Show simple item record

dc.contributor.authorMamuse, Antony
dc.contributor.supervisorDr. Alok Porwal
dc.date.accessioned2017-01-30T09:49:52Z
dc.date.available2017-01-30T09:49:52Z
dc.date.created2010-10-26T07:06:45Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/20.500.11937/449
dc.description.abstract

The Kalgoorlie Terrane of the Yilgarn Craton, Western Australia, containing about 60% (~11 Mt) of the world’s known komatiite-hosted nickel sulphide resources, is the world’s best studied and economically most important province for this mineral deposit type. Although increasingly mature in terms of nickel exploration, the Kalgoorlie Terrane is believed to contain significant additional undiscovered nickel endowment. Using the data-rich Kalgoorlie Terrane, this thesis develops a benchmark methodology that combines geological knowledge with spatial analysis and mathematical-statistical methods to estimate undiscovered nickel resources.In the proposed methodology, nickel sulphide deposits are considered realisations of stochastic mineralisation processes and are analysed within the following framework. Komatiites in the Kalgoorlie Terrane constitute the full sample space or the permissive tract. Disjoint, naturally bound individual komatiite bodies that make up the sample space are used as the spatial analysis units. Some komatiite bodies within the sample space contain nickel sulphide deposits (mineralised) and others do not (unmineralised). In this study, the most explored mineralised komatiite bodies constitute local control areas against which nickel resources in the less explored komatiite bodies can be assessed. The concept of local control areas is analogous to the concept of global control areas which are well explored parts of permissive areas for particular deposit types worldwide.Spatial point pattern analyses showed that the spatial distribution of mineralised komatiite bodies within the sample space is clustered. In contrast, nickel sulphide deposits in individual komatiite bodies are either randomly distributed or dispersed, and not clustered. This absence of deposit clustering within individual komatiite bodies indicates that the intensity of the deposit pattern of each komatiite body may be adequately expressed as deposit density (number of deposits per km[superscript]2). In global quantitative resource assessments, regression analysis of the well established power law relationship between deposit density and size of global control areas provides a robust method for estimating the number of deposits.In this study a power law relationship reminiscent of that in global models was found between the sizes of control areas and deposit density. In addition, this study establishes another power law relationship between nickel endowment density (nickel metal per km[superscript]2) and the sizes of control areas. Deposit and endowment density regression models based on the two power laws suggested that, respectively, 59 to 210 (mean 114) nickel sulphide deposits and 3.0 to 10.0 Mt (mean 5.5 Mt) nickel metal remained undiscovered in demonstrably mineralised komatiite bodies within the Kalgoorlie Terrane. More emphasis is placed on endowment density which may be more intrinsic to the Kalgoorlie Terrane than deposit density because deposit counts are confounded by definitional ambiguities emanating from orebody complexities. Thus the spatial pattern of mineral deposits may not coincide with the spatial pattern of mineral endowment as demonstrated by spatial centrographic analyses in this study.To estimate the amount of undiscovered nickel metal in the entire Kalgoorlie Terrane and not just in the demonstrably mineralised komatiite bodies, Zipf’s law was applied. According to Zipf’s law, the size of the largest deposit is twice the size of the second, thrice the size of the third, four times the fourth, and so on. Based on the currently known size of Mt. Keith deposit, the largest nickel sulphide deposit in the Kalgoorlie Terrane, Zipf’s law indicates that the terrane is nearly mature in terms of nickel exploration and contains only about 3.0 Mt nickel metal in undiscovered resources. The collective implication of the regression and Zipf’s law estimates is that in the Kalgoorlie Terrane, no significant nickel resources are likely to be contained in the known komatiites that are presently not demonstrably mineralised. However if, as widely speculated, the actual size of Mt. Keith deposit is about twice the currently known size, Zipf’s law predicts 10.0 Mt nickel metal in undiscovered nickel endowment for the Kalgoorlie Terrane. The additional 7.0 Mt undiscovered nickel metal endowment is attributed to opening up of a new exploration search space through deeper resource delineation, within an otherwise nearly mature terrane.

dc.languageen
dc.publisherCurtin University
dc.subjectspatial analysis
dc.subjectgeological knowlege
dc.subjectkomatiite-hosted nickel sulphide resources
dc.subjectnickel exploration
dc.subjectKalgoorlie Terrane
dc.subjectWestern Australia
dc.subjectspatial point pattern analyses
dc.subjectstochastic mineralisation processes
dc.subjectmathematical-statistical methods
dc.subjectYilgarn Craton
dc.titleSpatial statistical estimation of undiscovered mineral endowment: case of komatiite-associated nickel sulphide resources, Kalgoorlie Terrane, Western Australia
dc.typeThesis
dcterms.educationLevelPhD
curtin.departmentDepartment of Applied Geology
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record