Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Adaptation of Indian mustard (Brassica juncea L.) to short season dryland Mediterranean-type environments.

    14498_Gunasekera C 2003.pdf (5.478Mb)
    Access Status
    Open access
    Authors
    Gunasekera, Chandra Padmini
    Date
    2003
    Supervisor
    Assoc. Prof. Lionel Martin
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    Muresk Institute of Agriculture
    URI
    http://hdl.handle.net/20.500.11937/1998
    Collection
    • Curtin Theses
    Abstract

    Indian mustard (Brassica juncea L.) has recently been identified as a potential and profitable alternative oilseed crop in the grain growing regions of Australia. To date, no research has been reported on adaptation of mustard in water limited Mediterranean-type environments in south Western Australia. Experiments presented in this thesis were undertaken to study adaptation of mustard in the Mediterranean-type environments in south Western Australia, with the hypothesis that mustard would be better adapted to these environments due to its reputation for drought tolerance. Experiments were conducted with three main aims. Firstly, to identify the effects of genotype, environment (times of sowing/seasons/sites) and genotype x environment interaction on the phenology, growth, dry matter production, seed yield, oil and protein contents of mustard and canola. Secondly, to identify phenological, morphological and physiological characters responsible for adaptation and yield improvement of mustard in these environments. Thirdly, to study the response of mustard to soil moisture deficits, especially in the post-flowering period, in comparison to canola. Adaptation of six mustard breeding lines/cultivars varying in maturity, height and oil quality and three canola cultivars varying in maturity were tested at a medium rainfall site (Northam) in the 1999 growing season. These genotypes were sown at four times after the break of the season and their phenology, growth, morphology, dry matter production and partitioning, radiation absorption, seed yield and its components, and seed oil and protein concentrations were measured. Adaptation of mustard to short season, low rainfall areas was tested, in the 2000 and 2001 growing seasons, at three sites (Merredin. Mullewa and Newdegate), by sowing seven genotypes of mustard and canola at three times after the break of the season.Seed yield, oil and protein concentrations were measured at all three sites and detailed measurements of phenology, morphology, dry matter production and partitioning, radiation absorption, seed yield and its components, and seed oil and protein concentrations were taken only at Merredin. The effects of post-flowering soil moisture stress on mustard and canola was studied in detail using rainout shelters at Merredin in the 2001 growing season. Measurements of water use, leaf water potential, osmotic potential, osmotic adjustment, relative water content, and leaf diffusive conductance were taken together with morphology, dry matter production and partitioning, radiation absorption, seed yield and its components, and seed oil and protein concentration. Mustard produced seed yields similar to canola at a medium rainfall site at Northam in south Western Australia. Early sowing (May) was more suitable for mid and late maturing genotypes and mid sowing (early June) was optimum for early maturing genotypes at this site. Dry matter production and seed yield was highest in early sowing due to balanced pre-anthesis and post-anthesis development of the crop and its ability to avoid terminal drought. Very late sowing (after July) significantly reduced the dry matter production, seed yield and oil concentration of mustard and canola due to poor establishment, reduced post-anthesis duration, soil moisture and high temperature stresses which occurred at the end of the season. Mustard did not produce significantly higher dry matter and seed yield compared to canola at the medium rainfall site, Northam. Seed yield and oil concentration of mustard and canola in low rainfall environments (Merredin, Mullcwa and Newdegate) were higher when sown early in the season (May). Longer growing duration and post-anthesis duration were favourable for higher yields.Higher rainfall during the post-anthesis phase, warmer pre-anthesis phase and cooler post-anthesis phase were associated with higher seed yield in these environments. As shown by the Principal Component Analysis and the Finlay Wilkinson Analysis, adaptation of mustard genotypes to low rainfall environments was better compared to canola genotypes. Mustard genotypes, 887.1.6.1, 82 No 2298 demonstrated their general adaptability by producing the highest mean seed yield across all environments and showing average phenotypic stability across all environments. The low yielding canola genotype, Oscar was best adapted to high yielding environments and showed below average phenotypic stability. Low yielding mustard genotypes, JM 25 and JM 33 were best adapted to low yielding environments and showed above average phenotypic stability. Early flowering and developmental plasticity had a significant contribution to yield potential and its stability. All mustard genotypes were more tolerant to soil moisture and high temperature stresses and exhibited early vigour compared to canola varieties. Mustards produced significantly higher dry matter compared to canola under soil moisture and high temperature stresses. Yield reduction due to late sowing VI was greater in canola compared to mustards. Greater dry matter production of mustards under severe soil moisture stress was related to their higher water use and radiation use, which in turn was related to their superior osmotic adjustment.Osmotic adjustment improved dry matter production in mustards as it allowed stomata to remain partially open at progressively lower leaf water potentials and maintained higher stomatal conductance, maintained leaf area and reduced the rate of leaf senescence by increasing both avoidance and tolerance of dehydration and thereby increased radiation use, increased water use by stomatal adjustment, and increased soil moisture uptake by producing deeper roots. Mustard exhibited many agronomic advantages over canola, such as vigorous seedling growth, quick ground covering ability, early vigour, and the feasibility of direct harvesting due to non-shattering pods. Despite all these advantages currently available mustard genotypes do not have the ability to out yield canola due to their lower efficiency of conversion of dry matter to seeds, as indicated by lower harvest indices, and inferior yield component structure. Further breeding in mustard is required to modify its morphology and yield component structure. Mustard plants with more pods and pods with more seeds would produce higher yields. Shorter, compact plant stature and reduced branching would improve harvest index in mustard. Furthermore, development of mustard genotypes with high oil quality and concentration similar to canola would improve its market value as an oil seed crop.

    Related items

    Showing items related by title, author, creator and subject.

    • Adaptations for growing wheat in a drying climate
      Sprigg, Hayden Mark (2011)
      Declining rainfall in the winter months in southwest Australia could have large impacts on wheat production in the area, particularly in those parts where production is historically limited by water supply.It is expected ...
    • Phenology and Growth of the Grasstree Xanthorrhoea preissii in Relation to Fire and Season
      Korczynskyj, Dylan (2002)
      Australian grasstrees are a long-lived group of arborescent, monocotyledonous plants that persist in fire-prone landscapes. Renowned for their capacity to survive fire, and flower soon after, these species have long ...
    • Socio-economic and agricultural potential of cattle manure application for crop production in Uganda
      Muhereza, Innocent (2012)
      Declining soil fertility coupled with minimal nutrient inputs have contributed to low crop yields in sub-Saharan Africa; a major constraint to food security and economic development in Uganda. The use of cattle manure in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.