Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Non-Gaussian and non-homogeneous Poisson models of snapping shrimp noise

    136754_Legg2010.pdf (3.393Mb)
    Access Status
    Open access
    Authors
    Legg, Matthew W.
    Date
    2010
    Supervisor
    Prof. Tony Zaknich
    Dr. Alec Duncan
    Dr. Mike Greening
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    Faculty
    Faculty of Science and Engineering, Department of Imaging and Applied Physics
    URI
    http://hdl.handle.net/20.500.11937/839
    Collection
    • Curtin Theses
    Abstract

    The problem of sonar detection and underwater communication in the presence of impulsive snapping shrimp noise is considered. Non-Gaussian amplitude and nonhomogeneous Poisson temporal statistical models of shrimp noise are investigated from the perspective of a single hydrophone immersed in shallow waters. New statistical models of the noise are devised and used to both challenge the superiority of existing models, and to provide alternative insights into the underlying physical processes.A heuristic amplitude statistical model of snapping shrimp noise is derived from first principles and compared with the Symmetric-α-stable model. The models are shown to have similar variability through the body of the amplitude probability density functions of real shrimp noise, however the new model is shown to have a superior fit to the extreme tails. Narrow-band detection using locally optimum detectors derived from these models show that the Symmetric-α-stable detector retains it's superiority, despite providing a poorer overall fit to the amplitude probability density functions. The results also confirm the superiority of the Symmetric-α-stable detector for detection of narrowband signals in shrimp noise from Australian waters.The temporal nature of snapping from a field of shrimp is investigated by considering the snapping as a point process in time. Point process analysis techniques are drawn from the fields of optics, neuro-physics, molecular biology, finance and computer science, and applied to the problem of snapping shrimp noise. It is concluded that the snapping is not consistent with a homogeneous Poisson process and that correlations exist in the point process on three different time scales. The cause of short time correlations is identified as surface reflected replicas, and models of medium time correlations are investigated. It is shown that a Cox-Ingersoll-Ross driven doubly-stochastic Poisson model is able to describe the medium time correlations observed from the counting process, but a k[superscript]th-order interval analysis reveals that there is more information contained within the snapping than can be described by the model. Analysis of shrimp snap times over a full day provides evidence of correlation between snap events on long time scales. Simulation of ocean noise is conducted to illustrate the use of such temporal models, and implications for their use in detection algorithms are discussed.

    Related items

    Showing items related by title, author, creator and subject.

    • Feasibility of rock characterization for mineral exploration using seismic data
      Harrison, Christopher Bernard (2009)
      The use of seismic methods in hard rock environments in Western Australia for mineral exploration is a new and burgeoning technology. Traditionally, mineral exploration has relied upon potential field methods and surface ...
    • Estimation of tropospheric wet delay from GNSS measurements
      Lo, Johnny Su Hau (2011)
      The determination of the zenith wet delay (ZWD) component can be a difficult task due to the dynamic nature of atmospheric water vapour. However, precise estimation of the ZWD is essential for high-precision Global ...
    • Minimum requirements for detecting a stochastic gravitational wave background using pulsars
      Cordes, J.; Shannon, Ryan (2012)
      We assess the detectability of a nanohertz gravitational wave (GW) background in a pulsar timing array (PTA) program by considering the shape and amplitude of the cross-correlation function summed over pulsar pairs. The ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.