scenarios subjected
to heat showed that production schedules that were ‘heat
constrained’, based on ML predicted heat levels, were
more realistic than schedules that did not incorporate
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heat restrictions. With this emerging trend, the study pro-
poses a basic surrogate model for the prediction of specific
climatic data or atmospheric conditions for mine planning
guidance. The climatic data will be overlain on the

schedule (Figure 3), showing zones of low to high concen-
tration for the climatic data element of interest. This will
provide a global view of the element’s potential inter-
action with the schedule at a glance, facilitating prompt

Figure 2. Development and stope extensions from machine learning grade prediction.

Figure 3. Machine learning generated climatic data map, overlain on sections of the mine showing zones of low to high concentration

for the selected climatic data element.
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assessment of the schedule’s integrity in light of the pre-
dicted environmental conditions.

The model may be restricted to focus on one or two key
elements based on the risk weighting of such elements to
the overall health and safety of personnel, and the gravity
of potential production loss attributable to such risks.
Thus, the atmospheric elements of interest will be site-
specific and based on risk assessments, requiring tailored
construction and prediction configurations to meet the
needs. As before, such a basic ventilation model will
improve ventilation risk awareness and stimulate construct-
ive debate and interchange of ideas across the engineering
teams by creating a wider platform for production risk con-
sideration and mitigation, leading to robust and flexible pro-
duction schedules.

Geotechnical conditions
The stability graph, initially proposed by Mathews et al.
(1980) and later modified by Potvin (1989), and other scho-
lars Suorineni (2010), is foundational to stope stability
assessment and prediction of geotechnical conditions in
underground open stope mining and design. The graph
plots the stability number against the stability radius of a
design surface (Figure 4), where the stability number is a
function of the rockmass quality (Q).

Despite its successful application to date, its limited cap-
acity to predict rockburst conditions is a major handicap in
deep underground mining (Jang et al., 2015). Rockbursts
and blast-induced seismicity in underground mining are
increasingly showing their disruptive potential to produc-
tion activities. As most of the mines are going deeper into
zones of high in-situ stress and seismic activity, so does
the likelihood of rockburst and seismic rockmass mass fail-
ures (Dong et al., 2013). Crudely, seismicity can be classi-
fied as induced or triggered, where induced seismicity
occurs in close proximity to the stimulus (e.g. blast activ-
ity), and, therefore, migrative. On the other hand, triggered

seismicity occurs distant to the stimulus but rather tends to
be localised around rock mass failure processes and inci-
tants such as faults, shears, dykes and yield pillars
(Brown, 2021). Rockburst phenomena are an abrupt
failure of over-stressed rock due to spontaneous release of
accumulated strain energy, resulting in damage to equip-
ment or infrastructure, injury to personnel, and possibly
cause project discontinuance due to ground instability
(Shirani and Taheri, 2019). Causes of rockbursts include,
but not limited to, the existence of faults, shearing, rock
stress/strain configurations due to pillar sizes, and external
disturbances, such as blasting, caving, and adjacent devel-
opment of drifts. The most common forms are strainburst
rockbursts which occur during excavation, and impact-
induced rockbursts, occurring post excavation (Keneti and
Sainsbury, 2018). The level and extent of the ramifications
are devastating, as extreme cases of loss of life and project
abortion or malfunctioning from rockburst and seismic
activity are possible, as noted in the unfortunate seismic
event that resulted in the collapse of a 3 km long drift at
the Deep Mill Level Zone Mine in Indonesia in 2013,
leading to a six-month cessation of operations (Profera,
2022). Similarly devastating effects were noted in May
1994 when a 2.1-magnitude seismic event resulted in the
violent failure of a peninsular remnant at depths of approxi-
mately 2300 m at an underground mine in the Carletonville
Goldfield, South Africa (Durrheim et al., 1998). Researchers
have applied numerous theories, such as the stiffness theory,
bifurcation theory, strength theory, burst liability theory,
chaos theory and energy theory, as well as various numerical
analyses to predict rockburst and seismicity phenomena
(Ma et al., 2016; Tang et al., 2010; Wiles, 2005; Zhou
et al., 2012). Despite a plethora of detailed literature on the
prediction of rockburst and seismicity phenomena, the lack
of consensus on a key criterion for selecting key determinant
parametric data inevitably points to the enormous modelling
and prediction complexity for the phenomena. The challenges
are aggravated by limited data on the phenomena, with several
studies using shared databases, posing data validity concerns
(Papadopoulos and Benardos, 2021). Indeed, most studies
on rockburst and seismicity have explicitly pointed out that
this phenomenon is poorly understood and remains one of
the most pervasive risks in underground mining (Deng and
Gu, 2018; Dong et al., 2013). In fact, despite this being a
subject of numerous hypotheses, there is no consensus yet
on what denotes a rockburst. Further, a number of open ques-
tions regarding rockburst occurrence and seismic propagation
are still being met with dichotomous views from scholars,
which suggests a lot more work is required for a unified and
stable position on this phenomenon. While numerical and
mathematical methods have been used for rockburst prediction
(Deng and Gu, 2018; He et al., 2018; Wiles, 2005), recent
studies show an increasing footprint of ML applications in
this space (Dong et al., 2013; Waqar et al., 2023). Again,
we note the application of various ML methodologies
(Table 1), such as genetic algorithms (Li et al., 2017; Zhou
et al., 2012), neural networks (Shirani and Taheri, 2019;
Zhou et al., 2020), and decision trees (Dong et al., 2013;
Papadopoulos and Benardos, 2023; Pu et al., 2018; ShiraniFigure 4. Stability graph.
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and Taheri, 2019), with progressive improvements reported.
Particularly interesting from the study results is the increasing
consensus on certain causalities, such as mining depth, the
magnitude of inducement/mining-induced disturbances, the
existence of geological intensifiers (faults, shear zones, discon-
tinuities, dykes), excavation geometry, excavation size, and
the spatial location of yield pillars, among other factors.
Additionally, there is an increasing realisation and acceptance
that rockbursts are stochastic, due to variability in geotechnical
and geomechanical conditions imposed by non-uniform distri-
bution of geological structures (Kadkhodaei et al., 2022),
which are the catalytic or transfer medium of stresses and
deformation. This convergence of perspectives is crucial as
it sets in motion a clearer pathway for the development of
‘basic’, yet robust geotechnical models that may be useful
for different levels of production planning work. According
to Profera (2022), there’s growing consensus for the under-
ground mining industry to consider more efficient models
for rockburst and seismicity prediction to minimise potential
significant production disruptions from these phenomena.

