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A B S T R A C T   

Constant attempts have been made throughout human history to find solutions to complex issues. These attempts 
resulted in industrial revolutions and the transition from manual labor to machines and new technologies. The 
latest advancements in artificial intelligence (AI) are revolutionary. The use of these smart technologies in 
mining can lead to increased profitability, enhanced performance, improved safety, and better adherence to 
environmental regulations. In this paper, the applications of AI and digital twin systems in mining operations are 
reviewed, covering various components, including mineral exploration, drilling, blasting, loading, hauling, 
mineral processing, and environmental issues. Critical data inputs for each component are identified, and re-
levant tools and methods are discussed. These will facilitate the development of digital twin models with 
learning, simulation, prediction, and optimization capabilities. This study provides valuable insights into fully 
integrated digital twin mining systems, which will significantly improve mining efficiency and sustainability. 
Although innovative technologies, such as the Internet of Things (IoT) and other intelligent tools, are increas-
ingly being used in the mining sector, many mining processes still depend on human oversight to deal with 
challenges, such as remote operations, geological variability, high investment costs, and a skills gap. There is, 
therefore, significant potential to enhance the use of sensors and IoT devices to support data collection for more 
integrated and powerful digital twin systems to drive further innovation and operational improvements across 
the mining value chain.   

1. Introduction 

Throughout history, humans have looked for feasible solutions for 
complex problems and ways of making routine tasks easier. As a result, 
specialists in diverse sectors have developed and implemented various 
tools and techniques. The simulation of processes is one of the most 
effective and powerful tools in this regard. According to Shannon, si-
mulation is “the process of designing a model of a real system and 
conducting experiments with this model for either understanding the 
behaviour of the system or evaluating various strategies for the op-
eration [1].” In the mining industry, digital twins have gained in-
creasing popularity in recent years due to their potential to enhance 
operational efficiency, reduce costs, improve safety, and optimize re-
source extraction. The implementation of digital twins relies on various 
factors, such as increased adoption by companies, advancements in data 
analytics for more accurate predictions and better insights, integration 
with Internet of Things (IoT) devices, the use of cloud computing for 

handling large datasets and performing complex simulations, and cus-
tomizing available digital twin platforms to meet specific mining needs. 

The behaviors of a system can be explored through simulations if a 
numerical model representing the system is available. In the absence of 
a model to understand the behaviors of the system, the only viable 
alternative is to implement the system on a reduced scale, which could 
potentially result in significant costs and disruptions. Before creating or 
updating a system, simulations can help detect issues, bottlenecks, and 
design flaws. Simulation provides a means of evaluating various designs 
and operating principles before committing funds and time to a project. 
Simulations in this context are used to analyze the system dynamics, the 
evolution characteristics, and the component interactions. However, 
conventional analytical or static models only offer, at best, a basic level 
of understanding of a complex dynamic system [2]. As shown in Fig. 1, 
simulations provide a means of exploring a wide range of operational 
scenarios, enabling the derivation of the optimal operational strategy. 
In addition, they can be used for sensitivity analyses for different 
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variables, contributing to a thorough understanding of system dynamics 
and performance under different conditions. 

For intricate systems, modeling and simulation facilitate the analysis 
of interactions between system components and their effects. This ap-
proach is becoming a way of tackling challenging real-world issues in 
biology, physics, economics, and others that involve many inter-
connected variables. The Monte Carlo approach, agent-based modeling, 
discrete event simulation, and dynamic modeling are currently the four 
key simulation techniques widely used in games, visual and audio 
synthesis methods, machine learning algorithms, processing kernels, 
and controller systems [3]. In addition, the mining industry also uses 
innovative technologies such as virtual reality (VR), augmented reality 
(AR), and mixed reality (MR), in which the four methodologies dis-
cussed earlier are deeply embedded [4–9]. 

Current simulation technologies have a long history, and industrial 
revolutions have played a significant role in their development. As 
briefly described below, there are four key industrial revolutions in 
human history. 

1.1. Industry 1.0 

The first industrial revolution (Industry 1.0) started in the 18th 
century and lasted until about 1840. Industry 1.0 is characterized by 
the extensive use of steam power and the mechanization of industry  
[10]. It signified the first major transition from traditional production 
methods and tools to a mechanical economy. The introduction of new 
machines significantly boosted worker productivity and enhanced the 
efficiency of production processes [11]. 

1.2. Industry 2.0 

The second industrial revolution (Industry 2.0) occurred in the 19th 
century and ushered in industrial processes that used electrically 
powered machinery. These electrical machines were notably more ef-
ficient, easier to operate, and simpler to maintain than their steam- 
powered counterparts [12]. They also proved to be more cost-effective, 
requiring less labor and materials. A crucial element of Industry 2.0 was 
the enhancement of mass production methods. The application of steel 

and electrical energy in manufacturing was the main feature of this 
revolution [13]. 

1.3. Industry 3.0 

The “Digital Revolution” or “First Computer Era” are other names 
for the third industrial revolution (Industry 3.0), which started in the 
second half of the 20th century. Partial automation techniques made 
possible by basic computers marked the start of the third industrial 
revolution [13]. Electronics and information technology (IT) were in-
tegrated into numerous production processes, increasing automation in 
the manufacturing process. As a result, this led to enhanced efficiency, 
faster production rates and, in some cases, the elimination of human 
labor in specific manufacturing processes [10]. 

1.4. Industry 4.0 

The fourth industrial revolution, or Industry 4.0, is currently un-
derway. This era is distinguished by the intelligent use of advanced 
information and communication technologies across various industries. 
Industrial systems have become fully automated, leveraging networks 
and IoT architecture. A hallmark of Industry 4.0 is the efficient net-
working of systems, known as “cyber-physical systems.” Such a network 
enables the visualization, monitoring, and control of remote operations 
in an integration center, significantly improving efficiency, safety, 
management and, in some cases, costs. In addition, the growing focus 
on environmental and sustainability issues is also a significant com-
ponent of the fourth industrial revolution [12,13]. A summary of In-
dustry 1.0–4.0 is shown in Fig. 2. 

In summary, the evolution of simulation technologies is mirrored by 
the advancement of industrial revolutions, each bringing transforma-
tive changes. There has been a long journey from the first industrial 
revolution (Industry 1.0) in the 18th century to the current Industry 
4.0, characterized by advanced information and communication tech-
nologies, including the IoT and cyber-physical systems. The progression 
illustrates a pathway of continuous technological improvement, paving 
the way for further innovative solutions and more advancements in 
simulation technologies. 

Digital twins can play a crucial role in the mining industry, yet their 
adoption in this sector lags behind other engineering fields like man-
ufacturing and civil engineering. Despite their use in numerous projects 
and mining sites, the full potential of digital twins has not been realized 
within the industry. This paper aims to explore the opportunities for 
applying digital twins in the mining sector, ranging from exploration to 
downstream operations. Furthermore, this study will provide sugges-
tions for implementing integrated systems to enhance productivity and 
efficiency in mining operations. 

