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Various slow slip events (SSEs) with distinct characteristics have been detected globally, particularly in
regions with dense Global Navigation Satellite Systems (GNSS) networks. In the Hikurangi subduction
zone of New Zealand, SSEs frequently occur alongside seismic activity, especially in the Manawatu and
Kapiti regions. This study analyzes the 2021e2023 Kapiti-Manawatu long-term SSE using daily
displacement data (2019e2023) from 53 GPS stations. The network inversion filter (NIF) method is
applied to extract slow slip signals, revealing spatial migration with alternating slip between Kapiti and
Manawatu, characterized by distinct phases of acceleration and deceleration. Manawatu exhibits higher
slip rates, exceeding 4 cm/month, with greater cumulative slip and surface displacement than Kapiti. A
moderate temporal correlation (coefficient 0.59) between seismic activity in the region and slip accel-
eration in Manawatu suggests that seismic events may contribute to the slip, while no significant cor-
relation is observed in Kapiti.
© 2024 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of
KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Slow slip events (SSEs) are transient slip phenomena occurring
around fault zones, typically found in the transitional regions be-
tween the locked and stable creeping zones of subduction zones
[1]. These events help release the stress accumulated in tectonic
plates due to tectonic movements. Unlike earthquakes, which last
only a few seconds, the strain between plates during slow slips is
released over several days to years, producing minimal seismic
waves [1]. Detecting slow slip requires high-density observations of
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crustal deformation. Dense Global Navigation Satellite Systems
(GNSS) networks in subduction zone regions can used to detect
millimeter-scale surface movements, accurately recording tran-
sient deformation signals, including slow slip [2,3]. This provides
valuable and precise data for earthquake research in subduction
zones. Various SSEs with different characteristics have been
detected in multiple subduction zones worldwide [4], primarily in
regions such as Japan [5e7], Cascadia [8,9], Mexico [10e12], and
New Zealand [13e15], as shown in Fig. 1.

The Hikurangi subduction zone in New Zealand (Fig. 2) results
from the westward subduction of the Pacific Plate beneath the
North Island [16]. Beneath the eastern coast, the subduction
interface is relatively shallow, with SSEs recorded at depths of
15e20 km [17]. As the interface depth increases westward, the
coverage depth range expands, benefitting land-based geodetic
studies. Research indicates that there are two types of SSEs: short-
term and long-term [18e20]. These events can cause displacements
lsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article
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Fig. 1. Global distribution of major global SSEs. The thick gray solid lines indicate the
global tectonic plate boundaries, and the red pentagrams represent the locations of
SSEs in subduction zones.

Fig. 2. Tectonic background and historical SSEs in the Hikurangi subduction zone, New
Zealand. The light blue shaded areas indicate short-term slow slip regions along the
east coast of the North Island [22,28,30e32]. The light green area represents the
Kaimanawa short-term slow slip region [23]. The magenta shaded area indicates the
Kapiti-Manawatu long-term slow slip region [24,26e28,32e35]. The thick red solid
line divides the Hikurangi subduction zone into northern, central, and southern seg-
ments, labeled as N, C, and S, respectively. Gray dashed lines represent the depth
contours of the plate interface. The gray arrows show the normal convergence rate of
the Hikurangi trench towards the Australian Plate.
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from a few to several tens of centimeters on the plate interface,
with equivalent moment magnitudes of about MW7.0. Short-term
SSEs [13,21,22], lasting no more than 3 months and recurring
every 1e2 years, are primarily found along the eastern coast of New
Zealand's North Island and in the central Kaimanawa region [23].
On the eastern coast, these events occur at shallow depths
(<20 km), whereas in the Kaimanawa region, they happen at
depths of 30e40 km, about 75 km from Hawke's Bay. Long-term
SSEs last 12e18 months, occurring every 5 years, and typically
happen in the Manawatu and Kapiti regions of the southern part of
the North Island at depths of 30e50 km [24e28]. This contrasts
with other subduction zones, like Cascadia and Nankai in Japan,
where long-term SSEs occur at shallow depths (15e30 km), and
short-term SSEs are found deeper (30e45 km) [29].

