The k-error Linear Complexity Distribution for Periodic Sequences
Access Status
Open access
Authors
Zhou, Jianqin
Date
2017Supervisor
Assoc. Prof. Wanquan Liu
Type
Thesis
Award
PhD
Metadata
Show full item recordFaculty
Science and Engineering
School
Computing
Collection
Abstract
This thesis proposes various novel approaches for studying the k-error linear complexity distribution of periodic binary sequences for k > 2, and the second descent point and beyond of k-error linear complexity critical error points. We present a new tool called Cube Theory. Based on Games-Chan algorithm and the cube theory, a constructive approach is presented to construct periodic sequences with the given k-error linear complexity profile. All examples are verified by computer programs.
Related items
Showing items related by title, author, creator and subject.
-
Zhou, J.; Liu, Wan-Quan; Wang, X. (2017)In this paper, a new constructive approach of determining the first descent point distribution for the k-error linear complexity of 2 n -periodic binary sequences is developed using the sieve method and Games-Chan ...
-
Zhou, Jianqin; Liu, Wan-quan (2013)The linear complexity and the k-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of ...
-
Zhou, J.; Liu, Wan-Quan; Wang, X. (2016)© 2016 SERSC. The linear complexity and k-error linear complexity of a sequence have been used as important measures for keystream strength. In order to study k-error linear complexity of binary sequences with period 2n, ...