Fig. 1. Advantages of simulations.  

Fig. 2. Summary of Industry 1.0–4.0.  
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2. Artificial intelligence 

2.1. Background 

The basic idea behind artificial intelligence (AI) is the automation of 
human thinking. Past civilizations had AI theories long before the 
Industrial Revolution [14,15]. However, the widespread practical use of 
AI began in World War II. The Bombe machine, developed by renowned 
British mathematician and computer scientist Alan Turing and his 
colleagues to crack the Enigma code, laid the groundwork for machine 
learning (ML). American computer scientist John McCarthy initially 
used the phrase “Artificial Intelligence” in 1956 at Dartmouth College, 
where it was later formally recognized as a field of study [16]. The 
programs that AI created in its early development stages were as-
tounding. Its uses at the time included studying English, using algebra 
to solve word problems, and proving geometric theorems [17]. Over the 
past two decades, an ever-increasing number of scientists have con-
ducted significant work in AI. As shown in Fig. 3, based on publicly 
available databases, there were only about ten published papers on AI 
in 2000, but the number jumped to 23,000 papers in 2022. 

2.2. Applications of AI 

As shown in Fig. 4, AI has been employed extensively in many dif-
ferent applications. For instance, with the assistance of AI, the medical 
system can better identify medical issues and improve the quality of 

healthcare systems [18–24]. AI-driven technological improvements 
have boosted manufacturing enterprises, enhancing their efficiency and 
reducing production costs [25–30]. Implementing AI technology in civil 
engineering has significantly improved the quality of buildings and 
their energy efficiency [31–38]. In the food industry, scientists use AI to 
help develop more healthy and nourishing food [39–42]. AI has bene-
fited the fashion industry by allowing it to remain competitive and meet 
the ever-changing demands of consumers [43–48]. In recent years, new 
AI technologies have helped to increase the quantity and quality of 
crops in agriculture [49–54]. In sports, AI assists in making smarter 
decisions for athletes and sports teams by identifying their strengths 
and weaknesses [55–59]. The use of AI in the oil and gas industry has 
also been widespread during the last decade [60–65]. Finally, AI has 
impacted people’s lives in many ways [66–70]. 

2.3. Applications of AI in the mining industry 

Traditional mining was typically characterized by high labor in-
tensity, low productivity, high cost, and a poor safety record. Modern 
mining technologies using intelligent methods have significantly im-
proved these aspects. One of the most significant advantages of using AI 
in mining is its ability to enhance efficiency, productivity, and safety. 

With AI-powered systems, mining companies can optimize their 
operations by analyzing and integrating data from various sources, such 
as sensors, unmanned aerial vehicles (UAVs), and geological surveys. 
The data analytic outcomes can be used to identify potential risks and 
opportunities, streamline processes, and reduce costs. AI can improve 
safety in mines by detecting hazardous conditions and alerting workers 
accordingly. Overall, integrating AI in mining projects has re-
volutionized the industry by enabling faster and more accurate deci-
sion-making while reducing environmental impacts [71,72]. Table 1 
lists the diverse applications of AI in mining operations, ranging from 
exploration and drilling to ore processing and safety management. 

3. Digital twin 

The power of AI and its impact on engineering applications has been 
covered in the previous section. As one of the most important appli-
cations of AI, the digital twin is becoming more integrated and critical 
in many engineering systems, including mining engineering. The basic 
implementation of a digital twin includes a virtual representation and 
the use of ML to build a functional model representing the real-world 
system, either based on physics or from historical and real-time data, to 
optimize the system’s performance. In this context, digital twins operate 
as sophisticated virtual models, whereas AI technologies serve as the 
backbone of the models that enhance their functionalities and appli-
cations. This section explores the background of digital twin tech-
nology, its applications across various industries, and the im-
plementation of a digital twin system within the mining sector. 

Digital twin systems are complex and multifaceted, integrating 
various technologies that enable the creation of a digital replica of 
physical assets. These systems typically consist of several core compo-
nents, including sensors, data analytics, ML, communication technolo-
gies, and control mechanisms. ML studies were discussed in detail in the 
previous section. In this section, the other components of digital twin 
systems are discussed. The integration of digital twins into commu-
nication and control systems offers unparalleled opportunities for op-
timization, predictive maintenance, and real-time monitoring. These 
systems are crucial for synchronizing between the physical and digital 
worlds, ensuring that data flow seamlessly and actions taken in the 
virtual space can be effectively mirrored in the real world [139]. 

Effective communication systems are the backbone of digital twins. 
These systems encompass various technologies and protocols designed 
to facilitate data exchange between the physical asset and its digital 
counterpart [140,141]. Key components include: 

Fig. 3. Number of published papers in the field of AI.  

Fig. 4. Applications of AI in different industries.  
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Table 1 
Applications of AI in mining engineering.      

Areas of applications Study Task Method  

Exploration Rigol-Sanchez et al. [73] Mineral potential mapping ANN 
Setyadi et al. [74] FA 
Harris et al. [75] ANN 
Brown et al. [76] ANN 
Rodriguez-Galiano et al. [77] RF, RT, SVM 
Sun et al. [78] SVM, RF, ANN 
Xiong et al. [79] DL 

Mineral classification Acosta et al. [80] Drill-core mineral mapping HS 
Rahman et al. [81] Imaging and XRF association RA 
Hood et al. [82] Linking protolith rocks to altered equivalents RF 
Díez-Pastor et al. [83] Identification of rock originating SVM, RR, DT, LR 
Kaplan et al. [84] Ore grade estimation KNN 
Chauhan et al. [85] Processing of rock microtomography images SVM 
Okada et al. [86] Identification of mineral types DL 

Mine design & planning Bangian et al. [87] Optimum post-mining land use identification FA, AHP 
Alipour et al. [88] Production scheduling GA 
Chicoisne et al. [89] Mine production scheduling IP 
Jélvez et al. [90] Automated pushback selection IP 
Jélvez et al. [91] Constrained production scheduling HA 
Guo et al. [92] Forecasting mining capital cost ANN 
Nourali et al. [93] Mining capital cost estimation RT 
Paduraru et al. [94] Respond to new information in a mining complex ANN 

Equipment and fleet selection Aghajani et al. [95] Open pit mine equipment selection FA 
Ortiz et al. [96] Fleet selection and equipment sizing Simulation 
Nobahar et al. [97] Open pit mine equipment selection DT, RF, SVM, XGB, KNN 