The Hikurangi subduction zone exhibits frequent seismic ac-
tivity, with significant differences in the spatiotemporal
2

evolution characteristics of long-term and short-term SSEs [18].
The relationships among these events remain to be fully un-
derstood. Previous studies have indicated that long-term SSEs
can alter the stress state of the seismogenic zone, affecting the
recurrence intervals of short-term SSEs [5,26,29] and promoting
earthquake nucleation [12,36]. Wallace et al. inverted SSEs on
the Hikurangi subduction zone during 2010e2011 [26], finding
that long-term SSEs in the Manawatu region of the North Island
begin a year before the short-term SSEs on the east coast. By
calculating Coulomb stress changes, they suggested that long-
term SSEs might have triggered subsequent short-term SSEs.
Radiguet et al. discovered a long-term SSE lasting approximately
10 months in their analysis of the April 2014, MW7.3 earthquake
in Mexico [12]. This SSE migrate along the fault toward the
earthquake rupture zone in the two months preceding the
earthquake, leading them to propose that the MW7.3 Papanoa
earthquake is triggered by the long-term SSE. Therefore, study-
ing long-term SSEs can provide insights into the stress state of
locked plate boundary zones and help assess the likelihood of
subduction zone earthquakes.

This study uses daily displacement data from 53 GNSS stations
in central and southern North Island, New Zealand, obtained
through GOENET, to extract time series with long-term slow slip
signals from 2021 to 2023. We applied the Network Inversion
Filter (NIF) method based on the Kalman filter [37] to invert the
spatiotemporal evolution of long-term SSEs in the Kapiti and
Manawatu regions of the Hikurangi subduction zone. The NIF
method effectively uses GNSS networks to invert the spatiotem-
poral slip distribution of subsurface faults [38,39] and has been
successfully applied to study various SSEs [21,29,40,41]. We also
examine the spatial and temporal relationship between long-term
SSEs and seismic activity to reveal the connection between these
events and regional seismic activity in the Hikurangi subduction
zone.

2. Data and methodology

The monitoring data for long-term SSEs in the Hikurangi sub-
duction zone from 2021 to 2023 are obtained from the GNSS
network deployed by GeoNet in New Zealand. This study primarily
utilizes surface displacement coordinate time series from 53 GNSS
stations located in central and southern North Island, as shown in
Fig. 3. The GNSS network has been operational since 2002 and uses
the GAMIT/GLOBK software developed and maintained by the
Department of Earth, Atmospheric, and Planetary Sciences at MIT
(https://www.geonet.org.nz/data/types/geodetic). It resolves co-
ordinates in the ITRF2008 reference frame for the east (E), north
(N), and up (U) directions, with horizontal and vertical accuracies
within 3 mm and 7 mm, respectively. This network is primarily
used for monitoring and analyzing crustal activities such as
earthquakes, landslides, tsunamis, and volcanic events in New
Zealand.

In Fig. 3, the Pacific plate subducts westward beneath the North
Island of New Zealand along the Hikurangi trench, with a normal
convergence rate of approximately 32 mm/year [42]. The Hikurangi
subduction zone exhibits significant north-south variations in its
tectonic characteristics and can be divided into three main seg-
ments: northern, central, and southern. Short-term shallow SSEs
are typically detected near the coast in the northern and central
segments. In contrast, this study focuses on long-term deep SSEs
occurring mainly in the southern Kapiti coast and central Mana-
watu region, within the transition zone between the shallow locked
zone and the deeper stable sliding zone.

Using the surface displacement coordinate time series of these
GNSS stations shown in Fig. 3, the modeling and inversion of long-
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Fig. 3. (a) Geological structure of the Hikurangi subduction zone, New Zealand. The black solid triangles represent 53 GNSS stations distributed across the southern North Island
and northern South Island of New Zealand, and the black dashed lines are depth contour lines of the plate interface [43]. The thick white solid lines segment the Hikurangi
subduction zone along the trench, indicating the southern segment of the subduction zone. The white arrows show the normal convergence rate of the Hikurangi trough towards
the Australian Plate. (b) indicates the study area shown in (a) with a red rectangle, where the Hikurangi subduction zone is located at the convergent margin of the Pacific and
Australian Plates. (c) shows the cross-section along the red dashed line A-B in (a), illustrating the position of deep slow slip on the subduction plate interface.
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period slow slip signals can be described by the following equations
[37,44,45]:
XðtÞ ¼ X0ðt0Þ þ vt þ
X
j

bjH
�
t � tj

�þX
i

½Si sinð6itÞ þ Ci cosð6itÞ� þ XSSEðx; tÞ

XSSEðx; tÞ ¼
ð

A

Gðx; xÞSðx; tÞdAðxÞ þ FðxÞf ðtÞ þ Bðx; tÞ þ εðx; tÞ
(1)
where, XðtÞ is the GNSS coordinate series at time t; X0ðt0Þ is the
initial position of GNSS station at the starting time t0; v is the long-
term steady-state velocity; Hðt�tjÞ is the Heaviside step function,
and bj is the step amplitude at time tj; Si and Ci represent the
amplitudes of seasonal periodic variations, and 6 denotes the
phase; XSSEðx; tÞ is the displacement time series containing the slow
slip signal. In the NIF method, XSSEðx; tÞ is decomposed into four
components: surface deformation

