Show simple item record

dc.contributor.authorLau, Mian Mian
dc.contributor.supervisorZhuquan Zangen_US
dc.contributor.supervisorHann Limen_US
dc.date.accessioned2021-05-24T07:07:31Z
dc.date.available2021-05-24T07:07:31Z
dc.date.issued2021en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/83745
dc.description.abstract

A new convolutional deep feedforward network (C-DFN) is proposed to detect vulnerable road users at 57.9% misclassification rate using Caltech Dataset. Instead of going deeper, three C-DFN is stacked to achieve 43.4% misclassification rate. Part-based C-DFN further reduces the rate of 42.5% to tackle occlusion problem. In addition, investigation of adaptive activation functions are performed to understand the effect of saturated and non-saturated functions in mitigating the vanishing and exploding gradient issues of neural networks.

en_US
dc.publisherCurtin Universityen_US
dc.titleVulnerable Road Users Detection using Convolutional Deep Feedforward Networken_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentCurtin Malaysiaen_US
curtin.accessStatusOpen accessen_US
curtin.facultyCurtin Malaysiaen_US
curtin.contributor.orcidLau, Mian Mian [0000-0002-8940-0347]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record