Blasting Faradonbeh et al. [98] Predict flyrock in blasting operation GP 
Monjezi et al. [99] Prediction of backbreak in open-pit blasting FA 
Shams et al. [100] Prediction of rock fragmentation FA 
Ghasemi et al. [101] Predicting the flyrock distance ANN, Fuzzy 
Hasanipanah et al. [102] Forecasting blast‑induced backbreak FA 
Amiri et al. [103] Predict blast-induced ground vibration and air overpressure ANN, KNN 
Nguyen et al. [104] Predict blast-induced peak particle velocity XGB 
Nguyen et al. [105] Prediction of blasting-induced fly-rock SVM 
Sayyadi et al. [106] Prediction of rock fragmentation ANN 
Bahrami et al. [107] Prediction of rock fragmentation ANN 
Nobahar et al. [108] Prediction of blast-induced flyrock, backbreak, and rock fragmentation XGB, RF, KNN 

Loading & hauling Park et al. [109] Simulation of truck loader haulage systems GPSS 
Moradi Afrapoli et al. [110] Dynamic truck dispatching Simulation 
de Carvalho et al. [111] Simulation of mine equipment systems GA 

Mineral processing Ali et al. [112] Predicting the flotation behavior RF, ANN, ANFIS 
Jahedsaravani et al. [113] Modeling of a batch flotation process FA 
Nakhaei et al. [114] Recovery and grade accurate prediction ANN 
Ahmadzadeh et al. [115] Useful life prediction of grinding mill liners ANN 
Massinaei et al. [116] Modeling of bubble surface area ANN 
Karimi et al. [117] Prediction of hydrocyclone performance ANN 
Bonifazi et al. [118] Characterization of flotation froth IP 
Nayak et al. [119] Monitoring the fill level of a ball mill ANN 
Horn et al. [120] Feature extraction in froth flotation sensing CNN 
Pu et al. [121] Froth flotation recovery prediction DL 
Pu et al. [122] Purities prediction in a froth flotation plant DL 
Cook et al. [123] Prediction of flotation efficiency DL 

Rock mechanics Armaghani et al. [124] Prediction of the strength and elasticity ANN 
Shirani et al. [125] Prediction of compressive strength CART 
Majdi et al. [126] Predicting the deformation modulus GA 
Mahdevari et al. [127] Stability prediction of gate roadways ANN 
Xue et al. [128] Deformation evaluation on surrounding rocks PSO-LSSVM 
Bui et al. [129] Prediction of slope failure in open-pit mines GA 
Baghbani et al. [130] Improved prediction of slope stability CRRF, ANN 
Qi et al. [131] Modeling for cemented paste backfill RF, RT, XGB 
Lu et al. [132] Estimating unconfined compressive strength of cemented paste backfill ELR 

Safety Isleyen et al. [133] Roof fall hazard detection DL 
Badri et al. [134] Risk management for underground mining AHP 
Maxwell et al. [135] Differentiating mine-reclaimed grasslands GEOBIA 
Mukherjee et al. [136] Detect opencast coal mine areas from Landsat 8 IP 
Luo et al. [137] Mine landslide susceptibility assessment SVM, ANN 
Bui et al. [138] Land subsidence susceptibility mapping BLR, SVM, LMT 

Notes: ANN: Artificial Neural Networks, DL: Deep Learning, FA: Fuzzy Algorithm, AHP: Analytic Hierarchy Process, GP: Genetic Programming, IP: Integer 
Programming, HS: Hyperspectral, HA: Heuristic Aggregation, GA: Genetic Algorithm, CNN: Convolutional Neural Network, DT: Decision tree, RF: Random Forest, 
RR: Ridge Regression, SVM: Support Vector Machine, XGB: Extreme Gradient Boosting, ANFIS: Adaptive Neuro Fuzzy Inference System, KNN: K Nearest Neighbor, 
CRRF: Classification and Regression Random Forests, RA: Regression Algorithm, LR: Linear Regression, RT: Regression Trees, IP: Image Processing, GPSS: General 
Purpose Simulation System, CART: Classification and Regression Tree, PSO: Particle Swarm Optimization, LSSVM: Least-Squares Support Vector Machine, ELR: 
Energy-based Link Replacement, BLR: Beacon-Less Routing, LMT: Logistic Model Tree, GEOBIA: Geographic Object-Based Image Analysis.  
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(1) IoT sensors and devices: Internet of Things (IoT) sensors collect 
real-time data from physical assets. These sensors can monitor 
various parameters, such as temperature, pressure, vibration, and 
more. The data collected are transmitted to the digital twin for 
analysis and action.  

(2) Edge computing: Edge computing involves processing data closer to 
where it is generated. This minimizes latency and bandwidth usage, 
making it possible for digital twins to operate in real time. Edge 
devices can perform preliminary data analyses and filter relevant 
data before sending them to the cloud or centralized servers.  

(3) Cloud computing: Cloud platforms provide the infrastructure for 
storing and processing large volumes of data generated by digital 
twins. Cloud computing ensures scalability, flexibility, and the 
ability to integrate various data sources. It also supports advanced 
analytics and ML models that enhance the predictive capabilities of 
digital twins.  

(4) Communication protocols: Several communication protocols are 
used to ensure seamless data transfer. These include MQTT 
(Message Queuing Telemetry Transport), OPC UA (Open Platform 
Communications Unified Architecture), and HTTP/HTTPS 
(Hypertext Transfer Protocol Secure). These protocols enable secure 
and efficient communication between IoT devices, edge systems, 
and cloud platforms. 

Control systems within digital twins involve the mechanisms that 
allow the virtual model to influence the physical asset. These systems 
enable automation, real-time adjustments, and improved operational 
efficiency [142,143]. Key aspects include:  

(1) Feedback loops: Digital twins use feedback loops to continuously 
monitor and adjust the performance of physical assets. Data from 
IoT sensors is analyzed in real time, and control commands are sent 
back to the physical system to optimize performance or prevent 
failures.  

(2) Predictive maintenance: By analyzing historical and real-time data, 
digital twins can predict potential failures before they occur. 
Control systems can then schedule maintenance activities proac-
tively, reducing downtime and maintenance costs. 

(3) Simulation and optimization: Digital twins can simulate various op-
erational scenarios and optimize processes based on the outcomes. For 
example, a digital twin in manufacturing can simulate production line 
adjustments to improve efficiency and reduce waste.  

(4) Autonomous operations: Advanced control systems enable digital 
twins to perform autonomous operations. This is particularly re-
levant in industries such as autonomous vehicles, where the digital 
twin can make real-time decisions based on sensor data to navigate 
and operate safely. 

