Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Enhanced gas condensate recovery by CO2 injection

    159514_Al-Abri2011.pdf (2.707Mb)
    Access Status
    Open access
    Authors
    Al-Abri, Abdullah S.
    Date
    2011
    Supervisor
    Prof. Robert Amin
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    Faculty
    Faculty of Science and Engineering, Department of Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/1770
    Collection
    • Curtin Theses
    Abstract

    Perhaps no other single theme offers such potential for the petroleum industry and yet is never fully embraced as enhanced hydrocarbon recovery. Thomas et al. (2009, p. 1) concluded their review article with “it appears that gas condensate reservoirs are becoming more important throughout the world. Many international petroleum societies are beginning to have conferences specifically oriented to gas condensate reservoirs and discussing all parameters germane to such systems.” Gas condensate reservoirs however, usually experience retrograde thermodynamic conditions when the pressure falls below the dewpoint pressure. Condensate liquid saturation builds up near the wellbore first and then propagates radially away along with the pressure drop. This liquid saturation throttles the flow of gas and thus reduces the productivity of a well by a factor of two to four (Afidick et al., 1994; Barnum et al., 1995; Smits et al., 2001; Ayyalasomayajulla et al., 2005). The severity of this decline is to a large extent related to fluid phase behaviour, flow regime (Darcy or non-Darcy), interfacial forces between fluids, capillary number, basic rock and fluid properties, wettability, gravitational forces as well as well type (well inclination, fractured or non-fractured).Thomas et al. (2009, p. 4) added “... for gas condensate systems which exhibit high interfacial tensions where the pore throats are very small, which may correspond either to low permeability rocks or high permeability rocks but with very large coordination number, the success of flowing the liquid from the rock, once it has condensed, will be limited. In such cases, vaporisation (lean gas cycling) or injection of interfacial tension reducing agents (CO2) may be the only option to enhance the performance.” In their comparison of several EOR mechanisms, Ollivier and Magot (2005, p. 217) reported “since large changes in viscous forces are only possible for the recovery of heavy oil, the reduction (or entire elimination) of interfacial forces by solvents such as injection gases seems to be a practical way to achieve large changes in capillary number.” While the majority of the state of the art publications cover sensational aspects of gas condensate reservoirs such as phase couplings and mass transfer between original reservoir components, very little has been reported on fluid dynamics and interfacial interactions of CO2 injection into such systems. This, along with the conceptual frameworks discussed above, serves as the motive for this research work.High pressure high temperature experimental laboratories that simulate reservoir static and thermodynamic conditions have been established to evaluate the: (1) effectiveness of CO2 injection into gas condensate reservoirs through interfacial tension (IFT) and spreading coefficients measurements at various reservoir conditions, (2) efficiency of the process through recovery performance and mobility ratio measurements; with special emphasis on the rate-dependent, IFT-dependent, and injection gas composition-dependant relative permeabilities, and (3) the behaviour of CO2 injection into gas condensate reservoirs on a field scale through numerical simulations in heterogeneous, anisotropic, fractured and faulted systems. The study also investigates the performance of various reservoir fluid thermodynamic conditions, injection design variables, and economic recovery factors associated with CO2 injection.Condensate recovery was found to be a strong function of CO2 injection pressure (and thus IFT), displacement flow rate, injection gas composition as well as phase behaviour and fluid properties. These parameters control the orientation and continuity of the fluid phases, solubility, gravity segregation, mobility ratio, and the ultimate recovery efficiency. Simulation analysis also suggests that developments of fractured gas condensate reservoirs depend to a large extent on initial reservoir thermodynamic conditions (initial pore pressure and fluid composition) as well as on production operations (natural depletion, waterflooding, continuous CO2 injection, gas injection after waterflooding GAW, or water alternating gas WAG).Much like the interrelation between accuracy and precision in science and engineering statistics, this research work draws a link between the effectiveness (quality metric through IFT measurements) and the efficiency (productivity metric through coreflooding experiments) of CO2 injection into gas condensate reservoirs. The data reported in this research work should help reservoir engineers better characterise gas condensate systems. The results can also aid the engineering design of CO2-EOR and CO2 sequestration projects.

    Related items

    Showing items related by title, author, creator and subject.

    • Gas injection in fractured reservoirs : emphasis on mass transfer
      Mohammadzadeh Bahar, Mohammad (2010)
      Mass transfer occurs in a number of Enhanced Oil Recovery (EOR) processes such as gas injection, solvent injection, Water Alternative Gas injection (WAG) processes and gas cycling. The role of mass transfer in gas injection ...
    • Phase Behaviour, Fluid Properties and Recovery Efficiency of Immiscible and Miscible Condensate Displacements by SCCO2 Injection: Experimental Investigation
      Al-Abri, Abdullah; Amin, Robert (2010)
      This paper presents a quantitative investigation of the interfacial tension dependent relative permeability (IFT-DRP) and displacement efficiency of supercritical CO2 injection into gas-condensate reservoirs. A high-pressure ...
    • Enhanced gas recovery by CO[subscript]2 injection
      Sidiq, Hiwa H-Amin (2010)
      The central issue in the physical processes of enhanced gas recovery by carbon dioxide (CO[subscript]2) injection is the extent to which the natural gas will mix with the injected CO[subscript]2 and reduce the calorific ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.