Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Simultaneous removal process for humic acids and metal ions by adsorption

    Access Status
    Fulltext not available
    Authors
    Terdkiatburana, Thanet
    Date
    2007
    Supervisor
    Dr. Shaobin Wang
    Prof. Moses O Tadé
    Type
    Thesis
    Award
    MEng
    
    Metadata
    Show full item record
    School
    Dept. of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/1714
    Collection
    • Curtin Theses
    Abstract

    Humic substances are macromolecules that naturally occur in all environments in which vegetation matter are present. In general, humic acid is part of humic substances which form the major fraction of the dissolved organic matters in surface water and represents 90% of dissolved organic carbon. Humic acid plays a fundamental role in many ecosystems since it interacts with toxic metal ions present in the system, resulting in a decrease in the bio-availability of such ions. Moreover, the availability of humic acid in water can react with other chemical compounds, such as chlorine to form trihalomethanes (including chloroform) and causes an increasing risk of cancer and may be linked to heart, lung, kidney, liver, and central nervous system damage. Therefore, humic acid removal in water treatment processes is very important in order to achieve the drinking water standards. Heavy metals are significant contaminants in aqueous system. All heavy metals can produce toxicity when ingested in sufficient quantities, but there are several important ones such as lead, mercury, copper, cadmium, arsenic, nickel and silver. These heavy metals are so pervasive and produce toxicity at low concentrations. Moreover, they may build up in biological systems and become a significant health hazard.Adsorption is approved as an effective and simple method for water and wastewater treatment process. Many adsorbents then are developed for use in adsorption process such as montmorillonite, peat, activated carbon, etc. In this research, humic acid and heavy metals were mainly selected for adsorption study. In the sorption experiment, several adsorbents such as synthesised zeolite (SZ), natural zeolite (NZ), powdered activated carbon (PAC) and fly ash (FA), were selected to examine the application of HA and heavy metals both in individual and simultaneous adsorption, The characteristics and interactions of the adsorbents with HA and heavy metals were systematically studied by batch laboratory experiments. In the beginning, the adsorption of HA onto SZ, NZ, PAC and FA was investigated and their adsorption capacity was compared. The equilibrium adsorption of HA on SZ, NZ, PAC and FA was found to be 84.1, 67.8, 81.2 and 34.1 mg/g, respectively, at 30 oC and pH 5.0. Dynamic adsorption data show that these adsorbents could reach their adsorption equilibrium after 50 hours. From pH analysis, HA adsorption is favoured at low pH and an increase in pH will lead to the reduction of HA adsorption. SZ and NZ adsorption capacity were affected by the changing of solution temperature; however, in PAC and FA sorption study, there was no significant effect observed. Two heavy metal ions (Cu, Pb) removal by the adsorbents was then conducted. The results showed that the equilibrium sorption capacity of Cu and Pb ions on SZ, NZ, PAC and FA were 43.5, 24.2, 19.7, 28.6 and 190.7, 129.0, 76.8 mg/g, respectively at 30 oC and a pH value of 5. The appropriate pH for Cu and Pb removal was found to be 5 and 6. In most dynamic cases, these adsorbents needed at least 50 hours to reach the adsorption equilibrium. Only adsorption on FA required more than 150 hours to reach the equilibrium.In simultaneous adsorption experiments, the influences of HA and heavy metal concentration (in the range of 10 to 50 mg/L for HA and 10 to 30 mg/l for heavy metals) on the HA-heavy metal complexation were investigated. The results demonstrated that increasing HA concentration mostly affected Cu adsorbed on SZ, FA and PAC and Pb adsorbed on SZ, NZ and PAC. For HA adsorption, the adsorption rate decreased rapidly with increased initial metal ion concentration. Moreover, the adsorption of heavy metals increased with increased heavy metals concentration in the presence of HA. In the presence of heavy metal ions, the order of HA adsorption followed PAC > FA > SZ > NZ. According to the results, the individual and simultaneous adsorption of HA and heavy metals on each adsorbent achieved a different trend. It mainly depended on the adsorption property of both adsorbates (HA and heavy metals) and adsorbents (SZ, NZ, PAC and FA) and also the operation factors such as pH, concentration, temperature and operation time. Even though this experiment could not obtain high adsorption performance, especially in coadsorption, as compared with other adsorbents, the adsorbents in this study represented a higher adsorption capacity and provide the potential for further development.

    Related items

    Showing items related by title, author, creator and subject.

    • Treatment of oily and dye wastewater with modified barley straw
      Che Ibrahim, Shariff (2010)
      Barley straw, an agricultural byproduct, was identified as a potential adsorbent material for wastewater treatment as it offers various advantages such as abundant availability at no or very low cost, little processing ...
    • Effect of iron corrosion on the fate of dosed copper to inhibit nitrification in chloraminated water distribution system
      Zhan, Weixi (2011)
      Nitrification has been acknowledged as one of the major barriers towards efficient chloramination in water supply distribution systems. Many water utilities employing monochloramine as the final disinfectant have been ...
    • Removal of ZN (II) Metal Ions From Aqueous Solution By Aluminium Oxide (AL2 O3): A Kinetic And Equilibrium Study
      Sen, Tushar; Mei, C. (2012)
      In this work the adsorptive properties of aluminium oxide in the removal of zinc (Zn2+) from aqueous solution have been studied by laboratory batch adsorption kinetic and equilibrium experiments.The results show that the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.