Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    The reliability of rock mass classification systems as underground excavation support design tools

    131447_Ranasooriya J 2009 Full.pdf (12.96Mb)
    Access Status
    Open access
    Authors
    Ranasooriya, Jayantha
    Date
    2009
    Supervisor
    Dr. Hamid Nikraz
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    Faculty
    Faculty of Engineering and Computing, Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/846
    Collection
    • Curtin Theses
    Abstract

    This thesis examines the reliability of rock mass classification systems available for underground excavation support design. These methods are sometimes preferred to rational methods of support design particularly if detailed information required for the latter mentioned methods is lacking. The classification approach requires no analysis of any specific failure mechanisms or the forces required to stabilise unstable rocks, yet, the support measures thus designed are considered to deal with all possible failure mechanisms in a rock mass.Amongst the several rock mass classification methods developed for application in underground excavation engineering, two have stood out. These are known as rock mass rating (RMR) and tunnelling quality index (Q), introduced by Bieniawski (1973) and Barton et al. (1974), respectively. Over the years, the two methods have been revised and updated so as to improve their reliability as support design tools, yet the two methods are know to have limitations and their reliability has long been a subject of considerable debate. Nevertheless, attempts to assess their reliability in a systematic manner have been limited. Further, some practitioners in the field of rock engineering continue to use these methods as the sole methods of support design for underground rock excavations. The objective of thesis, therefore, is to contribute to a better understanding of the reliability of the two classification methods.This study considered that the reliability of the RMR and Q methods can be assessed by comparing their support predictions with those derived by other applicable methods and also with the actual support installed. Such an assessment can best be carried out during excavation of an underground opening because representative data can be collected by direct observation of the as-excavated ground conditions and monitoring the performance of the support installed. In this context, the geotechnical data obtained during the construction of several case tunnels were reviewed and the two classification methods were applied. The effectiveness of their support predictions was then evaluated against the potential failures that can be predicted by some of the applicable rational methods. Since the rock masses intersected in the case tunnels are jointed, mostly the structurally controlled failure modes were analysed. The support measures predicted by the two methods were compared with each other and with the actual support installed in the case tunnels. Further, the RMR and Q vales assigned to the case tunnels were correlated to observe any relationship between the two.The study showed that the RMR and Q predicted support measures are not always compatible. In some circumstances, the two methods can either overestimate or under estimate support requirements.

    Related items

    Showing items related by title, author, creator and subject.

    • Groundwater and underground excavations: From theory to practice
      Sharifzadeh, Mostafa; Javadi, M. (2017)
      © 2017 Taylor & Francis Group, London, UK. The hydraulic behavior and associated mechanical, physical, and chemical processes of geological formations and rock masses are one of the most important aspects of rock ...
    • Evaluation of monorail haulage systems in metalliferous underground mining
      Besa, Bunda (2010)
      The decline is a major excavation in metalliferous mining since it provides the main means of access to the underground and serves as a haulage route for underground trucks. However, conventional mining of the decline to ...
    • Evaluation of rock mass engineering geological properties using statistical analysis and selecting proper tunnel design approach in Qazvin–Rasht railway tunnel
      Rahimi, B.; Shahriar, K.; Sharifzadeh, Mostafa (2014)
      Various geological and geotechnical conditions at different project sites require different design, calculation and construction methods. Stability of underground openings depends on ground conditions with different modes ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.