3.1. History and background 

The digital twin concept, first proposed by Grieves [144] in 2003, has 
since been applied to various aspects of spacecraft, health, and main-
tenance. National Aeronautics and Space Administration (NASA) defines a 
digital twin as a system-oriented aircraft that uses the best physical 
models, sensors, and historical data. It integrates multidisciplinary and 
multiscale probabilistic simulation processes and maps the state of its 
corresponding physical aircraft [145]. A digital twin refers to the full- 
element reconstruction and digital mapping of the processing status of a 
product’s physical entity in the information space, enabling simulation, 
diagnosis, prediction, and control of the realization process of physical 
entities in real environments. Data modeling, application, and collection 
are the three fundamental facets of digital twins [146]. The number of 
research works published in this field over the past decade has demon-
strated the significance of the digital twin and its undeniable influence on 
the progression of human development (see Fig. 5). The pie chart shows 
the spread of studies of digital twin technologies across different en-
gineering applications. It is clear that manufacturing and construction are 
leading the way, with 43% and 23% of the studies, respectively. The 
mining sector lags far behind, with only 4% of the published research. This 
contrast highlights a significant gap in exploring and applying digital twin 
technology in mining operations. Considering that digital twins can opti-
mize operations, improve safety, and enhance predictive maintenance in 
mining, this lack of research is a missed opportunity. Clearly, there is a 
pressing need to boost research efforts in the mining sector to fully 
leverage the digital twin technology so as to drive further innovation and 
efficiency in this crucial industry. 

The digital twin technology has three levels, depending on the de-
gree of data integration and communications between the physical and 
digital worlds. These three levels are commonly referred to as the di-
gital model, digital shadow, and (full) digital twin. As shown in Fig. 6, a 
digital model is a representation of a real-life object, whether it is 
planned or already exists. It is created digitally without the automatic 

Fig. 5. Number of published papers on digital twins and their specific fields 
based on publications data. 

Fig. 6. Visualization of a digital model (a), digital shadow (b), and full digital twin (c).  
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data communication between the digital and physical objects. If there is 
a one-way data flow from the physical object to the digital object, this 
combination is referred to as a digital shadow (Fig. 6(b)). If the data 
communications between an existing physical object and its digital 
representation are fully integrated bidirectionally, the system is a full 
digital twin (Fig. 6(c)) [142]. In designing a digital twin of a physical 
process, four key technologies that provide helpful insights are IoT, AI, 
extended reality (XR), and cloud storage/computing. In addition, de-
pending on the type of application, a digital twin may use specific 
technologies [142]. Fig. 7 illustrates a digital twin architecture. As 
shown in Fig. 7, various objects, factors, and variables within the 
physical environment are monitored by sensors and other measurement 
tools, generating vast amounts of data. This database is then trans-
mitted to the virtual environment through various communication 
channels, including Wi-Fi, Bluetooth, and cables. Innovative techni-
ques, such as AI, deep learning, and cognitive systems, aggregate and 
process the raw data in the virtual space. The processed data are then 
sent to the cloud and subjected to big data analytics, enabling perfor-
mance optimization and decision-making for the entire system. 

By using the real-time status of the physical entities and processes, 
digital twins can be employed in industry to optimize operations and 
enhance safety. This technology has several critical applications, en-
abling experts to produce a more detailed and precise representation of 
the operations in real time. The top five advantages of digital twin 
technology are shown in Fig. 8. 

3.2. Applications of digital twins 

In numerous sectors, including healthcare, construction, and agri-
culture, the use of digital twins has significantly simplified and im-
proved operations. In addition, digital twins are used in the military, 
aerospace, education, sports, and building smart cities and automotive 
industries to increase efficiency. Some instances of digital twin im-
plementations for a variety of purposes are summarized in Table 2. 

3.3. Digital twin systems: from resources to downstream processes 

Industry 4.0 technology is impacting all industries across the globe, 
and it will bring a plethora of improvements when it comes to pro-
ductivity, adaptability, and efficiency. As one of the most critical 

industries, mining encompasses several subsystems, and improving the 
performance of each of these subsystems can increase overall profit-
ability, improve performance, and comply with environmental re-
quirements [165–167]. A full digital twin system for mining projects 
should include a virtual model of the mine site, equipment, and pro-
cesses from exploration to mineral processing (assuming a typical mine 
where the product is concentrated). The system uses sensors, IoT de-
vices, and ML algorithms to monitor and optimize operations. The di-
gital twin provides real-time data analytics, predictive maintenance, 
and scenario simulations to increase efficiency, reduce downtime, and 
ensure safety. The system is fully integrated with a central dashboard 
where operators and managers can monitor and control the entire 
mining operation. In this system, data collected from sensors and in-
struments can be transmitted to a control center through various 
methods, such as wired connections (ethernet) or wireless connections 
(Wi-Fi), Bluetooth, or cellular networks [168–171]. 

Data can be transferred using different protocols, such as MQTT or 
HTTP, to ensure their security and reliability during transmission, and 
the control center can receive the data in real time or periodically, 
depending on the application requirements. The data can then be pro-
cessed and analyzed to make informed decisions, control processes, or 
trigger alerts based on predefined rules. In the digital twin system 
designation, irrelevant or redundant data should be eliminated to avoid 
confusion and ensure easy navigation through the system. On the other 
hand, data critical to the system’s functionality should be recognized as 
necessary and retained in the system. These include data related to the 
physical objects or subsystems being simulated, such as their geometry, 
mechanical properties, and operating parameters. Other important data 
may include sensor data, performance metrics, and contextual in-
formation used to simulate real-world scenarios. Overall, it is vital to 
prioritize data elements that have significant impacts on the system’s 
accuracy and performance. Fig. 9 provides a complete digital twin 
system, which is discussed in detail in the following sections. 

3.3.1. Exploration 
Mining exploration is a crucial step in discovering economic mi-

neralization for mining operations. Geologists gather essential in-
formation on the location, quality, and quantity of minerals, which 
helps to ensure that mining projects are environmentally and eco-
nomically responsible and feasible. In this process, it is essential to use 

Fig. 7. Architecture of a digital twin model [147].  
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measures to improve the accuracy of mineral resource estimates and 
minimize the risks associated with the mining operation. 

The latest methods and technologies have been increasingly used to 
help professionals in the exploration phase. Topographic modeling 
using UAV imagery is used in the mining industry, along with auto-
mated surface feature detection using ML algorithms to classify a 
complete detailed geological model [172]. Compared with a laser- 
scanned surface, the UAV results are less erratic around real-time ki-
nematic (RTK) points, indicating that surfaces generated by 

photogrammetry can be a more straightforward and quicker alternative 
for mining reconciliation. In addition, convolutional neural networks 
(CNN) have demonstrated excellent performance on various visual 
tasks, including the classification of two-dimensional images  
[173–177]. Terrestrial light detection and ranging (LiDAR) data can be 
acquired from either static or mobile platforms [178]. With regard to 
data collection from core samples, hyperspectral (HS) imaging, an 
emerging technique in the mining industry, is increasingly being used 
to complement other analyses by rapidly characterizing large amounts 

Fig. 8. Key advantages of digital twin implementation.  

Table 2 
Applications of digital twins in various fields.      