R
A
Gðx; xÞSðx; tÞdAðxÞ caused by the

slow slip, common-mode error FðxÞf ðtÞ, reference oscillation Bðx;tÞ,
and random noise εðx;tÞ. Here, Sðx; tÞ represents the slip at location
x on fault plane A at time t. The Green's function Gðx; xÞ relates the
slip at location x on the fault to the displacement at surface
location x.

Taking the GNBK station (as shown in Fig. 3) as an example, the
modeling to obtain long-term slow slip signals is illustrated in
Fig. 4. Using the GNSS coordinate time series spanning from
January 1, 2019, to December 31, 2023, we extracted long-term slow
slip signals after 2021. The steps are as follows: First, remove gross
errors from the GNSS coordinate time series, using the three-sigma
of the residuals as a threshold for detection of outliers in the ob-
servations, and correct for step discontinuities (Fig. 4(a)). Then,
estimate the steady-state tectonic motion and seasonal periodic
term coefficients using the GNSS coordinate time series from
January 1, 2019, to December 31, 2020, when no slow slip occurred.
3

Finally, remove the steady-state tectonic motion (Fig. 4(b)) and
seasonal periodic variations (Fig. 4(c)) from the entire time series to
obtain the long-term slow slip displacement time series (Fig. 4(d)).
The period from January 2019 to December 2020, during which no
SSEs occur, is selected to estimate the tectonic motion rate and
seasonal periodic term coefficients. This choice is based on prior
research indicating that alternating SSEs in the Kapiti and Mana-
watu regions from 2003 to 2018 [24,25,27,28,33]. When studying
long-term tectonic motion, it is essential to exclude periods with
SSEs to obtain a reliable long-term velocity estimate [32]. Addi-
tionally, earthquakes can cause corresponding changes in GNSS
displacement data in both horizontal and vertical directions [46]
especially moderate-to-strong events. Within the study area and
timeframe, no earthquake events caused significant GNSS surface
displacement changes, so the influence of seismic events is not
considered in the GNSS data processing for this study.

To invert the corresponding fault slip from the long-term slow slip
displacement time series, a 3D fault gridmodelmust be constructed, as
shown in Fig. 5. The 3D fault grid model of the Hikurangi subduction
zone, corresponding to the long-term slow slip in the Kapiti-
Manawatu Region, was obtained by interpolating isodepth contours
[43]. The depth ranges from 6 to 75 km and includes 3437 triangular
grid cells, with the shortest edge length of 10 km. Referencing fault
model parameters used in previous studies of the Hikurangi subduc-
tion zone [24,27,31,32,47], the shortest grid size for the Hikurangi
subduction interfacemodel canbe set between3and20km[27,32,47].
InRef. [24], a grid sizeof 6� 3km2quadrilaterals is used,whileRef. [31]
employed a 3D irregular grid with a resolution of 25� 20 km2. In this



Fig. 4. Extraction process of GNSS slow slip signals (example from station GNBK).

Fig. 5. Fault geometry model of the Hikurangi subduction zone.
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study, we test a fault grid with a minimum size of 10 km, achieving a
satisfactory balance between model smoothness and slip uncertainty.
Based on this 3D fault grid model, the fault Green's function is calcu-
lated, and the noise model is set to a random walk model. The NIF
method is used for filtering to obtain the fault slip.