Meanwhile, the underground mining industry’s lagging
pace on rockburst and seismicity prediction, encumbered
by the prevalence of outdated prediction and monitoring
methods currently in use despite their glaringly inadequate
predictive capability to keep pace with changes in the envir-
onment, was the subject of intense debate in 2022 at the 10th

Rockburst Conference held in Tucson, Arizona, USA
(Profera, 2022). This clearly points to an increasing aware-
ness on the disruptive impact of these phenomena on pro-
duction and the urgency to mitigate the concomitant risks.

Reflecting on the foregoing, the study leverages the
existing knowledge to propose the inclusion of a basic geo-
technical model that feeds selected input data into the mine
planning and scheduling functional database. The analysis
consciously refers to this model as ‘basic’ as this is a func-
tional, specific model to support production scheduling
needs, while the full model for expansive use remains avail-
able for deep diving into the specifics, if required. Based on
current mining activity data, the basic geotechnical model
will include core rockburst and seismicity cartographic
data for mining areas, including their rockburst and seismi-
city proneness. Calibrated and validated models may be
used to generate synthetic data where such data is limited,

thereby minimising concerns with imbalanced data sets as
proposed by Papadopoulos and Benardos (2021). The pro-
posed model ensures that the visibility of potential risks and
opportunities to production and scheduling is extended to
the mining engineers and other disparate stakeholders in
the mine planning and scheduling functions. For practical
application simplicity, the basic geotechnical model may
be superimposed on the mine plan or production schedule,
similar to the ventilation model discussed earlier (Figure 3).
Overlaying the model on the mine plan will facilitate a
global view of the scheduled areas and their proneness to
rockburst and seismicity. Provision of such basic models
to disparate stakeholders is likely to accelerate the disinte-
gration of departmental silos and facilitate collaborative
engagements between Geotechnical and Mining engineer-
ing teams. When this occurs, production schedule optimisa-
tion endeavours benefit from increased stakeholder
participation and catholicity, awareness, and constructive feed-
back, leading to robust schedules. Further, the increased visi-
bility of such basic geotechnical tools facilitates early
discussions on opportunities and threats peculiar to production
planning and scheduling, to be embedded into the schedule at
the shop floor level, increasing risk awareness for managerial
consideration and mitigation.

Mineral commodity prices
A candid analysis of the economics of exhaustible resources
by Hotelling (1991) posed some key questions regarding
the value of a mine’s worth, based on the potential produc-
tion and cashflows redeemable from the investment. More
confronting is the credibility and robustness of the
mineral price values adduced to any such forecasts, when
a plethora of factors are clearly involved in influencing
the mineral commodities’ supply and demand, and there-
fore, prices (Chen, 2016; Cortez et al., 2018a; Cortez
et al., 2018b; Shafiee and Topal, 2010) The dynamic evolu-
tion of needs, spanning across the financial, technological,
geopolitical and psychological spheres, add to the
complex web of mineral commodity (MC) price drivers
(Gargano and Timmermann, 2014). The intricacy of price
forecasting is further compounded when the already

Table 1. Representative studies for rockburst prediction using ML methods.

Scholars Application fields Models

Li et al. (2017) Tunnelling projects GA

Shirani and Taheri (2019) Underground mining & projects ENN/GEP/DT

Zhou et al. (2020) Underground mining & projects ANN

Dong et al. (2013) Underground mining & projects DT (RF)

Pu et al. (2018) Underground mining & projects DT

Zhou et al. (2020) Underground mining & projects Heuristics (GA/SVM/PSO)

Shukla et al. (2021) Underground mining & projects Heuristics (XGBoost/DT/SVM)

Papadopoulos and Benardos (2023) Underground mining & projects Heuristics (ML & numerical methods)

Shirani Faradonbeh et al. (2024) Underground mining & projects Hybrid ML & k-means clustering (GEP/CART/LR)

GA: genetic algorithm; ENN: emotional neural network; GEP: gene expression programming; ANN: artificial neural network; DT: decision tree; SVM:

support vector machine; XGBoost: extreme gradient boosting; PSO: particle swarm optimisation; ML: machine learning; RF: random forest; LR: linear

regression.
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complicated relationship of price drivers, is considered rela-
tive to time.

The diversity of businesses on financial risk matters
necessitates the development of different and unique
hedging strategies to curtail company-specific risks (Ali
et al., 2022). As such, robust enterprise risk management
strategies may be developed in advance based on insights
from MC price forecasts (Hiransha et al., 2018). In under-
ground mine planning, an intimate knowledge of the key
determinant variables to MC price forecasts, spot, and
future MC price movements, underpins the mine planning
and scheduling core objectives of maximising shareholder
value and meeting market supply obligations, among
others. Furthermore, MC price assumptions are central to
the determination of the economic viability, life of mine
tenure and profitability margins for a mining operation.
Indeed, MC prices are central to industrial and socioeconomic
developments that we continue to witness, globally. As such,
cost-sensitive production scheduling optimisation endeavours
become imperative to maximise shareholder value, navigating
threats and optimising on opportunities in the markets.
To that end, the previous example discussed in the
section ‘Ore grade variability’ (Figure 2) perfectly
demonstrates the immediate benefits of robust MC price
forecasts in the short-term planning horizon by facilitat-
ing rapid re-assessment of economic viability of marginal
stopes using price forecast data. If viable, development
drifts and stopes may be extended slightly beyond their
initial delineations, allowing more economic material
than planned to be extracted as shown in Figure 5.