Areas of applications Study Task Method  

Construction Development of maintenance systems [148] Bridge maintenance 3D digital twin model 
Geometric digital twins [149] Building modeling Slicing-based object fitting method 
Digital twinning of buildings [150] Building modeling Semi-automatic geometric 

Healthcare Improve the quality of patient care [151] Patients’ pathways in hospitals HospiT’Win framework 
Monitoring the health of individuals [152] Elderly healthcare services Cloud-based framework 
Management of severe traumas [153] Integration of agent Agent-based digital twins 

Manufacturing Cyber-physical manufacturing [154] Virtual machine tools Sensor data and information fusion 
Synchronizing engineering models [155] Manufacturing automation Automation software-code 
Machinery fault diagnosis [156] Smart manufacturing Digital twin model of a rotor system 

Smart cities Solutions for urban challenges [157] Urban planning Urban digital twin 
Test different scenarios for future planning [158] Urban planning Urban digital twin 

Agriculture Plant development [159] Planting Multi-agent approach 
Simulate porker’s feed consumption and weight growth  
[160] 

Livestock farming Creating a digital twin of a pig fattener 

Planning Agricultural Core Road Networks [161] Agriculture planning Digital twin of the cultivated landscape 
Automotive Minimize privacy risks [162] Privacy enhancement Digital twin demonstrator 

Predictive maintenance of an automobile brake system  
[163] 

Predictive maintenance Thingworx (IoT) platform 

Aviation Automate Fan-Blade reconditioning [164] Aerospace maintenance DoF robotic arm and digital twin 
Re-engineering aircraft structural life prediction [145] Aerospace maintenance Integrate computation of structural 

deflections 
Simulating helicopter dynamic systems [165] Helicopter industries Using multibody simulations 
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of drill cores [80]. For coring operations, AI has also been used to 
analyze underperforming bits in exploration [179]. 

Over the past decade, remote sensing has played a vital role in 
mining exploration and mineral identification [180–183]. As an ex-
ample, Fig. 10 shows that lithological and structural characteristics of a 
specific area can be identified using this methodology. Recent drilling 
technologies can be used to conduct downhole geophysics and collect 
real-time proxy data while drilling [184] to estimate mineral con-
centration and physical and geomechanical properties with fine spatial 
sampling. The data streams can be transmitted in real time to the cloud 
to enable data analytics and near real-time decision-making to achieve 
better outcomes [185]. 

However, achieving an operational full digital twin in exploration is 
very challenging, even with the progress made thus far. The techniques 
and tools discussed earlier play a significant role in advancing the de-
velopment of a digital twin across various facets of the exploration 
process. These encompass optimizing resource estimation procedures, 
refining geological modeling approaches, enhancing exploration plan-
ning strategies, and expediting exploratory operational optimization 
procedures. Most of these models are at the level of a digital model 
(e.g., mineralization classification systems and resource modeling) or a 
digital shadow (e.g., LiDAR scanning and automatic core scanner). 
Despite the challenges encountered, advancements in these fields pro-
vide a solid foundation for geo-data scientists to continue refining and 
enhancing the digital twins tailored to unique applications. 

3.3.2. Production drilling 
Monitoring a production drilling operation is vital to ensure safety, 

efficiency, and productivity in mining operations. Various sensors are 
used to collect data related to drilling operations, such as depth, pres-
sure, torque, and temperature. Different methods, such as acoustic 
sensing, vibration analysis, and electromagnetic imaging, are used for 

real-time monitoring of drilling performance, rock characteristics, and 
potential hazards. In addition, cameras, LiDARs, radars, and global 
positioning system (GPS) receivers are also used to enhance the accu-
racy, safety, and productivity of drilling operations. This information 
helps operators to optimize drilling parameters, adjust the drilling 
process, and prevent costly breakdowns. In addition, these data are 
considered some of the most critical inputs for a digital twin model for a 
mining operation [187–189]. Autonomous production drilling systems, 
together with autonomous trucks, are perhaps the closest to a full di-
gital twin system in mining operations, particularly in open-pit en-
vironments. Even if an operator is involved in a remote operation, if the 
drills are fully autonomous, the operator’s role is mainly for monitoring 
purposes. In this case, an operator can look after several operating drills 
simultaneously. Such a system is claimed to result in a 20% improve-
ment in drilling performance and increased resource utilization  
[190–192]. 

3.3.3. Blasting 
As integrated subsystems from mine to mill, drilling and blasting are 

critical components required to increase the efficiency of mining and 
downstream processes via the reduction in energy consumption [192]. 
The efficiency of mining operations can be particularly affected by the 
monitoring and adjustment of blasting parameters. By adjusting factors 
such as the type and amount of explosives, the timing of the blast, and 
the design of the blast pattern, the effectiveness of the blasting process 
and productivity can be improved. Ongoing real-time optimization of 
blasting activities adapted to in-situ conditions can help ensure that 
safety measures are followed and the environmental impacts (e.g., dust 
and fly rocks) are minimized. 

Ideally, in an effective digital twin system, data including blasting 
energy, blasting vibration, explosive characteristics, seismic velocity, 
blasting design parameters, and outputs of blasting operations (e.g., 

Fig. 9. Schematic view of a digital twin system.  
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rock fragmentation, fly-rock, backbreak, and air blast) should con-
tinuously be collected and analyzed by various hardware and software, 
from which experts would be able to view blast results, produce reports, 
and optimize the operation to decrease costs and enhance efficiency. 
The latest proposed system creates a blasting vibration monitoring 
device that operates automatically. This system primarily consists of 
modules that enable engineers to achieve real-time transmission, au-
tomatic calculation, intelligent analysis of blasting vibration monitoring 
data, blasting-related parameters, and automatic alarms. These mod-
ules include data acquisition, transmission systems, client tracking 
control systems, and risk management platforms [193,194]. A network 
of remote blast monitoring stations, composed of distinct units, is part 
of the automated blast monitoring system. Engineers can designate one 
or more early warning units (EWUs) to serve as trigger sources for other 
units by using the dynamic triggering program integrated into each 
unit’s software. These EWUs are often the ones closest to the explosion 
epicenter. 

For surface blasting operations, UAV-based monitoring is wide-
spread and is conducted in three stages: preblasting, during blasting, 
and postblasting. At the pre-blasting stage, pit walls are mapped to 
collect structural data to predict in-situ block size distribution and to 
develop as-built pit wall digital elevation models (DEM) to assess blast- 
induced damages. At the blasting stage, a high-speed camera monitors 
and analyzes blast initiation, blast sequencing, misfired holes, and 
stemming ejections. At the post-blast stage, the blasted rock pile (i.e., 
muck pile) is monitored to estimate fragmentation and assess muck pile 
configuration. Data collected from each stage can be analyzed using 
ML, DL, or CNN models (see Fig. 11), and finally, a digital twin model of 
the blasting process is created [195,196]. In the digital twin system, 
understanding rock fragmentation using computer-aided methods, such 
as image analysis [197–199]. 

For explosive charging, there are automatic hole charging technol-
ogies [201]. The robot charger can be remotely controlled, safely 
charging the bored holes without the need for human intervention. 

The open-pit autonomous blast hole explosive charge technique is 
more developed than that for underground operations. For example 
ANFO (Ammonium Nitrate Fuel Oil) truck that is wirelessly connected 
to the operating center as part of a digital twin system for open-pit 
blasting operations, which is capable of sensing and monitoring, con-
trolling, and automating blasting operations based on blast design and 
sensed terrain and blast hole information [202]. 

