Numerical Algorithms for Polynomial Optimisation Problems with Applications
Access Status
Open access
Authors
Alqahtani, Mohammed Aeyed M
Date
2019Supervisor
Guanglu Zhou
Type
Thesis
Award
PhD
Metadata
Show full item recordFaculty
Science and Engineering
School
School of Electrical Engineering, Computing and Mathematical Sciences
Collection
Abstract
In this thesis, we study tensor eigenvalue problems and polynomial optimization problems. In particular, we present a fast algorithm for computing the spectral radii of symmetric nonnegative tensors without requiring the partition of the tensors. We also propose some polynomial time approximation algorithms with new approximation bounds for nonnegative polynomial optimization problems over unit spheres. Furthermore, we develop an efficient and effective algorithm for the maximum clique problem.
Related items
Showing items related by title, author, creator and subject.
-
Chong, Yen N. (2001)General routing problems deal with transporting some commodities and/or travelling along the axes of a given network in some optimal manner. In the modern world such problems arise in several contexts such as distribution ...
-
Ruan, Ning (2012)Duality is one of the most successful ideas in modern science [46] [91]. It is essential in natural phenomena, particularly, in physics and mathematics [39] [94] [96]. In this thesis, we consider the canonical duality ...
-
Grigoleit, Mark Ted (2008)The Constrained Shortest Path Problem (CSPP) consists of finding the shortest path in a graph or network that satisfies one or more resource constraints. Without these constraints, the shortest path problem can be solved ...