3. Results

3.1. Monthly slip rate of Kapiti-Manawatu long-term SSE
(2021e2023)

Fig. 6 illustrates the spatiotemporal evolution of the long-term
SSE in the Kapiti-Manawatu region from 2021 to 2023. The figure
reveals a spatial migration process of the long-term slow slip be-
tween the Kapiti and Manawatu areas, as well as intermittent
stages of acceleration and deceleration in the slip. Accordingly,
three stages can be approximately delineated: Stage 1 (May 2021 to
July 2022), Stage 2 (August 2022 to August 2023), and Stage 3
(September 2023 to December 2023). In Stage 1, the slip in the
Kapiti region accelerates, reaching a maximum of 2.03 cm/month
4

(September 2021), followed by a deceleration phase during which
the slip migrates toward the Manawatu region, where the
maximum monthly slip rate reaches 4.26 cm/month (March 2022)
before decelerating. Stage 2 shows a gradual acceleration of slip in
the Kapiti region, reaching a maximum of 3.43 cm/month (January
2023). During the deceleration phase, the slip migrates toward the
Manawatu region, with the maximum monthly slip rate reaching
4.01 cm/month (May 2023) before decelerating. During the first
two stages, the slip in the two regions exhibits an inverse rela-
tionship, while in Stage 3, the slip in both regions tends to accel-
erate simultaneously, with slip rates reaching 2.01 cm/month and
4.4 cm/month, respectively, with no subsequent deceleration
observed. This suggests that the long-term SSE in the Kapiti-
Manawatu region is likely to continue in 2024.

During the acceleration stages of the long-term SSE from 2021
to 2023, the Manawatu region experiences three instances of ac-
celeration, eachwith amaximummonthly slip rate exceeding 4 cm/
month, while the Kapiti region experiences three instances of ac-
celeration with maximum monthly slip rates ranging between 2
and 3.5 cm/month. This indicates that the maximum monthly slip
rate in the Manawatu region exceeds that in the Kapiti region
throughout the long-term SSE.

3.2. Three stages of Kapiti-Manawatu long-term SSE

Fig. 7 presents the cumulative slip and surface displacement
during the aforementioned three stages. In Fig. 7, the maximum
cumulative slips in the Kapiti/Manawatu regions during the three
stages are 4.47/8.94, 13.21/11.55, and 3.77/5.51 cm, respectively,
with the maximum surface displacements monitored by GNSS are
1.77, 3.31, and 0.73 cm, respectively. Additionally, the cumulative
slip uncertainty across the three stages does not exceed 3.2 mm
(Fig. S1). The surface displacement derived from the NIF method
and that monitored by GNSS show minor discrepancies due to the
influence of common-mode errors, reference oscillation, and
random noise, but they are generally in agreement.



Fig. 6. Monthly slip rate of Kapiti-Manawatu long-term SSE (2021e2023).
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The timing, maximum monthly slip rate, cumulative slip, and
surface displacement during the three stages of the Kapiti-
Manawatu long-term SSE from 2021 to 2023 are summarized in
Table 1. Stage 1 and Stage 2 represent two complete cycles of spatial
migration and acceleration-deceleration, each lasting approxi-
mately one year. The cumulative slip and surface displacement in
the Kapiti-Manawatu region during Stage 2 are greater than those
in Stage 1.

3.3. Correlation between long-term SSEs and seismic activity

To further analyze the relationship between the Kapiti-
Manawatu long-term SSE (2021e2023) and seismic activity, a
5

statistical examination of the New Zealand earthquake catalog
(https://quakesearch.geonet.org.nz/ (accessed onMarch 1, 2024)) is
conducted. Seismic events occurring within the Kapiti-Manawatu
region (KMR) at a depth range of 0e80 km are selected for a cor-
relation analysis with the long-term SSE slip rates, as shown in
Fig. 8 and Table 2.

In Fig. 8, during the two complete cycles of spatial migration and
acceleration-deceleration (Stage 1 and Stage 2) of the Kapiti-
Manawatu long-term SSE (2021e2023), the highest frequency of
seismic events in the KMR region reached 841 events per month
during Stage 1 and 1091 events per month during Stage 2, signifi-
cantly higher than the average monthly seismic frequency of 667
events per month from 2021 to 2023. Notably, one month prior to

https://quakesearch.geonet.org.nz/


Fig. 7. Cumulative slip and surface displacement of Kapiti-Manawatu long-term SSE in three stages.

Table 1
Statistics of Kapiti-Manawatu long-term SSE from 2021 to 2023.

Kapiti-Manawatu long-term SSE Stage 1 Stage 2 Stage 3

Duration 2021.05e2022.07 2022.08e2023.08 2023.09e2023.12
Months 15 months 13 months 4 months
Maximum monthly slip rate in Kapiti (cm/month) 2.03 3.43 2.01
Maximum monthly slip rate in Manawatu (cm/month) 4.26 4.01 4.40
Cumulative slip in Kapiti (cm) 4.47 13.21 3.77
Cumulative slip in Manawatu (cm) 8.94 11.55 5.51
Maximum GNSS horizontal displacement (cm) 1.77 3.31 0.73
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the maximum slip rate in the Manawatu region, there is a signifi-
cant increase in seismic activity.