3.3.4. Loading and hauling 
Although the entire mining value chain does not yet have a fully 

integrated digital twin system, several subcomponents have made sig-
nificant advancements in the use of digital twin technologies. Open-pit 
fleet management and dispatching systems are examples of this appli-
cation. At some mining sites, fully autonomous loaders and trucks are 
operational, equipped with sensors and IoT devices and integrated into 
a full digital twin system located in a remote operation center. Some of 
these sensors and devices are listed in Table 3, and they provide the 
fundamental data collection and communications in the digital twin 
system. As an actual example, haulage trucks are equipped with sensors 
and intelligent systems for automatic operations [203,204]. 

As an essential input for a digital twin system, hauling and loading 
data collected by innovative procedures can be processed by data 
analytics in real time. For example, a third-person view of remote 
machinery operations, such as loaders and haulage trucks, using fixed 
or mobile cameras is commonly used to relay the haulage system in-
formation to control centers [205]. 

Sensing the position and orientation of vehicles is another critical 
issue for automating mining processes. For haulage trucks, the issue is 

Fig. 10. Distinguishing lithological and structural features by remote sensing [186].  
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addressed by a combined stereo camera and two LiDAR sensors to de-
termine the three-dimensional (3D) position of the truck’s cargo box 
and to analyze its loading space [206,207]. For operational safety, a 
collision detection/response system called the Hazama Intelligent Ve-
hicle Automatic Control System (HIVACS) has been developed to pre-
vent vehicle collisions in heavy construction sites [208,209]. For loa-
ders, automatic recognition algorithms have been developed based on 
the feature extraction of working parameters to recognize the state of 
the loading cycle of electric shovels [210]. Approaches using deep 
learning for detecting missing teeth in mining shovels have also been 
implemented. This innovative method has several advantages over 
conventional methods, including real-time monitoring capabilities and 
the ability to identify broken or fallen teeth promptly. Its im-
plementation has significant potential for improving mine production 
efficiency. In these systems, images captured from a camera mounted 
on the rope of the shovel are sent to the digital twin system and 

analyzed by AI using deep learning and image processing [211–213]. 
Fleet management systems for loading and hauling have improved 

significantly in open-pit mines over the past few decades. The tech-
nology was first developed in 1990 by Komatsu and was later developed 
further by other pioneering equipment manufacturers and solution 
providers, such as Hitachi, Caterpillar, ASI mining, and Modular Mining  
[214]. By using these technologies, fully autonomous dump trucks 
equipped with an autonomous haulage system (AHS) can be efficiently 
dispatched using autonomous haulage instructions from fleet manage-
ment systems. In some cases, semiautonomous shovels that are re-
motely controlled by the operator and designed to improve safety and 
productivity can also be integrated into the digital twin system. 

Overwatering roads can cause slippery driving conditions, but the 
new technology prevents overwatering, hence improving the safety and 
efficiency of the hauling operation. For underground operations, efforts 
have been made to create autonomous underground loading and 
hauling systems by the LHD (Load, Haul, Dump) systems [215]. A 
production shaft is also commonly used in underground mines and 
provides a means of transporting ore to the surface. A digital twin 
model of the production shaft incorporates the dynamics of the electric 
drive and the mechanical parts of the mine hoist, such as the electric 
motor control system with speed and current controllers to calculate the 
linear speed of the cage, the cage position, and the rotation speeds of 
the drum and pulleys [216]. In addition, sensors are also integrated into 
the digital twin system to monitor the health of the hoist and related 
parts to ensure the safety of the operation [217]. 

3.3.5. Conveyor belts 
Conveyor belts are another component of a digital twin system of a 

mining process. Collected data from these belts could be significant for 
ore identification, ore tracking, ore sorting, and general maintenance. 

Fig. 11. Rock fragmentation size distribution analysis using an image processing technique [200].  

Table 3 
Sensors and IoT devices used for loading and hauling equipment.    

Sensors IoT devices  

Engine sensors (temperature sensor, 
pressure sensor, fuel level sensor) 
Vehicle health monitoring sensors 
(tire pressure sensor, brake condition 
sensor, battery status sensor) 
Collision avoidance sensors 
Environmental sensors (air quality 
sensor, dust level sensor, 
temperature sensor) 
Operational sensors (inclinometer, 
weight distribution sensors, lighting 
sensors, payload monitoring sensors) 

GPS (global positioning 
system) 
Cameras 
GPRS (General Packet Radio 
Service) /Wi-Fi 
communication 
Antennas 
Monitors 
Communication radios 
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By using these sensors to continuously monitor the performance and 
condition of the conveyor belts (see Fig. 12), potential issues that can 
impact the mining operation and productivity can be detected in ad-
vance, leading to an increase in the lifetime of the belts and a reduction 
in downtime [218–220]. 

Online ore analysis technology can also be used to optimize the 
performance of the conveyor belts, ensuring that they are operating at 
their maximum capacity [222–225]. A recent development of the di-
gital twin technology takes live data measurements and provides real- 
time feedback on the compatibility of the operating conditions of every 
major belt conveyor component, which can increase efficiency and 
energy savings, reduce unplanned downtime, and extend component 
service life [226]. Sensors are increasingly being employed to analyze 
ore composition as it is transported, allowing for ore sorting and re-
jection of wastes before the milling circuit, hence resulting in more 
efficient processing [227]. 

3.3.6. Mineral processing 
In mineral processing, by creating a virtual replica (i.e., digital twin) 

of a processing plant, operators can simulate and optimize various 
processes before implementing them in real life. This allows for more 
efficient and cost-effective operations. Using the digital twin tech-
nology, operators can monitor and analyze real-time data, identify 
bottlenecks, and improve efficiency, leading to reduced downtime, in-
creasing productivity, and improving overall performance. As shown in  
Fig. 13, various stages of mineral processing are equipped with different 
sensors, which are enabled by the latest developments in machine 

vision technology, as well as innovative monitoring and controlling 
techniques. Significant data can be collected in these subsystems to 
enable AI machine training [228]. 

Various online techniques for monitoring the performance and 
condition of hydrocyclones have been proposed. In recent years, the 
subject has gained significant interest as depleting ore grades impose a 
high demand on the performance of hydrocyclones in mineral proces-
sing [229]. As listed in Table 4, the digital solutions used to design a 
digital twin model of mineral processing include machine vision, in-
formation management systems, sensors, smart equipment, ML tech-
niques, process control systems, robotic cells, and IoT technologies  
[230]. 

