Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Using dynamic time warping for multi-sensor fusion

    129032_Ko2009.pdf (2.659Mb)
    Access Status
    Open access
    Authors
    Ko, Ming Hsiao
    Date
    2009
    Supervisor
    Prof. Svetha Venkatesh
    Prof. Geoff West
    Type
    Thesis
    Award
    MSc
    
    Metadata
    Show full item record
    School
    Department of Computing
    URI
    http://hdl.handle.net/20.500.11937/384
    Collection
    • Curtin Theses
    Abstract

    Fusion is a fundamental human process that occurs in some form at all levels of sense organs such as visual and sound information received from eyes and ears respectively, to the highest levels of decision making such as our brain fuses visual and sound information to make decisions. Multi-sensor data fusion is concerned with gaining information from multiple sensors by fusing across raw data, features or decisions. The traditional frameworks for multi-sensor data fusion only concern fusion at specific points in time. However, many real world situations change over time. When the multi-sensor system is used for situation awareness, it is useful not only to know the state or event of the situation at a point in time, but also more importantly, to understand the causalities of those states or events changing over time.Hence, we proposed a multi-agent framework for temporal fusion, which emphasises the time dimension of the fusion process, that is, fusion of the multi-sensor data or events derived over a period of time. The proposed multi-agent framework has three major layers: hardware, agents, and users. There are three different fusion architectures: centralized, hierarchical, and distributed, for organising the group of agents. The temporal fusion process of the proposed framework is elaborated by using the information graph. Finally, the core of the proposed temporal fusion framework – Dynamic Time Warping (DTW) temporal fusion agent is described in detail.Fusing multisensory data over a period of time is a challenging task, since the data to be fused consists of complex sequences that are multi–dimensional, multimodal, interacting, and time–varying in nature. Additionally, performing temporal fusion efficiently in real–time is another challenge due to the large amount of data to be fused. To address these issues, we proposed the DTW temporal fusion agent that includes four major modules: data pre-processing, DTW recogniser, class templates, and decision making. The DTW recogniser is extended in various ways to deal with the variability of multimodal sequences acquired from multiple heterogeneous sensors, the problems of unknown start and end points, multimodal sequences of the same class that hence has different lengths locally and/or globally, and the challenges of online temporal fusion.We evaluate the performance of the proposed DTW temporal fusion agent on two real world datasets: 1) accelerometer data acquired from performing two hand gestures, and 2) a benchmark dataset acquired from carrying a mobile device and performing pre-defined user scenarios. Performance results of the DTW based system are compared with those of a Hidden Markov Model (HMM) based system. The experimental results from both datasets demonstrate that the proposed DTW temporal fusion agent outperforms HMM based systems, and has the capability to perform online temporal fusion efficiently and accurately in real–time.

    Related items

    Showing items related by title, author, creator and subject.

    • Using dynamic time warping for online temporal fusion in multisensor systems
      Ko, Ming; West, Geoff; Venkatesh, Svetha; Kumar, Mohan (2008)
      Sensor fusion is concerned with gaining information from multiple sensors by fusing across raw data, features or decisions. Traditionally these fusion processes only concern fusion at specific points in time. However ...
    • A bayesian data fusion approach to spatio-temporal fusion of remotely sensed images
      Xue, J.; Leung, Yee-Hong; Fung, T. (2017)
      Remote sensing provides rich sources of data for the monitoring of land surface dynamics. However, single-sensor systems are constrained from providing spatially high-resolution images with high revisit frequency due to ...
    • Data fusion of radar and image measurements for multi-object tracking via Kalman filtering
      Kim, Du Yong; Jeon, M. (2014)
      Data fusion is an important issue for object tracking in autonomous systems such as robotics and surveillance. In this paper, we present a multiple-object tracking system whose design is based on multiple Kalman filters ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.