Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Pullout behaviour of suction embedded plate anchors in clay

    18648_Song2008.pdf (6.009Mb)
    Access Status
    Open access
    Authors
    Song, Zhenhe
    Date
    2008
    Supervisor
    Dr. Hamid Nikraz
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    Dept. of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/2173
    Collection
    • Curtin Theses
    Abstract

    In recent years oil and gas mining has moved into increasingly deeper water in search of undeveloped fields. As water depths approach and exceed 3000 m conventional offshore foundation systems become inefficient and ineffective in stabilising platforms and floating production storage units. The trend of supporting structure design in deep water has been to install catenary and taut leg mooring systems. Consequently, many types of anchoring systems are being developed and used in order to withstand large mooring forces. The SEPLA (Suction Embedded Plate Anchor) is ideal for use in this situation. This project has employed advanced numerical techniques and centrifuge testing to study pullout behaviour of plate anchor foundations in different soil profiles and suction caisson installation effect with the aim of generating a robust framework for design. The behaviour of strip and circular plate anchors during vertical pullout in uniform and normally consolidated clays has been studied by means of small strain and large deformation finite element analyses. Both fully bonded (attached), and ‘vented’ (no suction on rear face), anchors have been considered. The current numerical results were compared with existing laboratory test data, finite element results and analytical solutions. This study showed that the ultimate pullout capacity factors (Nc) for deep embedment were 11.6 and 11.7 for smooth and rough strip anchors and 13.1 and 13.7 for smooth and rough circular anchors respectively. When the anchor base was vented, the soil stayed attached to the anchor base for deep embedment, and the pullout capacity was therefore the same as for the attached anchor. The separation depth ratio, Hs/B or Hs/D was found to increase linearly with the normalised strength ratio, su/γ'B or su/γ'D.Numerical simulation has been conducted to assess the bearing capacity for inclined pullout plate anchors. This bearing capacity analysis was performed by embedding the anchors in clay with different initial inclinations and different embedment ratios. Both the attached anchor base and vented base were evaluated. The results showed that the bearing capacities of the inclined plate anchors were associated with the inclination angles and base conditions. The separation depth of the plate anchors can be assessed by a simple equation from vertically pulled out plate anchors. Large deformation finite element analyses of plate anchor keying in clay has been performed. The effects of anchor thickness, anchor padeye eccentricity, anchor-soil interface roughness, soil shear strength, anchor submerged weight and soil disturbance have been studied with anchors in uniform or normally consolidated clays. The numerical results were compared with transparent soil test and existing centrifuge test data. The study showed that the RITSS method works well in simulating the anchor keying process. Anchor padeye eccentricity played an important role in anchor keying. A normalised anchor geometry ratio was used to estimate the loss in embedment during plate anchor’s keying. Both finite element analysis and centrifuge tests have been conducted to study the suction caisson installation effect. In finite element analysis, the soil disturbed zone varied from 3 times the caisson wall thickness to a full area inside a caisson.Centrifuge tests of suction embedded plate anchors were conducted in normally consolidated kaolin clay and transparent uniform soil. It can be concluded that the reduction in anchor capacity due to soil disturbance after suction caisson installation depends on re-consolidation time and soil sensitivity. The soil disturbance also reduced the loss of embedment during the anchor keying process.

    Related items

    Showing items related by title, author, creator and subject.

    • Bearing Capacity and Keying of Plate Anchor in Normally Consolidated Clay
      Song, Zhenhe; Hu, Yuxia; Muelle, Erik (2008)
      In this paper, finite element analyses of plate anchor keying in Normally Consolidated (NC) clay were performed. Bearing capacity of plate anchors was investigated with various embedment ratios and pullout inclination ...
    • Investigation of Soil Failure Mechanisms during Spudcan Foundation Installation
      Hossain, Muhammad Shazzad (2004)
      Mobile jack-up rigs are widely used in offshore oil and gas exploration and increasingly in temporary production and maintenance work. There is a steadily increasing demand for their use in deeper water and harsher ...
    • Experimental study on unsaturated direct shear and California bearing ratio tests with suction monitoring on sand-kaolin clay mixtures
      Purwana, Yusep Muslih (2013)
      The laboratory study on unsaturated soil may comprise the study of devices or apparatus used and the study of the behaviour of soil itself. In both, suction is the main issue of the study’s concern. One of the common ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.