Early studies onMC price forecasting mostly utilised cor-
relational relationships between certain mineral commodities
such as oil, or macroeconomic changes in global economy,
to infer corresponding price changes to the mineral commod-
ity of interest (Shafiee and Topal, 2010; Watkins and
McAleer, 2004). Traditionally, spot and future MC price
forecasting has been dominated by econometric, stochastic
and time series models (Cortez et al., 2018a; Watkins and
McAleer, 2004). However, while econometric models can
handle multiple correlational relationships among variables,
they notionally use static data, rendering them weak in hand-
ling uncertainties induced by variability within the variables
(Cortez et al., 2018a). While stochastic models can mitigate
this handicap by accounting for uncertainty in their architec-
ture, they suffer from limited capabilities in handling the
large volume of input data that is typically required for
effective prediction. This conundrum has inclined scholars
to pursue variants of these traditional models, including
ensembles, to improve MC price forecasting capabilities,
as noted in the recent work by Madziwa et al. (2022) in
their forecasting of long-term gold prices using data for
a 16-year period, from 2000 to 2016. The authors used
multivariate stochastic models and reported a superior
prediction result, measured by a mean absolute deviation
error of 0.653, compared to the Mean Reverting, and the
Autoregressive Integrative Averages (ARIMA) methods,
which had mean absolute deviations of 2.127 and 2.489,
respectively.

As ML applications gradually penetrated into various
facets of the industry in recent years, its predictive

Figure 5. Development and stope extensions based on re-evaluations using MC price forecasts.
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potency drew interest from scholars in MC price forecasting
as noted in the research by Cortez et al. (2018b) who pro-
posed a combination of chaos theory and ML techniques
to improve MC price forecasts. The authors argued that
chaos theory models can recognise sensitivity to original
conditions and can establish the time lags and other inherent
causalities in the system and, therefore, better placed to
handle the chaotic behaviour of MC prices. They further
argue that ML can derive patterns from input data to recre-
ate future behaviour. This opinion has been extended to
propose the inclusion of entropy theory in MC price fore-
casting, as well as the use of intelligent long short-term
memory (LSTM) models, with simulated annealing, in
studies of long-term annual forecasts of copper prices
(Hiransha et al., 2018; Tapia et al., 2020). Perhaps the
recent attempt to forecast the prices of gold, silver,
copper, platinum and palladium on daily and monthly fidel-
ities using the particle swarm optimisation (PSO) model
shows the capacity for agility inherent in ML models
when it comes to handling multi-objective optimisations
simultaneously (Cohen, 2022).

It is increasingly evident from the foregoing that, despite
the complexity involved in MC price forecasting, the pre-
dictive potency of ML models is gradually coming into
view. Further, ML models’ capabilities in easily handling
large volumes of data lend them greater suitability to the
challenging task. Furthermore, ML models can easily
detect patterns and projective properties in data, facilitating
better predictions in such instances. However, chaotic
environments are difficult to model and simulate with ML
and therefore, still require the heavy artillery of econometric
models to handle. Further, the sensitive nature of financial

indices, such as MC prices, naturally lends them to great
scrutiny, particularly the underlying assumptions and deci-
sion rubric that underpins the forecast indices. As such, ML
models that use hidden layers in their architecture (e.g.
neural networks) easily lose appeal and convincingness to
users despite their high predictive potency, as the predic-
tand lacks a logical trace to the source variables. For this
and other reasons, the study proposes developing a MC
price forecasting ensemble model that utilises a combin-
ation of econometric and ML techniques for price forecasts
on monthly fidelities. It is further proposed that the model
output be accompanied by a business-specific commentary,
as an adjunct to qualify the forecast’ underlying factors in
broad terms. At this juncture, monthly fidelities on forecasts
are preferred in order to keep the realism of MC forecasts
closely in check, allowing extensional short-term mining
opportunities to be extracted while ensuring a rapid
change of course can be implemented should detrimental
unexpected price spikes occur. Figure 6 illustrates an
example of such a scenario for an underground sublevel
open stope operation.

Specifically, the MC price forecast model allows extrac-
tion to occur using spot or near spot prices instead of the
reserve prices, potentially presenting opportunities for
short term extensions to be extracted viably at higher MC
prices obtaining within a month’s price forecast. The pre-
diction of short-term price movements on a weekly or
monthly fidelity may facilitate dynamic updates to produc-
tion schedules, ensuring opportunities are not missed and
threats are adequately mitigated in synchronous response
to the peaks and troughs of changes in the operating envir-
onment (Figure 7). Sub-economic stopes left out of the

Figure 6. Stope extensions from machine learning MC price forecasting.
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schedule mainly on economic reasons may be reconsidered
for inclusion into the schedule and eventual extraction if
re-evaluation using favourable MC price forecasts shows
a positive economic case.

Thus, this proposal adds flexibility to the mine plan by
triggering prompts for production schedule review and
related optimisation needs. For clarity, this proposal
should not be interpreted as an attempt to establish a
global prediction model of some sort, but rather, an internal,
fit for purpose model, with architecture and inputs tailored
to reflect the specific, yet diverse, needs of the business, in
its quest to deliver maximum shareholder value.

