Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Model based methods for locating, enhancing and recognising low resolution objects in video

    145037_Kramer full.pdf (35.08Mb)
    Access Status
    Open access
    Authors
    Kramer, Annika
    Date
    2009
    Supervisor
    Prof. Svetha Venkatesh
    Assoc. Prof. Tele Tan
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    Department of Computing
    URI
    http://hdl.handle.net/20.500.11937/585
    Collection
    • Curtin Theses
    Abstract

    Visual perception is our most important sense which enables us to detect and recognise objects even in low detail video scenes. While humans are able to perform such object detection and recognition tasks reliably, most computer vision algorithms struggle with wide angle surveillance videos that make automatic processing difficult due to low resolution and poor detail objects. Additional problems arise from varying pose and lighting conditions as well as non-cooperative subjects. All these constraints pose problems for automatic scene interpretation of surveillance video, including object detection, tracking and object recognition.Therefore, the aim of this thesis is to detect, enhance and recognise objects by incorporating a priori information and by using model based approaches. Motivated by the increasing demand for automatic methods for object detection, enhancement and recognition in video surveillance, different aspects of the video processing task are investigated with a focus on human faces. In particular, the challenge of fully automatic face pose and shape estimation by fitting a deformable 3D generic face model under varying pose and lighting conditions is tackled. Principal Component Analysis (PCA) is utilised to build an appearance model that is then used within a particle filter based approach to fit the 3D face mask to the image. This recovers face pose and person-specific shape information simultaneously. Experiments demonstrate the use in different resolution and under varying pose and lighting conditions. Following that, a combined tracking and super resolution approach enhances the quality of poor detail video objects. A 3D object mask is subdivided such that every mask triangle is smaller than a pixel when projected into the image and then used for model based tracking. The mask subdivision then allows for super resolution of the object by combining several video frames. This approach achieves better results than traditional super resolution methods without the use of interpolation or deblurring.Lastly, object recognition is performed in two different ways. The first recognition method is applied to characters and used for license plate recognition. A novel character model is proposed to create different appearances which are then matched with the image of unknown characters for recognition. This allows for simultaneous character segmentation and recognition and high recognition rates are achieved for low resolution characters down to only five pixels in size. While this approach is only feasible for objects with a limited number of different appearances, like characters, the second recognition method is applicable to any object, including human faces. Therefore, a generic 3D face model is automatically fitted to an image of a human face and recognition is performed on a mask level rather than image level. This approach does not require an initial pose estimation nor the selection of feature points, the face alignment is provided implicitly by the mask fitting process.

    Related items

    Showing items related by title, author, creator and subject.

    • Low Resolution Face Recognition in Surveillance Systems
      Xu, Xiang; Liu, Wan-Quan; Li, Ling (2014)
      In surveillance systems, the captured facial images are often very small and different from the low-resolution images down-sampled from high-resolution facial images. They generally lead to low performance in face ...
    • Video foreground extraction for mobile camera platforms
      Leoputra, Wilson Suryajaya (2009)
      Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection ...
    • Robust Face Recognition based on Color and Depth Information
      Li, Billy Y.L. (2013)
      One of the most important advantages of automatic human face recognition is its nonintrusiveness property. Face images can sometime be acquired without user's knowledge or explicit cooperation. However, face images acquired ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.