Discovering Higher-order SNP Interactions in High-dimensional Genomic Data
Access Status
Open access
Authors
Uppu, Suneetha
Date
2018Supervisor
Aneesh Krishna
Type
Thesis
Award
PhD
Metadata
Show full item recordFaculty
Science and Engineering
School
School of Electrical Engineering, Computing and Mathematical Sciences
Collection
Abstract
In this thesis, a multifactor dimensionality reduction based method on associative classification is employed to identify higher-order SNP interactions for enhancing the understanding of the genetic architecture of complex diseases. Further, this thesis explored the application of deep learning techniques by providing new clues into the interaction analysis. The performance of the deep learning method is maximized by unifying deep neural networks with a random forest for achieving reliable interactions in the presence of noise.
Related items
Showing items related by title, author, creator and subject.
-
Synergistic interactions of plasticizers and nanoclays in hydrophilic starch based bionanocompositesLiu, HuiHua (2011)Depletion of non-renewable resources and exorbitant levels of carbon dioxide emissions have questioned the further usage of traditional plastics. The imbalance in global sustainability has necessitated the development and ...
-
Bekele, Mafkereseb (2019)© 2019 Elsevier Ltd. Studies in the Virtual Heritage (VH) domain have led to underlining the significance of a contextual relationship between users, immersive reality technologies and interactive and engaging cultural ...
-
Alliex, Selma (1998)The purpose of this study was to develop a substantive theory or at least a set of theoretical propositions explaining the process of nurse-patient interaction in the presence of technology. This study was undertaken in ...