In Table 2, the correlation between the monthly slip rates and
the number of seismic events over the 36 months from 2021 to
2023 (as shown in Fig. 8(b)) is calculated. According to the corre-
lation coefficient (usually above 0.7 is strong, 0.4 to 0.7 is medium,
and below 0.4 is low), the correlation coefficient between the
monthly slip rates in Manawatu and seismic events in KMR with a
time delay of 1 month for seismic events was 0.59 (with a proba-
bility of 99.98 %), indicating a strong relationship between seismic
activity in the KMR region and the slow slip in Manawatu, whereas
there is no significant relationship with the slow slip in Kapiti.
Furthermore, it is inferred that seismic activity in the KMR region
likely contributed to the acceleration of slow slip in Manawatu.
4. Discussion

The Hikurangi subduction zone exhibits spatial migration in
long-term SSEs from 2021 to 2023, with a gradual northeastward
shift from Kapiti to Manawatu during the two complete cycles of
spatial migration, consistent with historical long-term SSEs in the
area [28]. Similarly, an along-strike migration pattern of SSEs is
observed in the Nankai Subduction Zone in Japan from 1996 to 2017
[6]. This sequence of SSEs spanned four stages, migrating approx-
imately 300 km from southern Hyuga-nada to western Shikoku,
with a recurrence interval of about six years. These observations
suggest that long-term SSEs are prone to significant spatial
migration. The GNSS network, as a crucial tool for monitoring SSEs
in subduction zones, offers high temporal resolution but is
restricted in spatial resolution due to the limited density of GNSS
station distribution. In contrast, Interferometric Synthetic Aperture
Radar (InSAR) provides higher spatial resolution but limited tem-
poral coverage, and it can only detect deformation in the radar line-
of-sight direction [48]. Therefore, future research could employ an
6

inversion of joint GNSS and InSAR data to reconstruct the evolution
of long-term SSEs with high temporal and spatial resolution.

Moreover, there is a notable connection between the Kapiti-
Manawatu long-term SSE and regional seismic activity from 2021
to 2023. Specifically, the slip rate in Manawatu is closely related to
the number of seismic events in the Kapiti-Manawatu region.
Remarkably, a significant increase in seismic frequency is observed
one month before the slip rate in Manawatu reached its maximum.
Furthermore, strong correlations are observed from 2019 to 2022
between short-term SSEs and seismic activity in the Hikurangi
subduction zone, New Zealand, with a noticeable increase in
seismic frequency during SSE occurrences [37,44,45]. Other studies
also indicate a strong correlation between SSEs and seismic activity.
For instance, prior to the Papanoya earthquake in Mexico, a long-
term SSE began migrating towards the earthquake rupture zone
until the earthquake occurred [12]. In 2014 and 2018, two long-
term SSEs, each lasting approximately five months, are observed
in the Hellenic Subduction Zone in Greece, accompanied by a sig-
nificant increase in seismic activity [36]. Although numerous
studies have indicated a correlation between SSEs and seismic ac-
tivity, the underlying mechanisms of this relationship remain to be
further studied.

Regarding the mechanism of triggering SSEs, stress pertur-
bations induced by earthquakes are considered a key factor,
influencing both their periodicity and slip rate. For example, the
stress changes induced by the 2016 MW7.8 Kaik�oura earthquake
in New Zealand triggered both shallow short-term slow slip in
the northern part of the Hikurangi subduction zone and deep
long-term slow slip in the southern part [25]. Similarly, the stress
changes caused by the 2016 MW7.6 Kumamoto earthquake in
Japan alter the recurrence interval of the Bungo Channel long-
term slow slip from 5 to 6 years prior to the earthquake to 7
years after the event [5]. By calculating Coulomb stress changes
in the subduction zone, Wallace et al. hypothesizes that the 2010
Manawatu long-term slow slip may have activated the 2011



Fig. 8. Seismic activity and long-term SSE (2021e2023) slip rates in the Kapiti-Manawatu regions (KMR). (a) The KMR is delineated with a light blue thick solid line. The cumulative
slips for the three phases of the Kapiti-Manawatu long-term SSE (2021e2023), namely Stage 1, Stage 2, and Stage 3, exceeding 3 cm, 5 cm, and 3 cm, respectively, are represented by
red, green, and blue contour lines. (b) The number of seismic events occurring within the KMR (2021e2023) is statistically analyzed in relation to the monthly maximum slip rate in
the Kapiti and Manawatu regions.