In a crushing circuit, a digital twin system based on dynamic si-
mulation technology for feed hoppers, belt feeders, jaw crushers, cone 
crushers, and vibrating screens can deliver a complete set of operational 
variables for control system optimization [242]. In the grinding circuit, 
a digital twin system with advanced process control has been im-
plemented to help ensure an optimal operation strategy [243]. As for 
the entire plant, a type of digital twin system has been constructed to 
develop an intelligent decision-making system based on interactive vi-
sualization [244,245]. However, there is still a significant gap between 
the current proposed systems and the full digital twin system for the 
entire mineral processing plant. 

3.3.7. Personnel 
Personnel monitoring can be conducted in various ways, including 

time-tracking software, performance metrics, and regular manager 

Fig. 12. Identification of damage on conveyor belt [221].  

Fig. 13. Innovative sensors and detectors in mineral processing.  
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check-ins. By monitoring their employees, companies can identify areas 
that require improvements and provide timely feedback and support. 
This can improve work safety and increase efficiency, as employees can 
better understand expectations and work toward meeting them. 
However, it is important to balance monitoring with trust and au-
tonomy, as excessive monitoring can have negative consequences  
[246]. 

There are systems and devices that can effectively analyze semantic 
information contained in images and automatically extract workers’ 
unsafe behavior, enabling the control center to visualize unsafe acts in 
real time and further identify patterns of behavior that could jeopardize 
safety outcomes [247,248]. These systems can uniquely identify each 
employee and monitor their availability at a specific time. In addition, 
emotional assessment can be performed based on facial recognition 
technology. Cameras installed in the workplace can capture employees’ 
facial expressions, which can then be analyzed to infer emotional states, 
such as happiness, stress, or fatigue [249]. A digital twin system can 
then better optimize the efficiency of each employee’s workflow, in-
vestigate their satisfaction levels, and confirm fair treatment [250]. 

3.3.8. UAV-based data 
UAVs have become increasingly used in the mining industry because 

of their ability to provide detailed and accurate site data. They can be 
equipped with a variety of sensors and cameras to capture images and 
data that would be difficult or impossible to obtain using traditional 
methods. They can also access difficult mining areas, such as mined 
cavities and drives, which are not accessible by conventional mon-
itoring/surveying methods. These data can then be used to create 3D 
models of the site, monitor the progress of mining operations, and 
identify potential safety hazards [251]. 

The use of UAVs in the mining industry can lead to significant im-
provements in efficiency. By providing real-time mine data, UAVs can 
help companies make more informed decisions about where to allocate 
resources and how to optimize their operations. UAVs can reduce the 
need for manual labor in certain tasks, such as inspecting and surveying 
mines, which are time-consuming and costly procedures. UAVs are 
commonly used to collect various data from surface and underground 
mining operations [252–255], geological and structural analysis via 
remote sensing [256–259], aerial geophysical surveys [260–263], to-
pographic surveying in open-pit mines [264,265], analysis of rock 
slopes [266], analysis of working environments [267,268], monitoring 
of soil and water pollution [269–273], and monitoring of ecological 
restoration [274,275]. For the digital twin system, UAVs are used to 
create a dynamic flow of data, enabling it to provide a live, interactive 
model of the entire mining operation, which helps in monitoring, op-
timizing, and enhancing the overall efficiency and decision-making 
processes. 

3.3.9. Mining environmental data 
Environmental monitoring includes remote sensing and ground- 

based monitoring. Remote sensing involves the use of satellites and 
other aerial platforms to gather data on environmental conditions. 
Ground-based monitoring uses sensors placed on the ground or in 
bodies of water to measure various environmental factors, such as 
temperature, humidity, and water quality. Air quality monitoring is 
commonly implemented on mine sites and is a ground-based technique 

that involves the use of sensors that measure dust and pollutants in the 
air. These methods and sensors are essential for creating and main-
taining a digital twin system for the environment and can be used for 
simulations, predictions, and decision-making. As dust pollution is 
currently one of the most serious environmental problems in open-pit 
mines, the prediction and tracking of changes in dust concentrations 
using the digital twin is important for assessing the real-time environ-
mental impacts of mining. Recently, several cutting-edge technologies 
have been developed to help experts monitor pollutants on mine sites  
[276,277]. In particular, fiber-optic-based sensors are useful in sensing 
dust particles in hazardous environments, particularly in coal mines  
[278]. For dust concentrations around haul roads, sensors mounted on 
haulage trucks are used to collect pollution data needed for the digital 
twin system [279–282]. 

3.3.10. Digital twin simulators 
Several simulators, including the Petra MAXTA digital twin [283], 

the Orica Integrated Extraction Simulator [284], MATLAB Simulink  
[285], and the Dassault Systèmes digital twin [286], have been devel-
oped to simulate mining operations, offering a deeper understanding of 
the mining system. These advanced tools allow experts to simulate 
various scenarios, analyze data, and optimize processes. By im-
plementing these simulators, mining professionals can delve into 
complex mining system details, identify potential challenges, and de-
velop strategies to enhance efficiency and productivity. In addition, 
some of these platforms can incorporate real-time monitoring and 
predictive analytics, empowering mining companies to make informed 
decisions and improve operational performance. 

4. Discussion 

Digital twin technology is a key element in the industrial transfor-
mations driven by Industry 4.0, enabling the design of dynamic and 
real-time digital representations of physical systems. While digital twin 
systems have seen extensive applications in fields such as manu-
facturing, healthcare, and civil engineering, their adoption in the 
mining sector is still in an early stage. 

4.1. Current status of digital twins in mining 

Currently, digital twin systems in mining are employed to create 
virtual models that simulate and optimize various mining processes. 
These models can represent mine sites, machinery, and operations, 
encompassing the entire mining lifecycle from exploration and extrac-
tion to processing and logistics. Digital twin systems leverage a com-
bination of sensors, IoT devices, and advanced analytics to provide real- 
time data, enabling predictive maintenance, process optimization, and 
scenario simulations. 

Despite these advancements, the application of digital twin systems 
in mining is limited to specific areas, such as predictive maintenance of 
equipment, optimization of drilling and blasting processes, and fleet 
monitoring. Full-scale integration across the entire mining value chain 
is rare. For instance, while there are sophisticated digital twin models 
for equipment such as grinding mills and haul trucks, these models 
often operate in silos without being integrated into a unified system 
that can provide a comprehensive view of the entire mining operation. 

Table 4 
Digital techniques used to build a digital twin model in mineral processing.    

Subfield Reference  

Robotic cells [231,232] 
Sensors and smart instrumentations in the crushing and grinding circuits [233] 
Sensors and smart instrumentations in the flotation circuit [234–236] 
Sensors and smart instrumentations for tailings management [237–240] 
Machine vision [41,240,241] 
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This limitation reduces the ability of digital twins to provide an un-
derstanding and optimization of the entire mining system. 

