Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Molecular modelling of platelet endothelial cell adhesion molecule 1 and its interaction with glycosaminoglycans

    153405_Gandhi2007.pdf (2.828Mb)
    Access Status
    Open access
    Authors
    Gandhi, Neha Sureshchandra
    Date
    2007
    Supervisor
    Dr. Ricardo Mancera
    Type
    Thesis
    Award
    MSc
    
    Metadata
    Show full item record
    School
    School of Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/1513
    Collection
    • Curtin Theses
    Abstract

    The Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) has many functions including its roles in leukocyte extravasation as part of the inflammatory response, and in the maintenance of vascular integrity through its contribution to endothelial cell-cell adhesion. Various heterophilic ligands of PECAM-1 have been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this thesis. The three dimensional structure of the extracellular immunoglobulin (Ig)-domains of PECAM-1 was constructed using homology modelling and threading methods. Potential heparin/heparan sulfate binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein binding specificity and selectivity. It is predicted that two regions in PECAM-1 appear to bind heparin oligosaccharides. A high affinity binding region was located in Ig-domains 2 and 3 and a low affinity region was located in Ig-domains 5 and 6.These GAG binding regions are distinct from regions involved in PECAM-1 homophilic interactions. Docking of heparin fragments of different size revealed that fragments as small as a pentasaccharide appear to be able to bind to domains 2 and 3 with high affinity. Binding of longer heparin fragments suggests that key interactions can occur between six sulfates in a hexasaccharide with no further increase in binding affinity for longer fragments. Molecular dynamics simulations were also used to characterise and quantify the interactions of heparin fragments with PECAM-1. These simulations confirmed the existence of regions of high and low affinity for GAG binding and revealed that both electrostatic and van der Waals interactions determine the specificity and binding affinity of GAG fragments to PECAM-1. The simulations also suggested the existence of ‘open’ and ‘closed’ conformations of PECAM-1 around domains 2 and 3.

    Related items

    Showing items related by title, author, creator and subject.

    • Molecular modelling of the interactions of complex carbohydrates with proteins
      Gandhi, Neha Sureshchandra (2011)
      Glycosaminoglycans (GAGs) are ubiquitous complex carbohydrate molecules present on the cell surfaces and in extracellular matrices (ECM) of vertebrate and invertebrate tissues. The interactions of sulphated GAGs such as ...
    • Computational analyses of the catalytic and heparin binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-D-glucuronidase (heparanase)
      Gandhi, Neha; Freeman, C.; Parish, C.; Mancera, Ricardo (2012)
      Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement ...
    • The interaction of heparin tetrasaccharides with chemokine CCL5 is modulated by sulfation pattern and pH
      Singh, A.; Kett, W.; Severin, I.; Agyekum, I.; Duan, J.; Amster, I.; Proudfoot, A.; Coombe, Deidre; Woods, R. (2015)
      © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Interactions between chemokines such as CCL5 and glycosaminoglycans (GAGs) are essential for creating haptotactic gradients to guide the migration ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.