Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Static testing of large scale ground support panels

    131507_Morton E 2009 Full.pdf (19.79Mb)
    Access Status
    Open access
    Authors
    Morton, Ellen C
    Date
    2009
    Supervisor
    Dr. Alan Thompson
    Type
    Thesis
    Award
    MSc
    
    Metadata
    Show full item record
    School
    Western Australian School of Mines
    URI
    http://hdl.handle.net/20.500.11937/2067
    Collection
    • Curtin Theses
    Abstract

    The Western Australian School of Mines (WASM) developed a large area static test facility to enable the evaluation of three forms of surface support; namely, mesh, shotcrete and membranes. The purpose of this thesis is to document the test conditions and procedures under which these tests were conducted and to document the outcomes from testing.A review of previous mesh testing established that the most common method used for the evaluation of mesh types was two-dimensional linear elastic analyses, often using catenary principles. These analysis techniques have been used to estimate the tension in the wires of mesh and the strength characteristics of the mesh. These methods assume that forces are only transferred along directly loaded wires and that failure of the mesh is only related to the tensile strength of the wire.The force – displacement response from fully restrained mesh tests conducted at the WASM test facility have been characterised into distinct phases, clearly demonstrating the non-linear behaviour of mesh. The initial force response to displacement is slow; however the force response increases dramatically with further displacement. This behaviour has been shown to follow a cubic relationship.The force – displacement results have also been used to develop load transfer concepts for both weld mesh and chain link mesh. These concepts suggest that forces are transferred away from the directly loaded wires through adjoining wires, distributing forces over a greater area of the mesh. The force capacity of the weld mesh is not only dependent on the tensile strength of the wire but also the quality of the welding process. Likewise, the force capacity of chain link mesh is not only dependent on the tensile strength of the wire but also diamond configuration which allows load to be shared across a greater area of mesh.Several other test conditions were evaluated as part of the test program, including mesh sheet overlaps and wire orientation. The results have demonstrated that the boundary conditions and mesh orientation alters the force – displacement response of mesh.Most current shotcrete testing techniques focus on quality assurance and quality control. Shotcrete support mechanism and failure mechanisms are complex and not well understood. The WASM punch test method was developed to evaluate shotcrete using realistic shotcrete failure mechanisms such as shear and flexural failure and adhesion loss.The behaviour of shotcrete is characterised by an initial stiff reaction followed by rupture of the cement matrix. Rupture generally occurs at displacements of less than 5mm. The rupture force of fibre reinforced shotcrete is dependent only on the cement content of the shotcrete mix and the thickness of the layer, and not on the fibre type. The post rupture reaction of shotcrete is dependent on the reinforcing material; namely fibres or mesh. Mesh reinforced shotcrete had much greater force and displacement capacity compared with fibre reinforced shotcrete.Membranes have two theoretical support models (Norcroft, 2006); namely, the membrane support model and the beam support model. A total of 6 tests were undertaken to investigate the behaviour of a particular membrane product under the two theoretical support models. These tests were aimed at determining a suitable test method that could determine the capacity of the membrane and the behaviour of the membrane under realistic loading conditions.The results from both test programs demonstrated that the membrane has limited force and displacement capacity and cannot be compared with conventional mesh and shotcrete as suggested in the product data sheet. The failure mechanism was shear failure with minimal adhesion loss observed.The development of the WASM test facility has enabled the evaluation and comparison of various surface support elements. The results of this testing have provide a valuable insight into the performance of each of the individual products.

    Related items

    Showing items related by title, author, creator and subject.

    • Rock support mesh responses to static and dynamic loadings
      Thompson, A.; Villaescusa, Ernesto; Player, J.; Morton, E. (2013)
      Steel wire mesh restrained by rock and cable bolts is widely used in mining and tunnelling for support of unstable rock fragments that may detach from the rock mass surrounding underground excavations. Several years ago ...
    • Flexural behaviour of hybrid fibre-reinforced polymer (FRP) matrix composites
      Sudarisman (2009)
      The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...
    • Experimental investigation of the behaviour of spiral steel fibre reinforced concrete beams subjected to drop-weight impact loads
      Hao, Y.; Hao, Hong; Chen, G. (2014)
      Concrete is a brittle material with much lower strength in tension as compared to that in compression. Adding fibres into concrete mix has been intensively investigated to increase the ductility, the crack control and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type
    My Account
    Admin
    Statistics
    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.