Robustness of data for production planning
and scheduling
Mathematical optimisation of production schedules in under-
ground mining is approaching maturity after decades of
gradual enrichment of models and optimisation philosophy
from successive studies (Campeau and Gamache, 2020;
Little et al., 2013; Musingwini, 2016; Nehring et al., 2012;
Topal, 2003; Topal, 2008; Trout, 1995; Sandanayake et al.,
2015; Sotoudeh et al., 2020). However, recurring challenges
of significant variances between schedule forecasts and
actual production prevail largely due to flawed inputs that
may have become obsolete, lagging or no longer suitable,
due to changes in the operating environment (Topal, 2019).
Specifically, the currency of schedule inputs and their

flexibility to remain intimately related to the mining processes
as the schedule progresses through crests and troughs of a
dynamic environment are a fundamental condition that under-
pins production scheduling effectiveness (Chimunhu et al.,
2024; Harjunkoski et al., 2020). Typically, the common prac-
tice of using fixed parametric data sets in generating schedules,
even when there is evident volatility in the environment to
suggest otherwise, marks the tangent of a discrepancy
between schedule forecasts and outcomes. This situation is
further exacerbated by the uncertainty inherent in other key
production inputs, such as ore grade variability or the magni-
tude of mining dilution (Sotoudeh et al., 2020). Building upon
the foregoing discussions from sections ‘Dilution in under-
ground mining’ to ‘Mineral commodity prices’, it is evident
that the volume of data utilised in production planning and
scheduling is undoubtedly immense. Further, the ubiquitous
adoption of the mining industry into the digital world,
through a rapid expansion of digital platforms on modern
mining equipment and processes, is generating massive data
into the business’s servers and storage facilities at alarming
rates.

Fortunately, a possible pathway to mitigate this obstacle
is proposed for industrial production environments by
Valdez-Navarro and Ricardez-Sandoval (2019) and Dias
and Ierapetritou (2020), who both provide comprehensive
proposals on the integration of design and control, with sur-
rogate models proposed to improve quantification of uncer-
tainty. Additionally, Li (2011) contributes to the early
discussions on the application of ML, providing some

Figure 7. Mc price forecast showing opportunity windows for re-optimisation of mine plans.
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practical recommendations for efficient data storage,
retrieval and use, with a specific focus on feature selection
and reduction of data for functional specifications, using the
MapReduce data processing model. Similar ML applications
are noted in Kadhum et al. (2019), who also use MapReduce
and a ML subsystem built on user requirements to enhance
feature selection and data partitioning for tailored use. With
vast amounts of data now readily available from mining pro-
cesses, data preprocessing and validation are crucial tominimise
impairment of results of subsequent activities and processes that

rely on such data as input. Thankfully, ML models are steadily
proving their enhanced capability in preprocessing of such large
volumes of data, enabled through function specific configura-
tions for data processing, which include but are not limited
to, detection and replacement of missing values, generic or
domain-specific outlier imputation based on specific rules,
ascription/supplanting missing data based on most probable
worth as determined by available data as well as attribute reduc-
tion to remove noisy features and retain a subset of relevant data
(Venkata and Narsimha, 2021).

Figure 8. Machine learning dilution prediction framework for MIP schedule optimisation.
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Now, when the existing literature on mathematical opti-
misation of production schedules in underground mining is
examined, it is silent on the level of accuracy of input data
parsed onto the optimisation model. While there are several
attempts and ways to mitigate this handicap, such as includ-
ing stochastic processes in the optimisation methodology
(Dimitrakopoulos and Jewbali, 2013), the scarcity of dis-
cussion on this issue in mathematical model applications
represents a significant blind spot that warrants serious con-
sideration. Addressing this oversight in the model inputs
will undoubtedly minimise the impairment of optimal solu-
tions, attributable to the use of flawed or inaccurate inputs.
Moreover, optimisation of mining processes, such as drilling
and blasting (Leonida, 2023), rockburst prediction (Waqar
et al., 2023), and equipment availability (Nehring et al.,
2010; Patil et al., 2021), are mostly isolated, with no direct
connection to the ultimate objective, that is, supporting the
optimisation of the production schedule. Consequently, the
full potential from these isolated improvements in prediction
may not be transferred for full realisation in the schedule.

Given the increasingly large volume of data being gen-
erated from modern mining equipment and product embed-
ded systems such as information retrieval sensors and
equipment performance monitoring modules, along with
manual data systems, the complexity of establishing a
robust mine planning database should not be underesti-
mated. Indeed, robust data management and processing
are pivotal to optimisation endeavours, requiring a high
level of responsibility, and therefore, should not be dele-
gated or relegated to inexperienced or junior personnel.
For this reason, specialist data management personnel
should be tasked with this responsibility, ensuring input
data is frequently validated against in-field measurements.
Further, the study proposes establishment of a central infor-
mation sphere, where structured data for the schedule and
other functional purposes can be precipitated without
having to chase for it from departmental silos (Figure 8).

This data hub will include basic, function-specific
models to enable the scheduling engineers to lead the
process, seeking detailed information from departmental
subject matter experts only in instances where detailed infor-
mation is warranted. When data capture, processing and
storage is improved, additional opportunities are presented
through enhanced data analytics and ML capabilities.
Structured data for function specific requirements improves
simulation capabilities of optimisation models and their com-
ponents, thereby improving efficiencies. As a result, huge
financial rewards may be realised in the form of lower con-
sumption on resources, leading to reduced waste generation
and carbon emissions. Carbon footprint reduction is increas-
ingly becoming a key business KPI, in line with the global
push on reducing carbon emissions from the industry (Tost
et al., 2018).

Thus, additional robustness will be embedded in the
schedule, internally in terms of synergistic optimisations
of schedule inputs, and externally in terms of machine
learning enhanced data mining, processing and integrated
systems. As a matter of caution, vestiges of the past
epoch, characterised by the perennial problem of computing

hardware and software that meets the needs, are still existent,
although, benign. As such, the recommended architecture may
not see the light of day if leading-edge infrastructural updates
and computing systems are not deployed to refute the subtler
fallacies of intractable computing challenges. Finally, the
study also resonates with the monotonous chorus by
geo-statisticians and mine planning engineers to incorporate
geo-metallurgical modelling into geological block models
for a global optimisation of the total system measures, such
as the net smelter return (NSR) (Dominy et al., 2018; Dowd
et al., 2016) and carbon emissions (Azadi et al., 2020;
Dominy et al., 2018). This will minimise wasted efforts in
piecemeal optimisations, which can only reveal at the back
end of the process that a seemingly viable solution may not
be viable when geo-metallurgical considerations are layered
on.

