Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Fluoride contaminated drinking water in Gokwe District (NW Zimbabwe): spatial distribution, lithostratigraphic controls and implications for human health

    15235_MamuseMSc.pdf (10.35Mb)
    Access Status
    Open access
    Authors
    Mamuse, Antony
    Date
    2003
    Supervisor
    Ron Watkins
    Type
    Thesis
    Award
    MSc
    
    Metadata
    Show full item record
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/1266
    Collection
    • Curtin Theses
    Abstract

    The supply of drinking water in Gokwe District (NW Zimbabwe) is almost entirely based on groundwater drawn from boreholes and open dug wells. In certain areas of the district, the occurrence of dental fluorosis has been linked to excessive fluoride in the water supplies. A high prevalence of dental fluorosis (about 62%) was previously recorded among school children in the district. The aim of this study was to determine relationships between the spatial distribution of fluoride content in drinking water supplies in Gokwe, and lateral and vertical geological variation. A total of 224 water samples were collected from 196 water sources in the study area (a further 18 water sources just outside the study area were also sampled). All the samples were analysed for fluoride in the field using the fluoride ion selective electrode method (FISE). One hundred and fifty nine duplicate samples were analysed for fluoride and common anions and cations using High Performance Ion Chromatography (HPIC) in the laboratory. Two main groups of computer programmes were employed: (1) Geographic Information System (ArcView® GIS) was used to store, analyse and display multiple layers of surface geologic and geographic information, and (2) a three-dimensional visualisation programme (Rockworks) was used to interpret and illustrate site stratigraphy based on borehole information. Results indicated that the fluoride content of drinking water in the study area ranges from 0 to 9.65 mg/L. Forty-seven water sources (24%) yielded water containing fluoride in excess of the World Health Organisation's (WHO) health limit of 1.5 mg/L F. Of the 47 high fluoride water sources, 43 were boreholes (pumped or artesian). The shallower water sources (dug wells, streams and dams) largely yielded low-fluoride water.The groundwater fluoride contamination is stratigraphically controlled and originates from carbonaceous material (carbonaceous shales, carbonaceous mudstones and coaly material) within the Lower Madumabisa and Middle Wankie Members of the Lower Karoo Group. It has been shown that in general the greater the proportion of carbonaceous material intersected by a borehole, the greater the fluoride concentration of the water. Probable mineral sources of fluoride within the carbonaceous material include fluorapatite, kaolinite and trona. Chemical parameters that appear to influence the concentration of dissolved F in the water supplies include total dissolved solids (TDS), NaCl and pH. In relatively low fluoride waters, F concentrations generally increase with TDS and NaCl concentrations, whereas the highest F concentrations are found in moderately alkaline (pH 7.8-9) waters. Based on ranges of fluoride concentration in drinking water, fluorosis-risk zones were identified and have been illustrated on a fluorosis-risk map. The zones are: No Risk Zone (0-1.5 mg/L F), Moderate Risk Zone (1.5-3.0 mg/L F), High Risk Zone (3.0-6.0 mg/L F) and the Very High Risk Zone (6.0-10.0 mg/L F). The map suggests that groundwater available to people occupying 3650 km z (60.8%) of the study area potentially contains excessive fluoride (F>1.5 mg/L), presaging the occurrence of dental fluorosis, skeletal fluorosis and crippling skeletal fluorosis in the area. Different strategies may be employed to ameliorate the fluoride problem in Gokwe.These include sinking new boreholes to optimal depths and in appropriate locations, promoting the use of surface water and shallow groundwater, resettlement and defluoridation. However in order to fully understand the problem and to prescribe these or other solutions more comprehensively, multi-disciplinary studies may be required. Such studies may consider isotopic dating of water to investigate any relationships between fluoride concentration and residence time of water, geochemical analyses of rocks and soils, detailed fluorosis epidemiology studies and test-scale defluoridation investigations.

    Related items

    Showing items related by title, author, creator and subject.

    • Geochemical evaluation of fluoride contamination of groundwater in the Thoothukudi District of Tamilnadu, India
      Singaraja, C.; Chidambaram, S.; Anandhan, P.; Prasanna, Mohan Viswanathan; Thivya, C.; Thilagavathi, R.; Sarathidasan, J. (2014)
      Fluoride is a chemical element that has been shown to cause significant effects on human health through drinking water. Different forms of fluoride exposure are of importance and have shown to affect the body’s fluoride ...
    • Malodorous dimethylpolysulfides in Perth drinking water.
      Heitz, Anna (2002)
      The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.