Table 2
Correlation analysis between monthly slip rates and the number of seismic events.

Correlation Correlation coefficient

Time delay of seismic events (Months) �2 �1 0 1 2 3
Monthly slip rates in Kapiti and seismic events in KMR 0.26 0.22 �0.02 0.11 0.10 �0.10
Monthly slip rates in Manawatu and seismic events in KMR �0.31 �0.13 0.18 0.59 0.36 �0.02

L. Yan, Y. Sun, M. Li et al. Geodesy and Geodynamics xxx (xxxx) xxx
short-term slow slip on the East Coast [26]. Additionally, swarms
of earthquakes occurring before SSEs suggest a fluid-related
mechanism between the two phenomena [14]. For example,
Heise et al. used magnetotelluric data to confirm the presence of
fluids at the Hikurangi subduction interface [49], indicating a
process of fluid migration along the subduction interface. Ob-
servations of fluid migration within the subducting plate before
and after SSEs in the circum-Pacific subduction zones suggest
that the accumulation and expulsion of fluids within the plate
can trigger both seismic activity and SSEs. This rheological
mechanism offers a plausible explanation for the link between
SSEs and earthquake generation in subduction zones
[4,22,23,50]. Existing research highlights various cases of mutual
triggering between seismic activity and SSEs, with the timing and
7

triggering mechanisms differing across regions, warranting
further investigation.

5. Conclusions

Using displacement data from 53 continuously operating GNSS
reference stations in the Kapiti-Manawatu region from 2019 to
2023, the long-term slow slip signals from 2021 to 2023 are
extracted after removing tectonic movements and seasonal varia-
tions. The NIF method is then employed to mitigate the effects of
common-mode error, reference oscillation, and random noise. A 3D
fault grid model is constructed, and the fault Green's function is
calculated to invert and obtain the spatiotemporal distribution of
long-term slow slip at the central and southern edges of the
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Hikurangi subduction zone in New Zealand. Finally, the relation-
ship between the Kapiti-Manawatu long-term SSE and regional
seismic activity is analyzed, leading to the following conclusions:

(1) From 2021 to 2023, the Kapiti-Manawatu long-term SSE
exhibits spatial migration characteristics, with slip alter-
nating between the Kapiti and Manawatu areas, along
with intermittent stages of acceleration and deceleration.
Accordingly, three stages can be approximately delin-
eated: Stage 1 (May 2021 to July 2022), Stage 2 (August
2022 to August 2023), and Stage 3 (September 2023 to
December 2023). Stage 3, with no subsequent decelera-
tion observed at the end, is likely to continue into 2024.
During the three stages, Manawatu experiences three in-
stances of acceleration with maximum monthly slip rates
exceeding 4 cm/month, while Kapiti experiences three
instances of acceleration with maximum monthly slip
rates ranging between 2 and 3.5 cm/month, indicating
that the slip rate at Manawatu is significantly higher than
that at Kapiti.

(2) The maximum cumulative slips in the Kapiti/Manawatu re-
gions during the three stages are 4.47/8.94, 13.21/11.55, and
3.77/5.51 cm, respectively, with the corresponding
maximum surface displacements monitored by GNSS being
1.77, 3.31, and 0.73 cm, respectively. Notably, during the two
complete cycles of spatial migration and acceleration-
deceleration (Stage 1 and Stage 2), both the cumulative slip
and surface displacement during Stage 2 are greater than
those observed in Stage 1.

(3) The highest seismic frequency in the KMR region reached
841 events per month during Stage 1 and 1091 events per
month during Stage 2, significantly higher than the average
monthly seismic frequency of 667 events per month from
2021 to 2023. The correlation coefficient between the
monthly slip rates in Manawatu and seismic events in KMR
with a time delay of 1 month is 0.59, indicating a moderate
correlation between seismic activity in the KMR region and
the slow slip in Manawatu. This temporal correlation
suggests that seismic activity in the KMR region likely
contributed to the acceleration of slow slip in Manawatu.
In contrast, there is no significant relationship between
seismic activity in the KMR region and the slow slip at
Kapiti.
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