Conclusions
The increasing footprint of ML in underground mine plan-
ning is reviewed with a focus on mining dilution, ore grade
variability, geotechnical stability concerning rockburst and
seismicity prediction, ventilation requirements, mineral
commodity price forecasts and lastly, management of data
for mine planning and scheduling. Despite an increasing
deployment of ML applications and the remarkable predict-
ive potency emerging from ML models, the full potential is
barely realised in the global optimisation of production sche-
dules because the studies are orphaned, with a tenuous link
to the production schedule optimisation process. Cardinally,
a central data repository is proposed for data storage.
Function-specific, surrogate ML models are proposed for the
prediction of mining dilution, ore grade variability, atmos-
pheric conditions, mineral commodity prices, rockburst and
seismicity. The proposed models derive function-specific
data from the central database to produce a more accurate
input feed to the primary mathematical schedule optimiser
model. Further research work is recommended to examine
similar opportunities in other mining activities such as produc-
tion rates and equipment availability as previously noted in the
section ‘Introduction and motivation’ (items 7 and 8). Future
studies are also recommended to explore the full integration
of ML subsystems of surrogate models with direct connectiv-
ity to the production schedule, spurred by the increasing
maturity of ML applications and computing capabilities.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

References
Ali S, ur Rehman R, Yuan W, et al. (2022) Does foreign institu-

tional ownership mediate the nexus between board diversity

Chimunhu et al. 13



and the risk of financial distress? A case of an emerging
economy of China. Eurasian Business Review 12(3): 553–581.

Azadi M, Northey SA, Ali SH, et al. (2020) Transparency on
greenhouse gas emissions from mining to enable climate
change mitigation. Nature Geoscience 13(2): 100–104.

Bascompta M, Rossell JM, Sanmiquel L, et al. (2020)
Temperature prediction model in the main ventilation system
of an underground mine. Applied Sciences 10(20): 7238.

Benndorf J and Dimitrakopoulos R (2013) Stochastic long-term
production scheduling of iron ore deposits: Integrating joint
multi-element geological uncertainty. Journal of Mining
Science 49(1): 68–81.

Brown LG (2021) Quantifying discrete seismic responses to
mining. Canadian Geotechnical Journal 58(7): 1023–1035.

Buaba JA, 2023. Application of Machine Learning Techniques to
Estimate Mine Safety and Health Hazards for Integration Into
Underground Production Scheduling Optimization. Ph.D.
South Dakota School of Mines and Technology, United
States – South Dakota.

Campeau L-P and Gamache M (2020) Short-term planning opti-
mization model for underground mines. Computers &
Operations Research 115: 104642.

Carter RA (2018) Focusing the flow: Engineering, geology, min-
eralogy, metallurgy, chemistry, etc. Engineering and Mining
Journal 219(6): 50–55.

Chen S-S (2016) Commodity prices and related equity prices. The
Canadian Journal of Economics 49(3): 949–967.

Chimunhu P, Topal E, Ajak AD, et al. (2022) A review of machine
learning applications for underground mine planning and
scheduling. Resources Policy 77: 102693.

Chimunhu P, Topal E, Ajak AD, et al. (2024) Chapter 11 -
underground mine planning and scheduling optimization:
Opportunities for embracing machine learning augmented
capabilities. In: Nguyen H, Bui X-N, Topal E, et al. (eds)
Applications of Artificial Intelligence in Mining,
Geotechnical and Geoengineering. Cambridge, MA:
Elsevier, 183–195.

Chongchong Q, Fourie A, Du X, et al. (2018) Prediction of open
stope hangingwall stability using random forests. Natural
Hazards 92(2): 1179–1197.

Chung J, Asad MWA and Topal E (2022) Timing of transition
from open-pit to underground mining: A simultaneous opti-
misation model for open-pit and underground mine production
schedules. Resources Policy 77: 102632.

Cohen G (2022) Algorithmic strategies for precious metals price
forecasting. Mathematics 10(7): 1134.

Cordova DP, Zingano AC and Gonçalves ÍG (2022) Unplanned
dilution back analysis in an underground mine using numerical
models. REM - International Engineering Journal 75: 379–
387.

Cortez CAT, Hitch M, Sammut C, et al. (2018a) Determining the
embedding parameters governing long-term dynamics of
copper prices. Chaos, Solitons & Fractals 111: 186–197.

Cortez CAT, Saydam S, Coulton J, et al. (2018b) Alternative
techniques for forecasting mineral commodity prices.
International Journal of Mining Science and Technology
28(2): 309–322.

Costa LdV and da Silva JM (2020) Strategies used to control the
costs of underground ventilation in some Brazilian mines.
REM - International Engineering Journal 73(4): 555–560.

Dagasan Y, Erten O, Renard P, et al. (2019) Multiple-point statis-
tical simulation of the ore boundaries for a lateritic bauxite
deposit. Stochastic Environmental Research and Risk Assessment
33(3): 865–878.

De-Vitry C, Vann J and Arvidson H (2010) Multivariate
iron ore deposit resource estimation – a practitioner’s
guide to selecting methods. Applied Earth Science
119(3): 154–165.

Delentas A, Benardos A and Nomikos P (2021) Analyzing stabil-
ity conditions and ore dilution in open stope mining. Minerals
11(12): 1404.

Deng J and Gu DS (2018) Buckling mechanism of pillar rock-
bursts in underground hard rock mining. Geomechanics and
Geoengineering 13(3): 168–183.

Dias LS and Ierapetritou MG (2020) Integration of planning,
scheduling and control problems using data-driven feasibility
analysis and surrogate models. Computers & Chemical
Engineering 134: 106714.

