Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Transformation of bio-oil during pyrolysis and reforming

    190330_Wang2012.pdf (2.367Mb)
    Access Status
    Open access
    Authors
    Wang, Yi
    Date
    2012
    Supervisor
    Prof. Chun-Zhu Li
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Chemical and Petroleum Engineering, Fuels and Energy Technology Institute
    URI
    http://hdl.handle.net/20.500.11937/676
    Collection
    • Curtin Theses
    Abstract

    The pyrolysis of biomass is a very effective means of energy densification. With the bio-char returned to the field as a soil conditioner and for carbon bio-sequestration, bio-oil can be used in many ways, including being upgraded into liquid transport biofuels or being used as a feedstock for gasifiers or conventional boilers. However, a number of technical challenges exist during bio-oil applications, such as formation of tar and coke. The fundamental understanding on the transformation of bio-oil under various thermal chemical conversion conditions is essential for the development of novel technologies for the clean utilisation of bio-oil.Thermal decomposition (pyrolysis) is always the first step in all thermal chemical processes involving bio-oil. The pyrolysis of bio-oil and its separated fractions was carried out in a novel two-stage fluidised-bed/fixed-bed quartz reactor. The results indicated that bio-oil was exceedingly reactive and underwent drastic changes when it was further heated. The evolution of various complex aromatic ring systems was tightly related to the formation of coke and tar. The interactions among the different chemical groups of the bio-oil constituted a unique thermal behaviour of bio-oil.The behaviour of bio-oil during reforming was studied. The non-catalytic/catalytic steam reforming of above feedstock was conducted respectively. Without catalysts, extra steam supply showed limited effects on tar reforming. Char-supported iron catalyst showed good performance on the reforming of tars produced from the thermal cracking of the bio-oil and its components with steam. The catalytic steam reforming showed obvious effects on the conversion of non-aromatics (e.g. sugars), particularly the large molecules at low temperatures (< 700 °C). With increasing temperature, the catalyst showed good performance on the reforming of aromatic ring systems. The interactions among the species degraded from lignin and cellulose/hemicellulose obviously affected the evolution of aromatic structures during the catalytic steam reforming of bio-oil. The main possible role played by cellulose/hemicellulose-derived species was the provision of additional radicals during the reforming of bio-oil.

    Related items

    Showing items related by title, author, creator and subject.

    • Evolution of aromatic structures during the reforming of bio-oil: Importance of the interactions among bio-oil components
      Wang, Y.; Hu, Xun; Mourant, Daniel; Song, Yao; Zhang, L.; Lievens, Caroline; Xiang, J.; Li, Chun-Zhu (2013)
      Steam reforming of bio-oils is a viable way to produce syngas, but certain challenges need to be overcome before its commercial application. One of the main issues is the formation of tar and coke. Investigation of the ...
    • Catalytic steam reforming of cellulose-derived compounds using a char-supported iron catalyst
      Wang, Yi; Hu, Xun; Song, Yao; Min, Zhenhua; Mourant, Daniel; Li, Tingting; Gunawan, Richard; Li, Chun-Zhu (2013)
      This study aims to understand the mechanism for the removal of tar in the gasification of biomass with a charsupported iron catalyst. The pyrolysis of a pure cellulose sample and the following steam reforming of the ...
    • An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part III: Effects of inorganic species in char on the reforming of tars from wood and agricultural wastes
      Zhang, S.; Song, Y.; Song, Y.; Yi, Q.; Dong, L.; Li, T.; Zhang, L.; Feng, J.; Li, W.; Li, Chun-Zhu (2016)
      Char is used directly as a catalyst for the catalytic reforming of tar during gasification. Experiments have been carried out to examine the effects of inorganics in char as a catalyst for the catalytic reforming of tar ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.