4.2. Gaps in prior studies 

Several gaps have been identified in prior studies of the im-
plementation and use of digital twin systems in mining. Most research is 
focused on isolated aspects of the mining process. For example, while 
there is a considerable amount of work on digital twin applications for 
equipment monitoring and maintenance, there is a lack of studies that 
integrate these applications with broader operational perspectives. This 
fragmentation prevents the development of comprehensive digital twin 
systems that can enhance overall efficiency and productivity. In addi-
tion, there is a significant absence of standardization in digital twin 
frameworks and methodologies in mining. This lack of standardization 
leads to inconsistencies in how data are collected, processed, and used, 
making it challenging to develop interoperable systems that can work 
seamlessly across the distinct stages of mining operations. Many digital 
twin solutions in the mining sector are designed for specific cases and 
lack scalability. This limitation restricts the broader application of di-
gital twin systems across different mining operations and geographies, 
inhibiting the ability to implement widespread improvements in effi-
ciency and sustainability. 

Integrating digital twin systems with existing legacy systems in 
mining operations is another significant technical challenge. Many 
mining operations rely on outdated infrastructure that is not conducive 
to the seamless integration of advanced digital technologies. This gap 
requires the development of innovative integration strategies and tools. 
In addition, effective data management remains a critical challenge as 
mining operations generate vast amounts of data, but the ability to 
collect, store, and analyze this data in real time is often limited. In 
addition, issues related to data quality, consistency, and security further 
complicate the deployment of effective digital twin solutions. 

4.3. Prospects and next steps 

To boost the application of digital twin systems in mining, several 
suggestions and prospects can be considered.  

(1) Investment in Infrastructure. Mining companies should focus on 
investing in robust digital infrastructure that can operate under 
challenging conditions in remote areas. Collaboration with tech-
nology providers could benefit the development of better con-
nectivity and reliable power supply solutions. In addition, lever-
aging advanced technologies, such as IoT and AI, can enhance 
operational efficiency and safety in these environments.  

(2) Skill development programs. The industry needs to invest in 
training programs to upskill the existing workforce and attract new 
personnel with digital skills. Educational partnerships with uni-
versities and technical institutions can bridge the skills gap and 
foster innovations. Specifically, universities, particularly mining 
departments, play a crucial role in this initiative by adding spe-
cialized courses related to mine automation and innovative tech-
nologies. These courses should focus on equipping future mining 
engineers with essential skills, including AI, software development, 
and programming. By integrating these advanced topics into the 
curriculum, universities can ensure that graduates are well-pre-
pared to meet the demands of modern mining operations and drive 
the industry forward through technological advancements. 

(3) Pilot projects. By testing and refining the technologies used in di-
gital twins, pilot projects can provide valuable insights before they 
are scaled up to full implementation, ensuring higher efficiency and 
effectiveness in the final deployment.  

(4) Collaborative research and development (R&D). It is important to 
foster collaborative R&D between mining companies, technology 
firms, and research institutions to expedite the development of 

customized digital twin solutions that address specific challenges 
within the mining sector, ensuring more efficient and sustainable 
operations. 

(5) Regulatory frameworks. There is a need to create regulatory fra-
meworks that encourage and facilitate the adoption of digital 
technologies in mining, as this helps overcome hesitations related 
to investment. As technology continues to evolve, the im-
plementation of digital twins is expected to play an increasingly 
pivotal role in shaping the future of mining. By addressing the 
challenges and actively pursuing recent technologies, the mining 
industry can unlock new efficiencies, optimize resource usage, and 
pave the way for a more sustainable and innovative future.  

(6) Sustainability and environmental considerations. Digital twins can 
play a significant role in advancing sustainability goals in the 
mining sector. By adopting the technology to optimize resource 
usage, reduce waste, and minimize environmental impacts, digital 
twins can contribute to more sustainable mining practices. Future 
research should focus on developing digital twin solutions that not 
only enhance operational efficiency but also promote environ-
mental sustainability. 

5. Conclusions 

In recent years, the mining sector has undergone a transformative 
shift toward digitalization, using advanced technologies to optimize 
efficiency, safety, and sustainability. Despite significant progress, there 
remains a notable gap between current implementations and fully in-
tegrated digital twin mine sites. Certain critical aspects of mining op-
erations, such as fleet dispatching and the deployment of autonomous 
vehicles, have successfully implemented digital twin technologies, re-
volutionizing operations by enabling autonomous operation and en-
hancing productivity and safety. Similarly, the use of digital twin sys-
tems in production drilling has streamlined processes and improved 
accuracy and efficiency while minimizing downtime. These advance-
ments underscore the potential of digital twins to drive innovation and 
efficiency in mining operations. 

However, it is important to acknowledge that many areas of mining 
operations still require human intervention to ensure acceptable per-
formance. Certain processes, such as ore extraction and processing, 
often rely on human oversight to ensure adherence to safety protocols 
and optimal performance. For several reasons, the mining industry has 
been slower to adopt digitalization compared with other sectors. First, 
mining often takes place in remote and harsh environments, making it 
difficult to install and maintain digital infrastructure. These locations 
can lack reliable internet connectivity and power supply, which are 
essential for digital technologies. In addition, the rugged terrain and 
extreme weather conditions pose further challenges for implementing 
and sustaining these systems. Another reason is the high level of un-
certainty in the mining industry. Various factors, such as geological 
variability, fluctuating commodity prices, and unpredictable market 
demands, add complexity to mining operations. This makes it harder to 
apply digital solutions effectively. Moreover, the mining industry has 
traditionally been cautious about adopting new technologies due to the 
significant investment required and the long lifespan of existing 
equipment, which might not be compatible with new digital systems. 
There is also a skills gap, as many mining professionals lack the digital 
skills needed to implement and use these technologies effectively. The 
increasingly widespread deployment of sensors and IoT devices 
throughout mining operations has facilitated the collection of vast 
amounts of data, serving as a foundation for the development of digital 
twins. These systems enable real-time monitoring, predictive analytics, 
and proactive maintenance strategies, further enhancing operational 
efficiency, cost reduction, and safety. 

While the journey toward realizing full digital twin mine sites is 
ongoing, the industry’s commitment to digitalization remains steadfast. 
Efforts are being made to push the boundaries of digital twin use in 
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mining operations, aiming to enhance operational visibility, efficiency, 
and decision-making across the entire mining value chain. As tech-
nology continues to evolve, the implementation of digital twins is ex-
pected to play an increasingly pivotal role in shaping the future of 
mining, unlocking new efficiencies, optimizing resource usage, and 
paving the way for a more sustainable industry. 

In conclusion, the integration of digital twin systems into the mining 
sector provides substantial opportunities for enhanced efficiency, 
safety, and sustainability. By investing in robust digital infrastructure, 
developing targeted skill development programs, conducting pilot 
projects, fostering collaborative R&D, and installing supportive reg-
ulatory frameworks, the mining industry can overcome existing chal-
lenges and fully harness the potential of digital twins. As these tech-
nologies continue to grow, they will play an increasingly critical role in 
optimizing resource use, reducing environmental impact, and driving 
innovation. Embracing these technologies will not only drive the 
mining industry toward a more efficient and sustainable future but also 
ensure it remains competitive in an increasingly digitalized world. 
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