Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    An adaptive antenna array processor with derivative constraints.

    11632_Tuthill, John 1995.pdf (3.108Mb)
    Access Status
    Open access
    Authors
    Tuthill, John D.
    Date
    1995
    Supervisor
    Professor Antonio Cantoni
    Dr Yee Hong Leung
    Type
    Thesis
    Award
    MEng
    
    Metadata
    Show full item record
    School
    Australian Telecommunications Research Institute
    URI
    http://hdl.handle.net/20.500.11937/1413
    Collection
    • Curtin Theses
    Abstract

    In antenna array processing it is generally required to enhance the reception or detection of a signal from a particular direction while suppressing noise and interference signals from other directions. An optimisation problem often posed to achieve this result is to minimise the array processor mean output power (or variance) subject to a fixed response in the array look direction. The look direction requirement can be met by imposing a set of linear constraints on the processor weights to yield what is known as the Linearly Constrained Minimum Variance (LCMV) processor. It has been found, however, that LCMV processors are susceptible to errors in the assumed direction of arrival of the desired signal. To achieve robustness against directional mismatch, additional constraints known as derivative constraints can be introduced. These constraints force the first and second order spatial derivatives of the array power response in the look direction to zero. However, constraints corresponding to necessary and sufficient (NS) conditions for these spatial derivatives to be zero are in general quadratic, and the resulting weight vector solution space is non-convex. One approach to this complex problem has been to consider conditions which are only sufficient for the spatial derivatives to be zero. Whilst this results in linear constraints, it exhibits certain anomalous behaviour, for example, dependence on the choice of array phase centre.Recent work in the area of derivative constraints has resulted in a method for efficiently solving the non-convex output power minimisation problem with quadratic derivative constraints. The optimisation problem addressed assumes that the input signal statistics and hence the input signal autocorrelation matrix R are known. In practice, R must be estimated from the receiver data.The main contribution of this thesis is the derivation of a new adaptive algorithm which implements an adaptive array processor with look direction plus 1st and 2nd order NS derivative constraints. The new algorithm is derived from the well-known Recursive Least Squares (RLS) technique but allows linear and quadratic constraints to be incorporated within the recursive framework. The algorithm offers the high performance characteristics associated with RLS methods, namely, fast convergence and high steady-state accuracy. The work encompasses a study of the characteristics of the algorithm in terms of numerical robustness, convergence properties, tracking and computational complexity.The study of the numerical properties of the algorithm has led to the second important contribution of this thesis: the identification of a parameter which is central to the numerical stability of the algorithm in a practical fixed precision environment. We show that this parameter is bounded during stable operation and can therefore be used to detect the onset of numerical instability within the algorithm. In addition, we show how existing techniques can be used to significantly improve the numerical robustness of the algorithm.Another important contribution of the thesis stems from an investigation into the multimodal nature of the quadratic, equality constrained optimisation problem resulting from the use of second order NS derivative constraints. In particular, we show that for a linear antenna array operating under certain conditions, the complex multimodal optimisation problem can be greatly simplified. This has important implications in both optimum and adaptive array signal processing.

    Related items

    Showing items related by title, author, creator and subject.

    • Adaptive antenna array beamforming using a concatenation of recursive least square and least mean square algorithms
      Srar, Jalal Abdulsayed (2011)
      In recent years, adaptive or smart antennas have become a key component for various wireless applications, such as radar, sonar and cellular mobile communications including worldwide interoperability for microwave ...
    • Iterative algorithms for envelope-constrained filter design.
      Tseng, Chien H. (1999)
      The design of envelope-constrained (EC) filters is considered for the time-domain synthesis of filters for signal processing problems. The objective is to achieve minimal noise enhancement where the shape of the filter ...
    • Joint pricing and production planning of multiple products
      Mardaneh, Elham (2010)
      Many industries are beginning to use innovative pricing techniques to improve inventory control, capacity utilisation, and ultimately the profit of the firm. In manufacturing, the coordination of pricing and production ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.