Dimitrakopoulos R and Jewbali A (2013) Joint stochastic opti-
misation of short and long term mine production planning:
Method and application in a large operating gold mine.
Transactions of the Institution of Mining and Metallurgy.
Section A, MiningTechnology 122(2): 110–123.

Dominy SC, O’Connor L, Parbhakar-Fox A, et al. (2018)
Geometallurgy—A route to more resilient mine operations.
Minerals 8(12): 560.

Dong L-j, Li X-b and Peng K (2013) Prediction of rockburst clas-
sification using random forest. Transactions of Nonferrous
Metals Society of China 23(2): 472–477.

Dowd P and Dare-Bryan P (2004) Planning, designing and opti-
mising using geostatistical simulation.

Dowd PA, Xu C and Coward S (2016) Strategic mine planning
and design: Some challenges and strategies for addressing
them. Mining Technology 125(1): 22–34.

Dumakor-Dupey NK and Arya S (2021) Machine learning—A
review of applications in mineral resource estimation. Energies
14(14): 4079.

Durrheim RJ, Haile A, Roberts MKC, et al. (1998) Violent failure
of a remnant in a deep South African gold mine. Tectonophysics
289(1): 105–116.

Erten GE, Keser SB and Yavuz M (2021) Grid search optimised
artificial neural network for open stope stability prediction.
International Journal of Mining, Reclamation and Environment
35(8): 600–617.

Gargano A and Timmermann A (2014) Forecasting commodity
price indexes using macroeconomic and financial predictors.
International Journal of Forecasting 30(3): 825–843.

Harjunkoski I, Ikonen T, Mostafaei H, et al. (2020) Synergistic
and intelligent process optimization: First results and open
challenges. Industrial and Engineering Chemistry Research
59(38): 16684–16694.

HeM, Ren F and Liu D (2018) Rockburst mechanism research and
its control. International Journal of Mining Science and
Technology 28(5): 829–837.

He S, Song D, Mitri H, et al. (2021) Integrated rockburst early
warning model based on fuzzy comprehensive evaluation
method. International Journal of Rock Mechanics and
Mining Sciences 142: 104767.

Hefni MA, Abdellah Wael RE and Ahmed HM (2020) Factors
influencing stope hanging wall stability and ore dilution in
narrow-vein deposits: Part II. Geotechnical and Geological
Engineering 38(4): 3795–3813.

Henning JG and Mitri HS (2008) Assessment and control of ore
dilution in long hole mining: Case studies. Geotechnical and
Geological Engineering 26(4): 349–366.

Hiransha M, Gopalakrishnan EA, Menon VK, et al. (2018) NSE
Stock market prediction using deep-learning models. Procedia
Computer Science 132: 1351–1362.

14 Mining Technology 0(0)



Hotelling H (1991) The economics of exhaustible resources (rep-
rinted from journal of political-economy, 39, pg 137–175,
1931). Bulletin of Mathematical Biology 53(1–2): 281–312.

Jang H and Topal E (2013) Optimizing overbreak prediction based
on geological parameters comparing multiple regression ana-
lysis and artificial neural network. Tunnelling and
Underground Space Technology 38: 161–169.

Jang H, Topal E and Kawamura Y (2015) Unplanned dilution and
ore loss prediction in longhole stoping mines via multiple
regression and artificial neural network analyses. Journal of
the Southern African Institute of Mining and Metallurgy 115:
449–456.

Jang H, Topal E and Kawamura Y (2016) Illumination of param-
eter contributions on uneven break phenomenon in under-
ground stoping mines. International Journal of Mining
Science and Technology 26(6): 1095–1100.

JORC (2012) Australasian code for reporting of exploration
results, mineral resources and ore reserves. AusIMM.

Jorquera M, Korzeniowski W and Skrzypkowski K (2023)
Prediction of dilution in sublevel stoping through machine
learning algorithms. IOP Conference Series. Earth and
Environmental Science 1189(1): 012008.

KadhumM,Manaseer S and Abdel Latif Abu D (2019) Cloud-Edge
Network Data Processing based on User Requirements using
Modify MapReduce Algorithm and Machine Learning
Techniques. International Journal of Advanced Computer
Science and Applications 10(12): 307–320.

Kadkhodaei MH, Ghasemi E and Sari M (2022) Stochastic assess-
ment of rockburst potential in underground spaces using Monte
Carlo simulation. Environmental Earth Sciences 81(18): 447.

Kaplan UE, Dagasan Y and Topal E (2021) Mineral grade estima-
tion using gradient boosting regression trees. International
Journal of Mining, Reclamation and Environment. DOI: 10.
1080/17480930.2021.1949863.

Kaplan UE and Topal E (2020) A new ore grade estimation using
combine machine learning algorithms. Minerals (Basel)
10(10): 1–17.

Karagianni M and Benardos A (2023) Modelling Underground
Mine Ventilation Characteristics Using Artificial Neural
Networks. Milton, Abingdon, UK: CRC Press, 3136–3144.

Keneti A and Sainsbury B-A (2018) Review of published rock-
burst events and their contributing factors. Engineering
Geology 246: 361–373.

Khaboushan SA and Osanloo M (2020) A set of classified Integer
programming (IP) models for Optimum transition from open
pit to underground mining methods. Natural Resources
Research 29(3): 1543–1559.

Latif K, Sharafat A and Seo J (2023) Digital twin-driven framework
for TBM performance prediction, visualization, and monitoring
through machine learning. Applied Sciences 13(20): 11435.

Leonida C (2023) Mastering the art of blasting. Engineering and
Mining Journal (1926) 224(6): 32–35.

Li G-Z (2011) Special issue on massive data processing by using
machine learning. International Journal of General Systems
40(4): 351–354.

Li T-z, Li Y-x and Yang X-l (2017) Rock burst prediction based
on genetic algorithms and extreme learning machine. Journal
of Central South University 24(9): 2105–2113.

