Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Investigation of pre-treatment used for organic foulant removal from wastewater effluent on fouling of membranes used for wastewater treatment and reuse

    151577_Aryal2009.pdf (798.4Kb)
    Access Status
    Open access
    Authors
    Aryal, Ashok
    Date
    2009
    Supervisor
    Dr. Arumugam Sathasivan
    Type
    Thesis
    Award
    MPhil
    
    Metadata
    Show full item record
    School
    Department of Civil Engineering, School of Engineering
    URI
    http://hdl.handle.net/20.500.11937/1891
    Collection
    • Curtin Theses
    Abstract

    The volume of global water is very large. However, the source of water on the globe is finite and also distributed in quite uneven manner. In addition to this, freshwater source is dwindling and becoming scarce from human intervention including anthropogenic input, reduced rainfall due to climate change and increased water demand for drinking, hydropower, irrigation and industrial use combine with increasing pollution load from urban, industrial and agricultural discharges. This results many part of the world with only limited or no fresh water source to meet the increasing water demand. So, development of alternative water resource such as wastewater recycling is highly essential to face the degradation of and shortage of water. In this context, the use of membranes in wastewater reuse process is likely to play an important role to combat the potential degradation and shortage of the water resources as well as to meet increasingly stringent standards in terms of potable and industrial use. It has been used for the treatment of wastewater effluent at Beenyup and Kwinana wastewater treatment plant by Water Corporation. While Beenyup will recycle water to recharge the aquifer for future use, Kwinana plant recycles it for industrial use. Despite various promises of membrane, the wide application is still limited as both plants experienced membrane fouling particularly organic and biofouling leading to increase in operation cost.Organic foulants could cause both reversible and irreversible fouling. While reversible fouling can be overcome by backwashing, irreversible fouling tenders expensive membranes useless. So, this research aimed to investigate the in-depth assessment of organic matter removal particularly focusing on pretreatment side to reduce the fouling rate by minimizing the organic material prior to the membrane filtration. Two fundamental mechanism particularly physicochemical and biological processes were investigated both separately and in combination in this research. They were analysed in terms of organic matter removal (DOC, UV254, SUVA, Turbidity,… etc) during the study of these process. Enhanced coagulation by Ferric Chloride and MIEX® were studied as physico chemical process while BAC was studied as biological treatment process for various experimental configurations. The laboratory results showed that physio chemical process can achieve around 60 percent removal of organic carbon present in the wastewater. Similarly, biological process was also found to be effective and achieved up to 45 percent removal of organic carbon. The combined performance of pre-treatment particularly BAC followed by the coagulation was also investigated and found to be more effective as BAC converted nonsorbable organic carbon to sorbable organic carbon by increasing the efficiency of coagulant significantly.This combination achieved the removal of organic carbon even up to 90 percent. This means, fouling of membrane can be reduced significantly by applying fore mentioned treatment individually or in combination. However, to understand the fouling mechanism further, more detail laboratory works need to be done. So, various pre-treated secondary wastewater needs to be brought into membrane fouling experiments in the next stage of research in order to understand the insight of membrane fouling and its minimization to make the membrane technology economical for the reuse of wastewater.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • Membrane performance and build-up of solute during small scale reverse osmosis operation
      Nasir, Subriyer (2007)
      Reverse Osmosis (RO) is widely accepted as an alternative method to produce freshwater from different feed water sources. This technology competitively substitutes the thermal processes in the near future because of several ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type
    My Account
    Admin
    Statistics
    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.