Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Reducing the dimensionality of hyperspectral remotely sensed data with applications for maximum likelihood image classification

    120239_Santich2008.pdf (2.042Mb)
    Access Status
    Open access
    Authors
    Santich, Norman Ty
    Date
    2007
    Supervisor
    Norm Campbell
    Merv Lynch
    Harri Kiiveri
    Brendan McGann
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Applied Science
    URI
    http://hdl.handle.net/20.500.11937/741
    Collection
    • Curtin Theses
    Abstract

    As well as the many benefits associated with the evolution of multispectral sensors into hyperspectral sensors there is also a considerable increase in storage space and the computational load to process the data. Consequently the remote sensing ommunity is investigating and developing statistical methods to alleviate these problems.The research presented here investigates several approaches to reducing the dimensionality of hyperspectral remotely sensed data while maintaining the levels of accuracy achieved using the full dimensionality of the data. It was conducted with an emphasis on applications in maximum likelihood classification (MLC) of hyperspectral image data. An inherent characteristic of hyperspectral data is that adjacent bands are typically highly correlated and this results in a high level of redundancy in the data. The high correlations between adjacent bands can be exploited to realise significant reductions in the dimensionality of the data, for a negligible reduction in classification accuracy.The high correlations between neighbouring bands is related to their response functions overlapping with each other by a large amount. The spectral band filter functions were modelled for the HyMap instrument that acquires hyperspectral data used in this study. The results were compared with measured filter function data from a similar, more recent HyMap instrument. The results indicated that on average HyMap spectral band filter functions exhibit overlaps with their neighbouring bands of approximately 60%. This is considerable and partly accounts for the high correlation between neighbouring spectral bands on hyperspectral instruments.A hyperspectral HyMap image acquired over an agricultural region in the south west of Western Australia has been used for this research. The image is composed of 512 × 512 pixels, with each pixel having a spatial resolution of 3.5 m. The data was initially reduced from 128 spectral bands to 82 spectral bands by removing the highly overlapping spectral bands, those which exhibit high levels of noise and those bands located at strong atmospheric absorption wavelengths. The image was examined and found to contain 15 distinct spectral classes. Training data was selected for each of these classes and class spectral mean and covariance matrices were generated.The discriminant function for MLC makes use of not only the measured pixel spectra but also the sample class covariance matrices. This thesis first examines reducing the parameterization of these covariance matrices for use by the MLC algorithm. The full dimensional spectra are still used for the classification but the number of parameters needed to describe the covariance information is significantly reduced. When a threshold of 0.04 was used in conjunction with the partial correlation matrices to identify low values in the inverse covariance matrices, the resulting classification accuracy was 96.42%. This was achieved using only 68% of the elements in the original covariance matrices.Both wavelet techniques and cubic splines were investigated as a means of representing the measured pixel spectra with considerably fewer bands. Of the different mother wavelets used, it was found that the Daubechies-4 wavelet performed slightly better than the Haar and Daubechies-6 wavelets at generating accurate spectra with the least number of parameters. The wavelet techniques investigated produced more accurately modelled spectra compared with cubic splines with various knot selection approaches. A backward stepwise knot selection technique was identified to be more effective at approximating the spectra than using regularly spaced knots. A forward stepwise selection technique was investigated but was determined to be unsuited to this process.All approaches were adapted to process an entire hyperspectral image and the subsequent images were classified using MLC. Wavelet approximation coefficients gave slightly better classification results than wavelet detail coefficients and the Haar wavelet proved to be a more superior wavelet for classification purposes. With 6 approximation coefficients, the Haar wavelet could be used to classify the data with an accuracy of 95.6%. For 11 approximation coefficients this figure increased to 96.1%.First and second derivative spectra were also used in the classification of the image. The first and second derivatives were determined for each of the class spectral means and for each band the standard deviations were calculated of both the first and second derivatives. Bands were then ranked in order of decreasing standard deviation. Bands showing the highest standard deviations were identified and the derivatives were generated for the entire image at these wavelengths. The resulting first and second derivative images were then classified using MLC. Using 25 spectral bands classification accuracies of approximately 96% and 95% were achieved using the first and second derivative images respectively. These results are comparable with those from using wavelets although wavelets produced higher classification accuracies when fewer coefficients were used.

    Related items

    Showing items related by title, author, creator and subject.

    • Application of advanced techniques for the remote detection, modelling and spatial analysis of mesquite (prosopis spp.) invasion in Western Australia
      Robinson, Todd Peter (2008)
      Invasive plants pose serious threats to economic, social and environmental interests throughout the world. Developing strategies for their management requires a range of information that is often impractical to collect ...
    • Fractals and fuzzy sets for modelling the heterogenity and spatial complexity of urban landscapes using multiscale remote sensing data
      Islam, Zahurul (2004)
      This research presents models for the analysis of textural and contextual information content of multiscale remote sensing to select an appropriate scale for the correct interpretation and mapping of heterogeneous urban ...
    • Shallow water substrate mapping using hyperspectral remote sensing
      Fearns, Peter; Klonowski, Wojciech; Babcock, R.; England, P.; Phillips, J. (2011)
      During April 2004 the airborne hyperspectral sensor, HyMap, collected data over a shallow coastalregion of Western Australia. These data were processed by inversion of a semi-analytical shallow wateroptical model to ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.