Lillah M and Boisvert JB (2013) Stochastic distance based geological
boundary modeling with curvilinear features. Mathematical
Geosciences 45(6): 651–665.

Little J, Knights P and Topal E (2013) Integrated optimization of
underground mine design and scheduling. Journal of the

Southern African Institute of Mining and Metallurgy
113(10): 775–785.

Ma C-c, Li T-b, Xing H-l, et al. (2016) Brittle rock modeling
approach and its validation using excavation-induced micro-
seismicity. Rock Mechanics and Rock Engineering 49(8):
3175–3188.

MacLean J (2017) Biggest risks for mining companies shift, yet
challenges remain. Canadian Mining Journal 138(1): 6.

Madziwa L, Pillalamarry M and Chatterjee S (2022) Gold price
forecasting using multivariate stochastic model. Resources
Policy 76: 102544.

Maleki M and Emery X (2015) Joint simulation of grade and rock
type in a stratabound copper deposit. Mathematical Geosciences
47(4): 471–495.

Mathews K, Hoek E, Wyllie D, et al. (1980) Prediction of stable
excavation spans for mining at depths below 1000 metres in
hard rock. In: Golder Associates report to CANMET. Ottawa:
Department of Energy and Resources, 802– 1571. CANMET
report OSQ80-00081.

Musingwini C (2016) Optimization in underground mine planning
- developments and opportunities. Journal of the Southern
African Institute of Mining and Metallurgy 116: 809–820.

Nehring M, Topal E, Kizil M, et al. (2012) Integrated short- and
medium-term underground mine production scheduling.
Journal of the Southern African Institute of Mining and
Metallurgy 112(5): 365–378.

Nehring M, Topal E and Knights P (2010) Dynamic short term
production scheduling and machine allocation in underground
mining using mathematical programming. Mining Technology
119(4): 212–220.

Nilashi M, Asadi S, Rabab Ali A, et al. (2021) Sustainability per-
formance assessment using self-organizing maps (SOM) and
classification and ensembles of regression trees (CART).
Sustainability 13(7): 3870.

Paithankar A and Chatterjee S (2018) Grade and tonnage uncer-
tainty analysis of an African copper deposit using multiple-
point geostatistics and sequential Gaussian simulation.
Natural Resources Research 27(4): 419–436.

Papadopoulos D and Benardos A (2021) Enhancing machine
learning algorithms to assess rock burst phenomena.
Geotechnical and Geological Engineering 39(8): 5787–5809.

Papadopoulos D and Benardos A (2023) Combining machine
learning and numerical modelling for rockburst prediction.
Geomechanics and Geoengineering: 1–16. DOI: 10.1080/
17486025.2023.2207546.

Papaioanou A and Suorineni FT (2016) Development of a general-
ised dilution-based stability graph for open stope design.
Mining Technology 125(2): 121–128.

Patil SD, Mitra A, Tuggali Katarikonda K, et al. (2021)
Predictive asset availability optimization for underground
trucks and loaders in the mining industry. OPSEARCH
58(3): 751–772.

Potvin Y, 1989. Empirical open stope design in Canada. Ph.D.
The University of British Columbia (Canada), Ann Arbor.

Prior Á, Benndorf J and Mueller U (2021) Resource and grade
control model updating for underground mining production
settings. Mathematical Geosciences 53(4): 757–779.

Profera N (2022) Understanding and quantifying the risk of seis-
micity in underground mines is feature of Rockburst confer-
ence. Mining Engineering 74(7): 28–30.

Pu Y, Apel DB and Lingga B (2018) Rockburst prediction in kim-
berlite using decision tree with incomplete data. Journal of
Sustainable Mining 17(3): 158–165.

Chimunhu et al. 15

http://dx.doi.org/10.1080/17480930.2021.1949863
http://dx.doi.org/10.1080/17480930.2021.1949863
http://dx.doi.org/10.1080/17486025.2023.2207546
http://dx.doi.org/10.1080/17486025.2023.2207546


Ray K, Gupta T and Sarkar F (2023) Sensitivity analysis and pre-
diction of diesel particulate matter emissions in Indian under-
ground metalliferous mines using regression and machine
learning algorithms. Measurement 213: 112742.

Sandanayake DSS, Topal E and Ali Asad MW (2015) A heuristic
approach to optimal design of an underground mine stope
layout. Applied Soft Computing 30: 595–603.

Shafiee S and Topal E (2010) An overview of global gold market
and gold price forecasting. Resources Policy 35(3): 178–189.

Shirani FR and Taheri A (2019) Long-term prediction of rockburst
hazard in deep underground openings using three robust data
mining techniques. Engineering with Computers 35(2): 659–675.

Shirani FR, Taheri A, Ribeiro e Sousa L, et al. (2020) Rockburst
assessment in deep geotechnical conditions using true-triaxial
tests and data-driven approaches. International Journal of
Rock Mechanics and Mining Sciences (Oxford, England :
1997) 128: 104279.

Shirani Faradonbeh R, Vaisey W, Sharifzadeh M, et al. (2024)
Hybridized intelligent multi-class classifiers for rockburst
risk assessment in deep underground mines. Neural
Computing and Applications 36(4): 1681–1698.

Shreyas SK and Dey A (2019) Application of soft computing tech-
niques in tunnelling and underground excavations: state of the
art and future prospects. Innovative infrastructure solutions :
the official journal of the Soil-Structure Interaction Group in
Egypt (SSIGE) 4(1): 1–15.

Shriwas M and Pritchard C (2020) Ventilation monitoring and
control in mines. Mining, Metallurgy & Exploration 37(4):
1015–1021.

Shukla R, Khandelwal M and Kankar PK (2021) Prediction and
assessment of rock burst using Various meta-heuristic approaches.
Mining, Metallurgy & Exploration 38(3): 1375–1381.

Smith M and Dimitrakopoulos R (1999) The influence of deposit
uncertainty on mine production scheduling. International
Journal of Surface Mining, Reclamation and Environment
13(4): 173–178.

Song Y-C, Liu Z-N, Meng H-D, et al. (2019) Multi-point geosta-
tistics for ore grade estimation. Geologia Croatica, Suppl.
Special Issue 72: 111–126.

Sotoudeh F, Nehring M, Kizil M, et al. (2020) Production sched-
uling optimisation for sublevel stoping mines using mathemat-
ical programming: A review of literature and future directions.
Resources Policy 68: 101809.

Stephenson P (2001) The JORC code. Institution of Mining and
Metallurgy. Transactions. Section B: Applied Earth Sciences
110(3): 121–125.

Suorineni FT (2010) The stability graph after three decades in use:
Experiences and the way forward. International Journal of
Mining, Reclamation and Environment 24(4): 307–339.

Sutton D (1998) Use of the Modified Stability Graph to Predict
Stope Instability and Dilution at Rabbit Lake Mine.
Saskatchewan: University of Saskatchewan Design Project,
Canada.

Tahmasebi P and Hezarkhani A (2012) A hybrid neural networks-
fuzzy logic-genetic algorithm for grade estimation. Computers
& Geosciences 42: 18–27.

Tang C, Wang J and Zhang J (2010) Preliminary engineering
application of microseismic monitoring technique to rockburst
prediction in tunneling of jinping II project. Journal of Rock
Mechanics and Geotechnical Engineering 2(3): 193–208.

Tapia C, Coulton J and Saydam S (2020) Using entropy to assess
dynamic behaviour of long-term copper price. Resources
Policy 66: 101597.

Tercan EA and Akcan E (2004) Assessment of uncertainty asso-
ciated with grade–tonnage curves using geostatistical simula-
tion. Mining Technology 113(2): 129–136.

Topal E (2003) Advanced Underground Mine Scheduling Using
Mixed Integer Programming. Ph.D. Colorado School of
Mines, Ann Arbor.

Topal E (2008) Early start and late start algorithms to improve the
solution time for long-term underground mine production
scheduling. Journal of the Southern African Institute of
Mining and Metallurgy 108(2): 99–107.

Topal E (2019) Intelligent Enterprise with Industry 4.0 for Mining
Industry. Switzerland: Springer International Publishing AG,
213–218.

Tost M, Bayer B, Hitch M, et al. (2018) Metal mining’s environ-
mental pressures: A review and updated estimates on CO2
emissions, water use, and land requirements. Sustainability
(Basel, Switzerland) 10(8): 2881.

Trout L (1995) Underground mine production scheduling using
mixed integer programming. In: 25th International APCOM
Symposium Proceedings. Melbourne: Australasian Institute
of Mining and Metallurgy, 395–400.

Tsae NB, Adachi T and Kawamura Y (2023) Application of arti-
ficial neural network for the prediction of copper ore grade.
Minerals 13(5): 658.

Valdez-Navarro YI and Ricardez-Sandoval LA (2019) A novel
back-off algorithm for integration of scheduling and control
of batch processes under uncertainty. Industrial & Engineering
Chemistry Research 58(48): 22064–22083.

Vallejo MN and Dimitrakopoulos R (2019) Stochastic orebody mod-
elling and stochastic long-term production scheduling at the
KéMag iron ore deposit, Quebec, Canada. International Journal
of Mining, Reclamation and Environment 33(7): 462–479.

Vann J and Guibal D (1998) Beyond Ordinary Kriging–An over-
view of non-linear estimation. Proceedings of a one day sym-
posium: Beyond Ordinary Kriging 32: 6–25.

Venkata RB and Narsimha G (2021) A Multi-purpose Data
Pre-processing Framework using Machine Learning for
Enterprise Data Models. International Journal of Advanced
Computer Science and Applications 12(3): 646–656.

Wang D, Liu J, Deng L, et al. (2022) Intelligent diagnosis of resist-
ance variant multiple fault locations of mine ventilation system
based on ML-KNN. PLoS One 17(9): 1–17.

Waqar MF, Guo S and Qi S (2023) A comprehensive review of
mechanisms, predictive techniques, and control strategies of
rockburst. Applied Sciences 13(6): 3950.

Watkins C and McAleer M (2004) Econometric modelling of non-
ferrous metal prices. Journal of Economic Surveys 18(5): 651–
701.

Wiles T (2005) Rockburst prediction using numerical modelling:
Realistic limits for failure prediction accuracy. 6th International
Symposium on Rockbursts and Seismicity in Mines (RaSiM 6),
Perth, Australia. 57–63.

Xue Y, Bahrami D and Zhou L (2023) Identifying the location and
size of an underground mine fire with simulated ventilation
data and random forest model. Mining, Metallurgy &
Exploration 40(4): 1399–1407.

Zhang Y, Song S, You K, et al. (2017) Relevance vector machines
using weighted expected squared distance for ore grade estima-
tion with incomplete data. International Journal of Machine
Learning and Cybernetics 8(5): 1655–1666.

Zhao X and Jia’an N (2020) Method of predicting ore dilution
based on a neural network and its application. Sustainability
12(4): 1550.

16 Mining Technology 0(0)



Zhou J, Koopialipoor M, Li E, et al. (2020) Prediction of rockburst
risk in underground projects developing a neuro-bee intelligent
system. Bulletin of Engineering Geology and the Environment
79(8): 4265–4279.

Zhou J, Li X and Shi X (2012) Long-term prediction model of
rockburst in underground openings using heuristic algo-
rithms and support vector machines. Safety Science 50(4):
629–644.

Chimunhu et al. 17


	 Introduction and motivation
	 Dilution in underground mining
	 Ore grade variability
	 Mine ventilation
	 Geotechnical conditions
	 Mineral commodity prices
	 Robustness of data for production planning and scheduling
	 Conclusions
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


